ADS801 11
SBAS036B www.ti.com
frequency AC performance. It is important to select a trans-
former that gives low distortion and does not exhibit core
saturation at full-scale voltage levels. Since the transformer
does not appreciably load the ladder, there is no need to
buffer the Common-Mode (CM) output in this instance. In
general, it is advisable to keep the current draw from the CM
output pin below 0.5µA to avoid nonlinearity in the internal
reference ladder. A FET input operational amplifier, such as
the OPA130, can provide a buffered reference for driving
external circuitry. The analog IN and
IN
inputs should be
bypassed with 22pF capacitors to minimize track-and-hold
glitches and to improve high input frequency performance.
Figure 5 illustrates another possible low-cost interface circuit
that utilizes resistors and capacitors in place of a transformer.
Depending on the signal bandwidth, the component values
should be carefully selected in order to maintain the product
performance outlined. The input capacitors, CIN, and the input
resistors, RIN, create a high-pass filter with the lower corner
frequency at fC = 1/(2pRINCIN). The corner frequency can be
reduced by either increasing the value of RIN or CIN. If the
circuit operates with a 50Ω or 75Ω impedance level, the
resistors are fixed and only the value of the capacitor can be
increased. Usually AC-coupling capacitors are electrolytic or
tantalum capacitors with values of 1µF or higher. It should be
noted that these large capacitors become inductive with
increased input frequency, which could lead to signal ampli-
tude errors or oscillation. To maintain a low AC-coupling
impedance throughout the signal band, a small value (e.g.
1µF) ceramic capacitor could be added in parallel with the
polarized capacitor.
Capacitors CSH1 and CSH2 are used to minimize current
glitches resulting from the switching in the input track-and-
hold stage and to improve signal-to-noise performance. These
capacitors can also be used to establish a low-pass filter and
effectively reduce the noise bandwidth. In order to create a
real pole, resistors RSER1 and RSER2 were added in series with
each input. The cutoff frequency of the filter is determined by
fC = 1/(2pRSER • (CSH + CADC)), where RSER is the resistor in
series with the input, CSH is the external capacitor from the
input to ground, and CADC is the internal input capacitance of
the A/D converter (typically 4pF).
Resistors R1 and R2 are used to derive the necessary
common-mode voltage from the buffered top and bottom
references. The total load of the resistor string should be
selected so that the current does not exceed 1mA. Although
the circuit in Figure 5 uses two resistors of equal value so
that the common-mode voltage is centered between the top
and bottom reference (+2.25V), it is not necessary to do so.
In all cases the center point, VCM, should be bypassed to
ground in order to provide a low-impedance AC ground.
If the signal needs to be DC-coupled to the input of the
ADS801, an operational amplifier input circuit is required. In
the differential input mode, any single-ended signal must be
modified to create a differential signal. This can be accom-
plished by using two operational amplifiers; one in the
noninverting mode for the input and the other amplifier in the
inverting mode for the complementary input. The low distor-
tion circuit in Figure 6 will provide the necessary input
shifting required for signals centered around ground. It also
employs a diode for output level shifting to ensure a low
distortion +3.25V output swing. Other amplifiers can be used
in place of the OPA842s if the lowest distortion is not
necessary. If output level shifting circuits are not used, care
must be taken to select operational amplifiers that give the
necessary performance when swinging to +3.25V with a ±5V
supply operational amplifier.
The ADS801 can also be configured with a single-ended
input full-scale range of +0.25V to +4.25V by tying the
complementary input to the common-mode reference volt-
age (see Figure 7). This configuration will result in increased
even-order harmonics, especially at higher input frequen-
cies. However, this tradeoff may be quite acceptable for
time-domain applications. The driving amplifier must give
adequate performance with a +0.25V to +4.25V output
swing in this case.
FIGURE 5. AC-Coupled Differential Input Circuit.
ADS8xx
RSER1(1)
49.9Ω
R3
1kΩ
R2
(6kΩ)
R1
(6kΩ)
C2
0.1µF
CSH1
22pF
CSH2
22pF
C3
0.1µF
C1
0.1µF
CIN
0.1µF
VCM
CIN
0.1µF
RIN1
25Ω
RIN2
25ΩRSER2(1)
49.9Ω
+3.25V
Top Reference
+1.25V
Bottom Reference
IN
NOTE: (1) Indicates optional component.
IN