Freescale Semiconductor
Data Sheet: Technical Data Document Number: MPC5606B
Rev. 4, 02/2016
© Freescale Semiconductor, Inc., 2015-2016. All rights reserved.
Freescale reserves the right to change the detail specifications as may be required to permit
improvements in the design of its products.
MPC5606BK
100 LQFP
14 mm x 14 mm 144 LQFP
20 mm x 20 mm
176 LQFP
24 mm x 24 mm
1 Introduction
1.1 Document overview
This document describes the features of the family and
options available within the family members, and highlights
important electrical and physical characteristics of the device.
1.2 Description
This family of 32-bit system-on-chip (SoC) microcontrollers
is the latest achievement in integrated automotive application
controllers. It belongs to an expanding family of
automotive-focused products de signed to address the next
wave of body electronics applications within the vehi cle.
The advanced and cost-efficient e200z0 host processor core of
this automotive controller family complies with the Power
Architecture® technology and only implements the VLE
(variable-length encodin g) APU (Auxi liary Processor Unit),
providing improved code density. It operates at speeds of up
to 64 MHz and offers high performance processing optimized
for low power consumption. It capitalizes on the available
development infrastructure of current Power Architecture
devices and is supported with softw a re dri vers, operating
systems and configuration code to assist with users
implementations.
MPC5606BK Microcontroller
Data Sheet
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Device comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Package pinouts and signal descriptions. . . . . . . . . . . . . . . . . . 4
2.1 Package pinouts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Pin muxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 NVUSRO register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Recommended operating conditions . . . . . . . . . . . . . . . 28
3.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 I/O pad electrical characteristics. . . . . . . . . . . . . . . . . . . 33
3.7 RESET electrical characteristics . . . . . . . . . . . . . . . . . . 45
3.8 Power management electrical characteristics . . . . . . . . 48
3.9 Power consumption in different application modes . . . . 53
3.10 Flash memory electrical characteristics . . . . . . . . . . . . . 54
3.11 Electromagnetic compatibility (EMC) characteristics . . . 56
3.12 Fast external crystal oscillator (4 to 16 MHz) electrical
characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.13 Slow external crystal oscillator (32 kHz) electrical
characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.14 FMPLL electrical characteristics. . . . . . . . . . . . . . . . . . . 63
3.15 Fast internal RC oscillator (16 MHz) electrical
characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.16 Slow internal RC oscillator (128 kHz) electrical
characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.17 ADC electrical characteristics. . . . . . . . . . . . . . . . . . . . . 66
3.18 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4 Package characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . 85
5 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
MPC5606BK Microcontroller Data Sheet, Rev. 4
2Freescale Semiconductor
1.3 Device comparison
Table 1 summarizes the functions of the blocks present on the MPC5606BK.
Table 1. MPC5606BK family comparison1
1Feature set dependent on selected peripher al multiplexing; table shows example.
Feature MPC5605BK MPC5606BK
Package 100 LQFP 144 LQFP 176 LQFP 100 LQFP 144 LQFP 176 LQFP
CPU e200z0h
Execution speed2
2Based on 125 C ambient operating temperature.
Up to 64 MHz
Code flash memory 768 KB 1 MB
Data flash memory 64 (4 x 16) KB
SRAM 64 KB 80 KB
MPU 8-entry
eDMA 16 ch
10-bit ADC Yes
dedicated3
3Not shared with 12-bit ADC, but possibly shared with other alternate functions.
7ch 15ch 29ch 7ch 15ch 29ch
shared with 12-bit ADC 19 ch
12-bit ADC Yes
dedicated4
4Not shared with 10-bit ADC, but possibly shared with other alternate functions.
5 ch
shared with 10-bit ADC 19 ch
Tot al timer I/O5
eMIOS
5Refer to eMIOS section of device reference manual for information on the channel configuratio n and functions.
37 ch,
16-bit 64 ch,
16-bit 37 ch,
16-bit 64 ch,
16-bit
Counter / OPWM / ICOC6
6Each channel supports a range of modes including Modulus counters, PWM generation, Input Capture, Output Compare.
10 ch
O(I)PWM / OPWFMB / OPWMCB / ICOC7
7Each channel supports a range of modes including PWM generation with dead time, Input Capture, Output Compare.
7ch
O(I)PWM / ICOC8
8Each channel supports a range of modes including PWM generation, Input Capture, Output Compare, Period and Pulse width
measurement.
7ch 14ch
OPWM / ICOC9
9Each channel supports a range of modes including PWM generation, Input Capture, and Output Compare.
13 ch 33 ch
SCI (LINFlex) 468468
SPI (DSPI) 356356
CAN (FlexCAN) 6
I2C 1
32 KHz oscillator Yes
GPIO10
10 Maximum I/O count based on multiplexing with peripherals.
77 121 149 77 121 149
Debug JTAG
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 3
1.4 Block diagram
Figure 1 shows a top-level block diagram of the MPC5606BK.
Figure 1. MPC5606BK block diagram
6 x
DSPI
FMPLL
SRAM
SIUL
Reset Control
80 KB
External
IMUX
GPIO &
JTAG
Pad Control
JTAG Port
e200z0h
Interrupt requests
64-bit 3 × 3 Crossbar Switch
6 x
FlexCAN
Peripheral Bridge
Interrupt
Request
Interrupt
Request
I/O
Clocks
Instructions
Data
Voltage
Regulator
NMI
SWT PITSTM
NMI
SIUL
. . .
INTC
I
2
C
. . .
8 x
LINFlex
64 ch
29 ch 10-bit
MPU
CMU
SRAM Flash memory
Code Flash
1.0 MB Data Flash
64 KB
MC_PCUMC_MEMC_CGMMC_RGM BAM
CTU
RTC SSCM
(Master)
(Master)
(Slave)
(Slave)
(Slave)
controller
Controller
Legend:
ADC Analog-to-Digital Converter
BAM Boot Assist Module
FlexCAN Controller Area Network
CFlash Code flash memory
CMU Clock Monitor Unit
CTU Cross T riggering Unit
DFlash Data flash memory
DSPI Deserial Serial Peripheral Interface
eDMA Enhanced Direct Memory Access
eMIOS Enhanced Modular Input Ou tput System
FMPLL Frequency-Modulated Phase-Locked Loop
I2C Inter-integrated Circuit Bus
IMUX Internal Multiplexer
INTC Interrupt Controller
JTAG JTAG controller
LINFlex Serial Communication Interface (LIN support)
MC_CGM Clock Generation Module
MC_ME Mode Entry Module
MPU Memory Protection Unit
NMI Non-Maskable Interrupt
MC_PCU Power Control Unit
MC_RGM Reset Generation Module
PIT Periodic Interrupt Timer
RTC Real-Time Clock
SIUL System Integration Unit Lite
SRAM Static Random-Access Memory
SSCM System Status Configuration Module
STM System Timer Module
SWT Software Watchdog Timer
WKPU Wakeup Unit
MPU
ECSM
from peripheral
Registers
blocks
ADC eMIOS
19 ch 10-bit/12-bit
ADC
(Master)
. . .
. . .
. . .
WKPU
5 ch 12-bit
ADC
eDMA
Interrupt
request with
wakeup
functionality
MPC5606BK Microcontroller Data Sheet, Rev. 4
4Freescale Semiconductor
2 Package pinouts and signal descriptions
2.1 Package pinouts
The available LQFP pinouts are provided in the following figures. For pin signal descriptions, please see Table 2.
Figure 2 shows the MPC5606BK in the 176 LQFP package.
