September 1997
1-91
© 1997 Actel Corporation
Preliminary Data Sheet
Integrator Series FPGAs
– 40MX and 42MX Families
Features
High Capacity
2,000 to 52,000 available logic gates
Up to 3 Kbits configurable dual-port SRAM
Fast wide-decode circuitry
Up to 250 user-programmable I/O Pins
High Performance
250 MHz performance
5 ns Dual-Port SRAM Access
100 MHz FIFOs
7.5 ns 35-bit Address Decode
Ease of Integration
Mixed voltage operation (3.3 V or 5 V I/O)
Synthesis-friendly architecture to support ASIC design
methodologies
95–100% resource utilization, using automatic
place-and-route tools with up to 100% pin fixing
Deterministic, user-controllable timing via DirectTime
software tools
Supported by Actel Designer Series development system
with interfaces to popular design environments such as
Cadence, Exemplar, IST, Mentor Graphics, Synopsys,
Synplicity, and Viewlogic
Low power consumption (less than 100
µ
A in stand-by
mode)
JTAG 1149.1 boundary scan testing
5.0V and 3.3V Programmable PCI-compliant I/O
General Description
Actel’s new MX family of programmable logic devices
provides system logic designers with a high-performance,
cost-effective ASIC alternative in a single Actel FPGA.
The MX family architecture is based on Actel’s patented
antifuse technology, implemented in a 0.45
µ
triple-metal
CMOS process. With capacities ranging from 2,000 to 52,000
gates, the synthesis-friendly MX family of devices provides
data paths up to 250 MHz, are live on power-up, and deliver
up to five times lower stand-by power consumption than any
other FPGA device. With up to 250 I/O the MX FPGAs are
available in a wide variety of packages.
Integrator Series Product Profile
Device A40MX02 A40MX04 A42MX09 A42MX16 A42MX24 A42MX36 A42MX52
Capacity
Gates
ASIC Equivalent Gates
SRAM Bits
2,000
1,200
N/A
4,000
2,000
N/A
9,000
4,000
N/A
16,000
8,000
N/A
24,000
14,000
N/A
36,000
20,000
2,560
52,000
30,000
3,072
Logic Modules
Sequential
Combinatorial
Decode
295
547
348
336
N/A
624
608
N/A
954
912
24
1230
1184
24
1888
1833
28
SRAM Modules
(64x4 or 32x8)
NA NA NA NA NA 10 12
Dedicated Flip-Flops
348 624 954 1,276 1,944
Clocks
1122266
User I/O
(maximum)
57 69 104 140 176 202 250
JTAG
No No No No Yes Yes Yes
Packages
PL44
PL68
PQ100
VQ80
PL44
PL68
PL68
PQ100
VQ80
PL84
PQ100
PQ160
TQ176
PL84
PQ160
PQ208
TQ176
PL84
PQ160
PQ208
TQ176
PQ208
RQ208
RQ240
RQ208
RQ240
1-92
The MX Integrator family is comprised of the 40MX and the
42MX FPGAs. The 42MX devices also feature Actel’s I/O which
supports mixed voltage systems. I/Os can operate with either
0V to 5.0V swing, for 5.0V input tolerance, for 3.3V and mixed
5.0V/3.3V system operation. The logic core can be operated at
5.0V for maximum performance; or at 3.3V for minimum
power consumption. The 42MX FPGA devices include
system-level features such as JTAG, dual-port SRAM, fast
wide-decode modules, and a programmable PCI interface.
The 42MX FPGAs were designed to integrate system logic that
is typically implemented in multiple CPLDs, PALs and FPGAs.
The 42MX family offers the industry’s fastest dual-port SRAM
for implementing fast FIFOs, LIFOs, and temporary data
storage. The large number of storage elements can efficiently
address applications requiring wide data-path manipulation
and can transformation functions such as
telecommunications, networking, and DSP. Power
consumption can be reduced to 100
µ
A, providing an excellent
solution for low-power systems. MultiPlex I/O includes
selectable PCI output drives in certain 42MX devices,
enabling 100% PCI compliance for both 5.0V and 3.3V
systems.
Ordering Information
Application (Temperature Range)
Blank = Commercial (0 to +70°C)
I = Industrial (–40 to +85°C)
Package Type
PL = Plastic Leaded Chip Carrier
PQ = Plastic Quad Flatpack
RQ = Plastic Power Quad Flatpack
TQ = Thin (1.4 mm) Quad Flatpack
VQ = Very Thin (1.0 mm) Quad Flatpack
Speed Grade
Blank = Standard Speed
1 = Approximately 15% faster than Standard
2 = Approximately 25% faster than Standard
3 = Approximately 35% faster than Standard
F = Approximately 40% slower than Standard
Part Number
A40MX02 = 2,000 Gates
A40MX04 = 4,000 Gates
A42MX09 = 9,000 Gates
A42MX16 = 16,000 Gates
A42MX24 = 24,000 Gates
A42MX36 = 36,000 Gates
A42MX52 = 52,000 Gates
Package Lead Count
A42MX16 PQ 100
1-93
Integrator Series FPGAs – 40MX and 42MX Families
Product Plan
Speed Grade Application
Std –1* –2* –3* –F* C I M B
A40MX02 Device
44-pin Plastic Leaded Chip Carrier (PLCC)
✔✔✔✔✔ ✔✔
68-pin Plastic Leaded Chip Carrier (PLCC)
✔✔✔✔✔ ✔✔
100-pin Plastic Quad Flatpack (PQFP)
✔✔✔✔✔ ✔✔
80-pin Very Thin Plastic Quad Flatpack (VQFP)
✔✔✔✔✔ ✔✔
A40MX04 Device
44-pin Plastic Leaded Chip Carrier (PLCC)
✔✔✔✔✔ ✔✔
68-pin Plastic Leaded Chip Carrier (PLCC)
✔✔✔✔✔ ✔✔
84-pin Plastic Leaded Chip Carrier (PLCC)
✔✔✔✔✔ ✔✔
100-pin Plastic Quad Flatpack (PQFP)
✔✔✔✔✔ ✔✔
80-pin Very Thin Plastic Quad Flatpack (VQFP)
✔✔✔✔✔ ✔✔
A42MX09 Device
84-pin Plastic Leaded Chip Carrier (PLCC)
✔✔✔
100-pin Plastic Quad Flatpack (PQFP)
✔✔✔
160-pin Plastic Quad Flatpack (PQFP)
✔✔✔
176-pin Thin Plastic Quad Flatpack (TQFP)
✔✔✔
A42MX16 Device
84-pin Plastic Leaded Chip Carrier (PLCC)
✔✔✔
100-pin Plastic Quad Flatpack (PQFP)
✔✔✔
160-pin Plastic Quad Flatpack (PQFP)
✔✔✔
208-pin Plastic Quad Flatpack (PQFP)
✔✔✔
176-pin Thin Plastic Quad Flatpack (TQFP)
✔✔✔
A42MX24 Device
84-pin Plastic Leaded Chip Carrier (PLCC)
✔✔✔
160-pin Plastic Quad Flatpack (PQFP)
✔✔✔
208-pin Plastic Quad Flatpack (PQFP)
✔✔✔
176-pin Thin Plastic Quad Flatpack (TQFP)
✔✔✔
A42MX36 Device
208-pin Plastic Quad Flatpack (PQFP)
✔✔✔
208-pin Plastic Power Quad Flatpack (RQFP)
✔✔✔
240-pin Plastic Power Quad Flatpack (RQFP)
✔✔✔
A42MX52 Device
208-pin Plastic Power Quad Flatpack (RQFP) P P P P P P
240-pin Plastic Power Quad Flatpack (RQFP) P P P P P P
Applications: C = Commercial Availability:
= Available * Speed Grade: –1 = Approx. 15% faster than Standard
I = Industrial P = Planned –2 = Approx. 25% faster than Standard
M = Military = Not Planned –3 = Approx. 35% faster than Standard
B = MIL-STD-883 –F = Approx. 40% slower than Standard
1-94
Integrator Series devices are supported by Actel’s Designer
Series development software, which provides a seamless
integration into any ASIC design flow. The Designer Series
development tools offer automatic placement and routing
(even with preassigned pins), static timing analysis, user
programming, and debug and diagnostic probe capabilities. In
addition, the DirectTime tool provides deterministic as well
as controllable timing. DirectTime allows the designer to
specify the performance requirements of individual paths and
system clocks. Using these specifications, the software will
automatically optimize the placement and routing of the logic
to meet the constraints. Included with the Designer Series
tools is Actel’s ACTgen™ Macro Builder. ACTgen allows the
designer quickly to build fast, efficient logic functions such as
counters, adders, FIFOs, and RAM.
The Designer Series tools provide designers with the
capability to move up to high-level description languages,
such as VHDL and Verilog, or to use schematic design entry
with interfaces to most EDA tools. Designer Series is
supported on 486 and Pentium PCs and on Sun
®
and HP
®
workstations. The software provides CAE interfaces to
Cadence, Mentor Graphics
®
, Escalade, OrCAD™ and
Viewlogic
®
design environments. Additional development
tools are supported through Actel’s Industry Alliance
Program, including DATA I/O (ABEL FPGA) and MINC.
Actel’s FPGAs are an ideal solution for shortening the system
design and development cycle, and they offer a cost-effective
alternative for low-volume production runs. The 40MX and
42MX devices are an excellent choices for integrating logic
that is currently implemented in multiple PALs, CPLDs, and
FPGAs. Some example applications include high-speed
controllers and address decoding, peripheral bus interfaces,
DSP, and coprocessor functions.
Plastic Device Resources
User I/Os
Device PLCC
44-pin PLCC
68-pin PLCC
84-pin VQFP
80-pin PQFP
100-pin PQFP
160-pin PQFP
208-pin RQFP
208-pin RQFP
240-pin TQFP
176-pin
A40MX02 34 57 57 57
A40MX04 34 57 69 69 69
A42MX09 72 83 104 103
A42MX16 72 83 125 140 140
A42MX24 72 125 176 150
A42MX36 176 176 202
A42MX52 176 202
Package Definitions
(Consult your local Actel sales representative for product availability.)
PLCC = Plastic Leaded Chip Carrier, PQFP = Plastic Quad Flat Pack, TQFP = Thin Quad Flat Pack, VQFP = Very Thin Quad Flat Pack, RQFP =
Plastic Power Quad Flat Pack
1-95
Integrator Series FPGAs – 40MX and 42MX Families
Pin Description
CLK, CLKA, CLKB
Clock Clock A and Clock B (input)
TTL clock inputs for clock distribution networks. The clock
input is buffered prior to clocking the logic modules. This pin
can also be used as an I/O.
DCLK Diagnostic Clock (Input)
TTL clock input for diagnostic probe and device
programming. DCLK is active when the MODE pin is HIGH.
This pin functions as an I/O when the MODE pin is LOW.
GND Ground (Input)
Input LOW supply voltage.
I/O Input/Output (Input, Output)
Input, output, three-state, or bidirectional buffer. Input and
output levels are compatible with standard TTL and CMOS
specifications. Unused I/O pins are automatically driven LOW
by the Designer Series software.
MODE Mode (Input)
Controls the use of multifunction pins (DCLK, PRA, PRB,
SDI, TDO). When the MODE pin is HIGH, the special
functions are active. To provide Actionprobe capability, the
MODE pin should be terminated to GND through a 10K
resistor so that the MODE pin can be pulled high when
required. To turn off input/output devices for low-power
mode, MODE pin must be HIGH.
NC No Connection
Not connected to circuitry within the device.
PRA/I/O Probe A (Output)
Used to output data from any user-defined design node within
the device. This independent diagnostic pin is used in
conjunction with the Probe B pin to allow real-time
diagnostic output of any signal path within the device. The
Probe A pin can be used as a user-defined I/O when
debugging has been completed. The pin's probe capabilities
can be permanently disabled to protect programmed design
confidentiality. PRA is active when the MODE pin is HIGH.
This pin functions as an I/O when the MODE pin is LOW.
PRB/I/O Probe B (Output)
Used to output data from any user-defined design node within
the device. This independent diagnostic pin is used in
conjunction with the Probe A pin to allow real-time
diagnostic output of any signal path within the device. The
Probe B pin can be used as a user-defined I/O when
debugging has been completed. The pin’s probe capabilities
can be permanently disabled to protect programmed design
confidentiality. PRB is active when the MODE pin is HIGH.
This pin functions as an I/O when the MODE pin is LOW.
QCLKA/B,C,D Quadrant Clock (Input/Output)
Quadrant clock inputs. When not used as a register control
signal, these pins can function as general-purpose I/O.
SDI Serial Data Input (Input)
Serial data input for diagnostic probe and device
programming. SDI is active when the MODE pin is HIGH. This
pin functions as an I/O when the MODE pin is LOW.
TCK Test Clock
Clock signal to shift the JTAG data into the device. This pin
functions as an I/O when the JTAG fuse is not programmed.
TDI Test Data In
Serial data input for JTAG instructions and data. Data is
shifted in on the rising edge of TCLK. This pin functions as an
I/O when the JTAG fuse is not programmed.
TDO Test Data Out
Serial data output for JTAG instructions and test data. This
pin functions as an I/O when the JTAG fuse is not
programmed.
TMS Test Mode Select
Serial data input for JTAG test mode. Data is shifted in on the
rising edge of TCLK. This pin functions as an I/O when the
JTAG fuse is not programmed.
V
CC
Supply Voltage (Input)
Input HIGH supply voltage.
V
CCA
Supply Voltage (Input)
Input HIGH supply voltage, supplies array core only.
V
CCI
Supply Voltage (Input)
Input HIGH supply voltage, supplies I/O cells only.
Note:
TCK, TDI, TDO, TMS are available only on devices
containing JTAG circuitry.
1-96
Connecting V
CC
on MX Devices
40MX
The 40MX FPGAs will operate in 5.0V only systems, or 3.3V
only systems.
V
CC
Input Output
3.3V 3.3V 3.3V
5.0V 5.0V 5.0V
42MX
The 42MX FPGAs will operate in 5.0V only systems, 3.3V only
systems, or mixed 5.0V/3.3V systems.
V
CCA
V
CCI
Input Output
3.3V 3.3V 3.3V 3.3V
5.0V 3.3V 3.3V, 5.0V 3.3V
5.0V 5.0V 5.0V 5.0V
Integrator Series Architectural
Overview
The 40MX and 42MX devices are composed of fine-grained
building blocks that produce fast, efficient logic designs. All
devices within the Integrator Series are composed of logic
modules, routing resources, clock networks, and I/O modules,
which are the building blocks for designing fast logic designs.
In addition, a subset of devices contain embedded dual-port
SRAM and wide decode modules. The dual-port SRAM
modules are optimized for high-speed data-path functions
such as FIFOs, LIFOs, and scratchpad memory. The
Integrator Series Product Profile” on page 1-91, lists the
specific logic resources contained within each device.
Logic Modules
The 40MX logic module is an eight-input, one-output logic
circuit chosen for the wide range of functions it implements
and for its efficient use of interconnect routing resources
(Figure 1).
The logic module can implement the four basic logic
functions (NAND, AND, OR, and NOR) in gates of two, three,
or four inputs. Each function may have many versions, with
different combinations of active-low inputs. The logic module
can also implement a variety of D-latches, exclusivity
functions, AND-ORs, and OR-ANDs. No dedicated hard-wired
latches or flip-flops are required in the array, since latches
and flip-flops can be constructed from logic modules
wherever needed in the application.
Figure 1 40MX Logic Module
1-97
Integrator Series FPGAs – 40MX and 42MX Families
The 42MX devices contain three types of logic modules:
combinatorial (C-modules), sequential (S-modules), and
decode (D-modules).
The C-module is shown in Figure 2 and implements the
following function:
Y=!S1*!S0*D00+!S1*S0*D01+S1*!S0*D01+S1*S0*D11
where
S0=A0*B0
S1=A1+B1
The S-module shown in Figure 3 is designed to implement
high-speed sequential functions within a single logic module.
The S-module implements the same combinatorial logic
function as the C-module while adding a sequential element.
The sequential element can be configured as either a D
flip-flop or a transparent latch. To increase flexibility, the
S-module register can be by passed so that it implements
purely combinatorial logic.
Figure 2 C-module Implementation
D00
D00
D10
D11
S0
S1
Y
A0
B0
A1
B1
Figure 3 S-module Implementation
D11
D01
D00
D10 YOUT
S1 S0
Up to 7-input function plus D-type flip-flop with clear
D11
D01
D00
D10 Y
S1 S0
Up to 7-input function plus latch
Y
Up to 4-input function plus latch with clear
D11
D01
D00
D10 Y OUT
S1
S0
Up to 8-input function (same as C-module)
S
D1
D0
CLR
D Q
OUT
CLR
D Q
OUT
GATE
D Q
GATE
1-98
Some of the 42MX devices contain a third type of logic
module, D-modules, which are arranged around the
peripheries of the devices. D-modules contain wide-decode
circuitry, which provides a fast, wide-input AND function
similar to that found in product term architectures
(Figure 4). The D-module allows 42MX devices to perform
wide-decode functions at speeds comparable to CPLDs and
PAL devices. The output of the D-module has a programmable
inverter for active HIGH or LOW assertion. The D-module
output is hard-wired to an output pin, or it can be fed back
into the array to be incorporated into other logic.
Dual-Port SRAM Modules
Several 42MX devices contain dual-port SRAM modules that
have been optimized for synchronous or asynchronous
applications. The SRAM modules are arranged in 256-bit
blocks that can be configured as 32 x 8 or 64 x 4. (Refer to the
“Integrator Series Product Profile” table, on page 1-91, for the
number of SRAM blocks within a particular device.) SRAM
modules can be cascaded together to form memory spaces of
user-definable width and depth. A block diagram of the 42MX
dual-port SRAM block is shown in Figure 5.
The 42MX SRAM modules are true dual-port structures
containing independent Read and Write ports. Each SRAM
module contains six bits of read and write addressing
(RDAD[5:0] and WRAD[5:0], respectively) for 64 x 4 bit
blocks. When configured in byte mode, the highest order
address bits (RDAD5 and WRAD5) are not used. The read and
write ports of the SRAM block contain independent clocks
(RCLK and WCLK) with programmable polarities offering
active HIGH or LOW implementation. The SRAM block
contains eight data inputs (WD[7:0]), and eight outputs
(RD[7:0]) which are connected to segmented vertical routing
tracks.
The 42MX dual-port SRAM blocks are ideal for high-speed
buffered applications requiring fast FIFO and LIFO queues.
Actel’s ACTgen Macro Builder provides the capability to
design quickly memory functions, such as FIFOs, LIFOs, and
Figure 4 D-Module Implementation
7 inputs
Hardwire to I/O
Feedback to array
Programmable
inverter
Figure 5 42MX Dual-Port SRAM Block
SRAM Module
32 x 8 or 64 x 4
(256 bits)
Read
Port
Logic
Write
Port
Logic
RD[7:0]
Routing Tracks
Latches
Read
Logic
[5:0] RDAD[5:0]
REN
RCLK
LatchesWD[7:0]
Latches
WRAD[5:0]
Write
Logic
MODE
BLKEN
WEN
WCLK
[5:0]
[7:0]
1-99
Integrator Series FPGAs – 40MX and 42MX Families
RAM arrays. In addition, unused SRAM blocks need not be
wasted, since they can be used to implement registers for
other logic within the design.
MultiPlex I/O Modules
The I/O modules provide the interface between the device
pins and the logic array. The top of Figure 6 is a block
diagram of the 42MX I/O module. A variety of user functions,
determined by a library macro selection, can be implemented
in the module. (Refer to the Macro Library Guide for more
information.) All 42MX I/O modules contain a tristate buffer,
with input and output latches that can be configured for
input, output, or bidirectional operation.
The Integrator Series devices contain flexible I/O structures,
in that each output pin has a dedicated output-enable
control. The I/O module can be used to latch input or output
data, or both, providing a fast setup time. In addition, the
Actel Designer software tools can build a D flip-flop, using a
C-module, to register input and output signals. To achieve
5.0V or 3.3V PCI-compliant output drives on A42MX24,
A42MX36, and A42MX52, a chip-wide PCI fuse is
programmed. When the PCI fuse is not programmed, output
drive is standard. (See the bottom portion of Figure 6.)
Actel’s Designer Series development tools provide a design
library of I/O macros. The I/O macro library provides
macrofunctions that can implement all I/O configurations
supported by the MX FPGAs.
