GS431B/TL431A/TL431 Vishay Siliconix Adjustable Precision Shunt Regulators SO-8 8 SOT-23 7 SOT-89 TO-92 3 6 5 1 1 1 2 2 3 3 2 4 S Suffix U Suffix X Suffix 1 LP Suffix 2 3 Features Description * Programmable Output Voltage to 30V The GS431B/TL431A/TL431 are 3-terminal adjustable precision shunt regulators with guaranteed temperature stability over the applicable extended commercial temperature range. The output voltage may be set at any level greater than 2.500V (VREF) up to 36V merely by selecting two external resistors that act as a voltage divider network. These devices have a typical output impedance of 0.08. Active output circuitry provides very sharp turnon characteristics, making these devices excellent improved replacements for zener diodes in many applications. * Precision GS431B: TL431A: TL431: Reference Voltage 2.500V 0.5% 2.500V 1.0% 2.500V 2.0% * Sink Current Capability: 100mA. * Minimum Cathode Current for Regulation: 0.5mA * Equivalent Full-Range Temperature Coefficient: 50 ppm/C * Fast Turn-On Response * Low Dynamic Output Impedance: 0.22 * Low Output Noise Symbol The precise 0.5% reference voltage tolerance of the GS431B makes it possible in many applications to avoid the use of a variable resistor, consequently saving cost and eliminating drift and reliability problems associated with it. CATHODE (C) Applications * Voltage Monitor * Delay Timer REF (R) * Constant-Current Source/Sink * High-Current Shunt Regulator * Crow Bar * Over-Voltage/Under-Voltage Protection ANODE (A) Mechanical Data Block Diagram Case: SO-8, SOT-23, SOT-89, TO-92 High temperature soldering guaranteed: REF (R) + CATHODE (C) 260C/10 seconds at terminals Case outlines are on the back pages 2.500V ANODE (A) Document Number 74806 11-Jun-04 www.vishay.com 1 GS431B/TL431A/TL431 Vishay Siliconix Ordering Information 0.5% 1.0% 2.0% T/R, 2500 GS431BIX/11H-E3 TL431AIX/11H-E3 SOT-89 TL431IX/11H-E3 0.5% 1.0% 2.0% T/R, 1000 GS431BIU1/48H TL431AIU1/48H TL431IU1/48H GS431BIU2/48H TL431AIU2/48H TL431IU2/48H 0.5% 1.0% 2.0% 0.5% 1.0% 2.0% SOT-23 TO-92 0.5% 1.0% 2.0% 0.5% 1.0% 2.0% 8 Ref Anode 2 7 Anode Anode 3 6 Anode 5 NC NC 4 3 Top View 1. Cathode 2. Vref 3. Anode 2 1 T/R, 3000 SOT-23 (U2) GS431BILP/1H TL431AILP/1H TL431ILP/1H GS431BILP/1H TL431AILP/1H TL431ILP/1H SO-8 SO-8 Packing Method SOT-23 (U1) Vref Tolerance GS431BIS/5H-E3 TL431AIS/5-E3 TL431IS/5H-E3 Package Ammo Pack, 2000 3 Top View 1. Vref 2. Cathode 3. Anode Bulk, 1000 2 1 SOT-89 Part Number Top View Cathode 1 Top View 1. Vref 2. Anode (tab) 3. Cathode E3 designates a Lead (pb) Free Part. TO-92 1 Top View 1. Vref 2. Anode 3. Cathode 3 2 1 2 3 Marking Information SOT-23 GS431B, (U1) DAxx* TL431A, (U1) DBxx TL431, (U1) DCxx GS431B, (U2) DDxx TL431A, (U2) DExx TL431, (U2) DGxx * Last two digits denote year and week code. www.vishay.com 2 Document Number 74806 11-Jun-04 GS431B/TL431A/TL431 Vishay Siliconix Absolute Maximum Ratings T A = 25C unless otherwise noted. Parameter Symbol Value Unit Cathode voltage VZ 37 V Continuous cathode current IZ -10 to 150 mA Reference Input Current Range IREF -0.05 to10 mA Operating Temperature Range Toper -20 to 85 C Junction Temperature TJ 150 C Lead Temperature TL 260 C Tstg -65 to 150 C RJA 160 400 163 52* C/W Storage Temperature Thermal Resistance TO-92 Package SOT-23 Package SO-8 Package SOT-89 Package *Measured according to JESD Si-7 guidelines Electrical Characteristics T A Parameter Reference Voltage = 25C unless otherwise noted. Symbol VREF Test Conditions Typ Max GS431B 2.487 2.500 2.513 TL431A 2.475 2.500 2.525 TL431 2.450 2.500 2.550 GS431B 2.475 - 2.525 TL431A 2.445 - 2.545 TL431 2.430 - 2.560 (Fig. 1) - 3.0 17 IZ = 10mA VZ = VREF ~ 10V - 1.4 2.7 (Fig. 2) VZ = 10V ~ 30V - 1.0 2.0 - 0.7 4.0 - - 5.2 - 0.4 1.2 A - 0.5 1.0 mA - 2.6 1000 nA - 0.22 0.5 VZ = VREF IL = 10mA (Fig. 1) TA = 25C VZ = VREF IL = 10mA (Fig. 1) TA = -20C to +85C Deviation of reference Input voltage over temperature (1) VREF Ratio of the change in reference voltage VREF to the change in cathode voltage