Figure 2. 176 LQFP pinout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
PE[13]
PF[14]
PF[15]
VDD_HV
VSS_HV
PG[0]
PG[1]
PH[3]
PH[2]
PH[1]
PH[0]
PG[12]
PG[13]
PA[3]
PI[13]
PI[12]
PI[11]
PI[10]
PI[9]
PI[8]
PB[15]
PD[15]
PB[14]
PD[14]
PB[13]
PD[13]
PB[12]
PD[12]
VDD_HV_ADC1
VSS_HV_ADC1
PB[11]
PD[11]
PD[10]
PD[9]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC0
VSS_HV_ADC0
PB[3]
PC[9]
PC[14]
PC[15]
PJ[4]
VDD_HV
VSS_HV
PH[15]
PH[13]
PH[14]
PI[6]
PI[7]
PG[5]
PG[4]
PG[3]
PG[2]
PA[2]
PE[0]
PA[1]
PE[1]
PE[8]
PE[9]
PE[10]
PA[0]
PE[11]
VSS_HV
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PG[9]
PG[8]
PC[11]
PC[10]
PG[7]
PG[6]
PB[0]
PB[1]
PF[9]
PF[8]
PF[12]
PC[6]
PC[7]
PF[10]
PF[11]
PA[15]
PF[13]
PA[14]
PA[4]
PA[13]
PA[12]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV
PB[9]
PB[8]
PB[10]
PF[0]
PF[1]
PF[2]
PF[3]
PF[4]
PF[5]
PF[6]
PF[7]
PJ[3]
PJ[2]
PJ[1]
PJ[0]
PI[15]
PI[14]
PD[0]
PD[1]
PD[2]
PD[3]
PD[4]
PD[5]
PD[6]
PD[7]
VDD_HV
VSS_HV
PD[8]
PB[4]
PB[2]
PC[8]
PC[13]
PC[12]
PI[0]
PI[1]
PI[2]
PI[3]
PE[7]
PE[6]
PH[8]
PH[7]
PH[6]
PH[5]
PH[4]
PE[5]
PE[4]
PC[4]
PC[5]
PE[3]
PE[2]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA[6]
PA[5]
PC[2]
PC[3]
PI[4]
PI[5]
PH[12]
PH[11]
PG[11]
PG[10]
PE[15]
PE[14]
PG[15]
PG[14]
PE[12]
176 LQFP
Top view
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 5
Figure 3 shows the MPC5606BK in the 144 LQFP package.
Figure 3. 144 LQFP pinout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
PB[3]
PC[9]
PC[14]
PC[15]
PG[5]
PG[4]
PG[3]
PG[2]
PA[2]
PE[0]
PA[1]
PE[1]
PE[8]
PE[9]
PE[10]
PA[0]
PE[11]
VSS_HV
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PG[9]
PG[8]
PC[11]
PC[10]
PG[7]
PG[6]
PB[0]
PB[1]
PF[9]
PF[8]
PF[12]
PC[6]
PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
PE[13]
PF[14]
PF[15]
VDD_HV
VSS_HV
PG[0]
PG[1]
PH[3]
PH[2]
PH[1]
PH[0]
PG[12]
PG[13]
PA[3]
PB[15]
PD[15]
PB[14]
PD[14]
PB[13]
PD[13]
PB[12]
VDD_HV_ADC1
VSS_HV_ADC1
PD[11]
PD[10]
PD[9]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC0
VSS_HV_ADC0
PC[7]
PF[10]
PF[11]
PA[15]
PF[13]
PA[14]
PA[4]
PA[13]
PA[12]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV
PB[9]
PB[8]
PB[10]
PF[0]
PF[1]
PF[2]
PF[3]
PF[4]
PF[5]
PF[6]
PF[7]
PD[0]
PD[1]
PD[2]
PD[3]
PD[4]
PD[5]
PD[6]
PD[7]
PD[8]
PB[4]
PB[2]
PC[8]
PC[13]
PC[12]
PE[7]
PE[6]
PH[8]
PH[7]
PH[6]
PH[5]
PH[4]
PE[5]
PE[4]
PC[4]
PC[5]
PE[3]
PE[2]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA[6]
PA[5]
PC[2]
PC[3]
PG[11]
PG[10]
PE[15]
PE[14]
PG[15]
PG[14]
PE[12]
144 LQFP
Top view
MPC5606BK Microcontroller Data Sheet, Rev. 4
6Freescale Semiconductor
Figure 4 shows the MPC5606BK in the 100 LQFP package.
Figure 4. 100 LQFP pinout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
PB[3]
PC[9]
PC[14]
PC[15]
PA[2]
PE[0]
PA[1]
PE[1]
PE[8]
PE[9]
PE[10]
PA[0]
PE[11]
VSS_HV
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PC[11]
PC[10]
PB[0]
PB[1]
PC[6]
PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
VDD_HV
VSS_HV
PA[3]
PB[15]
PD[15]
PB[14]
PD[14]
PB[13]
PD[13]
PB[12]
VDD_HV_ADC1
VSS_HV_ADC1
PD[11]
PD[10]
PD[9]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC0
VSS_HV_ADC0
PC[7]
PA[15]
PA[14]
PA[4]
PA[13]
PA[12]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV
PB[9]
PB[8]
PB[10]
PD[0]
PD[1]
PD[2]
PD[3]
PD[4]
PD[5]
PD[6]
PD[7]
PD[8]
PB[4]
PB[2]
PC[8]
PC[13]
PC[12]
PE[7]
PE[6]
PE[5]
PE[4]
PC[4]
PC[5]
PE[3]
PE[2]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA[6]
PA[5]
PC[2]
PC[3]
PE[12]
100 LQFP
Top view
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 7
2.2 Pin muxing
Table 2 defines the pin list and muxing fo r this device.
Each entry of Table 2 shows all the possible configurations for each pin, via the alternate functions. The default function
assigned to each pin after reset is indicated by AF0.
Table 2. Functional port pins
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type2
RESET
config.3
Pin number
100
LQFP 144
LQFP 176
LQFP
Port A
PA[0] PCR[0] AF0
AF1
AF2
AF3
GPIO[0]
E0UC[0]
CLKOUT
E0UC[13]
WKUP[19]4
SIUL
eMIOS_0
MC_CGM
eMIOS_0
WKUP
I/O
I/O
O
I/O
I
MTristate121624
PA[1] PCR[1] AF0
AF1
AF2
AF3
GPIO[1]
E0UC[1]
NMI5
WKUP[2]4
SIUL
eMIOS_0
WKUP
WKUP
I/O
I/O
I
I
STristate 7 11 19
PA[2] PCR[2] AF0
AF1
AF2
AF3
GPIO[2]
E0UC[2]
MA[2]
WKUP[3]4
SIUL
eMIOS_0
ADC_0
WKUP
I/O
I/O
O
I
STristate 5 9 17
PA[3] PCR[3] AF0
AF1
AF2
AF3
GPIO[3]
E0UC[3]
LIN5TX
CS4_1
EIRQ[0]
ADC1_S[0]
SIUL
eMIOS_0
LINFlex_5
DSPI_1
SIUL
ADC_1
I/O
I/O
O
O
I
I
J Tristate 68 90 114
PA[4] PCR[4] AF0
AF1
AF2
AF3
GPIO[4]
E0UC[4]
CS0_1
LIN5RX
WKUP[9]4
SIUL
eMIOS_0
DSPI_1