Routing Structure
The MX architecture uses vertical and horizontal routing
tracks to interconnect the various logic and I/O modules.
These routing tracks are metal interconnects that may be
either of continuous length or broken into pieces called
segments. Varying segment lengths allows the interconnect of
over 90% of design tracks to occur with only two antifuse
connections. Segments can be joined together at the ends,
using antifuses, to increase their lengths up to the full length
of the track. All interconnects can be accomplished with a
maximum of four antifuses.
Horizontal Routing
Horizontal channels are located between the rows of modules
and are composed of several routing tracks. The horizontal
routing tracks within the channel are divided into one or
more segments. The minimum horizontal segment length is
the width of a module pair, and the maximum horizontal
segment length is the full length of the channel. Any segment
that spans more than one-third the row length is considered a
long horizontal segment. A typical channel is shown in
Figure 7. Nondedicated horizontal routing tracks are used to
route signal nets. Dedicated routing tracks are used for the
global clock networks and for power and ground tie-off tracks.
Vertical Routing
Another set of routing tracks run vertically through the
module. Vertical tracks are of three types: input, output, and
long. Vertical tracks are also divided into one or more
segments. Each segment in an input track is dedicated to the
input of a particular module. Each segment in an output track
is dedicated to the output of a particular module. Long
segments are uncommitted and can be assigned during
routing. Each output segment spans four channels (two above
and two below), except near the top and bottom of the array,
where edge effects occur. LVTs contain either one or two
segments. An example of vertical routing tracks and
segments is shown in Figure 7.
Antifuse Structures
An antifuse is a “normally open” structure as opposed to the
normally closed fuse structure used in PROMs or PALs. The
use of antifuses to implement a programmable logic device
results in highly testable structures as well as efficient
Figure 6 I/O Module
G/CLK*
Q D
EN
PAD
* Can be configured as a Latch or D Flip-Flop
From Array
To Array
(using C-module)
G/CLK*
Q D
Signal
PCI Enable
PCI
Schematic
Fuse
Drive
STD
Output
1-100
programming algorithms. The structure is highly testable
because there are no preexisting connections; therefore,
temporary connections can be made using pass transistors.
These temporary connections can isolate individual antifuses
to be programmed and individual circuit structures to be
tested. This can be done both before and after programming.
For example, all metal tracks can be tested for continuity and
shorts between adjacent tracks, and the functionality of all
logic modules can be verified.
Clock Networks
The 40MX devices have one global CLK distribution network.
Two low-skew, high fanout clock distribution networks are
provided in each 42MX device. These networks are referred to
as CLK0 and CLK1. Each network has a clock module
(CLKMOD) that selects the source of the clock signal and
may be driven as follows:
Externally from the CLKA pad
Externally from the CLKB pad
Internally from the CLKINA input
Internally from the CLKINB input
The clock modules are located in the top row of I/O modules.
Clock drivers and a dedicated horizontal clock track are
located in each horizontal routing channel.
The user controls the clock module by selecting one of two
clock macros from the macro library. The macro CLKBUF is
used to connect one of the two external clock pins to a clock
network, and the macro CLKINT is used to connect an
internally generated clock signal to a clock network. Since
both clock networks are identical, the user does not care
whether CLK0 or CLK1 is being used. The clock input pads
can also be used as normal I/Os, bypassing the clock
networks. (See Figure 8.)
The 42MX devices that contain SRAM modules have four
additional register control resources, called quadrant clock
networks (Figure 9). Each quadrant clock provides a local,
high-fanout resource to the contiguous logic modules within
its quadrant of the device. Quadrant clock signals can
originate from specific I/O pins or from the internal array and
can be used as a secondary register clock, register clear, or
output enable.
Test Circuitry
Both 40MX and 42MX devices provide the means to test and
debug a design once it is programmed into a device. The 40MX
and 42MX devices contain Actel’s Actionprobe® test facility.
Once a device has been programmed, the Actionprobe test
facility allows the designer to probe any internal node during
device operation to aid in debugging a design. In addition,
42MX devices contain JTAG 1149.1 Boundary Scan Test.
JTAG Boundary Scan Testing (BST)
Device pin spacing is decreasing with the advent of fine-pitch
packages such as TQFP and BGA, and manufacturers are
routinely implementing surface-mount technology with
multilayer PC boards. Boundary scan is becoming an
attractive tool to help system manufacturers test their PC
boards. The Joint Test Action Group (JTAG) developed the
IEEE Boundary Scan standard 1149.1 to facilitate board-level
testing during manufacturing.
IEEE Standard 1149.1 defines a four-pin Test Access Port
(TAP) interface for testing integrated circuits in a system.
The 42MX family provides four JTAG BST pins: Test Data In
(TDI), Test Data Out (TDO), Test Clock (TCLK), and Test
Mode Select (TMS). Devices are configured in a JTAG “chain”
Figure 7 Routing Structure
Vertical routing tracks
Antifuses
Logic
Segmented
horizontal
routing
tracks
Modules
Figure 8 Clock Networks
CLKB
CLKA
FROM
PADS
CLOCK
DRIVERS
CLKMOD
CLKINB
CLKINA
S0
S1 INTERNAL
SIGNAL
CLKO(17)
CLKO(16)
CLKO(15)
CLKO(2)
CLKO(1)
CLOCK TRACKS
1-101
Integrator Series FPGAs – 40MX and 42MX Families
where by BST data can be transmitted serially between
devices via TDO-to-TDI interconnections. The TMS and TCLK
signals are shared among all devices in the JTAG chain so
that all components operate in the same state.
The 42MX family implements a subset of the IEEE 1149.1 BST
instruction, in addition to a private instruction, to allow the
use of Actel’s Actionprobe facility with JTAG BST. Refer to
the IEEE 1149.1 specification for detailed information
regarding JTAG testing.
JTAG Architecture
The 42MX JTAG BST circuitry consist of a Test Access Port
(TAP) controller, JTAG instruction register, a JPROBE
register, a bypass register, and a boundary scan register.
Figure 10 is a block diagram of the 42MX JTAG circuitry.
Figure 9 Quadrant Clock Network
Figure 10 JTAG BST Circuitry
Quad
Clock
Module
QCLKA
QCLKB
*QCLK1IN
S0 S1
QCLK1
Quad
Clock
Module
*QCLK2IN
S0 S1
QCLK2
Quad
Clock
Module
QCLKC
QCLKD
*QCLK3IN
S0S1
QCLK3
Quad
Clock
Module *QCLK4IN
S0S1
QCLK4
*QCLK1IN, QCLK2IN, QCLK3IN, and QCKL4IN are internally generated signals.
JPROBE Register
Boundary Scan Register
Instruction
Decode
Control Logic
TAP Controller
Instruction
Register
Bypass
Register
TMS
TCLK
TDI
Output
MUX TDO
1-102
When a device is operating in JTAG BST mode, four I/O pins
are used for the TDI, TDO, TMS, and TCLK signals. An active
reset (nTRST) pin is not supported. However the 42MX
contains power-on reset circuitry that resets the JTAG BST
circuitry upon power-up. During normal device operation, the
JTAG pins should be held LOW to disable the JTAG circuitry.
The following table summarizes the functions of the JTAG
BST signals.
JTAG BST Instructions
JTAG BST testing within the 42MX devices is controlled by a
Test Access Port (TAP) state machine. The TAP controller
drives the three-bit instruction register, a bypass register, and
the boundary scan data registers within the device. The TAP
controller uses the TMS signal to control the JTAG testing of
the device. The JTAG test mode is determined by the bit
stream entered on the TMS pin. The table in the next column
describes the JTAG instructions supported by the 42MX.
Actionprobe
If a device has been successfully programmed and the
security fuse has not been programmed, any internal logic or
I/O module output can be observed using the Actionprobe
circuitry and the PRA and/or PRB pins. The Actionprobe
diagnostic system provides the software and hardware
required to perform real-time debugging. Refer to “Using the
Actionprobe for System-Level Debug” application note for
further information.
JTAG
Signal Name Function
TDI Test Data In Serial data input for JTAG
instructions and data. Data is
shifted in on the rising edge of
TCLK.
TDO Test Data
Out Serial data output for JTAG
instructions and test data.
TMS Test Mode
Select Serial data input for JTAG test
mode. Data is shifted in on the
rising edge of TCLK.
TCLK Test Clock Clock signal to shift the JTAG
data into the device.
Test Mode Code Description
EXTEST 000 Allows the external circuitry and
board-level interconnections to
be tested by forcing a test
pattern at the output pins and
capturing test results at the
input pins.
SAMPLE/
PRELOAD 001 Allows a snapshot of the signals
at the device pins to be
captured and examined during
device operation.
INTEST 010 Refer to the IEEE 1149.1
specification.
JPROBE 011 A private instruction allowing
the user to connect Actel’s
Micro Probe registers to the
JTAG chain.
USER
INSTRUCTION 100 Allows the user to build
application-specific instructions
such as RAM READ and RAM
WRITE.
HIGH Z 101 Refer to the IEEE 1149.1
specification.
CLAMP 110 Refer to the IEEE 1149.1
specification.
BYPASS 111 Enables the bypass register
between the TDI and TDO pins.
The test data passes through
the selected device to adjacent
devices in the JTAG chain.
1-103
Integrator Series FPGAs – 40MX and 42MX Families
5.0V Operating Conditions
Absolute Maximum Ratings1
Free air temperature range
Symbol Parameter Limits Units
VCC DC Supply Voltage –0.5 to +7.0 V
VIInput Voltage –0.5 to VCC +0.5 V
VOOutput Voltage –0.5 to VCC +0.5 V
IIO I/O Source/Sink
Current2±20 mA
TSTG Storage Temperature –65 to +150 °C
Notes:
1. Stresses beyond those listed under “Absolute Maximum
Ratings” may cause permanent damage to the device. Exposure
to absolute maximum rated conditions for extended periods
may affect device reliability. Device should not be operated
outside the Recommended Operating Conditions.
2. Device inputs are normally high impedance and draw
extremely low current. However, when input voltage is greater
than VCC + 0.5 V or less than GND – 0.5 V, the internal
protection diode will be forward biased and can draw excessive
current.
Recommended Operating Conditions
Parameter Commercial Industrial Units
Temperature
Range10 to
+70 –40 to
+85 °C
Power Supply
Tolerance ±5±10 %VCC
Note:
1. Ambient temperature (TA) is used for commercial and
industrial.
Electrical Specifications
Symbol Parameter Commercial Commercial –F Industrial Units
Min. Max. Min. Max. Min. Max.
VOH1(IOH = –10 mA) 2 2.4 2.4 V
(IOH = –6 mA) 3.84 3.84 V
(IOH = –4 mA) 3.7 V
VOL1(IOL = 10 mA) 2 0.5 0.5 V
(IOL = 6 mA) 0.33 0.33 0.40 V
VIL –0.3 0.8 –0.3 0.8 –0.3 0.8 V
VIH 2.0 VCC + 0.3 2.0 VCC + 0.3 2.0 VCC + 0.3 V
Input Transition Time tR, tF2500 500 500 ns
CIO I/O Capacitance2, 3 10 10 10 pF
Standby Current, ICC4 (typical = 1 mA) 1.0 20 10 mA
ICC(D) Dynamic VCC Supply Current See “Power Dissipation” on page 1-21.
Low Power Mode Standby Current, ICC 0.1 20 10 mA
Power Current During Power-Up 1.0 20 10 mA
Notes:
1. Only one output tested at a time. VCC = min.
2. Not tested, for information only.
3. Includes worst-case 84-pin CPGA package capacitance. VOUT = 0 V, f = 1 MHz.
4. All outputs unloaded. All inputs = VCC or GND; typical ICC = 0.25 mA. I CC limit includes IPP and ISV during normal operation.
1-104
3.3V Operating Conditions
Absolute Maximum Ratings1
Free air temperature range
Recommended Operating Conditions
Symbol Parameter Limits Units
VCC DC Supply Voltage –0.5 to +7.0 V
VIInput Voltage –0.5 to VCC +0.5 V
VOOutput Voltage –0.5 to VCC +0.5 V
IIO I/O Source Sink
Current2±20 mA
TSTG Storage Temperature –65 to +150 °C
Notes:
1. Stresses beyond those listed under “Absolute Maximum
Ratings” may cause permanent damage to the device. Exposure
to absolute maximum rated conditions for extended periods
may affect device reliability. Device should not be operated
outside the Recommended Operating Conditions.
2. Device inputs are normally high impedance and draw
extremely low current. However, when input voltage is greater
than VCC + 0.5 V or less than GND – 0.5 V, the internal
protection diodes will forward bias and can draw excessive
current.
Parameter Commercial Industrial Units
Temperature
Range10 to +70 –40 to
+85 °C
Power Supply
Tolerance ±5±10 %V
Note:
1. Ambient temperature (T A) is used for commercial.
Electrical Specifications
Parameter Commercial Industrial Units
Min. Max. Min. Max.
VOH1(IOH = –4 mA) 2.15 3.7 V
(IOH = –3.2 mA) 2.4 V
VOL1(IOL = 6 mA) 0.4 0.48 V
VIL –0.3 0.8 –0.3 0.8 V
VIH 2.0 VCC + 0.3 2.0 VCC + 0.3 V
Input Transition Time tR, tF2500 500 ns
CIO I/O Capacitance2, 3 10 10 pF
Standby Current, ICC4(typical = 0.3 mA) 0.75 0.75 mA
ICC(D) Dynamic VCC Supply Current See “Power Dissipation” on page 1-21.
Low Power Mode Standby Current, ICC 0.1 10 mA
Power Current During Power-Up 1.0 10 mA
Notes:
1. Only one output tested at a time. VCC = min.
2. Not tested, for information only.
3. Includes worst-case 84-pin PLCC package capacitance. VOUT = 0 V, f = 1 MHz.
4. Typical standby current = 0.3 mA. All outputs unloaded. All inputs = VCC or GND.
1-105
Integrator Series FPGAs – 40MX and 42MX Families
Package Thermal Characteristics
The device junction-to-case thermal characteristic is θjc, and
the junction-to-ambient air characteristic is θja. The thermal
characteristics for θja are shown with two different air flow
rates.
Maximum junction temperature is 150°C.
A sample calculation of the absolute maximum power
dissipation allowed for a PQFP 160-pin package at
commercial temperature is as follows:
Power Dissipation
General Power Equation
P = [ICCstandby + ICCactive] * VCC + IOL* VOL* N
+ IOH * (VCC – VOH) * M
where:
ICCstandby is the current flowing when no inputs or
outputs are changing.
ICCactive is the current flowing due to CMOS switching.
IOL, IOH are TTL sink/source currents.
VOL, VOH are TTL level output voltages.
N equals the number of outputs driving TTL loads to VOL.
M equals the number of outputs driving TTL loads to VOH.
An accurate determination of N and M is problematic
because their values depend on the family type, on design
details, and on the system I/O. The power can be divided into
two components: static and active.
Static Power Component
Actel FPGAs have small static power components that
result in power dissipation lower than PALs or PLDs. By
integrating multiple PALs/PLDs into one FPGA, an even
greater reduction in board-level power dissipation can
be achieved.
The power due to standby current is typically a small
component of the overall power. Standby power is calculated
for commercial, worst-case conditions:
ICC VCC Power
2 mA 5.25 V 10.5 mW
The static power dissipation by TTL loads depends on the
number of outputs driving high or low and on the DC load
current. Again, this number is typically small. For instance, a
32-bit bus sinking 4 mA at 0.33 V will generate 42 mW with all
outputs driving low and 140 mW with all outputs driving high.
The actual dissipation will average somewhere between, as
I/Os switch states with time.
Active Power Component
Power dissipation in CMOS devices is usually dominated by
the active (dynamic) power dissipation. This component is
frequency dependent, a function of the logic and the external
I/O. Active power dissipation results from charging internal
chip capacitances of the interconnect, unprogrammed
antifuses, module inputs, and module outputs, plus external
capacitance due to PC board traces and load device inputs.
An additional component of the active power dissipation is
the totem-pole current in the CMOS transistor pairs. The net
effect can be associated with an equivalent capacitance that
can be combined with frequency and voltage to represent
active power dissipation.
Package Type Pin Count
θja Maximum Power Dissipation
Still Air 300 ft/min Still Air 300 ft/min
Plastic Quad Flatpack 100 42 °C/W 33 °C/W 1.9 W 2.4 W
Plastic Quad Flatpack 160 34 °C/W 27 °C/W 2.4 W 3.0 W
Plastic Quad Flatpack 208 25 °C/W 16.2 °C/W 3.2 W 4.9 W
Plastic Leaded Chip Carrier 44 45 °C/W 35 °C/W 1.8 W 2.3 W
Plastic Leaded Chip Carrier 68 38 °C/W 29 °C/W 2.1 W 2.8 W
Plastic Leaded Chip Carrier 84 37 °C/W 28 °C/W 2.2 W 2.9 W
Thin Quad Flatpack 176 32 °C/W 25 °C/W 2.5 W 3.2 W
Power Quad Flatpack 208 16.8 °C/W 11.4 °C/W 4.8 W 7.0 W
Power Quad Flatpack 240 16.1 °C/W 10.6 °C/W 5.0 W 7.5 W
Max.
junction
temp.
(
° C)
Max.
commercial
temp.
θ
ja ( °
C/W)
----------------------------------------------------------------------------------------------------------------------------- 150
°
C
70
°
C
30
°
C/W
--------------------------------- 2.6W= =
1-106
Equivalent Capacitance
The power dissipated by a CMOS circuit can be expressed by
Equation 1. Power (
µ
W) = C
EQ
* V
CC2
* F (1)
where:
C
EQ
is the equivalent capacitance expressed in picofarads
(pF).
V
CC
is power supply in volts (V).
F is the switching frequency in megahertz (MHz).
Equivalent capacitance is calculated by measuring I
CCactive
at
a specified frequency and voltage for each circuit component
of interest. Measurements have been made over a range of
frequencies at a fixed value of V
CC
. Equivalent capacitance is
frequency independent so that the results can be used over a
wide range of operating conditions. Equivalent capacitance
values are shown below.
C
EQ
Values for Actel FPGAs
Modules (C
EQM
) 5.2
Input Buffers (C
EQI
) 11.6
Output Buffers (C
EQO
) 23.8
Routed Array Clock Buffer Loads (C
EQCR
) 3.5
To calculate the active power dissipated from the complete
design, the switching frequency of each part of the logic must
be known. Equation 2 shows a piece-wise linear summation
over all components.
Power = V
CC2
* [(m x
C
EQM
* f
m
)
Modules
+
(n *
C
EQI
* f
n
)
Inputs
+ (p * (
C
EQO
+ C
L
) * f
p
)
outputs
+
0.5 * (q
1
*
C
EQCR
* f
q1
)
routed_Clk1
+ (r
1
* f
q1
)
routed_Clk1
+
0.5 * (q
2
*
C
EQCR
* f
q2
)
routed_Clk2
+ (r
2
* f
q2
)
routed_Clk2
(2)
where:
m = Number of logic modules switching at frequency fm
n = Number of input buffers switching at frequency fn
p = Number of output buffers switching at frequency fp
q1=Number of clock loads on the first routed array
clock
q2=Number of clock loads on the second routed array
clock
r1=Fixed capacitance due to first routed array clock
r2=Fixed capacitance due to second routed array clock
CEQM =Equivalent capacitance of logic modules in pF
CEQI = Equivalent capacitance of input buffers in pF
CEQO = Equivalent capacitance of output buffers in pF
CEQCR = Equivalent capacitance of routed array clock in pF
CL= Output load capacitance in pF
fm= Average logic module switching rate in MHz
fn= Average input buffer switching rate in MHz
fp= Average output buffer switching rate in MHz
fq1 = Average first routed array clock rate in MHz
fq2 = Average second routed array clock rate in MHz
Fixed Capacitance Values for Actel FPGAs
(pF)
Determining Average Switching Frequency
To determine the switching frequency for a design, you must
have a detailed understanding of the data input values to the
circuit. The following guidelines are meant to represent
worst-case scenarios so that they can be generally used to
predict the upper limits of power dissipation. These
guidelines are as follows:
Device Type r1
routed_Clk1 r2
routed_Clk2
A40MX02 41.4
A40MX04 68.6
A40MX09 134 134
A42MX16 168 168
A42MX24 190 190
A42MX36 230 230
A42MX52 285 285
Logic Modules (m) = 80% of
combinatorial
modules
Inputs switching (n) = # of inputs/4
Outputs switching (p) = # outputs/4
First routed array clock loads (q1) = 40% of sequential
modules
Second routed array clock loads
(q2)= 40% of sequential
modules
Load capacitance (CL) = 35 pF
Average logic module switching rate
(fm)= F/10
Average input switching rate (fn) = F/5
Average output switching rate (fp) = F/10
Average first routed array clock rate
(fq1)= F
Average second routed array clock
rate (fq2)= F/2
1-107
Integrator Series FPGAs – 40MX and 42MX Families
40MX Timing Model*
* Values are shown for 40MX ‘–3 speed’ devices at worst-case commercial conditions.