VZ Min VZ = VREF IL = 10mA TA = -20C to +85C IREF TA = 25C R1 = 10K, R2 = IL = 10mA (Fig. 2) TA = -20C to +85C Deviation of reference input current over temperature IREF R1 = 10K, R2 = IL = 10mA TA = -20C to +85C (Fig. 2) Minimum cathode current for regulation IZ(MIN) VZ = VREF Off-state current IZ(OFF) VZ = 36V, VREF = 0V Reference input current Dynamic output impedance (2) Document Number 74806 11-Jun-04 RZ (Fig. 1) (Fig 3) VZ = VREF, f = 1.0KHZ IZ = 1.0mA to 50mA Unit V mV mV/V A www.vishay.com 3 GS431B/TL431A/TL431 Vishay Siliconix IN IL IN IN VZ IL R1 IREF VZ IREF VZ IZ IZ R2 VREF VREF IZ(OFF) Note: VZ=VREF(1+R1/R2)+IREFxR1 Fig. 1 Test Circuit for VZ=VREF Fi Fig. 2 Test Circuit for VZ>VREF Note 1. Deviation of reference input voltage, VREF, is defined as the maximum variation of the reference input voltage over the full temperature range. T i i f ff C Fig. 3 Test Circuit for off-state current Where: T2 - T1 = full temperature change. The slope can be positive or negative depending on whether VMAX or VMIN occurs at the lower ambient temperature. VMAX Example: VREF = 9.0mV, VREF = 2495mV, T2 - T1 = 70C, slope is positive. VDEV = VMAX -VMIN VMIN VREF = T1 TEMPERATURE VREF ppm = C VMAX - VMIN VDEV 106 106 VREF(at 25C) VREF(at 25C) = T2 - T1 T2 -T1 Note 2. The dynamic output impedance, RZ , is defined as: VZ RZ = IZ When the device is programmed with two external resistors, R1 and R2, (see Fig. 2), the dynamic output impedance of the overall circuit, is defined as: rz = www.vishay.com 4 = 50ppm/C T2 The average temperature coefficient of the reference input voltage, VREF is defined as: 9.0mV 106 2495mV 70C Vz Rz Iz 1+ R1 R2 Document Number 74806 11-Jun-04 GS431B/TL431A/TL431 Vishay Siliconix Typical Performance Characteristics Fig. 5 - Reference Voltage vs. Temperature Fig. 4 - Cathode Current vs. Cathode Voltage 1000 2.58 VZ = VREF TA = 25C 600 IZ(MIN) 400 200 0 -200 -400 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 VREF max 2.52 VREF typ 2.50 2.48 2.46 VREF min 2.44 2.40 -40 3.0 -20 0 20 40 60 80 100 Cathode Voltage (V) Temperature (C) Fig. 6 - Reference Input Current vs. Temperature Fig. 7 - Dynamic Impedance vs. Temperature 1.20 120 0.32 R1=10K R2= IZ=10mA 1.15 1.10 0.30 Dynamic Impedance () Reference Input Current (A) 2.54 2.42 -800 -1.0 1.05 1.00 0.95 0.90 0.85 0.80 VZ = VREF IZ = 1mA to 100mA F 1KHZ 0.28 0.26 0.24 0.22 0.20 0.75 0.70 -40 -20 0 20 40 60 80 100 0.18 --40 120 --20 0 20 40 60 80 100 Temperature (C) Temperature (C) Fig. 8 - Change in Reference Voltage vs. Cathode Voltage Fig. 9 - Off-State Cathode Current vs. Temperature 0 120 2.5 Off-State Cathode Current (A) Change In Reference Voltage (mV) TL431 VZ = VREF IZ = 10mA 2.56 Reference Voltage (V) Cathode Current (A) 800 --5 IZ=10mA TA=25C --10 --15 --20 --25 --30 0 5 10 15 20 25 Cathode Voltage (V) Document Number 74806 11-Jun-04 30 35 40 2.0 VZ=VREF VZ=30V 1.5 1.0 0.5 0.0 --40 -20 0 20 40 60 80 100 120 Temperature (C) www.vishay.com 5 GS431B/TL431A/TL431 Vishay Siliconix Fig. 10 - Small Signal Voltage Amplification vs. Frequency Fig. 11 - Test Circuit Frequency Response Small-Signal Voltage Amplification 80 70 Output IZ=10mA TA=25C 60 47 F 50 40 + AV 30 R1 10K R 250 431 CIN VIN V1 20 10 0 -- 10 10 100 1k 10k 100k 1M 10M Frequency (Hz) Fig. 12 - Pulse Response Fig. 13 - Test Circuit For Pulse Response 6 RB Input 4 220 Output 2 Pulse Generator f=100kHz (V) 0 3 2 RA 431 50 Output 1 0 1S/div Fig. 14 - Dynamic Impedance vs. Frequency Fig. 15 - Test Circuit for Dynamic Impedance 10 R1 Dynamic Impedance () IZ=10mA TA=25C Output 50 431 + 1 AC R2 50 1V GND 0.1 1K 10K 100K 1M Frequency (Hz) www.vishay.com 6 Document Number 74806 11-Jun-04 GS431B/TL431A/TL431 Vishay Siliconix Application Examples Fig. 16 - Typical Application Circuit Fig. 17 - Delay Timer VIN VIN VOUT R + + R1 431 ON R2 + C OFF VOUT = (1+R1/R2) x VREF Delay=R x C x n ( Precision Regulator Fig. 18 - Voltage Monitor VIN ) VIN VREF Fig. 19 - Constant-Current Sink VIN VIN IOUT R1B R1A R2A R2B R1 LED on when Low Limit