LINFlex_5
WKUP
I/O
I/O
I/O
I
I
STristate294351
PA[5] PCR[5] AF0
AF1
AF2
AF3
GPIO[5]
E0UC[5]
LIN4TX
SIUL
eMIOS_0
LINFlex_4
I/O
I/O
O
M Tristate 79 118 146
PA[6] PCR[6] AF0
AF1
AF2
AF3
GPIO[6]
E0UC[6]
CS1_1
EIRQ[1]
LIN4RX
SIUL
eMIOS_0
DSPI_1
SIUL
LINFlex_4
I/O
I/O
O
I
I
S Tristate 80 119 147
MPC5606BK Microcontroller Data Sheet, Rev. 4
8Freescale Semiconductor
PA[7] PCR[7] AF0
AF1
AF2
AF3
GPIO[7]
E0UC[7]
LIN3TX
EIRQ[2]
ADC1_S[1]
SIUL
eMIOS_0
LINFlex_3
SIUL
ADC_1
I/O
I/O
O
I
I
J Tristate 71 104 128
PA[8] PCR[8] AF0
AF1
AF2
AF3
N/A6
GPIO[8]
E0UC[8]
E0UC[14]
EIRQ[3]
ABS[0]
LIN3RX
SIUL
eMIOS_0
eMIOS_0
SIUL
BAM
LINFlex_3
I/O
I/O
I/O
I
I
I
S Input,
weak
pull-up
72 105 129
PA[9] PCR[9] AF0
AF1
AF2
AF3
N/A6
GPIO[9]
E0UC[9]
CS2_1
FAB
SIUL
eMIOS_0
DSPI_1
BAM
I/O
I/O
O
I
S Pull-
down 73 106 130
PA[10] PCR[10] AF0
AF1
AF2
AF3
GPIO[10]
E0UC[10]
SDA
LIN2TX
ADC1_S[2]
SIUL
eMIOS_0
I2C_0
LINFlex_2
ADC_1
I/O
I/O
I/O
O
I
J Tristate 74 107 131
PA[11] PCR[11] AF0
AF1
AF2
AF3
GPIO[11]
E0UC[11]
SCL
EIRQ[16]
LIN2RX
ADC1_S[3]
SIUL
eMIOS_0
I2C_0
SIUL
LINFlex_2
ADC_1
I/O
I/O
I/O
I
I
I
J Tristate 75 108 132
PA[12] PCR[12] AF0
AF1
AF2
AF3
GPIO[12]
E0UC[28]
CS3_1
EIRQ[17]
SIN_0
SIUL
eMIOS_0
DSPI_1
SIUL
DSPI_0
I/O
I/O
O
I
I
STristate314553
PA[13] PCR[13] AF0
AF1
AF2
AF3
GPIO[13]
SOUT_0
E0UC[29]
SIUL
DSPI_0
eMIOS_0
I/O
O
I/O
MTristate304452
PA[14] PCR[14] AF0
AF1
AF2
AF3
GPIO[14]
SCK_0
CS0_0
E0UC[0]
EIRQ[4]
SIUL
DSPI_0
DSPI_0
eMIOS_0
SIUL
I/O
I/O
I/O
I/O
I
MTristate284250
Table 2. Functional port pins (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type2
RESET
config.3
Pin number
100
LQFP 144
LQFP 176
LQFP
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 9
PA[15] PCR[15] AF0
AF1
AF2
AF3
GPIO[15]
CS0_0
SCK_0
E0UC[1]
WKUP[10]4
SIUL
DSPI_0
DSPI_0
eMIOS_0
WKUP
I/O
I/O
I/O
I/O
I
MTristate274048
Port B
PB[0] PCR[16] AF0
AF1
AF2
AF3
GPIO[16]
CAN0TX
E0UC[30]
LIN0TX
SIUL
FlexCAN_0
eMIOS_0
LINFlex_0
I/O
O
I/O
O
MTristate233139
PB[1] PCR[17] AF0
AF1
AF2
AF3
GPIO[17]
E0UC[31]
WKUP[4]4
CAN0RX
LIN0RX
SIUL
eMIOS_0
WKUP
FlexCAN_0
LINFlex_0
I/O
I/O
I
I
I
STristate243240
PB[2] PCR[18] AF0
AF1
AF2
AF3
GPIO[18]
LIN0TX
SDA
E0UC[30]
SIUL
LINFlex_0
I2C_0
eMIOS_0
I/O
O
I/O
I/O
M Tristate 100 144 176
PB[3] PCR[19] AF0
AF1
AF2
AF3
GPIO[19]
E0UC[31]
SCL
WKUP[11]4
LIN0RX
SIUL
eMIOS_0
I2C_0
WKUP
LINFlex_0
I/O
I/O
I/O
I
I
STristate111
PB[4] PCR[20] AF0
AF1
AF2
AF3
ADC0_P[0]
ADC1_P[0]
GPIO[20]
ADC_0
ADC_1
SIUL
I
I
I
ITristate507288
PB[5] PCR[21] AF0
AF1
AF2
AF3
ADC0_P[1]
ADC1_P[1]
GPIO[21]
ADC_0
ADC_1
SIUL
I
I
I
ITristate537591
Table 2. Functional port pins (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type2
RESET
config.3
Pin number
100
LQFP 144
LQFP 176
LQFP
MPC5606BK Microcontroller Data Sheet, Rev. 4
10 Freescale Semiconductor
PB[6] PCR[22] AF0
AF1
AF2
AF3
ADC0_P[2]
ADC1_P[2]
GPIO[22]
ADC_0
ADC_1
SIUL
I
I
I
ITristate547692
PB[7] PCR[23] AF0
AF1
AF2
AF3
ADC0_P[3]
ADC1_P[3]
GPIO[23]
ADC_0
ADC_1
SIUL
I
I
I
ITristate557793
PB[8] PCR[24] AF0
AF1
AF2
AF3
GPIO[24]
OSC32K_XTAL7
WKUP[25]
ADC0_S[0]
ADC1_S[4]
SIUL
OSC32K
WKUP
ADC_0
ADC_1
I
I
I
I
I 39 53 61
PB[9] PCR[25] AF0
AF1
AF2
AF3
GPIO[25]
OSC32K_EXTAL7
WKUP[26]
ADC0_S[1]
ADC1_S[5]
SIUL
OSC32K
WKUP
ADC_0
ADC_1
I
I
I
I
I 38 52 60
PB[10] PCR[26] AF0
AF1
AF2
AF3
GPIO[26]
WKUP[8]4
ADC0_S[2]
ADC1_S[6]
SIUL
WKUP
ADC_0
ADC_1
I/O
I
I
I
JTristate405462
PB[11] PCR[27] AF0
AF1
AF2
AF3
GPIO[27]
E0UC[3]
CS0_0
ADC0_S[3]
SIUL
eMIOS_0
DSPI_0
ADC_0
I/O
I/O
I/O
I
JTristate 97
PB[12] PCR[28] AF0
AF1
AF2
AF3
GPIO[28]
E0UC[4]
CS1_0
ADC0_X[0]
SIUL
eMIOS_0
DSPI_0
ADC_0
I/O
I/O
O
I
J Tristate 61 83 101
Table 2. Functional port pins (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type2
RESET
config.3
Pin number
100
LQFP 144
LQFP 176
LQFP
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 11
PB[13] PCR[29] AF0
AF1
AF2
AF3
GPIO[29]
E0UC[5]
CS2_0
ADC0_X[1]
SIUL
eMIOS_0
DSPI_0
ADC_0
I/O
I/O
O
I
J Tristate 63 85 103
PB[14] PCR[30] AF0
AF1
AF2
AF3
GPIO[30]
E0UC[6]
CS3_0
ADC0_X[2]
SIUL
eMIOS_0
DSPI_0
ADC_0
I/O
I/O
O
I
J Tristate 65 87 105
PB[15] PCR[31] AF0
AF1
AF2
AF3
GPIO[31]
E0UC[7]
CS4_0
ADC0_X[3]
SIUL
eMIOS_0
DSPI_0
ADC_0
I/O
I/O
O
I
J Tristate 67 89 107
Port C
PC[0]8PCR[32] AF0
AF1
AF2
AF3
GPIO[32]
TDI
SIUL
JTAGC
I/O
I
M Input,
weak
pull-up
87 126 154
PC[1]8PCR[33] AF0
AF1
AF2
AF3
GPIO[33]
TDO
SIUL
JTAGC
I/O
O
F9Tristate 82 121 149
PC[2] PCR[34] AF0
AF1
AF2
AF3
GPIO[34]
SCK_1
CAN4TX
DEBUG[0]
EIRQ[5]
SIUL
DSPI_1
FlexCAN_4
SSCM
SIUL
I/O
I/O
O
O
I
M Tristate 78 117 145
PC[3] PCR[35] AF0
AF1
AF2
AF3
GPIO[35]
CS0_1
MA[0]
DEBUG[1]
EIRQ[6]
CAN1RX