Output DelayInput Delay
I/O ModuletINYL = 3.1 ns tIRD2 = 1.4 ns Logic Module
tPD = 2.9 ns
I/O Module
tRD1 = 0.9 ns
tDLH = 6.7 ns
ARRAY
CLOCK
FMAX = 70 MHz
tRD4 = 3.1 ns
tRD8 = 6.6 ns
Predicted
Routing
Delays
tCKH = 5.6 ns FO = 128
tIRD1 = 0.9 ns
tIRD4 = 3.1 ns
tIRD8 = 6.6 ns tCO = 2.9 ns tENHZ = 11.6 ns
tRD2 = 1.4 ns
Internal Delays
1-108
42MX Timing Model*
*Values are shown for A42MX09-2 at worst-case commercial conditions † Input module predicted routing delay
Output DelaysInternal DelaysInput Delays
tINH = 0.0 ns
tINSU = 0.3 ns
I/O Module
DQ
tINGL = 2.6 ns
tINYL = 1.3 ns tIRD2 = 3.2 ns
Combinatorial
Logic Module
tPD = 2.6 ns
Sequential
Logic Module
I/O Module
tRD1 = 0.8 ns tDLH = 3.8 ns
I/O Module
ARRAY
CLOCKS
FMAX = 225 MHz
Combin-
atorial
Logic
included
in tSUD
DQDQ
tOUTH = 0.0 ns
tOUTSU = 0.3 ns
tGLH = 4.2 ns
tDLH = 3.8 ns
tENHZ = 5.4 ns
tRD1 = 0.8 ns
tCO = 2.6 ns
tSUD = 0.4 ns
tHD = 0.0 ns
tRD4 = 2.0 ns
tRD8 = 3.2 ns
Predicted
Routing
Delays
tCKH = 5.1 ns
G
G
FO = 256
tRD2 = 1.3 ns
tLCO = 10.7 ns (64 loads, pad-pad)
1-109
Integrator Series FPGAs – 40MX and 42MX Families
42MX Timing Model (Logic Functions using Quadrant Clocks)*
* Preliminary values are shown for A42MX36-2 at worst-case commercial conditions
** Load dependent
Output DelaysInternal DelaysInput Delays
tINH = 0.0 ns
tINSU = 0.3 ns
I/O Module
DQ
tINGO = 2.6 ns
tINPY = 1.3 ns tIRD1 = 3.2 ns Combinatorial
Module
tPD = 2.5 ns
Sequential
Logic Module
I/O Module
tRD1 = 1.3 ns tDLH = 3.7 ns
I/O Module
QUADRANT
CLOCKS
FMAX = 100 MHz
Combin-
atorial
Logic
included
in tSUD
DQDQ
tLH = 0.0 ns
tLSU = 0.3 ns
tGHL= 4.6 ns
tDLH = 3.7 ns
tENHZ = 3.7 ns
tRD1 = 1.3 ns
tCO = 2.5 ns
tSUD = 0.3 ns
tHD = 0.0 ns
Predicted
Routing
Delays
G
G
Decode
Module
tPDD = 2.9 ns
tRDD = 0.3 ns
tRD2 = 1.8 ns
tRD4 = 2.6 ns
tCKH = 12 ns**
1-110
42MX Timing Model (SRAM Functions)*
*Values are shown for A42MX36-2 at worst-case commercial conditions.
tINH = 0.0 ns
tINSU = 0.3 ns
Input Delays
I/O Module
DQ
tINGO = 2.6 ns
tINPY = 1.3 ns tIRD1 = 3.2 ns
ARRAY
CLOCKS
FMAX = 100 MHz
G
tGHL= 4.6 ns
tLSU = 0.3 ns
I/O Module
DQ
tLH = 0.0 ns
tDLH = 3.7 ns
G
WD [7:0]
WRAD [5:0]
BLKEN
WEN
WCLK
tADSU = 1.8 ns
tADH = 0.0 ns
tWENSU = 2.9 ns
tBENS = 2.9 ns
RD [7:0]
RDAD [5:0]
REN
RCLK
tADSU = 1.8 ns
tADH = 0.0 ns
tRENSU = 0.8 ns
tRD1 = 2.0 ns
Predicted
Routing
Delays
tRCO = 3.8 ns
1-111
Integrator Series FPGAs – 40MX and 42MX Families
Parameter Measurement
Output Buffer Delays
AC Test Loads
Input Buffer Delays Module Delays
To AC test loads (shown below)PAD
D
E
TRIBUFF
In 50%
PAD
VOL
VOH
1.5 V
tDLH
50%
1.5 V
tDHL
E50%
PAD VOL
1.5 V
tENZL
50%
10%
tENLZ
E50%
PAD
GND
VOH
1.5 V
tENZH
50%
90%
tENHZ
VCC
Load 1
(Used to measure propagation delay) Load 2
(Used to measure rising/falling edges)
35 pF
To the output under test VCC GND
35 pF
To the output under test
R to VCC for tPLZ/tPZL
R to GND for tPHZ/tPZH
R = 1 k
PAD Y
INBUF
PAD 3 V 0 V
1.5 V
Y
GND
VCC
50%
tINYH
1.5 V
50%
tINYL
S
A
BY
S, A or B
Y
50%
tPLH
Y
50%
50% 50%
50% 50%
tPHL
tPHL
tPLH
1-112
Sequential Module Timing Characteristics
Flip-Flops and Latches
Note: D represents all data functions involving A, B, and S for multiplexed flip-flops.
(Positive edge triggered)
D
E
CLK CLR
PRE Y
D1
G, CLK
E
Q
PRE, CLR
tWCLKA
tWASYN
tHD
tSUENA
tSUD
tRS
tA
tWCLKI
tCO
tHENA
1-113
Integrator Series FPGAs – 40MX and 42MX Families
Sequential Timing Characteristics (continued)
Input Buffer Latches
Output Buffer Latches
G
PAD
PAD
CLK
DATA
G
CLK
tINH
CLKBUF
tINSU
tSUEXT
tHEXT
IBDL
DATA
D
G
tOUTSU
tOUTH
PAD
OBDLHS
D
G
1-114
Decode Module Timing
SRAM Timing Characteristics
A–G, H
Y
tPLH
50%
VCC
VCC
tPHL
Y
A
B
C
D
E
F
GH
WRAD [5:0]
BLKEN
WEN
WCLK
RDAD [5:0]
LEW
REN
RCLK
RD [7:0]
WD [7:0]
Write Port Read Port
RAM Array
32x8 or 64x4
(256 bits)
1-115
Integrator Series FPGAs – 40MX and 42MX Families
Dual-Port SRAM Timing Waveforms
42MX SRAM Write Operation
42MX SRAM Synchronous Read Operation
Note: Identical timing for falling-edge clock.
WCLK
WD[7:0]
WRAD[5:0]
WEN
BLKEN Valid
Valid
tRCKHL
tRCKHL
tWENSU
tBENSU
tWENH
tBENH
tADSU tADH
Note: Identical timing for falling-edge clock.
RCLK
REN
RDAD[5:0]
RD[7:0] Old Data
Valid
tRCKHL
tCKHL
tRENH
tRCO
tADH
tDOH
tADSU
New Data
tRENSU
1-116
42MX SRAM Asynchronous Read Operation—Type 1
42MX SRAM Asynchronous Read Operation—Type 2
(Read Address Controlled)
(Write Address Controlled)
RDAD[5:0]
RD[7:0] Data 1
tRDADV
tDOH
ADDR2ADDR1
Data 2
tRPD
WEN
WD[7:0]
WCLK
RD[7:0] Old Data
Valid
tWENH
tRPD
tWENSU
New Data
tDOH
tADSU
WRAD[5:0]
BLKEN
tADH
1-117
Integrator Series FPGAs – 40MX and 42MX Families
Predictable Performance:
Tight Delay Distributions
Propagation delay between logic modules depends on the
resistive and capacitive loading of the routing tracks, the
interconnect elements, and the module inputs being driven.
Propagation delay increases as the length of routing tracks,
the number of interconnect elements, or the number of
inputs increases.
From a design perspective, the propagation delay can be
statistically correlated or modeled by the fanout (number of
loads) driven by a module. Higher fanout usually requires
some paths to have longer routing tracks.
The MX FPGAs deliver a tight fanout delay distribution. This
tight distribution is achieved in two ways: by decreasing the
delay of the interconnect elements and by decreasing the
number of interconnect elements per path.
Actel’s patented PLICE antifuse offers an extremely very low
resistive/capacitive interconnect. The antifuses, fabricated in
0.45 micron lithography, offer nominal levels of 100 ohms
resistance and 7.0 femtofarad (fF) capacitance per antifuse.
The Integrator Series fanout distribution is also tight due to
the low number of antifuses required for each interconnect
path. The proprietary architecture limits the number of
antifuses per path to a maximum of four, with 90% of
interconnects using two antifuses.
Timing Characteristics
Timing characteristics for devices fall into three categories:
family dependent, device dependent, and design dependent.
The input and output buffer characteristics are common to
all Integrator Series members. Internal routing delays are
device dependent. Design dependency means actual delays
are not determined until after placement and routing of the
user’s design is complete. Delay values may then be
determined by using the Designer Series utility or by
performing simulation with post-layout delays.
Critical Nets and Typical Nets
Propagation delays are expressed only for typical nets, which
are used for initial design performance evaluation. Since the
architecture provides deterministic timing and abundant
routing resources, Actel’s Designer Series development tools
offers DirectTime, a timing-driven place-and-route tool. Using
DirectTime, the designer can specify timing-critical nets and
system clock frequency. Using these timing specifications,
the place-and-route software optimizes the layout of the
design to meet the user’s specifications.
Long Tracks
Some nets in the design use long tracks, which are special
routing resources that span multiple rows, columns, or
modules. Long tracks employ three and sometimes four
antifuse connections, which increase capacitance and
resistance, resulting in longer net delays for macros
connected to long tracks. Typically, up to 6% of nets in a fully
utilized device require long tracks. Long tracks add
approximately 3 ns to 6 ns delay. This additional delay is
represented statistically in higher fanout (FO=8) routing
delays in the data sheet specifications section.
Timing Derating
A best-case timing derating factor of 0.45 is used to reflect
best case processing. Note that this factor is relative to the
standard-speed timing parameters and must be multiplied by
the appropriate voltage and temperature derating factors for
a given application.
Timing Derating Factor (Temperature and Voltage)
Timing Derating Factor for Designs at Typical Temperature (TJ = 25°C)
and Voltage (5.0 V)
Note: This derating factor applies to all routing and propagation delays.
Industrial
Min. Max.
(Commercial Specification) x 0.69 1.11
(Maximum Specification, Worst-Case Condition) x 0.85
1-118
Temperature and Voltage Derating Factors
(Normalized to Worst-Case Commercial, TJ = 4.75 V, 70°C)
–55 –40 0 25 70 85 125
4.50 0.75 0.79 0.86 0.92 1.06 1.11 1.23
4.75 0.71 0.75 0.82 0.87 1.00 1.05 1.16
5.00 0.69 0.72 0.80 0.85 0.97 1.02 1.13
5.25 0.68 0.69 0.77 0.82 0.95 0.98 1.09
5.50 0.67 0.69 0.76 0.81 0.93 0.97 1.08
Note: This derating factor applies to all routing and propagation delays.
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
4.50 4.75 5.00 5.25 5.50
Derating Factor
Voltage (V)
125°C
85°C
70°C
25°C
0°C
–40°C
–55°C
Junction Temperature and Voltage Derating Curves
(normalized to Worst-Case Commercial, TJ = 4.75 V, 70°C)
1-119
Integrator Series FPGAs – 40MX and 42MX Families
A40MX02 Timing Characteristics (Nominal 5.0V Operation)
(Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C)
Logic Module Propagation Delays ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
tPD1 Single Module 1.54 1.74 2.05 2.87 ns
tPD2 Dual Module Macros 3.06 3.47 4.08 5.71 ns
tCO Sequential Clk to Q 1.54 1.74 2.05 2.87 ns
tGO Latch G to Q 1.54 1.74 2.05 2.87 ns
tRS Flip-Flop (Latch) Reset to Q 1.54 1.74 2.05 2.87 ns
Predicted Routing Delays2
tRD1 FO=1 Routing Delay 1.48 1.67 1.97 2.76 ns
tRD2 FO=2 Routing Delay 2.08 2.35 2.77 3.88 ns
tRD3 FO=3 Routing Delay 2.69 3.04 3.58 5.01 ns
tRD4 FO=4 Routing Delay 3.29 3.72 4.38 6.13 ns
tRD8 FO=8 Routing Delay 5.69 6.45 7.59 10.63 ns
Sequential Timing Characteristics3
tSUD Flip-Flop (Latch) Data Input Setup 3.38 3.83 4.50 6.30 ns
tHD4Flip-Flop (Latch) Data Input Hold 0.00 0.00 0.00 0.00 ns
tSUENA Flip-Flop (Latch) Enable Setup 3.38 3.83 4.50 6.30 ns
tHENA Flip-Flop (Latch) Enable Hold 0.00 0.00 0.00 0.00 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse
Width 4.13 4.68 5.50 7.70 ns
tWASYN Flip-Flop (Latch)
Asynchronous Pulse Width 4.13 4.68 5.50 7.70 ns
tAFlip-Flop Clock Input Period 5.59 6.33 7.45 10.43 ns
fMAX Flip-Flop (Latch) Clock
Frequency (FO = 128) 167.50 154.10 134.00 80.40 MHz
Notes:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Postroute timing analysis or simulation is required to determine actual worst-case performance. Postroute timing is based
on actual routing delay measurements performed on the device prior to shipment.
2. Setup times assume fanout of 3. Further testing information can be obtained from the DirectTime Analyzer utility.
3. The Hold Time for the DFME1A macro may be greater than 0 ns. Use the Designer 3.0 or later Timer to check the Hold Time for this macro.
1-120
A40MX02 Timing Characteristics (Nominal 5.0V Operation) (continued)
(Worst-Case Commercial Conditions)
Input Module Propagation Delays ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
tINYH Pad to Y High 1.36 1.54 1.81 2.53 ns
tINYL Pad to Y Low 1.36 1.54 1.81 2.53 ns
Input Module Predicted Routing Delays1
tIRD1 FO=1 Routing Delay 2.84 3.21 3.78 5.29 ns
tIRD2 FO=2 Routing Delay 3.44 3.89 4.58 6.41 ns
tIRD3 FO=3 Routing Delay 4.04 4.58 5.39 7.55 ns
tIRD4 FO=4 Routing Delay 4.64 5.26 6.19 8.67 ns
tIRD8 FO=8 Routing Delay 7.05 7.99 9.40 13.16 ns
Global Clock Network
tCKH Input Low to High FO = 16
FO = 128 3.92
3.92 4.44
4.44 5.22
5.22 7.31
7.31 ns
tCKL Input High to Low FO = 16
FO = 128 4.22
4.22 4.79
4.79 5.63
5.63 7.88
7.88 ns
tPWH Minimum Pulse Width High FO = 16
FO = 128 2.58
2.71 2.92
3.07 3.44
3.61 4.82
5.05 ns
tPWL Minimum Pulse Width Low FO = 16
FO = 128 2.58
2.71 2.92
3.07 3.44
3.61 4.82
5.05 ns
tCKSW Maximum Skew FO = 16
FO = 128 0.45
0.62 0.51
0.70 0.60
0.82 0.84
1.15 ns
tPMinimum Period FO = 16
FO = 128 5.39
5.59 6.10
6.33 7.18
7.45 10.05
10.43 ns
fMAX Maximum Frequency FO = 16
FO = 128 174.79
167.50 159.85
154.10 139.00
134.00 83.40
80.40 MHz
Note:
1. These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns. Routing
delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine
actual worst-case performance. Postroute timing is based on actual routing delay measurements performed on the device prior to shipment.
1-121
Integrator Series FPGAs – 40MX and 42MX Families
A40MX02 Timing Characteristics (Nominal 5.0V Operation) (continued)
(Worst-Case Commercial Conditions)
Output Module Timing ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
TTL Output Module Timing1
tDLH Data to Pad High 3.68 4.17 4.91 6.87 ns
tDHL Data to Pad Low 4.61 5.22 6.14 8.60 ns
tENZH Enable Pad Z to High 4.38 4.96 5.84 8.18 ns
tENZL Enable Pad Z to Low 5.44 6.16 7.25 10.15 ns
tENHZ Enable Pad High to Z 7.40 8.39 9.87 13.82 ns
tENLZ Enable Pad Low to Z 5.14 5.82 6.85 9.59 ns
dTLH Delta Low to High 0.02 0.03 0.03 0.04 ns/pF
dTHL Delta High to Low 0.03 0.03 0.04 0.06 ns/pF
CMOS Output Module Timing1
tDLH Data to Pad High 4.36 4.94 5.81 8.13 ns
tDHL Data to Pad Low 3.92 4.45 5.23 7.32 ns
tENZH Enable Pad Z to High 4.03 4.56 5.37 7.52 ns
tENZL Enable Pad Z to Low 5.66 6.41 7.54 10.56 ns
tENHZ Enable Pad High to Z 7.40 8.39 9.87 13.82 ns
tENLZ Enable Pad Low to Z 5.14 5.82 6.85 9.59 ns
dTLH Delta Low to High 0.04 0.04 0.05 0.07 ns/pF
dTHL Delta High to Low 0.02 0.03 0.03 0.04 ns/pF
Notes:
1. Delays based on 35 pF loading.
2. SSO information can be found in the “Simultaneous Switching Output Limits for Actel FPGAs” application note on page 4-125.
1-122
A40MX02 Timing Characteristics (Nominal 3.3V Operation)
(Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C)1
Logic Module Propagation Delays ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
tPD1 Single Module 2.15 2.44 2.87 4.02 ns
tPD2 Dual Module Macros 4.28 4.86 5.71 8.00 ns
tCO Sequential Clk to Q 2.15 2.44 2.87 4.02 ns
tGO Latch G to Q 2.15 2.44 2.87 4.02 ns
tRS Flip-Flop (Latch) Reset to Q 2.15 2.44 2.87 4.02 ns
Predicted Routing Delays2
tRD1 FO=1 Routing Delay 2.07 2.34 2.76 3.86 ns
tRD2 FO=2 Routing Delay 2.91 3.30 3.88 5.43 ns
tRD3 FO=3 Routing Delay 3.76 4.26 5.01 7.02 ns
tRD4 FO=4 Routing Delay 4.60 5.21 6.13 8.58 ns
tRD8 FO=8 Routing Delay 7.97 9.03 10.63 14.88 ns
Sequential Timing Characteristics3
tSUD Flip-Flop (Latch) Data Input Setup 4.73 5.36 6.30 8.82 ns
tHD4Flip-Flop (Latch) Data Input Hold 0.00 0.00 0.00 0.00 ns
tSUENA Flip-Flop (Latch) Enable Setup 4.73 5.36 6.30 8.82 ns
tHENA Flip-Flop (Latch) Enable Hold 0.00 0.00 0.00 0.00 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse
Width 5.78 6.55 7.70 10.78 ns
tWASYN Flip-Flop (Latch)
Asynchronous Pulse Width 5.78 6.55 7.70 10.78 ns
tAFlip-Flop Clock Input Period 7.82 8.87 10.43 14.60 ns
fMAX Flip-Flop (Latch) Clock
Frequency (FO = 128) 100.50 92.46 80.40 48.24 MHz
Notes:
1. VCC = 3.0 V for 3.3V specifications.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Postroute timing analysis or simulation is required to determine actual worst-case performance. Postroute timing is based
on actual routing delay measurements performed on the device prior to shipment.
3. Setup times assume fanout of 3. Further testing information can be obtained from the DirectTime Analyzer utility.
4. The Hold Time for the DFME1A macro may be greater than 0 ns. Use the Designer 3.0 or later Timer to check the Hold Time for this macro.