CAN4RX
SIUL
DSPI_1
ADC_0
SSCM
SIUL
FlexCAN_1
FlexCAN_4
I/O
I/O
O
O
I
I
I
S Tristate 77 116 144
PC[4] PCR[36] AF0
AF1
AF2
AF3
GPIO[36]
E1UC[31]
DEBUG[2]
EIRQ[18]
SIN_1
CAN3RX
SIUL
eMIOS_1
SSCM
SIUL
DSPI_1
FlexCAN_3
I/O
I/O
O
I
I
I
M Tristate 92 131 159
Table 2. Functional port pins (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type2
RESET
config.3
Pin number
100
LQFP 144
LQFP 176
LQFP
MPC5606BK Microcontroller Data Sheet, Rev. 4
12 Freescale Semiconductor
PC[5] PCR[37] AF0
AF1
AF2
AF3
GPIO[37]
SOUT_1
CAN3TX
DEBUG[3]
EIRQ[7]
SIUL
DSPI_1
FlexCAN_3
SSCM
SIUL
I/O
O
O
O
I
M Tristate 91 130 158
PC[6] PCR[38] AF0
AF1
AF2
AF3
GPIO[38]
LIN1TX
E1UC[28]
DEBUG[4]
SIUL
LINFlex_1
eMIOS_1
SSCM
I/O
O
I/O
O
STristate253644
PC[7] PCR[39] AF0
AF1
AF2
AF3
GPIO[39]
E1UC[29]
DEBUG[5]
LIN1RX
WKUP[12]4
SIUL
eMIOS_1
SSCM
LINFlex_1
WKUP
I/O
I/O
O
I
I
STristate263745
PC[8] PCR[40] AF0
AF1
AF2
AF3
GPIO[40]
LIN2TX
E0UC[3]
DEBUG[6]
SIUL
LINFlex_2
eMIOS_0
SSCM
I/O
O
I/O
O
S Tristate 99 143 175
PC[9] PCR[41] AF0
AF1
AF2
AF3
GPIO[41]
E0UC[7]
DEBUG[7]
WKUP[13]4
LIN2RX
SIUL
eMIOS_0
SSCM
WKUP
LINFlex_2
I/O
I/O
O
I
I
STristate222
PC[10] PCR[42] AF0
AF1
AF2
AF3
GPIO[42]
CAN1TX
CAN4TX
MA[1]
SIUL
FlexCAN_1
FlexCAN_4
ADC_0
I/O
O
O
O
MTristate222836
PC[11] PCR[43] AF0
AF1
AF2
AF3
GPIO[43]
MA[2]
WKUP[5]4
CAN1RX
CAN4RX
SIUL
ADC_0
WKUP
FlexCAN_1
FlexCAN_4
I/O
O
I
I
I
STristate212735
PC[12] PCR[44] AF0
AF1
AF2
AF3
GPIO[44]
E0UC[12]
EIRQ[19]
SIN_2
SIUL
eMIOS_0
SIUL
DSPI_2
I/O
I/O
I
I
M Tristate 97 141 173
PC[13] PCR[45] AF0
AF1
AF2
AF3
GPIO[45]
E0UC[13]
SOUT_2
SIUL
eMIOS_0
DSPI_2
I/O
I/O
O
S Tristate 98 142 174
Table 2. Functional port pins (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type2
RESET
config.3
Pin number
100
LQFP 144
LQFP 176
LQFP
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 13
PC[14] PCR[46] AF0
AF1
AF2
AF3
GPIO[46]
E0UC[14]
SCK_2
EIRQ[8]
SIUL
eMIOS_0
DSPI_2
SIUL
I/O
I/O
I/O
I
STristate333
PC[15] PCR[47] AF0
AF1
AF2
AF3
GPIO[47]
E0UC[15]
CS0_2
EIRQ[20]
SIUL
eMIOS_0
DSPI_2
SIUL
I/O
I/O
I/O
I
MTristate444
Port D
PD[0] PCR[48] AF0
AF1
AF2
AF3
GPIO[48]
WKUP[27]
ADC0_P[4]
ADC1_P[4]
SIUL
WKUP
ADC_0
ADC_1
I
I
I
I
ITristate416377
PD[1] PCR[49] AF0
AF1
AF2
AF3
GPIO[49]
WKUP[28]
ADC0_P[5]
ADC1_P[5]
SIUL
WKUP
ADC_0
ADC_1
I
I
I
I
ITristate426478
PD[2] PCR[50] AF0
AF1
AF2
AF3
GPIO[50]
ADC0_P[6]
ADC1_P[6]
SIUL
ADC_0
ADC_1
I
I
I
ITristate436579
PD[3] PCR[51] AF0
AF1
AF2
AF3
GPIO[51]
ADC0_P[7]
ADC1_P[7]
SIUL
ADC_0
ADC_1
I
I
I
ITristate446680
PD[4] PCR[52] AF0
AF1
AF2
AF3
GPIO[52]
ADC0_P[8]
ADC1_P[8]
SIUL
ADC_0
ADC_1
I
I
I
ITristate456781
Table 2. Functional port pins (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type2
RESET
config.3
Pin number
100
LQFP 144
LQFP 176
LQFP
MPC5606BK Microcontroller Data Sheet, Rev. 4
14 Freescale Semiconductor
PD[5] PCR[53] AF0
AF1
AF2
AF3
GPIO[53]
ADC0_P[9]
ADC1_P[9]
SIUL
ADC_0
ADC_1
I
I
I
ITristate466882
PD[6] PCR[54] AF0
AF1
AF2
AF3
GPIO[54]
ADC0_P[10]
ADC1_P[10]
SIUL
ADC_0
ADC_1
I
I
I
ITristate476983
PD[7] PCR[55] AF0
AF1
AF2
AF3
GPIO[55]
ADC0_P[11]
ADC1_P[11]
SIUL
ADC_0
ADC_1
I
I
I
ITristate487084
PD[8] PCR[56] AF0
AF1
AF2
AF3
GPIO[56]
ADC0_P[12]
ADC1_P[12]
SIUL
ADC_0
ADC_1
I
I
I
ITristate497187
PD[9] PCR[57] AF0
AF1
AF2
AF3
GPIO[57]
ADC0_P[13]
ADC1_P[13]
SIUL
ADC_0
ADC_1
I
I
I
ITristate567894
PD[10] PCR[58] AF0
AF1
AF2
AF3
GPIO[58]
ADC0_P[14]
ADC1_P[14]
SIUL
ADC_0
ADC_1
I
I
I
ITristate577995
PD[11] PCR[59] AF0
AF1
AF2
AF3
GPIO[59]
ADC0_P[15]
ADC1_P[15]
SIUL
ADC_0
ADC_1
I
I
I
ITristate588096
PD[12] PCR[60] AF0
AF1
AF2
AF3
GPIO[60]
CS5_0
E0UC[24]
ADC0_S[4]
SIUL
DSPI_0
eMIOS_0
ADC_0
I/O
O
I/O
I
J Tristate 100
Table 2. Functional port pins (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type2
RESET
config.3
Pin number
100
LQFP 144
LQFP 176
LQFP
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 15
PD[13] PCR[61] AF0
AF1
AF2
AF3
GPIO[61]
CS0_1
E0UC[25]
ADC0_S[5]
SIUL
DSPI_1
eMIOS_0
ADC_0
I/O
I/O
I/O
I
J Tristate 62 84 102
PD[14] PCR[62] AF0
AF1
AF2
AF3
GPIO[62]
CS1_1
E0UC[26]
ADC0_S[6]
SIUL
DSPI_1
eMIOS_0
ADC_0
I/O
O
I/O
I
J Tristate 64 86 104
PD[15] PCR[63] AF0
AF1
AF2
AF3
GPIO[63]
CS2_1
E0UC[27]
ADC0_S[7]
SIUL
DSPI_1
eMIOS_0
ADC_0
I/O
O
I/O
I
J Tristate 66 88 106
Port E
PE[0] PCR[64] AF0
AF1
AF2
AF3
GPIO[64]
E0UC[16]
WKUP[6]4
CAN5RX
SIUL
eMIOS_0
WKUP
FlexCAN_5
I/O
I/O
I
I
S Tristate 6 10 18
PE[1] PCR[65] AF0
AF1
AF2
AF3
GPIO[65]
E0UC[17]
CAN5TX
SIUL
eMIOS_0
FlexCAN_5
I/O
I/O
O
M Tristate 8 12 20
PE[2] PCR[66] AF0
AF1
AF2
AF3
GPIO[66]
E0UC[18]
EIRQ[21]
SIN_1
SIUL
eMIOS_0
SIUL
DSPI_1
I/O
I/O
I
I
M Tristate 89 128 156
PE[3] PCR[67] AF0
AF1
AF2
AF3
GPIO[67]
E0UC[19]
SOUT_1
SIUL
eMIOS_0
DSPI_1
I/O
I/O
O
M Tristate 90 129 157
PE[4] PCR[68] AF0
AF1
AF2
AF3
GPIO[68]
E0UC[20]
SCK_1
EIRQ[9]
SIUL
eMIOS_0
DSPI_1
SIUL
I/O
I/O
I/O
I
M Tristate 93 132 160
PE[5] PCR[69] AF0
AF1
AF2
AF3
GPIO[69]
E0UC[21]
CS0_1
MA[2]
SIUL
eMIOS_0
DSPI_1
ADC_0
I/O
I/O
I/O
O
M Tristate 94 133 161
Table 2. Functional port pins (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type2
RESET
config.3
Pin number
100
LQFP 144
LQFP 176
LQFP
MPC5606BK Microcontroller Data Sheet, Rev. 4
16 Freescale Semiconductor
PE[6] PCR[70] AF0
AF1
AF2
AF3
GPIO[70]
E0UC[22]
CS3_0
MA[1]
EIRQ[22]
SIUL
eMIOS_0
DSPI_0
ADC_0
SIUL
I/O
I/O
O
O
I
M Tristate 95 139 167
PE[7] PCR[71] AF0
AF1
AF2
AF3
GPIO[71]
E0UC[23]
CS2_0
MA[0]
EIRQ[23]
SIUL
eMIOS_0
DSPI_0
ADC_0
SIUL
I/O
I/O
O
O
I
M Tristate 96 140 168
PE[8] PCR[72] AF0
AF1
AF2
AF3
GPIO[72]
CAN2TX
E0UC[22]
CAN3TX
SIUL
FlexCAN_2
eMIOS_0
FlexCAN_3
I/O
O
I/O
O
M Tristate 9 13 21
PE[9] PCR[73] AF0
AF1
AF2
AF3
GPIO[73]
E0UC[23]
WKUP[7]4
CAN2RX
CAN3RX
SIUL
eMIOS_0
WKUP
FlexCAN_2
FlexCAN_3
I/O
I/O
I
I
I
STristate101422
PE[10] PCR[74] AF0
AF1
AF2
AF3
GPIO[74]
LIN3TX
CS3_1
E1UC[30]
EIRQ[10]
SIUL
LINFlex_3
DSPI_1
eMIOS_1
SIUL
I/O
O
O
I/O
I
STristate 11 15 23
PE[11] PCR[75] AF0
AF1
AF2
AF3
GPIO[75]
E0UC[24]
CS4_1
LIN3RX
WKUP[14]4
SIUL
eMIOS_0
DSPI_1
LINFlex_3
WKUP
I/O
I/O
O
I
I
STristate131725
PE[12] PCR[76] AF0
AF1
AF2
AF3
GPIO[76]
E1UC[19]10
EIRQ[11]
SIN_2
ADC1_S[7]
SIUL
eMIOS_1
SIUL
DSPI_2
ADC_1
I/O
I/O
I
I
I
J Tristate 76 109 133
PE[13] PCR[77] AF0
AF1
AF2
AF3
GPIO[77]
SOUT_2
E1UC[20]
SIUL
DSPI_2
eMIOS_1
I/O
O
I/O
S Tristate 103 127
Table 2. Functional port pins (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type2
RESET
config.3
Pin number
100
LQFP 144
LQFP 176
LQFP
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 17
PE[14] PCR[78] AF0
AF1
AF2
AF3
GPIO[78]
SCK_2
E1UC[21]
EIRQ[12]
SIUL
DSPI_2
eMIOS_1
SIUL
I/O
I/O
I/O
I
S Tristate 112 136
PE[15] PCR[79] AF0
AF1
AF2
AF3
GPIO[79]
CS0_2
E1UC[22]
SIUL
DSPI_2
eMIOS_1
I/O
I/O
I/O
M Tristate 113 137
Port F
PF[0] PCR[80] AF0
AF1
AF2
AF3
GPIO[80]
E0UC[10]
CS3_1
ADC0_S[8]
SIUL
eMIOS_0
DSPI_1
ADC_0
I/O
I/O
O
I
J Tristate 55 63
PF[1] PCR[81] AF0
AF1
AF2
AF3
GPIO[81]
E0UC[11]
CS4_1
ADC0_S[9]
SIUL
eMIOS_0
DSPI_1
ADC_0
I/O
I/O
O
I
J Tristate 56 64
PF[2] PCR[82] AF0
AF1
AF2
AF3
GPIO[82]
E0UC[12]
CS0_2
ADC0_S[10]
SIUL
eMIOS_0
DSPI_2
ADC_0
I/O
I/O
O
I
J Tristate 57 65
PF[3] PCR[83] AF0
AF1
AF2
AF3
GPIO[83]
E0UC[13]
CS1_2
ADC0_S[11]
SIUL
eMIOS_0
DSPI_2
ADC_0
I/O
I/O
O
I
J Tristate 58 66
PF[4] PCR[84] AF0
AF1
AF2
AF3
GPIO[84]
E0UC[14]
CS2_2
ADC0_S[12]
SIUL
eMIOS_0
DSPI_2
ADC_0
I/O
I/O
O
I
J Tristate 59 67
PF[5] PCR[85] AF0
AF1
AF2
AF3
GPIO[85]
E0UC[22]
CS3_2
ADC0_S[13]
SIUL
eMIOS_0
DSPI_2
ADC_0
I/O
I/O
O
I
J Tristate 60 68
PF[6] PCR[86] AF0
AF1
AF2
AF3
GPIO[86]
E0UC[23]
CS1_1
ADC0_S[14]
SIUL
eMIOS_0
DSPI_1
ADC_0
I/O
I/O
O
I
J Tristate 61 69
Table 2. Functional port pins (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type2
RESET
config.3
Pin number
100
LQFP 144
LQFP 176
LQFP
MPC5606BK Microcontroller Data Sheet, Rev. 4
18 Freescale Semiconductor
PF[7] PCR[87] AF0
AF1
AF2
AF3
GPIO[87]
CS2_1
ADC0_S[15]
SIUL
DSPI_1
ADC_0
I/O
O
I
J Tristate 62 70
PF[8] PCR[88] AF0
AF1
AF2
AF3
GPIO[88]
CAN3TX
CS4_0
CAN2TX
SIUL
FlexCAN_3
DSPI_0
FlexCAN_2
I/O
O
O
O
M Tristate 34 42
PF[9] PCR[89] AF0
AF1
AF2
AF3
GPIO[89]
E1UC[1]
CS5_0
WKUP[22]4
CAN2RX
CAN3RX
SIUL
eMIOS_1
DSPI_0
WKUP
FlexCAN_2
FlexCAN_3
I/O
I/O
O
I
I
I
S Tristate 33 41
PF[10] PCR[90] AF0
AF1
AF2
AF3
GPIO[90]
CS1_0
LIN4TX
E1UC[2]
SIUL
DSPI_0
LINFlex_4
eMIOS_1
I/O
O
O
I/O
M Tristate 38 46
PF[11] PCR[91] AF0
AF1
AF2
AF3
GPIO[91]
CS2_0
E1UC[3]
WKUP[15]4
LIN4RX
SIUL
DSPI_0
eMIOS_1
WKUP
LINFlex_4
I/O
O
I/O
I
I
S Tristate 39 47
PF[12] PCR[92] AF0
AF1
AF2
AF3
GPIO[92]
E1UC[25]
LIN5TX
SIUL
eMIOS_1
LINFlex_5
I/O
I/O
O
M Tristate 35 43
PF[13] PCR[93] AF0
AF1
AF2
AF3
GPIO[93]
E1UC[26]
WKUP[16]4
LIN5RX
SIUL
eMIOS_1
WKUP
LINFlex_5
I/O
I/O
I
I
S Tristate 41 49
PF[14] PCR[94] AF0
AF1
AF2
AF3
GPIO[94]
CAN4TX
E1UC[27]
CAN1TX
SIUL
FlexCAN_4
eMIOS_1
FlexCAN_1
I/O
O
I/O
O
M Tristate 102 126
Table 2. Functional port pins (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type2
RESET
config.3
Pin number
100
LQFP 144
LQFP 176
LQFP
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 19
PF[15] PCR[95] AF0
AF1
AF2
AF3
GPIO[95]
E1UC[4]
EIRQ[13]
CAN1RX
CAN4RX
SIUL
eMIOS_1
SIUL
FlexCAN_1
FlexCAN_4
I/O
I/O
I
I
I
S Tristate 101 125
Port G
PG[0] PCR[96] AF0
AF1
AF2
AF3
GPIO[96]