1-123
Integrator Series FPGAs – 40MX and 42MX Families
A40MX02 Timing Characteristics (Nominal 3.3V Operation) (continued)
(Worst-Case Commercial Conditions)
Input Module Propagation Delays ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
tINYH Pad to Y High 1.90 2.15 2.53 3.55 ns
tINYL Pad to Y Low 1.90 2.15 2.53 3.55 ns
Input Module Predicted Routing Delays1
tIRD1 FO=1 Routing Delay 3.97 4.50 5.29 7.41 ns
tIRD2 FO=2 Routing Delay 4.81 5.45 6.41 8.89 ns
tIRD3 FO=3 Routing Delay 5.66 6.41 7.55 10.56 ns
tIRD4 FO=4 Routing Delay 6.50 7.37 8.67 12.13 ns
tIRD8 FO=8 Routing Delay 9.87 11.19 13.16 18.42 ns
Global Clock Network
tCKH Input Low to High FO = 16
FO = 128 5.48
5.48 6.21
6.21 7.31
7.31 10.23
10.23 ns
tCKL Input High to Low FO = 16
FO = 128 5.91
5.91 6.70
6.70 7.88
7.88 11.03
11.03 ns
tPWH Minimum Pulse Width High FO = 16
FO = 128 3.61
3.79 4.09
4.30 4.82
5.05 6.74
7.08 ns
tPWL Minimum Pulse Width
Low FO = 16
FO = 128 3.61
3.79 4.09
4.30 4.82
5.05 6.74
7.08 ns
tCKSW Maximum Skew FO = 16
FO = 128 0.63
0.86 0.71
0.98 0.84
1.15 1.18
1.61 ns
tPMinimum Period FO = 16
FO = 128 7.54
7.82 8.54
8.87 10.05
10.43 14.07
14.60 ns
fMAX Maximum Frequency FO = 16
FO = 128 104.88
100.50 95.91
92.46 83.40
80.40 50.04
48.24 MHz
Note:
1. These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns.
Routing delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to
determine actual worst-case performance. Postroute timing is based on actual routing delay measurements performed on the device prior to
shipment.
1-124
A40MX02 Timing Characteristics (Nominal 3.3V Operation) (continued)
(Worst-Case Commercial Conditions)
Output Module Timing ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
TTL Output Module Timing1
tDLH Data to Pad High 5.16 5.84 6.87 9.62 ns
tDHL Data to Pad Low 6.45 7.31 8.60 12.03 ns
tENZH Enable Pad Z to High 6.13 6.95 8.18 11.45 ns
tENZL Enable Pad Z to Low 7.61 8.63 10.15 14.21 ns
tENHZ Enable Pad High to Z 10.36 11.75 13.82 19.35 ns
tENLZ Enable Pad Low to Z 7.19 8.15 9.59 13.43 ns
dTLH Delta Low to High 0.03 0.04 0.04 0.06 ns/pF
dTHL Delta High to Low 0.04 0.05 0.06 0.08 ns/pF
CMOS Output Module Timing1
tDLH Data to Pad High 6.10 6.91 8.13 11.39 ns
tDHL Data to Pad Low 5.49 6.22 7.32 10.25 ns
tENZH Enable Pad Z to High 5.64 6.39 7.52 10.53 ns
tENZL Enable Pad Z to Low 7.92 8.97 10.56 14.78 ns
tENHZ Enable Pad High to Z 10.36 11.75 13.82 19.35 ns
tENLZ Enable Pad Low to Z 7.19 8.15 9.59 13.43 ns
dTLH Delta Low to High 0.05 0.06 0.07 0.10 ns/pF
dTHL Delta High to Low 0.03 0.04 0.04 0.06 ns/pF
Notes:
1. Delays based on 35 pF loading.
2. SSO information can be found in the “Simultaneous Switching Output Limits for Actel FPGAs” application note on page 4-125.
1-125
Integrator Series FPGAs – 40MX and 42MX Families
A40MX04 Timing Characteristics (Nominal 5.0V Operation)
(Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C)
Logic Module Propagation Delays ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
tPD1 Single Module 1.54 1.74 2.05 2.87 ns
tPD2 Dual Module Macros 3.06 3.47 4.08 5.71 ns
tCO Sequential Clk to Q 1.54 1.74 2.05 2.87 ns
tGO Latch G to Q 1.54 1.74 2.05 2.87 ns
tRS Flip-Flop (Latch) Reset to Q 1.54 1.74 2.05 2.87 ns
Predicted Routing Delays2
tRD1 FO=1 Routing Delay 1.48 1.67 1.97 2.76 ns
tRD2 FO=2 Routing Delay 2.08 2.35 2.77 3.88 ns
tRD3 FO=3 Routing Delay 2.69 3.04 3.58 5.01 ns
tRD4 FO=4 Routing Delay 3.29 3.72 4.38 6.13 ns
tRD8 FO=8 Routing Delay 5.69 6.45 7.59 10.63 ns
Sequential Timing Characteristics3
tSUD Flip-Flop (Latch) Data Input Setup 3.38 3.83 4.50 6.30 ns
tHD4Flip-Flop (Latch) Data Input Hold 0.00 0.00 0.00 0.00 ns
tSUENA Flip-Flop (Latch) Enable Setup 3.38 3.83 4.50 6.30 ns
tHENA Flip-Flop (Latch) Enable Hold 0.00 0.00 0.00 0.00 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse
Width 4.13 4.68 5.50 7.70 ns
tWASYN Flip-Flop (Latch)
Asynchronous Pulse Width 4.13 4.68 5.50 7.70 ns
tAFlip-Flop Clock Input Period 5.59 6.33 7.45 10.43 ns
fMAX Flip-Flop (Latch) Clock Frequency
(FO = 128) 167.50 154.10 134.00 80.40 MHz
Notes:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Postroute timing analysis or simulation is required to determine actual worst-case performance. Postroute timing is based
on actual routing delay measurements performed on the device prior to shipment.
2. Setup times assume fanout of 3. Further testing information can be obtained from the DirectTime Analyzer utility.
3. The Hold Time for the DFME1A macro may be greater than 0 ns. Use the Designer 3.0 or later Timer to check the Hold Time for this macro.
1-126
A40MX04 Timing Characteristics (Nominal 5.0V Operation) (continued)
(Worst-Case Commercial Conditions)
Input Module Propagation Delays ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
tINYH Pad to Y High 1.36 1.54 1.81 2.53 ns
tINYL Pad to Y Low 1.36 1.54 1.81 2.53 ns
Input Module Predicted Routing Delays1
tIRD1 FO=1 Routing Delay 2.84 3.21 3.78 5.29 ns
tIRD2 FO=2 Routing Delay 3.44 3.89 4.58 6.41 ns
tIRD3 FO=3 Routing Delay 4.04 4.58 5.39 7.55 ns
tIRD4 FO=4 Routing Delay 4.64 5.26 6.19 8.67 ns
tIRD8 FO=8 Routing Delay 7.05 7.99 9.40 13.16 ns
Global Clock Network
tCKH Input Low to High FO = 16
FO = 128 3.92
3.92 4.44
4.44 5.22
5.22 7.31
7.31 ns
tCKL Input High to Low FO = 16
FO = 128 4.22
4.22 4.79
4.79 5.63
5.63 7.88
7.88 ns
tPWH Minimum Pulse Width High FO = 16
FO = 128 2.58
2.71 2.92
3.07 3.44
3.61 4.82
5.05 ns
tPWL Minimum Pulse Width Low FO = 16
FO = 128 2.58
2.71 2.92
3.07 3.44
3.61 4.82
5.05 ns
tCKSW Maximum Skew FO = 16
FO = 128 0.45
0.62 0.51
0.70 0.60
0.82 0.84
1.15 ns
tPMinimum Period FO = 16
FO = 128 5.39
5.59 6.10
6.33 7.18
7.45 10.05
10.43 ns
fMAX Maximum Frequency FO = 16
FO = 128 174.79
167.50 159.85
154.10 139.00
134.00 83.40
80.40 MHz
Note:
1. These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns. Routing
delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine
actual worst-case performance. Postroute timing is based on actual routing delay measurements performed on the device prior to shipment.
1-127
Integrator Series FPGAs – 40MX and 42MX Families
A40MX04 Timing Characteristics (Nominal 5.0V Operation) (continued)
(Worst-Case Commercial Conditions)
Output Module Timing ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
TTL Output Module Timing1
tDLH Data to Pad High 3.68 4.17 4.91 6.87 ns
tDHL Data to Pad Low 4.61 5.22 6.14 8.60 ns
tENZH Enable Pad Z to High 4.38 4.96 5.84 8.18 ns
tENZL Enable Pad Z to Low 5.44 6.16 7.25 10.15 ns
tENHZ Enable Pad High to Z 7.40 8.39 9.87 13.82 ns
tENLZ Enable Pad Low to Z 5.14 5.82 6.85 9.59 ns
dTLH Delta Low to High 0.02 0.03 0.03 0.04 ns/pF
dTHL Delta High to Low 0.03 0.03 0.04 0.06 ns/pF
CMOS Output Module Timing1
tDLH Data to Pad High 4.36 4.94 5.81 8.13 ns
tDHL Data to Pad Low 3.92 4.45 5.23 7.32 ns
tENZH Enable Pad Z to High 4.03 4.56 5.37 7.52 ns
tENZL Enable Pad Z to Low 5.66 6.41 7.54 10.56 ns
tENHZ Enable Pad High to Z 7.40 8.39 9.87 13.82 ns
tENLZ Enable Pad Low to Z 5.14 5.82 6.85 9.59 ns
dTLH Delta Low to High 0.04 0.04 0.05 0.07 ns/pF
dTHL Delta High to Low 0.02 0.03 0.03 0.04 ns/pF
Notes:
1. Delays based on 35 pF loading.
2. SSO information can be found in the “Simultaneous Switching Output Limits for Actel FPGAs” application note on page 4-125.
1-128
A40MX04 Timing Characteristics (Nominal 3.3V Operation)
(Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C)1
Logic Module Propagation Delays ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
tPD1 Single Module 2.15 2.44 2.87 4.02 ns
tPD2 Dual Module Macros 4.28 4.86 5.71 8.00 ns
tCO Sequential Clk to Q 2.15 2.44 2.87 4.02 ns
tGO Latch G to Q 2.15 2.44 2.87 4.02 ns
tRS Flip-Flop (Latch) Reset to Q 2.15 2.44 2.87 4.02 ns
Predicted Routing Delays2
tRD1 FO=1 Routing Delay 2.07 2.34 2.76 3.86 ns
tRD2 FO=2 Routing Delay 2.91 3.30 3.88 5.43 ns
tRD3 FO=3 Routing Delay 3.76 4.26 5.01 7.02 ns
tRD4 FO=4 Routing Delay 4.60 5.21 6.13 8.58 ns
tRD8 FO=8 Routing Delay 7.97 9.03 10.63 14.88 ns
Sequential Timing Characteristics3
tSUD Flip-Flop (Latch) Data Input Setup 4.73 5.36 6.30 8.82 ns
tHD4Flip-Flop (Latch) Data Input Hold 0.00 0.00 0.00 0.00 ns
tSUENA Flip-Flop (Latch) Enable Setup 4.73 5.36 6.30 8.82 ns
tHENA Flip-Flop (Latch) Enable Hold 0.00 0.00 0.00 0.00 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse
Width 5.78 6.55 7.70 10.78 ns
tWASYN Flip-Flop (Latch)
Asynchronous Pulse Width 5.78 6.55 7.70 10.78 ns
tAFlip-Flop Clock Input Period 7.82 8.87 10.43 14.60 ns
fMAX Flip-Flop (Latch) Clock Frequency
(FO = 128) 100.50 92.46 80.40 48.24 MHz
Notes:
1. VCC = 3.0 V for 3.3V specifications.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Postroute timing analysis or simulation is required to determine actual worst-case performance. Postroute timing is based
on actual routing delay measurements performed on the device prior to shipment.
3. Setup times assume fanout of 3. Further testing information can be obtained from the DirectTime Analyzer utility.
4. The Hold Time for the DFME1A macro may be greater than 0 ns. Use the Designer 3.0 or later Timer to check the Hold Time for this macro.
1-129
Integrator Series FPGAs – 40MX and 42MX Families
A40MX04 Timing Characteristics (Nominal 3.3V Operation) (continued)
(Worst-Case Commercial Conditions)
Input Module Propagation Delays ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
tINYH Pad to Y High 1.90 2.15 2.53 3.55 ns
tINYL Pad to Y Low 1.90 2.15 2.53 3.55 ns
Input Module Predicted Routing Delays1
tIRD1 FO=1 Routing Delay 3.97 4.50 5.29 7.41 ns
tIRD2 FO=2 Routing Delay 4.81 5.45 6.41 8.89 ns
tIRD3 FO=3 Routing Delay 5.66 6.41 7.55 10.56 ns
tIRD4 FO=4 Routing Delay 6.50 7.37 8.67 12.13 ns
tIRD8 FO=8 Routing Delay 9.87 11.19 13.16 18.42 ns
Global Clock Network
tCKH Input Low to High FO = 16
FO = 128 5.48
5.48 6.21
6.21 7.31
7.31 10.23
10.23 ns
tCKL Input High to Low FO = 16
FO = 128 5.91
5.91 6.70
6.70 7.88
7.88 11.03
11.03 ns
tPWH Minimum Pulse Width High FO = 16
FO = 128 3.61
3.79 4.09
4.30 4.82
5.05 6.74
7.08 ns
tPWL Minimum Pulse Width
Low FO = 16
FO = 128 3.61
3.79 4.09
4.30 4.82
5.05 6.74
7.08 ns
tCKSW Maximum Skew FO = 16
FO = 128 0.63
0.86 0.71
0.98 0.84
1.15 1.18
1.61 ns
tPMinimum Period FO = 16
FO = 128 7.54
7.82 8.54
8.87 10.05
10.43 14.07
14.60 ns
fMAX Maximum Frequency FO = 16
FO = 128 104.88
100.50 95.91
92.46 83.40
80.40 50.04
48.24 MHz
Note:
1. These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns.
Routing delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to
determine actual worst-case performance. Postroute timing is based on actual routing delay measurements performed on the device prior to
shipment.
1-130
A40MX04 Timing Characteristics (Nominal 3.3V Operation) (continued)
(Worst-Case Commercial Conditions)
Output Module Timing ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
TTL Output Module Timing1
tDLH Data to Pad High 5.16 5.84 6.87 9.62 ns
tDHL Data to Pad Low 6.45 7.31 8.60 12.03 ns
tENZH Enable Pad Z to High 6.13 6.95 8.18 11.45 ns
tENZL Enable Pad Z to Low 7.61 8.63 10.15 14.21 ns
tENHZ Enable Pad High to Z 10.36 11.75 13.82 19.35 ns
tENLZ Enable Pad Low to Z 7.19 8.15 9.59 13.43 ns
dTLH Delta Low to High 0.03 0.04 0.04 0.06 ns/pF
dTHL Delta High to Low 0.04 0.05 0.06 0.08 ns/pF
CMOS Output Module Timing1
tDLH Data to Pad High 6.10 6.91 8.13 11.39 ns
tDHL Data to Pad Low 5.49 6.22 7.32 10.25 ns
tENZH Enable Pad Z to High 5.64 6.39 7.52 10.53 ns
tENZL Enable Pad Z to Low 7.92 8.97 10.56 14.78 ns
tENHZ Enable Pad High to Z 10.36 11.75 13.82 19.35 ns
tENLZ Enable Pad Low to Z 7.19 8.15 9.59 13.43 ns
dTLH Delta Low to High 0.05 0.06 0.07 0.10 ns/pF
dTHL Delta High to Low 0.03 0.04 0.04 0.06 ns/pF
Notes:
1. Delays based on 35 pF loading.
2. SSO information can be found in the “Simultaneous Switching Output Limits for Actel FPGAs” application note on page 4-125.
1-131
Integrator Series FPGAs – 40MX and 42MX Families
A42MX09 Timing Characteristics (Nominal 5.0V Operation)
(Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C)
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Postroute timing analysis or simulation is required to determine actual worst-case performance. Postroute timing is based on
actual routing delay measurements performed on the device prior to shipment.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from
the DirectTime Analyzer utility.
4. Setup and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/hold timing
parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts
(adds) to the internal setup (hold) time.
Logic Module Propagation Delays1‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
tPD1 Single Module 1.55 1.76 2.07 2.90 ns
tCO Sequential Clk to Q 1.37 1.56 1.83 2.56 ns
tGO Latch G to Q 1.33 1.50 1.77 2.48 ns
tRS Flip-Flop (Latch) Reset to Q 1.37 1.56 1.83 2.56 ns
Predicted Routing Delays2
tRD1 FO=1 Routing Delay 0.70 0.79 0.93 1.30 ns
tRD2 FO=2 Routing Delay 0.97 1.10 1.29 1.81 ns
tRD3 FO=3 Routing Delay 1.24 1.40 1.65 2.31 ns
tRD4 FO=4 Routing Delay 1.51 1.71 2.01 2.81 ns
tRD8 FO=8 Routing Delay 2.59 2.93 3.45 4.83 ns
Sequential Timing Characteristics3, 4
tSUD Flip-Flop (Latch) Data Input Setup 0.36 0.41 0.48 0.67 ns
tHD Flip-Flop (Latch) Data Input Hold 0.00 0.00 0.00 0.00 ns
tSUENA Flip-Flop (Latch) Enable Setup 0.45 0.51 0.60 0.84 ns
tHENA Flip-Flop (Latch) Enable Hold 0.00 0.00 0.00 0.00 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse
Width 3.77 4.27 5.02 7.03 ns
tWASYN Flip-Flop (Latch) Asynchronous Pulse
Width 4.94 5.59 6.58 9.21 ns
tAFlip-Flop Clock Input Period 4.50 5.10 6.00 8.40 ns
tINH Input Buffer Latch Hold 0.00 0.0 0.0 0.0 ns
tINSU Input Buffer Latch Setup 0.30 0.4 0.4 0.6 ns
tOUTH Output Buffer Latch Hold 0.00 0.0 0.0 0.0 ns
tOUTSU Output Buffer Latch Setup 0.30 0.4 0.4 0.6 ns
fMAX Flip-Flop (Latch) Clock
Frequency 225 207 180 108 MHz
1-132
A42MX09 Timing Characteristics (Nominal 5.0V Operation) (continued)
(Worst-Case Commercial Conditions)
Note:
1. These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 3 ns. Routing
delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine
actual worst case performance
Input Module Propagation Delays ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
tINYH Pad to Y High 1.16 1.32 1.55 2.17 ns
tINYL Pad to Y Low 1.43 1.62 1.91 2.67 ns
tINGH G to Y High 0.54 0.61 0.72 1.01 ns
tINGL G to Y Low 5.30 6.00 7.06 9.88 ns
Input Module Predicted Routing Delays1
tIRD1 FO=1 Routing Delay 2.05 2.32 2.73 3.82 ns
tIRD2 FO=2 Routing Delay 2.34 2.65 3.12 4.37 ns
tIRD3 FO=3 Routing Delay 2.64 2.99 3.52 4.93 ns
tIRD4 FO=4 Routing Delay 2.94 3.33 3.92 5.49 ns
tIRD8 FO=8 Routing Delay 4.13 4.68 5.50 7.70 ns
Global Clock Network
tCKH Input Low to High FO = 32
FO = 256 2.75
3.15 3.11
3.57 3.66
4.20 5.12
5.88 ns
ns
tCKL Input High to Low FO = 32
FO = 256 2.54
2.93 2.88
3.32 3.39
3.90 4.75
5.46 ns
ns
tPWH Minimum Pulse Width
High FO = 32
FO = 256 1.35
1.46 1.53
1.66 1.80
1.95 2.52
2.73 ns
ns
tPWL Minimum Pulse Width Low FO = 32
FO = 256 1.35
1.46 1.53
1.66 1.80
1.95 2.52
2.73 ns
ns
tCKSW Maximum Skew FO = 32
FO = 256 0.34
0.34 0.38
0.38 0.45
0.45 0.63
0.63 ns
ns
tSUEXT Input Latch External Setup FO = 32
FO = 256 0.54
0.54 0.61
0.61 0.72
0.72 1.01
1.01 ns
ns
tHEXT Input Latch External Hold FO = 32
FO = 256 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 ns
ns
tPMinimum Period FO = 32
FO = 256 4.20
4.50 4.76
5.10 5.60
6.00 7.84
8.40 ns
ns
fMAX Maximum Frequency FO = 32
FO = 256 250
225 230
207 200
180 120
108 MHz
MHz
1-133
Integrator Series FPGAs – 40MX and 42MX Families
A42MX09 Timing Characteristics (Nominal 5.0V Operation) (continued)
(Worst-Case Commercial Conditions)
Notes:
1. Delays based on 35 pF loading.
2. SSO information can be found in the “Simultaneously Switching Output Limits for Actel FPGAs” application note.
Output Module Timing ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
TTL Output Module Timing1
tDLH Data to Pad High 2.71 3.07 3.61 5.05 ns
tDHL Data to Pad Low 3.19 3.61 4.25 5.95 ns
tENZH Enable Pad Z to High 2.93 3.32 3.90 5.46 ns
tENZL Enable Pad Z to Low 3.24 3.67 4.32 6.05 ns
tENHZ Enable Pad High to Z 5.44 6.16 7.25 10.15 ns
tENLZ Enable Pad Low to Z 5.93 6.72 7.90 11.06 ns
tGLH G to Pad High 4.61 5.22 6.14 8.60 ns
tGHL G to Pad Low 4.61 5.22 6.14 8.60 ns
tLSU I/O Latch Setup 0.54 0.61 0.72 1.01 ns
tLH I/O Latch Hold 0.00 0.00 0.00 0.00 ns
tLCO I/O Latch Clock-Out (pad-to-pad),
64 clock loading 6.90 7.82 9.20 12.88 ns
tACO Array Clock-Out (pad-to-pad),
64 clock loading 9.68 10.97 12.90 18.06 ns
dTLH Capacity Loading, Low to High 0.03 0.03 0.04 0.06 ns/pF
dTHL Capacity Loading, High to Low 0.04 0.04 0.07 0.07 ns/pF
CMOS Output Module Timing1
tDLH Data to Pad High 3.44 3.89 4.58 6.41 ns
tDHL Data to Pad Low 2.66 3.02 3.55 4.97 ns
tENZH Enable Pad Z to High 2.93 3.32 3.90 5.46 ns
tENZL Enable Pad Z to Low 3.24 3.67 4.32 6.05 ns
tENHZ Enable Pad High to Z 5.44 6.16 7.25 10.15 ns
tENLZ Enable Pad Low to Z 5.93 6.72 7.90 11.06 ns
tGLH G to Pad High 4.61 5.22 6.14 8.60 ns
tGHL G to Pad Low 4.61 5.22 6.14 8.60 ns
tLSU I/O Latch Setup 0.54 0.61 0.72 1.01 ns
tLH I/O Latch Hold 0.00 0.00 0.00 0.00 ns
tLCO I/O Latch Clock-Out (pad-to-pad),
64 clock loading 6.90 7.82 9.20 12.88 ns
tACO Array Clock-Out (pad-to-pad),
64 clock loading 9.68 10.97 12.90 18.06 ns
dTLH Capacity Loading, Low to High 0.03 0.03 0.04 0.06 ns/pF
dTHL Capacity Loading, High to Low 0.04 0.04 0.05 0.07 ns/pF
1-134
A42MX09 Timing Characteristics (Nominal 3.3V Operation)
(Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C)
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Postroute timing analysis or simulation is required to determine actual worst-case performance. Postroute timing is based on
actual routing delay measurements performed on the device prior to shipment.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from
the DirectTime Analyzer utility.
4. Setup and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/hold timing
parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts
(adds) to the internal setup (hold) time.
5. VCC = 3.0 V for 3.3V specifications.
Logic Module Propagation Delays1‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
tPD1 Single Module 2.17 2.46 2.90 4.06 ns
tCO Sequential Clk to Q 1.92 2.18 2.56 3.59 ns
tGO Latch G to Q 1.86 2.11 2.48 3.47 ns
tRS Flip-Flop (Latch) Reset to Q 1.92 2.18 2.56 3.59 ns
Predicted Routing Delays2
tRD1 FO=1 Routing Delay 0.98 1.11 1.30 1.82 ns
tRD2 FO=2 Routing Delay 1.35 1.54 1.81 2.53 ns
tRD3 FO=3 Routing Delay 1.73 1.96 2.31 3.23 ns
tRD4 FO=4 Routing Delay 2.11 2.39 2.81 3.94 ns
tRD8 FO=8 Routing Delay 3.62 4.11 4.83 6.76 ns
Sequential Timing Characteristics3, 4
tSUD Flip-Flop (Latch) Data Input Setup 0.50 0.57 0.67 0.94 ns
tHD Flip-Flop (Latch) Data Input Hold 0.00 0.00 0.00 0.00 ns
tSUENA Flip-Flop (Latch) Enable Setup 0.63 0.71 0.84 1.18 ns
tHENA Flip-Flop (Latch) Enable Hold 0.00 0.00 0.00 0.00 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse
Width 5.27 5.97 7.03 9.84 ns
tWASYN Flip-Flop (Latch) Asynchronous Pulse
Width 6.91 7.83 9.21 12.90 ns
tAFlip-Flop Clock Input Period 6.30 7.14 8.40 11.76 ns
tINH Input Buffer Latch Hold 0.00 0.0 0.0 0.0 ns
tINSU Input Buffer Latch Setup 0.30 0.4 0.4 0.6 ns
tOUTH Output Buffer Latch Hold 0.00 0.0 0.0 0.0 ns
tOUTSU Output Buffer Latch Setup 0.30 0.4 0.4 0.6 ns
fMAX Flip-Flop (Latch) Clock
Frequency 135 125 108 65 MHz
1-135
Integrator Series FPGAs – 40MX and 42MX Families
A42MX09 Timing Characteristics (Nominal 3.3V Operation) (continued)
(Worst-Case Commercial Conditions)
Note:
1. These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 3 ns. Routing
delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine
actual worst case performance
Input Module Propagation Delays ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
tINYH Pad to Y High 1.63 1.84 2.17 3.04 ns
tINYL Pad to Y Low 2.01 2.27 2.67 3.74 ns
tINGH G to Y High 0.76 0.86 1.01 1.41 ns
tINGL G to Y Low 7.41 8.40 9.88 13.84 ns
Input Module Predicted Routing Delays1
tIRD1 FO=1 Routing Delay 2.87 3.25 3.82 5.35 ns
tIRD2 FO=2 Routing Delay 3.28 3.71 4.37 6.12 ns
tIRD3 FO=3 Routing Delay 3.70 4.19 4.93 6.90 ns
tIRD4 FO=4 Routing Delay 4.12 4.66 5.49 7.68 ns
tIRD8 FO=8 Routing Delay 5.78 6.55 7.70 10.78 ns
Global Clock Network
tCKH Input Low to High FO = 32
FO = 256 3.84
4.41 4.36
5.00 5.12
5.88 7.17
8.23 ns
ns
tCKL Input High to Low FO = 32
FO = 256 3.56
4.10 4.03
4.64 4.75
5.46 6.64
7.64 ns
ns
tPWH Minimum Pulse Width
High FO = 32
FO = 256 1.89
2.05 2.14
2.32 2.52
2.73 3.53
3.82 ns
ns
tPWL Minimum Pulse Width Low FO = 32
FO = 256 1.89
2.05 2.14
2.32 2.52
2.73 3.53
3.82 ns
ns
tCKSW Maximum Skew FO = 32
FO = 256 0.47
0.47 0.54
0.54 0.63
0.63 0.88
0.88 ns
ns
tSUEXT Input Latch External Setup FO = 32
FO = 256 0.76
0.76 0.86
0.86 1.01
1.01 1.41
1.41 ns
ns
tHEXT Input Latch External Hold FO = 32
FO = 256 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 ns
ns
tPMinimum Period FO = 32
FO = 256 5.88
6.30 6.66
7.14 7.84
8.40 10.98
11.76 ns
ns
fMAX Maximum Frequency FO = 32
FO = 256 150
135 140
125 120
108 72
65 MHz
MHz
1-136
A42MX09 Timing Characteristics (Nominal 3.3V Operation) (continued)
(Worst-Case Commercial Conditions)
Notes:
1. Delays based on 35 pF loading.
2. SSO information can be found in the “Simultaneously Switching Output Limits for Actel FPGAs” application note.
Output Module Timing ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
TTL Output Module Timing1
tDLH Data to Pad High 3.79 4.30 5.05 7.08 ns
tDHL Data to Pad Low 4.46 5.06 5.95 8.33 ns
tENZH Enable Pad Z to High 4.10 4.64 5.46 7.64 ns
tENZL Enable Pad Z to Low 4.54 5.14 6.05 8.47 ns
tENHZ Enable Pad High to Z 7.61 8.63 10.15 14.21 ns
tENLZ Enable Pad Low to Z 8.30 9.40 11.06 15.48 ns
tGLH G to Pad High 6.45 7.31 8.60 12.03 ns
tGHL G to Pad Low 6.45 7.31 8.60 12.03 ns
tLSU I/O Latch Setup 0.76 0.86 1.01 1.41 ns
tLH I/O Latch Hold 0.00 0.00 0.00 0.00 ns
tLCO I/O Latch Clock-Out (pad-to-pad),
64 clock loading 9.66 10.95 12.88 18.03 ns
tACO Array Clock-Out (pad-to-pad),
64 clock loading 13.55 15.35 18.06 25.28 ns
dTLH Capacity Loading, Low to High 0.04 0.05 0.06 0.08 ns/pF
dTHL Capacity Loading, High to Low 0.05 0.06 0.07 0.10 ns/pF
CMOS Output Module Timing1
tDLH Data to Pad High 4.81 5.45 6.41 8.98 ns
tDHL Data to Pad Low 3.73 4.22 4.97 6.96 ns
tENZH Enable Pad Z to High 4.10 4.64 5.46 7.64 ns
tENZL Enable Pad Z to Low 4.54 5.14 6.05 8.47 ns
tENHZ Enable Pad High to Z 7.61 8.63 10.15 14.21 ns
tENLZ Enable Pad Low to Z 8.30 9.40 11.06 15.48 ns
tGLH G to Pad High 6.45 7.31 8.60 12.03 ns
tGHL G to Pad Low 6.45 7.31 8.60 12.03 ns
tLSU I/O Latch Setup 0.76 0.86 1.01 1.41 ns
tLH I/O Latch Hold 0.00 0.00 0.00 0.00 ns
tLCO I/O Latch Clock-Out (pad-to-pad),
64 clock loading 9.66 10.95 12.88 18.03 ns
tACO Array Clock-Out (pad-to-pad),
64 clock loading 13.55 15.35 18.06 25.28 ns
dTLH Capacity Loading, Low to High 0.04 0.05 0.06 0.08 ns/pF
dTHL Capacity Loading, High to Low 0.05 0.06 0.07 0.10 ns/pF
1-137
Integrator Series FPGAs – 40MX and 42MX Families
A42MX16 Timing Characteristics (Nominal 5.0V Operation)
(Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C)
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Postroute timing analysis or simulation is required to determine actual worst-case performance. Postroute timing is based on
actual routing delay measurements performed on the device prior to shipment.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from
the DirectTime Analyzer utility.
4. Setup and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/hold timing
parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts
(adds) to the internal setup (hold) time.
Logic Module Propagation Delays1‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
tPD1 Single Module 2.0 2.3 2.7 3.8 ns
tCO Sequential Clk to Q 1.9 2.2 2.6 3.6 ns
tGO Latch G to Q 2.0 2.3 2.7 3.8 ns
tRS Flip-Flop (Latch) Reset to Q 1.8 2.0 2.4 3.3 ns
Predicted Routing Delays2
tRD1 FO=1 Routing Delay 1.0 1.1 1.3 1.8 ns
tRD2 FO=2 Routing Delay 1.4 1.5 1.8 2.5 ns
tRD3 FO=3 Routing Delay 1.7 1.9 2.2 3.1 ns
tRD4 FO=4 Routing Delay 2.0 2.2 2.6 3.6 ns
tRD8 FO=8 Routing Delay 3.8 4.3 5.0 7.0 ns
Sequential Timing Characteristics3,4
tSUD Flip-Flop (Latch) Data Input Setup 0.4 0.4 0.5 0.7 ns
tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 ns
tSUENA Flip-Flop (Latch) Enable Setup 0.8 0.9 1.0 1.4 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse
Width 3.8 4.3 5.0 7.0 ns
tWASYN Flip-Flop (Latch) Asynchronous Pulse
Width 4.9 5.6 6.6 9.2 ns
tAFlip-Flop Clock Input Period 7.5 8.5 10.0 14.0 ns
tINH Input Buffer Latch Hold 0.0 0.0 0.0 0.0 ns
tINSU Input Buffer Latch Setup 0.5 0.6 0.7 1.0 ns
tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 0.0 ns
tOUTSU Output Buffer Latch Setup 0.5 0.6 0.7 1.0 ns
fMAX Flip-Flop (Latch) Clock
Frequency 216 180 156 94 MHz
1-138
A42MX16 Timing Characteristics (Nominal 5.0V Operation) (continued)
(Worst-Case Commercial Conditions)
Note:
1. These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns. Routing
delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine
actual worst-case performance. Postroute timing is based on actual routing delay measurements performed on the device prior to shipment.
Input Module Propagation Delays ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
tINYH Pad to Y High 1.3 1.4 1.7 2.4 ns
tINYL Pad to Y Low 1.0 1.1 1.3 1.8 ns
tINGH G to Y High 2.1 2.3 2.7 3.8 ns
tINGL G to Y Low 2.5 2.8 3.4 4.7 ns
Input Module Predicted Routing Delays1
tIRD1 FO=1 Routing Delay 3.2 3.7 4.3 6.0 ns
tIRD2 FO=2 Routing Delay 3.7 4.2 4.9 6.9 ns
tIRD3 FO=3 Routing Delay 4.0 4.5 5.3 7.4 ns
tIRD4 FO=4 Routing Delay 4.6 5.2 6.1 8.5 ns
tIRD8 FO=8 Routing Delay 6.6 7.5 8.8 12.3 ns
Global Clock Network
tCKH Input Low to High FO = 32
FO = 384 2.6
3.0 3.0
3.4 3.5
4.0 4.9
5.6 ns
ns
tCKL Input High to Low FO = 32
FO = 384 2.5
2.9 2.8
3.2 3.3
3.8 4.6
5.3 ns
ns
tPWH Minimum Pulse Width High FO = 32
FO = 384 3.5
4.1 4.0
4.6 4.7
5.4 6.5
7.6 ns
ns
tPWL Minimum Pulse Width Low FO = 32
FO = 384 3.5
4.1 4.0
4.6 4.7
5.4 6.6
7.6 ns
ns
tCKSW Maximum Skew FO = 32
FO = 384 0.4
1.7 0.4
2.0 0.5
2.3 0.7
3.2 ns
ns
tSUEXT Input Latch External Setup FO = 32
FO = 384 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 ns
ns
tHEXT Input Latch External Hold FO = 32
FO = 384 4.9
7.4 5.5
8.3 6.5
9.8 9.1
13.7 ns
ns
tPMinimum Period FO = 32
FO = 384 6.7
7.4 7.6
8.4 8.9
9.9 12.5
13.9 ns
ns
fMAX Maximum Frequency FO = 32
FO = 384 215
195 200
180 172
156 103
94 MHz
MHz
1-139
Integrator Series FPGAs – 40MX and 42MX Families
A42MX16 Timing Characteristics (Nominal 5.0V Operation) (continued)
(Worst-Case Commercial Conditions)
Notes:
1. Delays based on 35 pF loading.
2. SSO information can be found in the “Simultaneously Switching Output Limits for Actel FPGAs” application note.
Output Module Timing ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
TTL Output Module Timing1
tDLH Data to Pad High 2.7 3.1 3.6 5.1 ns
tDHL Data to Pad Low 3.3 3.7 4.4 6.2 ns
tENZH Enable Pad Z to High 3.0 3.4 4.0 5.6 ns
tENZL Enable Pad Z to Low 3.3 3.8 4.5 6.2 ns
tENHZ Enable Pad High to Z 6.3 7.1 8.4 11.7 ns
tENLZ Enable Pad Low to Z 5.8 6.5 7.7 10.8 ns
tGLH G to Pad High 5.9 6.6 7.8 10.9 ns
tGHL G to Pad Low 6.4 7.3 8.6 12.0 ns
tLCO I/O Latch Clock-Out (pad-to-pad),
64 clock loading 6.9 7.8 9.2 12.9 ns
tACO Array Clock-Out (pad-to-pad),
64 clock loading 9.7 11.0 12.9 18.1 ns
dTLH Capacitive Loading, Low to High 0.03 0.03 0.04 0.06 ns/pF
dTHL Capacitive Loading, High to Low 0.04 0.04 0.05 0.07 ns/pF
CMOS Output Module Timing1
tDLH Data to Pad High 3.1 3.5 4.2 5.8 ns
tDHL Data to Pad Low 3.8 4.3 5.1 7.1 ns
tENZH Enable Pad Z to High 4.0 4.5 5.3 7.5 ns
tENZL Enable Pad Z to Low 4.3 4.9 5.8 8.1 ns
tENHZ Enable Pad High to Z 7.0 7.9 9.3 13.0 ns
tENLZ Enable Pad Low to Z 6.9 7.9 9.2 12.9 ns
tGLH G to Pad High 6.9 7.9 9.3 13.0 ns
tGHL G to Pad Low 7.5 8.5 10.0 14.0 ns
tLCO I/O Latch Clock-Out (pad-to-pad),
64 clock loading 6.9 7.8 9.2 12.9 ns
tACO Array Clock-Out (pad-to-pad),
64 clock loading 9.7 11.0 12.9 18.1 ns
dTLH Capacitive Loading, Low to High 0.03 0.03 0.04 0.06 ns/pF
dTHL Capacitive Loading, High to Low 0.04 0.04 0.05 0.07 ns/pF
1-140
A42MX16 Timing Characteristics (Nominal 3.3V Operation)
(Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C)
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Postroute timing analysis or simulation is required to determine actual worst-case performance. Postroute timing is based on
actual routing delay measurements performed on the device prior to shipment.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from
the DirectTime Analyzer utility.
4. Setup and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/hold timing
parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts
(adds) to the internal setup (hold) time.
5. VCC = 3.0 V for 3.3V specifications.
Logic Module Propagation Delays1‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
tPD1 Single Module 2.8 3.2 3.8 5.3 ns
tCO Sequential Clk to Q 2.7 3.1 3.6 5.0 ns
tGO Latch G to Q 2.8 3.2 3.8 5.3 ns
tRS Flip-Flop (Latch) Reset to Q 2.5 2.8 3.3 4.7 ns
Predicted Routing Delays2
tRD1 FO=1 Routing Delay 1.4 1.5 1.8 2.5 ns
tRD2 FO=2 Routing Delay 1.9 2.1 2.5 3.5 ns
tRD3 FO=3 Routing Delay 2.3 2.6 3.1 4.3 ns
tRD4 FO=4 Routing Delay 2.7 3.1 3.6 5.1 ns
tRD8 FO=8 Routing Delay 5.3 6.0 7.0 9.8 ns
Sequential Timing Characteristics3,4
tSUD Flip-Flop (Latch) Data Input Setup 0.5 0.6 0.7 0.9 ns
tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 ns
tSUENA Flip-Flop (Latch) Enable Setup 1.1 1.2 1.4 2.0 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse
Width 5.3 6.0 7.0 9.8 ns
tWASYN Flip-Flop (Latch) Asynchronous Pulse
Width 6.9 7.8 9.2 12.9 ns
tAFlip-Flop Clock Input Period 10.5 11.9 14.0 19.6 ns
tINH Input Buffer Latch Hold 0.0 0.0 0.0 0.0 ns
tINSU Input Buffer Latch Setup 0.8 0.9 1.0 1.4 ns
tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 0.0 ns
tOUTSU Output Buffer Latch Setup 0.8 0.9 1.0 1.4 ns
fMAX Flip-Flop (Latch) Clock
Frequency 130 108 94 57 MHz
1-141
Integrator Series FPGAs – 40MX and 42MX Families
A42MX16 Timing Characteristics (Nominal 3.3V Operation) (continued)
(Worst-Case Commercial Conditions)
Note:
1. These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns. Routing
delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine
actual worst-case performance. Postroute timing is based on actual routing delay measurements performed on the device prior to shipment.