CAN5TX
E1UC[23]
SIUL
FlexCAN_5
eMIOS_1
I/O
O
I/O
M Tristate 98 122
PG[1] PCR[97] AF0
AF1
AF2
AF3
GPIO[97]
E1UC[24]
EIRQ[14]
CAN5RX
SIUL
eMIOS_1
SIUL
FlexCAN_5
I/O
I/O
I
I
S Tristate 97 121
PG[2] PCR[98] AF0
AF1
AF2
AF3
GPIO[98]
E1UC[11]
SOUT_3
SIUL
eMIOS_1
DSPI_3
I/O
I/O
O
MTristate 8 16
PG[3] PCR[99] AF0
AF1
AF2
AF3
GPIO[99]
E1UC[12]
CS0_3
WKUP[17]4
SIUL
eMIOS_1
DSPI_3
WKUP
I/O
I/O
O
I
STristate 7 15
PG[4] PCR[100] AF0
AF1
AF2
AF3
GPIO[100]
E1UC[13]
SCK_3
SIUL
eMIOS_1
DSPI_3
I/O
I/O
I/O
MTristate 6 14
PG[5] PCR[101] AF0
AF1
AF2
AF3
GPIO[101]
E1UC[14]
WKUP[18]4
SIN_3
SIUL
eMIOS_1
WKUP
DSPI_3
I/O
I/O
I
I
STristate 5 13
PG[6] PCR[102] AF0
AF1
AF2
AF3
GPIO[102]
E1UC[15]
LIN6TX
SIUL
eMIOS_1
LINFlex_6
I/O
I/O
O
M Tristate 30 38
Table 2. Functional port pins (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type2
RESET
config.3
Pin number
100
LQFP 144
LQFP 176
LQFP
MPC5606BK Microcontroller Data Sheet, Rev. 4
20 Freescale Semiconductor
PG[7] PCR[103] AF0
AF1
AF2
AF3
GPIO[103]
E1UC[16]
E1UC[30]
WKUP[20]4
LIN6RX
SIUL
eMIOS_1
eMIOS_1
WKUP
LINFlex_6
I/O
I/O
I/O
I
I
S Tristate 29 37
PG[8] PCR[104] AF0
AF1
AF2
AF3
GPIO[104]
E1UC[17]
LIN7TX
CS0_2
EIRQ[15]
SIUL
eMIOS_1
LINFlex_7
DSPI_2
SIUL
I/O
I/O
O
I/O
I
S Tristate 26 34
PG[9] PCR[105] AF0
AF1
AF2
AF3
GPIO[105]
E1UC[18]
SCK_2
WKUP[21]4
LIN7RX
SIUL
eMIOS_1
DSPI_2
WKUP
LINFlex_7
I/O
I/O
I/O
I
I
S Tristate 25 33
PG[10] PCR[106] AF0
AF1
AF2
AF3
GPIO[106]
E0UC[24]
E1UC[31]
SIN_4
SIUL
eMIOS_0
eMIOS_1
DSPI_4
I/O
I/O
I/O
I
S Tristate 114 138
PG[11] PCR[107] AF0
AF1
AF2
AF3
GPIO[107]
E0UC[25]
CS0_4
SIUL
eMIOS_0
DSPI_4
I/O
I/O
O
M Tristate 115 139
PG[12] PCR[108] AF0
AF1
AF2
AF3
GPIO[108]
E0UC[26]
SOUT_4
SIUL
eMIOS_0
DSPI_4
I/O
I/O
O
M Tristate 92 116
PG[13] PCR[109] AF0
AF1
AF2
AF3
GPIO[109]
E0UC[27]
SCK_4
SIUL
eMIOS_0
DSPI_4
I/O
I/O
I/O
M Tristate 91 115
PG[14] PCR[110] AF0
AF1
AF2
AF3
GPIO[110]
E1UC[0]
SIUL
eMIOS_1
I/O
I/O
S Tristate 110 134
PG[15] PCR[111] AF0
AF1
AF2
AF3
GPIO[111]
E1UC[1]
SIUL
eMIOS_1
I/O
I/O
M Tristate 111 135
Port H
Table 2. Functional port pins (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type2
RESET
config.3
Pin number
100
LQFP 144
LQFP 176
LQFP
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 21
PH[0] PCR[112] AF0
AF1
AF2
AF3
GPIO[112]
E1UC[2]
SIN_1
SIUL
eMIOS_1
DSPI_1
I/O
I/O
I
M Tristate 93 117
PH[1] PCR[113] AF0
AF1
AF2
AF3
GPIO[113]
E1UC[3]
SOUT_1
SIUL
eMIOS_1
DSPI_1
I/O
I/O
O
M Tristate 94 118
PH[2] PCR[114] AF0
AF1
AF2
AF3
GPIO[114]
E1UC[4]
SCK_1
SIUL
eMIOS_1
DSPI_1
I/O
I/O
I/O
M Tristate 95 119
PH[3] PCR[115] AF0
AF1
AF2
AF3
GPIO[115]
E1UC[5]
CS0_1
SIUL
eMIOS_1
DSPI_1
I/O
I/O
I/O
M Tristate 96 120
PH[4] PCR[116] AF0
AF1
AF2
AF3
GPIO[116]
E1UC[6]
SIUL
eMIOS_1
I/O
I/O
M Tristate 134 162
PH[5] PCR[117] AF0
AF1
AF2
AF3
GPIO[117]
E1UC[7]
SIUL
eMIOS_1
I/O
I/O
S Tristate 135 163
PH[6] PCR[118] AF0
AF1
AF2
AF3
GPIO[118]
E1UC[8]
MA[2]
SIUL
eMIOS_1
ADC_0
I/O
I/O
O
M Tristate 136 164
PH[7] PCR[119] AF0
AF1
AF2
AF3
GPIO[119]
E1UC[9]
CS3_2
MA[1]
SIUL
eMIOS_1
DSPI_2
ADC_0
I/O
I/O
O
O
M Tristate 137 165
PH[8] PCR[120] AF0
AF1
AF2
AF3
GPIO[120]
E1UC[10]
CS2_2
MA[0]
SIUL
eMIOS_1
DSPI_2
ADC_0
I/O
I/O
O
O
M Tristate 138 166
PH[9]8PCR[121] AF0
AF1
AF2
AF3
GPIO[121]
TCK
SIUL
JTAGC
I/O
I
S Input,
weak
pull-up
88 127 155
PH[10]8PCR[122] AF0
AF1
AF2
AF3
GPIO[122]
TMS
SIUL
JTAGC
I/O
I
M Input,
weak
pull-up
81 120 148
Table 2. Functional port pins (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type2
RESET
config.3
Pin number
100
LQFP 144
LQFP 176
LQFP
MPC5606BK Microcontroller Data Sheet, Rev. 4
22 Freescale Semiconductor
PH[11] PCR[123] AF0
AF1
AF2
AF3
GPIO[123]
SOUT_3
CS0_4
E1UC[5]
SIUL
DSPI_3
DSPI_4
eMIOS_1
I/O
O
I/O
I/O
M Tristate 140
PH[12] PCR[124] AF0
AF1
AF2
AF3
GPIO[124]
SCK_3
CS1_4
E1UC[25]
SIUL
DSPI_3
DSPI_4
eMIOS_1
I/O
I/O
I/O
M Tristate 141
PH[13] PCR[125] AF0
AF1
AF2
AF3
GPIO[125]
SOUT_4
CS0_3
E1UC[26]
SIUL
DSPI_4
DSPI_3
eMIOS_1
I/O
O
I/O
MTristate 9
PH[14] PCR[126] AF0
AF1
AF2
AF3
GPIO[126]
SCK_4
CS1_3
E1UC[27]
SIUL
DSPI_4
DSPI_3
eMIOS_1
I/O
I/O
I/O
MTristate 10
PH[15] PCR[127] AF0
AF1
AF2
AF3
GPIO[127]
SOUT_5
E1UC[17]
SIUL
DSPI_5
eMIOS_1
I/O
O
MTristate 8
Port I
PI[0] PCR[128] AF0
AF1
AF2
AF3
GPIO[128]
E0UC[28]
SIUL
eMIOS_0
I/O
I/O
S Tristate 172
PI[1] PCR[129] AF0
AF1
AF2
AF3
GPIO[129]
E0UC[29]
WKUP[24]4
SIUL
eMIOS_0
WKUP
I/O
I/O
I
S Tristate 171
PI[2] PCR[130] AF0
AF1
AF2
AF3
GPIO[130]
E0UC[30]
SIUL
eMIOS_0
I/O
I/O
S Tristate 170
PI[3] PCR[131] AF0
AF1
AF2
AF3
GPIO[131]
E0UC[31]
WKUP[23]4
SIUL
eMIOS_0
WKUP
I/O
I/O
I
S Tristate 169
PI[4] PCR[132] AF0