Input Module Propagation Delays ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
tINYH Pad to Y High 1.8 2.0 2.4 3.3 ns
tINYL Pad to Y Low 1.4 1.5 1.8 2.5 ns
tINGH G to Y High 2.9 3.3 3.8 5.4 ns
tINGL G to Y Low 3.5 4.0 4.7 6.6 ns
Input Module Predicted Routing Delays1
tIRD1 FO=1 Routing Delay 4.5 5.1 6.0 8.4 ns
tIRD2 FO=2 Routing Delay 5.1 5.8 6.9 9.6 ns
tIRD3 FO=3 Routing Delay 5.6 6.3 7.4 10.4 ns
tIRD4 FO=4 Routing Delay 6.4 7.3 8.5 12.0 ns
tIRD8 FO=8 Routing Delay 9.2 10.5 12.3 17.2 ns
Global Clock Network
tCKH Input Low to High FO = 32
FO = 384 3.7
4.2 4.2
4.8 4.9
5.6 6.9
7.9 ns
ns
tCKL Input High to Low FO = 32
FO = 384 3.5
4.0 3.9
4.5 4.6
5.3 6.5
7.4 ns
ns
tPWH Minimum Pulse Width High FO = 32
FO = 384 4.9
5.7 5.5
6.4 6.5
7.6 9.1
10.6 ns
ns
tPWL Minimum Pulse Width Low FO = 32
FO = 384 4.9
5.7 5.6
6.4 6.6
7.6 9.2
10.6 ns
ns
tCKSW Maximum Skew FO = 32
FO = 384 0.5
2.4 0.6
2.8 0.7
3.2 0.9
4.5 ns
ns
tSUEXT Input Latch External Setup FO = 32
FO = 384 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 ns
ns
tHEXT Input Latch External Hold FO = 32
FO = 384 6.8
10.3 7.7
11.7 9.1
13.7 12.7
19.2 ns
ns
tPMinimum Period FO = 32
FO = 384 9.3
10.4 10.6
11.8 12.5
13.9 17.4
19.4 ns
ns
fMAX Maximum Frequency FO = 32
FO = 384 144
130 120
108 104
94 62
57 MHz
MHz
1-142
A42MX16 Timing Characteristics (Nominal 3.3V Operation) (continued)
(Worst-Case Commercial Conditions)
Notes:
1. Delays based on 35 pF loading.
2. SSO information can be found in the “Simultaneously Switching Output Limits for Actel FPGAs” application note.
Output Module Timing ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
TTL Output Module Timing1
tDLH Data to Pad High 3.8 4.3 5.1 7.1 ns
tDHL Data to Pad Low 4.6 5.2 6.2 8.6 ns
tENZH Enable Pad Z to High 4.2 4.8 5.6 7.9 ns
tENZL Enable Pad Z to Low 4.7 5.3 6.2 8.7 ns
tENHZ Enable Pad High to Z 8.8 10.0 11.7 16.4 ns
tENLZ Enable Pad Low to Z 8.1 9.1 10.8 15.1 ns
tGLH G to Pad High 8.2 9.3 10.9 15.3 ns
tGHL G to Pad Low 9.0 10.2 12.0 16.8 ns
tLCO I/O Latch Clock-Out (pad-to-pad),
64 clock loading 9.7 10.9 12.9 18.0 ns
tACO Array Clock-Out (pad-to-pad),
64 clock loading 13.5 15.4 18.1 25.3 ns
dTLH Capacitive Loading, Low to High 0.04 0.05 0.06 0.08 ns/pF
dTHL Capacitive Loading, High to Low 0.05 0.06 0.07 0.10 ns/pF
CMOS Output Module Timing1
tDLH Data to Pad High 4.4 4.9 5.8 8.1 ns
tDHL Data to Pad Low 5.3 6.0 7.1 9.9 ns
tENZH Enable Pad Z to High 5.6 6.4 7.5 10.5 ns
tENZL Enable Pad Z to Low 6.1 6.9 8.1 11.3 ns
tENHZ Enable Pad High to Z 9.8 11.1 13.0 18.2 ns
tENLZ Enable Pad Low to Z 9.7 11.0 12.9 18.1 ns
tGLH G to Pad High 9.7 11.0 13.0 18.1 ns
tGHL G to Pad Low 10.5 11.9 14.0 19.6 ns
tLCO I/O Latch Clock-Out (pad-to-pad),
64 clock loading 9.7 10.9 12.9 18.0 ns
tACO Array Clock-Out (pad-to-pad),
64 clock loading 13.5 15.4 18.1 25.3 ns
dTLH Capacitive Loading, Low to High 0.04 0.05 0.06 0.08 ns/pF
dTHL Capacitive Loading, High to Low 0.05 0.06 0.07 0.10 ns/pF
1-143
Integrator Series FPGAs – 40MX and 42MX Families
A42MX24 Timing Characteristics (Nominal 5.0V Operation)
(Worst-Case Commercial Conditions)
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Postroute timing analysis or simulation is required to determine actual worst-case performance. Postroute timing is based on
actual routing delay measurements performed on the device prior to shipment.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from
the DirectTime Analyzer utility.
4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing
parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts
(adds) to the internal setup (hold) time.
Preliminary Information
Logic Module Propagation Delays1‘–2 Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Combinatorial Functions
tPD Internal Array Module Delay 1.55 1.75 2.06 2.88 ns
tPDD Internal Decode Module Delay 1.64 1.86 2.19 3.07 ns
Predicted Routing Delays2
tRD1 FO=1 Routing Delay 1.25 1.41 1.66 2.32 ns
tRD2 FO=2 Routing Delay 1.52 1.72 2.02 2.83 ns
tRD3 FO=3 Routing Delay 1.79 2.02 2.38 3.33 ns
tRD4 FO=4 Routing Delay 2.06 2.33 2.74 3.84 ns
tRD5 FO=8 Routing Delay 3.14 3.55 4.18 5.85 ns
Sequential Timing Characteristics3, 4
tCO Flip-Flop Clock-to-Output 1.36 1.54 1.81 2.53 ns
tGO Latch Gate-to-Output 1.32 1.50 1.76 2.46 ns
tSU Flip-Flop (Latch) Setup Time 0.35 0.40 0.47 0.66 ns
tHFlip-Flop (Latch) Hold Time 0.00 0.00 0.00 0.00 ns
tRO Flip-Flop (Latch) Reset to Output 1.36 1.54 1.81 2.53 ns
tSUENA Flip-Flop (Latch) Enable Setup 0.45 0.51 0.60 0.84 ns
tHENA Flip-Flop (Latch) Enable Hold 0.00 0.00 0.00 0.00 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse
Width 3.70 4.19 4.93 6.90 ns
tWASYN Flip-Flop (Latch) Asynchronous Pulse
Width 3.85 5.49 6.46 9.04 ns
1-144
A42MX24 Timing Characteristics (Nominal 5.0V Operation) (continued)
(Worst-Case Commercial Conditions)
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Postroute timing analysis or simulation is required to determine actual worst-case performance.
Preliminary Information
Input Module Propagation Delays ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
tINPY Input Data Pad to Y 1.16 1.31 1.54 2.16 ns
tINGO Input Latch Gate-to-Output 1.43 1.62 1.91 2.67 ns
tINH Input Latch Hold 0.00 0.00 0.00 0.00 ns
tINSU Input Latch Setup 0.53 0.60 0.70 0.98 ns
tILA Latch Active Pulse Width 5.20 5.89 6.93 9.70 ns
Input Module Predicted Routing
Delays1
tIRD1 FO=1 Routing Delay 2.64 2.99 3.52 4.93 ns
tIRD2 FO=2 Routing Delay 2.94 3.33 3.92 5.49 ns
tIRD3 FO=3 Routing Delay 3.23 3.66 4.31 6.03 ns
tIRD4 FO=4 Routing Delay 3.53 4.00 4.71 6.59 ns
tIRD8 FO=8 Routing Delay 4.72 5.35 6.29 8.81 ns
Global Clock Network
tCKH Input Low to High FO=32
FO=486 2.87
3.64 3.25
4.12 3.82
4.85 5.35
6.79 ns
ns
tCKL Input High to Low FO=32
FO=486 2.36
3.08 2.67
3.50 3.14
4.12 4.40
5.77 ns
ns
tPWH Minimum Pulse Width High FO=32
FO=486 2.40
2.63 2.72
2.98 3.20
3.50 4.48
4.90 ns
ns
tPWL Minimum Pulse Width Low FO=32
FO=486 2.40
2.63 2.72
2.98 3.20
3.50 4.48
4.90 ns
ns
tCKSW Maximum Skew FO=32
FO=486 0.60
0.60 0.68
0.68 0.80
0.80 1.12
1.12 ns
ns
tSUEXT Input Latch External Setup FO=32
FO=486 0.53
0.53 0.60
0.60 0.70
0.70 0.98
0.98 ns
ns
tHEXT Input Latch External Hold FO=32
FO=486 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 ns
ns
tPMinimum Period (1/fmax) FO=32
FO=486 4.88
5.40 5.53
6.12 6.50
7.20 9.10
10.08 ns
ns
fMAX Maximum Data-Path
Frequency FO=32
FO=486 191.25
175.00 175.95
161.00 153.00
140.00 91.80
84.00 MHz
MHz
1-145
Integrator Series FPGAs – 40MX and 42MX Families
A42MX24 Timing Characteristics (Nominal 5.0V Operation) (continued)
(Worst-Case Commercial Conditions)
Notes:
1. Delays based on 35 pF loading.
2. SSO information can be found in the “Simultaneously Switching Output Limits for Actel FPGAs” application note.
Preliminary Information
Output Module Timing ‘–2 Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
TTL Output Module Timing1
tDLH Data to Pad High 2.97 3.37 3.96 5.54 ns
tDHL Data to Pad Low 3.35 3.80 4.47 6.26 ns
tENZH Enable Pad Z to High 2.25 2.55 3.00 4.20 ns
tENZL Enable Pad Z to Low 2.68 3.03 3.57 5.00 ns
tENHZ Enable Pad High to Z 5.83 6.60 7.77 10.88 ns
tENLZ Enable Pad Low to Z 5.39 6.10 7.18 10.05 ns
tGLH G to Pad High 4.58 5.19 6.10 8.54 ns
tGHL G to Pad Low 4.58 5.19 6.10 8.54 ns
tLSU I/O Latch Output Setup 0.53 0.60 0.70 0.98 ns
tLH I/O Latch Output Hold 0.00 0.00 0.00 0.00 ns
tLCO I/O Latch Clock-Out (Pad-to-Pad) 32 I/O 8.33 9.44 11.10 15.54 ns
tACO Array Latch Clock-Out (Pad-to-Pad)
32 I/O 11.78 13.35 15.70 21.98 ns
dTLH Capacitive Loading, Low to High 0.04 0.04 0.05 0.07 ns/pF
dTHL Capacitive Loading, High to Low 0.03 0.03 0.04 0.06 ns/pF
CMOS Output Module Timing1
tDLH Data to Pad High 3.80 4.31 5.07 7.10 ns
tDHL Data to Pad Low 2.78 3.15 3.71 5.19 ns
tENZH Enable Pad Z to High 2.25 2.55 3.00 4.20 ns
tENZL Enable Pad Z to Low 2.68 3.03 3.57 5.00 ns
tENHZ Enable Pad High to Z 5.83 6.60 7.77 10.88 ns
tENLZ Enable Pad Low to Z 5.39 6.10 7.18 10.05 ns
tGLH G to Pad High 4.58 5.19 6.10 8.54 ns
tGHL G to Pad Low 4.58 5.19 6.10 8.54 ns
tLSU I/O Latch Setup 0.53 0.60 0.70 0.98 ns
tLH I/O Latch Hold 0.00 0.00 0.00 0.00 ns
tLCO I/O Latch Clock-Out (Pad-to-Pad) 32 I/O 8.33 9.44 11.10 15.54 ns
tACO Array Latch Clock-Out (Pad-to-Pad)
32 I/O 11.78 13.35 15.70 21.98 ns
dTLH Capacitive Loading, Low to High 0.04 0.04 0.05 0.07 ns/pF
dTHL Capacitive Loading, High to Low 0.03 0.03 0.04 0.06 ns/pF
1-146
A42MX24 Timing Characteristics (Nominal 3.3V Operation)
(Worst-Case Commercial Conditions)
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Postroute timing analysis or simulation is required to determine actual worst-case performance. Postroute timing is based on
actual routing delay measurements performed on the device prior to shipment.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from
the DirectTime Analyzer utility.
4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing
parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts
(adds) to the internal setup (hold) time.
Preliminary Information
Logic Module Propagation Delays1‘–2 Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Combinatorial Functions
tPD Internal Array Module Delay 2.16 2.45 2.88 4.04 ns
tPDD Internal Decode Module Delay 2.30 2.61 3.07 4.29 ns
Predicted Routing Delays2
tRD1 FO=1 Routing Delay 1.74 1.98 2.32 3.25 ns
tRD2 FO=2 Routing Delay 2.12 2.40 2.83 3.96 ns
tRD3 FO=3 Routing Delay 2.50 2.83 3.33 4.66 ns
tRD4 FO=4 Routing Delay 2.88 3.26 3.84 5.37 ns
tRD5 FO=8 Routing Delay 4.39 4.97 5.85 8.19 ns
Sequential Timing Characteristics3, 4
tCO Flip-Flop Clock-to-Output 1.90 2.15 2.53 3.55 ns
tGO Latch Gate-to-Output 1.85 2.09 2.46 3.45 ns
tSU Flip-Flop (Latch) Setup Time 0.49 0.56 0.66 0.92 ns
tHFlip-Flop (Latch) Hold Time 0.00 0.00 0.00 0.00 ns
tRO Flip-Flop (Latch) Reset to Output 1.90 2.15 2.53 3.55 ns
tSUENA Flip-Flop (Latch) Enable Setup 0.63 0.71 0.84 1.18 ns
tHENA Flip-Flop (Latch) Enable Hold 0.00 0.00 0.00 0.00 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse
Width 5.18 5.87 6.90 9.66 ns
tWASYN Flip-Flop (Latch) Asynchronous Pulse
Width 6.78 7.69 9.04 12.66 ns
1-147
Integrator Series FPGAs – 40MX and 42MX Families
A42MX24 Timing Characteristics (Nominal 3.3V Operation) (continued)
(Worst-Case Commercial Conditions)
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Postroute timing analysis or simulation is required to determine actual worst-case performance.
Preliminary Information
Input Module Propagation Delays ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
tINPY Input Data Pad to Y 1.62 1.83 2.16 3.02 ns
tINGO Input Latch Gate-to-Output 2.01 2.27 2.67 3.74 ns
tINH Input Latch Hold 0.00 0.00 0.00 0.00 ns
tINSU Input Latch Setup 0.74 0.83 0.98 1.37 ns
tILA Latch Active Pulse Width 7.28 8.25 9.70 13.58 ns
Input Module Predicted Routing Delays1
tIRD1 FO=1 Routing Delay 3.70 4.19 4.93 6.90 ns
tIRD2 FO=2 Routing Delay 4.12 4.66 5.49 7.68 ns
tIRD3 FO=3 Routing Delay 4.53 5.13 6.03 8.45 ns
tIRD4 FO=4 Routing Delay 4.95 5.60 6.59 9.23 ns
tIRD8 FO=8 Routing Delay 6.60 7.49 8.81 12.33 ns
Global Clock Network
tCKH Input Low to High FO=32
FO=486 4.01
5.09 4.55
5.77 5.35
6.79 7.49
9.51 ns
ns
tCKL Input High to Low FO=32
FO=486 3.30
4.33 3.74
4.90 4.40
5.77 6.15
8.08 ns
ns
tPWH Minimum Pulse Width High FO=32
FO=486 3.36
3.68 3.81
4.17 4.48
4.90 6.27
6.86 ns
ns
tPWL Minimum Pulse Width Low FO=32
FO=486 3.36
3.68 3.81
4.17 4.48
4.90 6.27
6.86 ns
ns
tCKSW Maximum Skew FO=32
FO=486 0.84
0.84 0.95
0.95 1.12
1.12 1.57
1.57 ns
ns
tSUEXT Input Latch External Setup FO=32
FO=486 0.74
0.74 0.83
0.83 0.98
0.98 1.37
1.37 ns
ns
tHEXT Input Latch External Hold FO=32
FO=486 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 ns
ns
tPMinimum Period (1/fmax) FO=32
FO=486 6.83
7.56 7.74
8.57 9.10
10.08 12.74
14.11 ns
ns
fMAX Maximum Data-Path
Frequency FO=32
FO=486 114.75
105.00 105.57
96.60 91.80
84.00 55.08
50.40 MHz
MHz
1-148
A42MX24 Timing Characteristics (Nominal 3.3V Operation) (continued)
(Worst-Case Commercial Conditions)
Notes:
1. Delays based on 35 pF loading.
2. SSO information can be found in the “Simultaneously Switching Output Limits for Actel FPGAs” application note.
Preliminary Information
Output Module Timing ‘–2 Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
TTL Output Module Timing1
tDLH Data to Pad High 4.16 4.71 5.54 7.76 ns
tDHL Data to Pad Low 4.69 5.32 6.26 8.76 ns
tENZH Enable Pad Z to High 3.15 3.57 4.20 5.88 ns
tENZL Enable Pad Z to Low 3.75 4.25 5.00 7.00 ns
tENHZ Enable Pad High to Z 8.16 9.25 10.88 15.23 ns
tENLZ Enable Pad Low to Z 7.54 8.54 10.05 14.07 ns
tGLH G to Pad High 6.41 7.26 8.54 11.96 ns
tGHL G to Pad Low 6.41 7.26 8.54 11.96 ns
tLSU I/O Latch Output Setup 0.74 0.83 0.98 1.37 ns
tLH I/O Latch Output Hold 0.00 0.00 0.00 0.00 ns
tLCO I/O Latch Clock-Out (Pad-to-Pad)
32 I/O 11.66 13.21 15.54 21.76 ns
tACO Array Latch Clock-Out (Pad-to-Pad)
32 I/O 16.49 18.68 21.98 30.77 ns
dTLH Capacitive Loading, Low to High 0.05 0.06 0.07 0.10 ns/pF
dTHL Capacitive Loading, High to Low 0.04 0.05 0.06 0.08 ns/pF
CMOS Output Module Timing1
tDLH Data to Pad High 5.32 6.03 7.10 9.94 ns
tDHL Data to Pad Low 3.90 4.41 5.19 7.27 ns
tENZH Enable Pad Z to High 3.15 3.57 4.20 5.88 ns
tENZL Enable Pad Z to Low 3.75 4.25 5.00 7.00 ns
tENHZ Enable Pad High to Z 8.16 9.25 10.88 15.23 ns
tENLZ Enable Pad Low to Z 7.54 8.54 10.05 14.07 ns
tGLH G to Pad High 6.41 7.26 8.54 11.96 ns
tGHL G to Pad Low 6.41 7.26 8.54 11.96 ns
tLSU I/O Latch Setup 0.74 0.83 0.98 1.37 ns
tLH I/O Latch Hold 0.00 0.00 0.00 0.00 ns
tLCO I/O Latch Clock-Out (Pad-to-Pad)
32 I/O 11.66 13.21 15.54 21.76 ns
tACO Array Latch Clock-Out (Pad-to-Pad)
32 I/O 16.49 18.68 21.98 30.77 ns
dTLH Capacitive Loading, Low to High 0.05 0.06 0.07 0.10 ns/pF
dTHL Capacitive Loading, High to Low 0.04 0.05 0.06 0.08 ns/pF
1-149
Integrator Series FPGAs – 40MX and 42MX Families
A42MX36 Timing Characteristics (Nominal 5.0V Operation)
(Worst-Case Commercial Conditions)
Preliminary Information
Logic Module Propagation Delays ‘–2 Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Combinatorial Functions
tPD Internal Array Module Delay 1.5 1.7 2.0 2.7 ns
tPDD Internal Decode Module Delay 1.9 2.1 2.5 3.5 ns
Predicted Module Routing Delays
tRD1 FO=1 Routing Delay 1.0 1.1 1.3 1.9 ns
tRD2 FO=2 Routing Delay 1.1 1.3 1.5 2.1 ns
tRD3 FO=3 Routing Delay 1.3 1.5 1.7 2.4 ns
tRD4 FO=4 Routing Delay 1.4 1.6 1.9 2.7 ns
tRD5 FO=8 Routing Delay 2.1 2.3 2.8 3.9 ns
tRDD Decode-to-Output Routing Delay 0.4 0.4 0.5 0.7 ns
Sequential Timing Characteristics
tCO Flip-Flop Clock-to-Output 1.5 1.7 2.0 2.8 ns
tGO Latch Gate-to-Output 1.5 1.7 2.0 2.7 ns
tSU Flip-Flop (Latch) Setup Time 0.4 0.4 0.5 0.7 ns
tHFlip-Flop (Latch) Hold Time 0.0 0.0 0.0 0.0 ns
tRO Flip-Flop (Latch) Reset to Output 1.5 1.7 2.0 2.8 ns
tSUENA Flip-Flop (Latch) Enable Setup 0.8 0.9 1.0 1.4 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse
Width 3.7 4.2 4.9 6.9 ns
tWASYN Flip-Flop (Latch) Asynchronous Pulse
Width 4.8 5.5 6.5 9.0 ns
1-150
A42MX36 Timing Characteristics (Nominal 5.0V Operation) (continued)
(Worst-Case Commercial Conditions)
Preliminary Information
Logic Module Timing ‘–2 Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Synchronous SRAM Operations
tRC Read Cycle Time 7.5 8.5 10.0 14.0 ns
tWC Write Cycle Time 7.5 8.5 10.0 14.0 ns
tRCKHL Clock High/Low Time 3.8 4.3 5.0 7.0 ns
tRCO Data Valid After Clock High/Low 3.8 4.3 5.0 7.0 ns
tADSU Address/Data Setup Time 1.8 2.0 2.4 3.4 ns
tADH Address/Data Hold Time 0.0 0.0 0.0 0.0 ns
tRENSU Read Enable Setup 0.7 0.8 0.9 1.3 ns
tRENH Read Enable Hold 3.8 4.3 5.0 7.0 ns
tWENSU Write Enable Setup 3.0 3.4 4.0 5.6 ns
tWENH Write Enable Hold 0.0 0.0 0.0 0.0 ns
tBENS Block Enable Setup 3.1 3.5 4.1 5.7 ns
tBENH Block Enable Hold 0.0 0.0 0.0 0.0 ns
Asynchronous SRAM Operations
tRPD Asynchronous Access Time 9.0 10.2 12.0 16.8 ns
tRDADV Read Address Valid 9.8 11.1 13.0 18.2 ns
tADSU Address/Data Setup Time 1.8 2.0 2.4 3.4 ns
tADH Address/Data Hold Time 0.0 0.0 0.0 0.0 ns
tRENSUA Read Enable Setup to Address Valid 0.7 0.8 0.9 1.3 ns
tRENHA Read Enable Hold 3.8 4.3 5.0 7.0 ns
tWENSU Write Enable Setup 3.0 3.4 4.0 5.6 ns
tWENH Write Enable Hold 0.0 0.0 0.0 0.0 ns
tDOH Data Out Hold Time 1.4 1.5 1.8 2.5 ns
1-151
Integrator Series FPGAs – 40MX and 42MX Families
A42MX36 Timing Characteristics (Nominal 5.0V Operation) (continued)
(Worst-Case Commercial Conditions)
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Postroute timing analysis or simulation is required to determine actual worst-case performance.
Advanced Information
Input Module Propagation Delays ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
tINPY Input Data Pad to Y 1.3 1.5 1.7 2.4 ns
tINGO Input Latch Gate-to-Output11.6 1.8 2.1 3.0 ns
tINH Input Latch Hold10.0 0.0 0.0 0.0 ns
tINSU Input Latch Setup10.5 0.6 0.7 1.0 ns
tILA Latch Active Pulse Width15.2 5.9 6.9 9.7 ns
Input Module Predicted Routing Delays
tIRD1 FO=1 Routing Delay 3.2 3.7 4.3 6.0 ns
tIRD2 FO=2 Routing Delay 3.7 4.2 4.9 6.9 ns
tIRD3 FO=3 Routing Delay 4.0 4.5 5.3 7.4 ns
tIRD4 FO=4 Routing Delay 4.6 5.2 6.1 8.5 ns
tIRD8 FO=8 Routing Delay 6.6 7.5 8.8 12.3 ns
Global Clock Network
tCKH Input Low to High FO=32
FO=635 6.7
8.6 7.6
9.8 8.9
11.5 12.5
16.1 ns
ns
tCKL Input High to Low FO=32
FO=635 6.2
8.0 7.0
9.1 8.2
10.7 11.5
15.0 ns
ns
tPWH Minimum Pulse Width High FO=32
FO=635 2.0
2.2 2.2
2.5 2.6
2.9 3.6
4.1 ns
ns
tPWL Minimum Pulse Width Low FO=32
FO=635 2.0
2.2 2.2
2.5 2.6
2.9 3.6
4.1 ns
ns
tCKSW Maximum Skew FO=32
FO=635 0.8
0.8 0.9
0.9 1.0
1.0 1.4
1.4 ns
ns
tSUEXT Input Latch External Setup FO=32
FO=635 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 ns
ns
tHEXT Input Latch External Hold FO=32
FO=635 2.6
3.2 2.9
3.7 3.4
4.3 4.8
6.0 ns
ns
tPMinimum Period (1/fmax) FO=32
FO=635 6.5
7.2 7.4
8.2 8.7
9.6 12.2
13.4 ns
ns
fHMAX Maximum Data-Path
Frequency FO=32
FO=635 164
152 151
140 131
121 79
73 MHz
MHz
1-152
A42MX36 Timing Characteristics (Nominal 5.0V Operation) (continued)
(Worst-Case Commercial Conditions)
Notes:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Postroute timing analysis or simulation is required to determine actual worst-case performance.
2. SSO information can be found in the “Simultaneously Switching Output Limits for Actel FPGAs” application note.
Advanced Information
Output Module Timing ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
TTL Output Module Timing1
tDLH Data to Pad High 3.1 3.5 4.2 5.8 ns
tDHL Data to Pad Low 3.6 4.1 4.8 6.7 ns
tENZH Enable Pad Z to High 3.3 3.7 4.4 6.1 ns
tENZL Enable Pad Z to Low 3.6 4.0 4.8 6.7 ns
tENHZ Enable Pad High to Z 6.6 7.4 8.7 12.2 ns
tENLZ Enable Pad Low to Z 6.1 6.9 8.1 11.3 ns
tGLH G to Pad High 5.1 5.8 6.8 9.6 ns
tGHL G to Pad Low 5.1 5.8 6.8 9.6 ns
tLSU I/O Latch Output Setup 0.5 0.6 0.7 1.0 ns
tLH I/O Latch Output Hold 0.0 0.0 0.0 0.0 ns
tLCO I/O Latch Clock-Out (Pad-to-Pad)
32 I/O 9.8 11.1 13.1 18.3 ns
tACO Array Latch Clock-Out (Pad-to-Pad)
32 I/O 13.9 15.7 18.5 25.9 ns
dTLH Capacitive Loading, Low to High 0.0 0.0 0.1 0.1 ns/pF
dTHL Capacitive Loading, High to Low 0.1 0.1 0.1 0.1 ns/pF
CMOS Output Module Timing1
tDLH Data to Pad High 4.4 4.9 5.8 8.1 ns
tDHL Data to Pad Low 5.3 6.0 7.1 9.9 ns
tENZH Enable Pad Z to High 5.6 6.4 7.5 10.5 ns
tENZL Enable Pad Z to Low 6.1 6.9 8.1 11.3 ns
tENHZ Enable Pad High to Z 9.8 11.1 13.0 18.2 ns
tENLZ Enable Pad Low to Z 9.8 11.1 13.0 18.2 ns
tGLH G to Pad High 9.8 11.1 13.0 18.2 ns
tGHL G to Pad Low 10.5 11.9 14.0 19.6 ns
tLSU I/O Latch Setup 0.3 0.3 0.4 0.6 ns
tLH I/O Latch Hold 0.0 0.0 0.0 0.0 ns
tLCO I/O Latch Clock-Out (Pad-to-Pad)
32 I/O 11.6 13.2 15.5 21.7 ns
tACO Array Latch Clock-Out (Pad-to-Pad)
32 I/O 16.4 18.5 21.8 30.5 ns
dTLH Capacitive Loading, Low to High 0.1 0.1 0.1 0.1 ns/pF
dTHL Capacitive Loading, High to Low 0.0 0.1 0.1 0.1 ns/pF
1-153
Integrator Series FPGAs – 40MX and 42MX Families
A42MX36 Timing Characteristics (Nominal 3.3V Operation)
(Worst-Case Commercial Conditions)
Preliminary Information
Logic Module Propagation Delays ‘–2 Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Combinatorial Functions
tPD Internal Array Module Delay 2.1 2.3 2.7 3.8 ns
tPDD Internal Decode Module Delay 2.6 2.9 3.5 4.8 ns
Predicted Module Routing Delays
tRD1 FO=1 Routing Delay 1.4 1.6 1.9 2.6 ns
tRD2 FO=2 Routing Delay 1.6 1.8 2.1 3.0 ns
tRD3 FO=3 Routing Delay 1.8 2.0 2.4 3.4 ns
tRD4 FO=4 Routing Delay 2.0 2.3 2.7 3.8 ns
tRD5 FO=8 Routing Delay 2.9 3.3 3.9 5.4 ns
tRDD Decode-to-Output Routing Delay 0.5 0.6 0.7 1.0 ns
Sequential Timing Characteristics
tCO Flip-Flop Clock-to-Output 2.1 2.4 2.8 4.0 ns
tGO Latch Gate-to-Output 2.1 2.3 2.7 3.8 ns
tSU Flip-Flop (Latch) Setup Time 0.5 0.6 0.7 0.9 ns
tHFlip-Flop (Latch) Hold Time 0.0 0.0 0.0 0.0 ns
tRO Flip-Flop (Latch) Reset to Output 2.1 2.4 2.8 4.0 ns
tSUENA Flip-Flop (Latch) Enable Setup 1.1 1.2 1.4 2.0 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse
Width 5.2 5.9 6.9 9.7 ns
tWASYN Flip-Flop (Latch) Asynchronous Pulse
Width 6.8 7.7 9.0 12.7 ns
1-154
A42MX36 Timing Characteristics (Nominal 3.3V Operation) (continued)
(Worst-Case Commercial Conditions)
Preliminary Information
Logic Module Timing ‘–2 Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Synchronous SRAM Operations
tRC Read Cycle Time 10.5 11.9 14.0 19.6 ns
tWC Write Cycle Time 10.5 11.9 14.0 19.6 ns
tRCKHL Clock High/Low Time 5.3 6.0 7.0 9.8 ns
tRCO Data Valid After Clock High/Low 5.3 6.0 7.0 9.8 ns
tADSU Address/Data Setup Time 2.5 2.8 3.4 4.8 ns
tADH Address/Data Hold Time 0.0 0.0 0.0 0.0 ns
tRENSU Read Enable Setup 12.0 1.1 1.3 1.8 ns
tRENH Read Enable Hold 5.3 6.0 7.0 9.8 ns
tWENSU Write Enable Setup 4.2 4.8 5.6 7.8 ns
tWENH Write Enable Hold 0.0 0.0 0.0 0.0 ns
tBENS Block Enable Setup 4.3 4.9 5.7 8.0 ns
tBENH Block Enable Hold 0.0 0.0 0.0 0.0 ns
Asynchronous SRAM Operations
tRPD Asynchronous Access Time 12.6 14.3 16.8 23.5 ns
tRDADV Read Address Valid 13.7 15.5 18.2 25.5 ns
tADSU Address/Data Setup Time 2.5 2.8 3.4 9.5 ns
tADH Address/Data Hold Time 0.0 0.0 0.0 0.0 ns
tRENSUA Read Enable Setup to Address Valid 1.0 1.1 1.3 1.8 ns
tRENHA Read Enable Hold 5.3 6.0 7.0 9.8 ns
tWENSU Write Enable Setup 4.2 4.8 5.6 7.8 ns
tWENH Write Enable Hold 0.0 0.0 0.0 0.0 ns
tDOH Data Out Hold Time 2.0 2.1 2.5 3.5 ns
1-155
Integrator Series FPGAs – 40MX and 42MX Families
A42MX36 Timing Characteristics (Nominal 3.3V Operation) (continued)
(Worst-Case Commercial Conditions)
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Postroute timing analysis or simulation is required to determine actual worst-case performance.
Preliminary Information
Input Module Propagation Delays ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
tINPY Input Data Pad to Y 1.8 2.1 2.4 3.4 ns
tINGO Input Latch Gate-to-Output12.2 2.5 3.0 4.2 ns
tINH Input Latch Hold10.0 0.0 0.0 0.0 ns
tINSU Input Latch Setup10.7 0.8 1.0 1.4 ns
tILA Latch Active Pulse Width17.3 8.2 9.7 13.6 ns
Input Module Predicted Routing Delays
tIRD1 FO=1 Routing Delay 4.5 5.1 6.0 8.4 ns
tIRD2 FO=2 Routing Delay 5.1 5.8 6.9 9.6 ns
tIRD3 FO=3 Routing Delay 5.6 6.3 7.4 10.4 ns
tIRD4 FO=4 Routing Delay 6.4 7.3 8.5 12.0 ns
tIRD8 FO=8 Routing Delay 9.2 10.5 12.3 17.2 ns
Global Clock Network
tCKH Input Low to High FO=32
FO=635 9.3
12.1 10.6
13.7 12.5
16.1 17.4
22.5 ns
ns
tCKL Input High to Low FO=32
FO=635 8.6
11.2 9.8
12.7 11.5
15.0 16.1
21.0 ns
ns
tPWH Minimum Pulse Width High FO=32
FO=635 2.7
3.0 3.1
3.5 3.6
4.1 5.1
5.7 ns
ns
tPWL Minimum Pulse Width Low FO=32
FO=635 2.7
3.0 3.1
3.5 3.6
4.1 5.1
5.7 ns
ns
tCKSW Maximum Skew FO=32
FO=635 1.1
1.1 1.2
1.2 1.4
1.4 2.0
2.0 ns
ns
tSUEXT Input Latch External Setup FO=32
FO=635 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 ns
ns
tHEXT Input Latch External Hold FO=32
FO=635 3.6
4.5 4.0
5.1 4.8
6.0 6.7
8.4 ns
ns
tPMinimum Period (1/fmax) FO=32
FO=635 9.1
10.1 10.4
11.4 12.2
13.4 17.1
18.8 ns
ns
fHMAX Maximum Data-Path
Frequency FO=32
FO=635 99
93 91
84 79
73 48
44 MHz
MHz
1-156
A42MX36 Timing Characteristics (Nominal 3.3V Operation) (continued)
(Worst-Case Commercial Conditions)
Notes:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Postroute timing analysis or simulation is required to determine actual worst-case performance.
2. SSO information can be found in the “Simultaneously Switching Output Limits for Actel FPGAs” application note.
Preliminary Information
Output Module Timing ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
TTL Output Module Timing1
tDLH Data to Pad High 4.4 5.0 5.8 8.2 ns
tDHL Data to Pad Low 5.1 5.7 6.7 9.4 ns
tENZH Enable Pad Z to High 4.6 5.2 6.1 8.5 ns
tENZL Enable Pad Z to Low 5.0 5.7 6.7 9.3 ns
tENHZ Enable Pad High to Z 9.2 10.4 12.2 17.1 ns
tENLZ Enable Pad Low to Z 8.5 9.6 11.3 15.8 ns
tGLH G to Pad High 7.2 8.1 9.6 13.4 ns
tGHL G to Pad Low 7.2 8.1 9.6 13.4 ns
tLSU I/O Latch Output Setup 0.7 0.8 1.0 1.4 ns
tLH I/O Latch Output Hold 0.0 0.0 0.0 0.0 ns
tLCO I/O Latch Clock-Out (Pad-to-Pad)
32 I/O 13.8 15.6 18.3 25.7 ns
tACO Array Latch Clock-Out (Pad-to-Pad)
32 I/O 19.4 22.0 25.9 36.3 ns
dTLH Capacitive Loading, Low to High 0.1 0.1 0.1 0.1 ns/pF
dTHL Capacitive Loading, High to Low 0.1 0.1 0.1 0.1 ns/pF
CMOS Output Module Timing1
tDLH Data to Pad High 6.1 6.9 8.1 11.4 ns
tDHL Data to Pad Low 7.5 8.4 9.9 13.9 ns
tENZH Enable Pad Z to High 7.9 8.9 10.5 14.7 ns
tENZL Enable Pad Z to Low 8.5 9.6 11.3 15.9 ns
tENHZ Enable Pad High to Z 13.7 15.5 18.2 25.5 ns
tENLZ Enable Pad Low to Z 13.7 15.5 18.2 25.5 ns
tGLH G to Pad High 13.7 15.5 18.2 25.5 ns
tGHL G to Pad Low 14.7 16.7 19.6 27.4 ns
tLSU I/O Latch Setup 0.4 0.5 0.6 0.8 ns
tLH I/O Latch Hold 0.0 0.0 0.0 0.0 ns
tLCO I/O Latch Clock-Out (Pad-to-Pad)
32 I/O 16.3 18.4 21.7 30.4 ns
tACO Array Latch Clock-Out (Pad-to-Pad)
32 I/O 22.9 25.9 30.5 42.7 ns
dTLH Capacitive Loading, Low to High 0.1 0.1 0.1 0.1 ns/pF
dTHL Capacitive Loading, High to Low 0.1 0.1 0.1 0.1 ns/pF
1-157
Integrator Series FPGAs – 40MX and 42MX Families
Package Pin Assignments
44-Pin PLCC 68-Pin PLCC
Signal A40MX02
Function A40MX04
Function Signal A40MX02
Function A40MX04
Functions
3 VCC VCC 4 VCC VCC
10 GND GND 14 GND GND
14 VCC VCC 15 GND GND
16 VCC VCC 21 VCC VCC
21 GND GND 25 VCC VCC
25 VCC VCC 32 GND GND
32 GND GND 38 VCC VCC
33 CLK, I/O CLK, I/O 49 GND GND
34 MODE MODE 52 CLK, I/O CLK, I/O
35 VCC VCC 54 MODE MODE
36 SDI, I/O SDI, I/O 55 VCC VCC
37 DCLK, I/O DCLK, I/O 56 SDI, I/O SDI, I/O
38 PRA, I/O PRA, I/O 57 DCLK, I/O DCLK, I/O
39 PRB, I/O PRB, I/O 58 PRA, I/O PRA, I/O
43 GND GND 59 PRB, I/O PRB, I/O
44-Pin
PLCC
1 44
68-Pin
PLCC
1 68
1-158
Package Pin Assignments (continued)
84-Pin PLCC
Signal A40MX04
Function
4 VCC
12 NC
18 GND
19 GND
25 VCC
26 VCC
33 VCC
40 GND
46 VCC
60 GND
61 GND
64 CLK, I/O
66 MODE
67 VCC
68 VCC
72 SDI, I/O
73 DCLK, I/O
74 PRA, I/O
75 PRB, I/O
82 GND
Notes:
1. NC: Denotes No Connection.
2. All unlisted pin numbers are user I/Os.
3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
1 84
A40MX04
84-Pin
PLCC
1-159
Integrator Series FPGAs – 40MX and 42MX Families
Package Pin Assignments (continued)
100-Pin PQFP
Pin A40MX02
Function A40MX04
Function Pin A40MX02
Function A40MX04
Function
1 NC NC 53 NC NC
2 NC NC 54 NC NC
3 NC NC 55 NC NC
4 NC NC 56 VCC VCC
5 NC NC 63 GND GND
6 PRB, I/O PRB, I/O 69 VCC VCC
13 GND GND 77 NC NC
19 VCC VCC 78 NC NC
27 NC NC 79 NC NC
28 NC NC 80 NC I/O
29 NC NC 81 NC I/O
30 NC NC 82 NC I/O
31 NC I/O 86 GND GND
32 NC I/O 87 GND GND
33 NC I/O 90 CLK, I/O CLK, I/O
36 GND GND 92 MODE MODE
37 GND GND 93 VCC VCC
43 VCC VCC 94 VCC VCC
44 VCC VCC 95 NC I/O
48 NC I/O 96 NC I/O
49 NC I/O 97 NC I/O
50 NC I/O 98 SDI, I/O SDI, I/O
51 NC NC 99 DCLK, I/O DCLK, I/O
52 NC NC 100 PRA, I/O PRA, I/O
Notes:
1. NC: Denotes No Connection.
2. All unlisted pin numbers are user I/Os.
3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
100-Pin
PQFP
100
1
1-160
Package Pin Assignments (continued)
80-Pin VQFP
Pin A40MX02
Function A40MX04
Function Pin A40MX02
Function A40MX04
Function
2 NC I/O 47 GND GND
3 NC I/O 50 CLK, I/O CLK, I/O
4 NC I/O 52 MODE MODE
7 GND GND 53 VCC VCC
13 VCC VCC 54 NC I/O
17 NC I/O 55 NC I/O
18 NC I/O 56 NC I/O
19 NC I/O 57 SDI, I/O SDI, I/O
20 VCC VCC 58 DCLK, I/O DCLK, I/O
27 GND GND 59 PRA, I/O PRA, I/O
33 VCC VCC 60 NC NC
41 NC I/O 61 PRB, I/O PRB, I/O
42 NC I/O 68 GND GND
43 NC I/O 74 VCC VCC
Notes:
1. NC: Denotes No Connection.
2. All unlisted pin numbers are user I/Os.
3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
80-Pin
VQFP
80
1
1-161
Integrator Series FPGAs – 40MX and 42MX Families
Package Pin Assignments (continued)
84-Pin PLCC Package (Top View)
184
84-Pin
PLCC
1-162
Notes:
1. I/O (WD): Denotes I/O pin with an associated wide-decode module.
2. Wide-decode I/O (WD) can also be general-purpose user I/O.
3. NC: Denotes No Connection.
4. All unlisted pin numbers are user I/Os.
5. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
84-Pin PLCC Package
Pin
Number A42MX09
Function A42MX16
Function A42MX24
Function
2 CLKB,I/O CLKB,I/O CLKB,I/O
4 PRB,I/O PRB,I/O PRB,I/O
5 I/O I/O I/O (WD)
6 GND GND GND
8 I/O I/O I/O (WD)
9 I/O I/O I/O (WD)
10 DCLK,I/O DCLK,I/O DCLK,I/O
12 MODE MODE MODE
22 VCCI VCCI VCCI
23 VCCA VCCA VCCA
28 GND GND GND
34 I/O I/O TMS, I/O
35 I/O I/O TDI, I/O
36 I/O I/O I/O (WD)
38 I/O I/O I/O (WD)
39 I/O I/O I/O (WD)
43 VCCA VCCA VCCA
44 I/O I/O I/O (WD)
45 I/O I/O I/O (WD)
46 I/O I/O I/O (WD)
47 I/O I/O I/O (WD)
49 GND GND GND
50 I/O I/O I/O (WD)
51 I/O I/O I/O (WD)
52 I/O I/O TDO (WD)
62 I/O I/O TCK, I/O
63 GND GND GND
64 VCCA VCCA VCCA
65 VCCI VCCI VCCI
70 GND GND GND
76 SDI,I/O SDI,I/O SDI,I/O
78 I/O I/O I/O (WD)
79 I/O I/O I/O (WD)
80 I/O I/O I/O (WD)
81 PRA,I/O PRA,I/O PRA,I/O
83 CLKA,I/O CLKA,I/O CLKA,I/O
84 VCCA VCCA VCCA
1-163
Integrator Series FPGAs – 40MX and 42MX Families
1-164
Package Pin Assignments (continued)
100-pin PQFP Package (Top View)
100-Pin
PQFP
1
100
1-165
Integrator Series FPGAs – 40MX and 42MX Families
Notes:
1. NC: Denotes No Connection.
2. All unlisted pin numbers are user I/Os.
3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
100-pin PQFP Package
Pin Number
A42MX09
PQ100
Function
A42MX16
PQ100
Function Pin Number
A42MX09
PQ100
Function
A42MX16
PQ100
Function
2 DCLK, I/O DCLK, I/O 64 GND GND
4 MODE MODE 65 VCCA VCCA
7 I/O I/O 66 VCCI VCCI
9 GND GND 67 VCCA VCCA
14 I/O I/O 70 I/O I/O
15 I/O I/O 72 GND GND
16 VCCA VCCA 77 I/O I/O
17 VCC VCC 79 SDI, I/O SDI, I/O
20 I/O I/O 82 I/O I/O
22 GND GND 84 GND GND
32 I/O I/O 85 I/O I/O
34 GND GND 87 PRA, I/O PRA, I/O
38 I/O I/O 88 I/O I/O
40 VCCA VCCA 89 CLKA, I/O CLKA, I/O
44 I/O I/O 90 VCCA VCCA
46 GND GND 92 CLKB, I/O CLKB, I/O
55 I/O I/O 94 PRB, I/O PRB, I/O
57 GND GND 96 GND GND
62 I/O I/O 100 I/O I/O
63 I/O I/O
1-166
Package Pin Assignments (continued)
160-pin PQFP Package (Top View)
Notes:
1. I/O (WD): Denotes I/O pin with an associated wide-decode module.
2. Wide-decode I/O (WD) can also be general-purpose user I/O.
3. NC: Denotes No Connection.
4. All unlisted pin numbers are user I/Os.
5. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
160
1
160-Pin
PQFP
1-167
Integrator Series FPGAs – 40MX and 42MX Families
160-Pin PQFP Package
Pin
Number A42MX16
Function A42MX24
Function Pin
Number A42MX16
Function A42MX24
Function
2 DCLK,I/O DCLK,I/O 80 GND GND
4 I/O I/O (WD) 82 I/O TDO, I/O
5 I/O I/O (WD) 83 I/O I/O (WD)
6 VCCI VCCI 84 I/O I/O (WD)
7 I/O I/O 86 VCCI VCCI
11 GND GND 87 I/O I/O
13 I/O I/O (WD) 88 I/O I/O (WD)
14 I/O I/O (WD) 89 GND GND
16 PRB,I/O PRB,I/O 92 I/O I/O
18 CLKB,I/O CLKB,I/O 93 I/O I/O
20 VCCA VCCA 96 I/O I/O (WD)
21 CLKA,I/O CLKA,I/O 97 I/O I/O
23 PRA,I/O PRA,I/O 98 VCCA VCCA
24 I/O I/O (WD) 99 GND GND
25 I/O I/O (WD) 106 I/O I/O (WD)
26 I/O I/O 107 I/O I/O (WD)
29 I/O I/O (WD) 109 GND GND
30 GND GND 111 I/O I/O (WD)
31 I/O I/O (WD) 112 I/O I/O (WD)
34 I/O I/O 114 VCCI VCCI
35 VCCI VCCI 115 I/O I/O (WD)
36 I/O I/O (WD) 116 I/O I/O (WD)
37 I/O I/O (WD) 118 I/O TDI, I/O
38 SDI,I/O SDI,I/O 119 I/O TMS, I/O
40 GND GND 120 GND GND
44 GND GND 125 GND GND
49 GND GND 130 GND GND
54 VCCA VCCA 135 VCCA VCCA
57 VCCA VCCA 138 VCCA VCCA
58 VCCI VCCI 139 VCCI VCCI
59 GND GND 140 GND GND
60 VCCA VCCA 145 GND GND
61 GND GND 150 VCCA VCCA
62 I/O TCK, I/O 155 GND GND
64 GND GND 159 MODE MODE
69 GND GND 160 GND GND
1-168
Package Pin Assignments (continued)
208-Pin PQFP Package, 208-pin RQFP Package (Top View)
Notes:
1. I/O (WD): Denotes I/O pin with an associated wide-decode module.
2. Wide-decode I/O (WD) can also be general-purpose user I/O.
3. NC: Denotes No Connection.
4. All unlisted pin numbers are user I/Os.
5. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
6. RQFP has an exposed circular metal heat sink on the top surface.
208-Pin PQFP
208-Pin RQFP
1208
1-169
Integrator Series FPGAs – 40MX and 42MX Families
208-Pin PQFP Package, 208-pin RQFP Package
Pin Number A42MX16
Function A42MX24
Function
A42MX36
PQ208
Function
42MX36
RQ208
Function Pin Number A42MX16
Function A42MX24
Function
A42MX36
PQ208
Function
42MX36
RQ208
Function
1 GND GND GND I/O 104 I/O I/O I/O GND
2 NC VCCA VCCA DCLK, I/O 105 GND GND GND I/O
3 MODE MODE MODE I/O 106 NC VCC VCC TDO, I/O
5 I/O I/O I/O I/O (WD) 107 I/O I/O I/O I/O (WD)
6 I/O I/O I/O I/O (WD) 108 I/O I/O I/O I/O (WD)
7 I/O I/O I/O VCC 110 I/O I/O I/O VCC
9 NC I/O I/O I/O 112 NC I/O I/O I/O
10 NC I/O I/O I/O 113 NC I/O I/O I/O
11 NC I/O I/O I/O 114 NC I/O I/O I/O (WD)
13 I/O I/O I/O QCLKC, I/O 115 NC I/O I/O I/O (WD)
15 I/O I/O I/O I/O (WD) 117 I/O I/O I/O QCLKB, I/O
16 NC I/O I/O I/O (WD) 121 I/O I/O I/O I/O (WD)
17 VCCA VCCA VCCA I/O 122 I/O I/O I/O I/O (WD)
19 I/O I/O I/O I/O (WD) 126 GND GND GND I/O
20 I/O I/O I/O I/O (WD) 128 I/O TCK, I/O TCK, I/O I/O
22 GND GND GND PRB, I/O 129 GND GND GND VCCA
24 I/O I/O I/O CLKB, I/O 130 VCCA VCCA VCCA GND
26 I/O I/O I/O GND 131 GND GND GND I/O
27 GND GND GND VCCA 132 VCCI VCCI VCCI I/O
28 VCCI VCCI VCCI I/O 133 VCCA VCCA VCCA I/O
29 VCCA VCCA VCCA CLKA, I/O 136 VCCA VCCA VCCA I/O
30 I/O I/O I/O PRA, I/O 137 I/O I/O I/O I/O (WD)
32 VCCA VCCA VCCA I/O (WD) 138 I/O I/O I/O I/O (WD)
33 I/O I/O I/O I/O (WD) 141 NC I/O I/O I/O (WD)
38 I/O I/O I/O QCLKD, I/O 142 I/O I/O I/O I/O (WD)
40 I/O I/O I/O I/O (WD) 144 I/O I/O I/O QCLKA, I/O
41 NC I/O I/O I/O (WD) 146 NC I/O I/O I/O
42 NC I/O I/O I/O 147 NC I/O I/O I/O
43 NC I/O I/O I/O 148 NC I/O I/O I/O
45 I/O I/O I/O VCCI 149 NC I/O I/O VCCI
47 I/O I/O I/O I/O (WD) 150 GND GND GND I/O
48 I/O I/O I/O I/O (WD) 151 I/O I/O I/O I/O (WD)
50 NC I/O I/O SDI, I/O 152 I/O I/O I/O I/O (WD)
51 NC I/O I/O I/O 154 I/O I/O I/O TDI, I/O
52 GND GND GND GND 155 I/O I/O I/O TMS, I/O
53 GND GND GND I/O 156 I/O I/O I/O GND
54 I/O TMS, I/O TMS, I/O I/O 157 GND GND GND VCCA
55 I/O TDI, I/O TDI, I/O I/O 159 SDI,I/O SDI,I/O SDI,I/O I/O
57 I/O I/O (WD) I/O (WD) I/O 161 I/O I/O (WD) I/O (WD) I/O
58 I/O I/O (WD) I/O (WD) I/O 162 I/O I/O (WD) I/O (WD) I/O
59 I/O I/O I/O GND 164 VCCI VCCI VCCI I/O
60 VCCI VCCI VCCI I/O 165 NC I/O I/O I/O
61 NC I/O I/O I/O 166 NC I/O I/O I/O
62 NC I/O I/O I/O 168 I/O I/O (WD) I/O (WD) I/O
65 I/O I/O QCLKA, I/O I/O 169 I/O I/O (WD) I/O (WD) I/O
66 I/O I/O (WD) I/O (WD) I/O 171 NC I/O QCLKD, I/O I/O
67 NC I/O (WD) I/O (WD) I/O 176 I/O I/O (WD) I/O (WD) I/O
68 NC I/O I/O I/O 177 I/O I/O (WD) I/O (WD) I/O
70 I/O I/O (WD) I/O (WD) I/O 178 PRA,I/O PRA,I/O PRA,I/O VCCA
71 I/O I/O (WD) I/O (WD) I/O 180 CLKA,I/O CLKA,I/O CLKA,I/O I/O
74 I/O I/O I/O VCCA 181 NC I/O I/O VCCA
77 I/O I/O I/O VCCA 182 NC VCCI VCCI VCCI
78 GND GND GND VCCI 183 VCCA VCCA VCCA I/O
79 VCCA VCCA VCCA VCCA 184 GND GND GND I/O
80 NC VCCI VCCI GND 186 CLKB,I/O CLKB,I/O CLKB,I/O I/O
81 I/O I/O I/O TCK, I/O 187 I/O I/O I/O GND
83 I/O I/O I/O GND 188 PRB,I/O PRB,I/O PRB,I/O I/O
85 I/O I/O (WD) I/O (WD) I/O 190 I/O I/O (WD) I/O (WD) I/O
86 I/O I/O (WD) I/O (WD) I/O 191 I/O I/O (WD) I/O (WD) I/O
89 NC I/O I/O I/O 193 NC I/O I/O I/O
90 NC I/O I/O I/O 194 NC I/O (WD) I/O (WD) I/O
91 I/O I/O QCLKB, I/O I/O 195 NC I/O (WD) I/O (WD) I/O
93 I/O I/O (WD) I/O (WD) I/O 196 I/O I/O QCLKC, I/O I/O
94 I/O I/O (WD) I/O (WD) I/O 197 NC I/O I/O I/O
95 NC I/O I/O I/O 201 NC I/O I/O I/O
96 NC I/O I/O I/O 202 VCCI VCCI VCCI I/O
97 NC I/O I/O I/O 203 I/O I/O (WD) I/O (WD) I/O
98 VCCI VCCI VCCI I/O 204 I/O I/O (WD) I/O (WD) I/O
100 I/O I/O (WD) I/O (WD) I/O 206 I/O I/O I/O MODE
101 I/O I/O (WD) I/O (WD) I/O 207 DCLK,I/O DCLK,I/O DCLK,I/O VCCA
103 I/O TDO, I/O TDO, I/O VCCA 208 I/O I/O I/O GND
1-170
Package Pin Assignments (continued)
240-Pin RQFP Package (Top View)
Notes:
1. I/O (WD): Denotes I/O pin with an associated wide-decode module.
2. Wide-decode I/O (WD) can also be general-purpose user I/O.
3. NC: Denotes No Connection.
4. All unlisted pin numbers are user I/Os.
5. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
6. RQFP has an exposed circular metal heat sink on the top surface.
240-Pin
RQFP
Exposed
Heat Sink
1240
1-171
Integrator Series FPGAs – 40MX and 42MX Families
240-Pin RQFP Package
Pin Number A42MX36 Function Pin Number A42MX36 Function
2 DCLK, I/O 119 GND
6 I/O (WD) 120 GND
7 I/O (WD) 121 GND
8 VCCI 123 TDO, I/O
15 QCLKC, I/O 125 I/O (WD)
17 I/O (WD) 126 I/O (WD)
18 I/O (WD) 128 VCCI
21 I/O (WD) 132 I/O (WD)
22 I/O (WD) 133 I/O (WD)
24 PRB, I/O 135 QCLKB, I/O
26 CLKB, I/O 142 I/O (WD)
28 GND 143 I/O (WD)
29 VCCA 150 VCCI
30 VCCI 151 VCCA
32 CLKA, I/O 152 GND
34 PRA, I/O 159 I/O (WD)
37 I/O (WD) 160 I/O (WD)
38 I/O (WD) 163 I/O (WD)
45 QCLKD, I/O 164 I/O (WD)
47 I/O (WD) 166 QCLKA, I/O
48 I/O (WD) 172 VCCI
52 VCCI 174 I/O (WD)
54 I/O (WD) 175 I/O (WD)
55 I/O (WD) 178 TDI, I/O
57 SDI, I/O 179 TMS, I/O
59 VCCA 180 GND
60 GND 181 VCC
61 GND 182 GND
71 VCCI 192 VCCI
85 VCCA 206 VCCA
88 VCCA 209 VCCA
89 VCCI 210 VCCI
90 VCCA 219 VCCA
91 GND 227 VCCI
92 TCK, I/O 237 GND
94 GND 238 MODE
108 VCCI 239 VCCA
118 VCCA 240 GND
1-172
Package Pin Assignments (continued)
176-Pin TQFP Package (Top View)
Notes:
1. I/O (WD): Denotes I/O pin with an associated wide-decode module.
2. Wide-decode I/O (WD) can also be general-purpose user I/O.
3. NC: Denotes No Connection.
4. All unlisted pin numbers are user I/Os.
5. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
176-Pin
TQFP
176
1
1-173
Integrator Series FPGAs – 40MX and 42MX Families
176-pin TQFP Package
Pin Number A42MX09
Function A42MX16
Function A42MX24
Function Pin Number A42MX09
Function A42MX16
Function A42MX24
Function
1 GND GND GND 97 NC I/O I/O
2 MODE MODE MODE 101 NC NC I/O
8 NC NC I/O 103 NC I/O I/O
10 NC I/O I/O 106 GND GND GND
11 NC I/O I/O 107 NC I/O I/O
13 NC VCCA VCCA 108 NC I/O TCK, I/O
18 GND GND GND 109 GND GND GND
19 NC I/O I/O 110 VCC VCC VCC
20 NC I/O I/O 111 GND GND GND
22 NC I/O I/O 112 VCCI VCCI VCCI
23 GND GND GND 113 VCCA VCCA VCCA
24 NC VCCI VCCI 114 NC I/O I/O
25 VCCA VCCA VCCA 115 NC I/O I/O
26 NC I/O I/O 116 NC VCC VCC
27 NC I/O I/O 117 I/O I/O I/O
28 VCCA VCCA VCCA 121 NC NC I/O
29 NC I/O I/O 124 NC I/O I/O
33 NC NC I/O 125 NC I/O I/O
37 NC I/O I/O 126 NC NC I/O
38 NC NC I/O 133 GND GND GND
45 GND GND GND 135 SDI,I/O SDI,I/O SDI,I/O
46 I/O I/O TMS, I/O 136 NC I/O I/O
47 I/O I/O TDI, I/O 137 I/O I/O I/O (WD)
48 I/O I/O I/O 138 I/O I/O I/O (WD)
49 I/O I/O I/O (WD) 139 I/O I/O I/O
50 I/O I/O I/O (WD) 140 NC VCCI VCCI
52 NC VCCI VCCI 141 I/O I/O I/O
54 NC I/O I/O 143 NC I/O I/O
55 NC I/O I/O (WD) 144 NC I/O I/O (WD)
56 I/O I/O I/O (WD) 145 NC NC I/O (WD)
57 NC NC I/O 146 I/O I/O I/O
59 I/O I/O I/O (WD) 147 NC I/O I/O
60 I/O I/O I/O (WD) 149 I/O I/O I/O
61 NC I/O I/O 150 I/O I/O I/O (WD)
64 NC I/O I/O 151 NC I/O I/O (WD)
66 NC I/O I/O 152 PRA,I/O PRA,I/O PRA,I/O
67 GND GND GND 154 CLKA,I/O CLKA,I/O CLKA,I/O
68 VCCA VCCA VCCA 155 VCCA VCCA VCCA
69 I/O I/O I/O (WD) 156 GND GND GND
70 I/O I/O I/O (WD) 158 CLKB,I/O CLKB,I/O CLKB,I/O
73 I/O I/O I/O 160 PRB,I/O PRB,I/O PRB,I/O
74 NC I/O I/O 161 NC I/O I/O (WD)
75 I/O I/O I/O 162 I/O I/O I/O (WD)
77 NC NC I/O (WD) 163 I/O I/O I/O
78 NC I/O I/O (WD) 165 NC NC I/O (WD)
80 NC I/O I/O 166 NC I/O I/O (WD)
81 I/O I/O I/O 168 NC I/O I/O
82 NC VCCI VCCI 169 I/O I/O I/O
84 I/O I/O I/O (WD) 170 NC VCCI VCCI
85 I/O I/O I/O (WD) 171 I/O I/O I/O (WD)
86 NC I/O I/O 172 I/O I/O I/O (WD)
87 I/O I/O TDO, I/O 173 NC I/O I/O
89 GND GND GND 175 DCLK,I/O DCLK,I/O DCLK,I/O
96 NC I/O I/O
1-174