AF1
AF2
AF3
GPIO[132]
E1UC[28]
SOUT_4
SIUL
eMIOS_1
DSPI_4
I/O
I/O
O
S Tristate 143
Table 2. Functional port pins (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type2
RESET
config.3
Pin number
100
LQFP 144
LQFP 176
LQFP
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 23
PI[5] PCR[133] AF0
AF1
AF2
AF3
GPIO[133]
E1UC[29]
SCK_4
SIUL
eMIOS_1
DSPI_4
I/O
I/O
I/O
S Tristate 142
PI[6] PCR[134] AF0
AF1
AF2
AF3
GPIO[134]
E1UC[30]
CS0_4
SIUL
eMIOS_1
DSPI_4
I/O
I/O
I/O
STristate 11
PI[7] PCR[135] AF0
AF1
AF2
AF3
GPIO[135]
E1UC[31]
CS1_4
SIUL
eMIOS_1
DSPI_4
I/O
I/O
I/O
STristate 12
PI[8] PCR[136] AF0
AF1
AF2
AF3
GPIO[136]
ADC0_S[16]
SIUL
ADC_0
I/O
I
J Tristate 108
PI[9] PCR[137] AF0
AF1
AF2
AF3
GPIO[137]
ADC0_S[17]
SIUL
ADC_0
I/O
I
J Tristate 109
PI[10] PCR[138] AF0
AF1
AF2
AF3
GPIO[138]
ADC0_S[18]
SIUL
ADC_0
I/O
I
J Tristate 110
PI[11] PCR[139] AF0
AF1
AF2
AF3
GPIO[139]
ADC0_S[19]
SIN_3
SIUL
ADC_0
DSPI_3
I/O
I
I
J Tristate 111
PI[12] PCR[140] AF0
AF1
AF2
AF3
GPIO[140]
CS0_3
ADC0_S[20]
SIUL
DSPI_3
ADC_0
I/O
I/O
I
J Tristate 112
PI[13] PCR[141] AF0
AF1
AF2
AF3
GPIO[141]
CS1_3
ADC0_S[21]
SIUL
DSPI_3
ADC_0
I/O
I/O
I
J Tristate 113
Table 2. Functional port pins (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type2
RESET
config.3
Pin number
100
LQFP 144
LQFP 176
LQFP
MPC5606BK Microcontroller Data Sheet, Rev. 4
24 Freescale Semiconductor
PI[14] PCR[142] AF0
AF1
AF2
AF3
GPIO[142]
ADC0_S[22]
SIN_4
SIUL
ADC_0
DSPI_4
I/O
I
I
JTristate 76
PI[15] PCR[143] AF0
AF1
AF2
AF3
GPIO[143]
CS0_4
ADC0_S[23]
SIUL
DSPI_4
ADC_0
I/O
I/O
I
JTristate 75
Port J
PJ[0] PCR[144] AF0
AF1
AF2
AF3
GPIO[144]
CS1_4
ADC0_S[24]
SIUL
DSPI_4
ADC_0
I/O
I/O
I
JTristate 74
PJ[1] PCR[145] AF0
AF1
AF2
AF3
GPIO[145]
ADC0_S[25]
SIN_5
SIUL
——
ADC_0
DSPI_5
I/O
I
I
JTristate 73
PJ[2] PCR[146] AF0
AF1
AF2
AF3
GPIO[146]
CS0_5
ADC0_S[26]
SIUL
DSPI_5
ADC_0
I/O
I/O
I
JTristate 72
PJ[3] PCR[147] AF0
AF1
AF2
AF3
GPIO[147]
CS1_5
ADC0_S[27]
SIUL
DSPI_5
ADC_0
I/O
I/O
I
JTristate 71
PJ[4] PCR[148] AF0
AF1
AF2
AF3
GPIO[148]
SCK_5
E1UC[18]
SIUL
DSPI_5
eMIOS_1
I/O
I/O
MTristate 5
1Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module.
PCR.PA = 00 AF0; PCR.PA = 01 AF1; PCR.PA = 10 AF2; PCR.PA = 11 AF3. This is intended to
select the output functions; to use one of the input functions, the PCR.IBE bit must be writte n to ‘1’, regardless
of the values selected in the PCR.P A bitfields. For this reason, the value corresponding to an input only function
is reported as “—”.
2See Table 3.
3The RESET configuration applies during and after reset.
Table 2. Functional port pins (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type2
RESET
config.3
Pin number
100
LQFP 144
LQFP 176
LQFP
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 25
3 Electrical characteristics
This section contains electrical characteristics of the device as well as temperature and power considerations.
This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take
precautions to avoid application of any voltage higher than the specified maximum rated voltages.
To enhan ce reliabilit y, unused inputs can be driven to an appropriate logi c voltag e level (V DD or VSS). This could be done by
the internal pull-up and pull-down, which is provided by the product for most general purpose pins.
The parameters listed in the following tables represent the characteristics of the device and its demands on the system.
In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller
Characteristics is included in the Symbol column.
In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol
“SR” for System Requirement is included in the Symbol column.
3.1 Parameter classification
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better
understanding, the classifications listed in Table 4 are used and the parameters are tagged accordingly in the tables where
appropriate.
4All WKUP pins also support external interrupt capability. See the WKPU chapter of the MPC5606BK
Microcontroller Reference Manual for further details.
5NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.
6“Not applicable” because these functions are available only while the device is booting. See the BAM chapter
of the MPC5606BK Micro c ontroller Reference Manual for details.
7Value of PCR.IBE bit must be 0.
8Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.
PC[0:1] are available as JTAG pins (TDI and TDO respectively).
PH[9:10] are available as JTAG pins (TCK and TMS respectively).
It is up to the user to configure these pins as GPIO when needed.
9PC[1] is a fast/medium pad but is in medium configuration by default. This pad is in Alternate Function 2 mode
after reset which has TDO functionality . The reset value of PCR.OBE is 1, but this setting has no impact as long
as this pad stays in AF2 mode. After configuring this pad as GPIO (PCR.PA = 0), output buffer is enabled as
reset value of PCR.OBE = 1.
10 Not available in 100LQFP package.
Table 3. Pad types
Type Description
FFast
I Input only with analog feature
J Input/output with analog feature
M Medium
SSlow
MPC5606BK Microcontroller Data Sheet, Rev. 4
26 Freescale Semiconductor
NOTE
The classification is shown in the column labeled “C” in the parameter tables where
appropriate.
3.2 NVUSRO register
Portions of the device configuration, such as high voltage supply , oscillator mar gin, and watchdog enable/disable after reset are
controlled via bit values in the Non-Volatile User Options Register (NVUSRO) register.
For a detailed descri ption of the NVUSRO register, please refer to the MPC5606BK Microcontroller Refer ence Manual.
3.2.1 NVUSRO[PAD3V5V] field description
Table 5 shows how NVUSRO[PAD 3V5 V] controls the device configuration.
The DC electrical characteristics are dependent on the PAD3V5V bit value.
3.2.2 NVUSRO[OSCILLATOR_MARGIN] field description
Table 6 shows how NVUSRO[OSCILLATOR_MARGIN] controls the device configuration.
The fast external crystal oscillator consumption is dependent on the OSCILLATOR_MARGIN bit value.
Tab le 4. Paramete r cl as sifications
Classification tag Tag description
P Those parameters are guaranteed during production testing on each individual device.
C Those parameters are achieved by the design characteri zation by measuring a statistically
relevant sample size across process variations.
T Those parameters are achieved by design characterization on a small sample size from typical
devices under typical conditions unless otherwise noted. All values shown in the typical column
are within this category.
D Those parameters are derived mainly from simulations.
Table 5. PAD3V5V field description1
1See the MPC5606BK Microcontroller Reference Manual for more information on the NVUSRO register.
Value2
2The default manufacturi ng value is ‘1’. This value can be programmed by the customer in Shadow Flash.
Description
0 High voltage supply is 5.0 V
1 High voltage supply is 3.3 V
Table 6. OSCILLATOR_MARGIN field description 1
1See the MPC5606BK Microcontroller Reference Manual for more information on the NVUSRO register.
Value2
2The default manufacturi ng value is ‘1’. This value can be programmed by the customer in Shadow Flash.
Description
0 Low consumption configuration (4 MHz/8 MHz)
1 High margin configuration (4 MHz/16 MHz)
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 27
3.2.3 NVUSRO[WATCHDOG_EN] field description
The watchdog enable/disable configuration after reset is dependent on the WATCHDOG_EN bit value.
Table 7 shows how NVUSRO[WATCHDOG_EN] controls the device configuration.
3.3 Absolute maximum ratings
Table 7. WATCHDO G_EN fiel d description1
1See the MPC5606BK Microcontroller Reference Manual for more information on the NVUSRO register.
Value2
2The default manufacturi ng value is ‘1’. This value can be programmed by the customer in Shadow Flash.
Description
0 Disable after reset
1 Enable after reset
Table 8. Absolute maximum ratings
Symbol Parameter Conditions Value Unit
Min Max
VSS SR Digital ground on VSS_HV pins 0 0 V
VDD SR Voltage on VDD_HV pins with respect to
ground (VSS)—–0.36.0V
VSS_LV SR V oltage on VSS_L V (low voltage digital supply)
pins with respect to ground (VSS)—V
SS –0.1 V
SS +0.1 V
VDD_BV SR V oltage on VDD_BV pin (regulator supply) with
respect to ground (VSS)—–0.36.0V
Relative to VDD –0.3 VDD +0.3
VSS_ADC SR Voltage on VSS_HV_ADC0, VSS_HV_ADC1
(ADC reference) pin with respect to ground
(VSS)
—V
SS –0.1 V
SS +0.1 V
VDD_ADC SR Voltage on VDD_HV_ADC0, VDD_HV_ADC1
(ADC reference) with respect to ground (VSS)—–0.36.0V
Relative to VDD VDD 0.3 VDD +0.3
VIN SR Voltage on any GPIO pin with respect to
ground (VSS)—–0.36.0V
Relative to VDD —V
DD +0.3
IINJPAD SR Injected input current on any pin during
overload condition –10 10 mA
IINJSUM SR Absolute sum of all injected input currents
during overload condition –50 50
IAVGSEG SR Sum of all the static I/O current within a supply
segment VDD = 5.0 V ± 10%,
PAD3V5V = 0 —70mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1 —64
TSTORAGE SR Storage temperature –55 150 °C
MPC5606BK Microcontroller Data Sheet, Rev. 4
28 Freescale Semiconductor
NOTE
Stresses exceeding the recommended absolute maximum ratings may cause permanent
damage to the device. This is a stress rating only and functional operation of the device at
these or any other conditions above those indicated in the operational sections of this
specification are not implied. Exposure to absolute maxi mum rating conditions for
extended periods may affect device reliability. During overload conditions (VIN >V
DD or
VIN <V
SS), the voltage on pins with respect to ground (VSS) must not exceed the
recommended values.
3.4 Recommended operating conditions
Table 9. Recommended operating conditions (3.3 V)
Symbol Parameter Conditions Value Unit
Min Max
VSS SR Digital ground on VSS_HV pins 0 0 V
VDD1SR V olt age on VDD_HV pins with respect
to ground (VSS)—3.03.6V
VSS_LV2SR Voltage on VSS_L V (low voltage digital
supply) pins with respect to ground
(VSS)
—V
SS 0.1 VSS +0.1 V
VDD_BV3SR Voltage on VDD_BV pin (regulator
supply) with respect to ground (VSS)—3.03.6V
Relative to VDD VDD 0.1 VDD +0.1
VSS_ADC SR Voltage on VSS_HV_ADC0,
VSS_HV_ADC1 (ADC reference) pin
with respect to ground (VSS)
—V
SS 0.1 VSS +0.1 V
VDD_ADC4SR Volt age on VDD_HV_ADC0,
VDD_HV_ADC1 (ADC reference) with
respect to ground (VSS)
—3.0
53.6 V
Relative to VDD VDD 0.1 VDD +0.1
VIN SR Voltage on any GPIO pin with respect
to ground (VSS)—V
SS 0.1 V
Relative to VDD —V
DD +0.1
IINJPAD SR Injected input current on any pin during
overload condition 55mA
IINJSUM SR Absolute sum of all injected input
currents during overload condition 50 50
TVDD SR VDD slope to ensure correct power up6 0.25 V/µs
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 29
TA C-Grade
Part
SR Ambient temp erature under bias fCPU < 64 MHz740 85 °C
TJ C-Grade
Part
SR Junction temp erature under bias 40 110
TA V-Grade
Part
SR Ambient temp erature under bias fCPU < 64 MHz740 105
TJ V-Grade
Part
SR Junction temp erature under bias 40 130
TA M-Grade
Part
SR Ambient temp erature under bias fCPU < 64 MHz740 125
TJ M-Grade
Part
SR Junction temp erature under bias 40 150
1100 nF capacitance needs to be provided between each VDD/VSS pair.
2330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.
3470 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed
depending on external regulator characteristics). Supply ramp slope on VDD_BV should always be faster or equal
to slope of VDD_HV. Otherwise, device may enter regulator bypass mode if slope on VDD_BV is slower.
4100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.
5Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical
characteristics and I/O DC electrical specification may not be guaranteed. When voltage drops below VLVDHVL, the
device is reset.
6Guaranteed by device validation
7This frequency includes the 4% frequency modulation guard band.
Table 10. Recommended operating conditions (5.0 V)
Symbol Parameter Conditions Value Unit
Min Max
VSS SR Digital ground on VSS_HV pins 0 0 V
VDD1SR Voltage on VDD_HV pins with respect to ground
(VSS)—4.55.5V
Voltage drop23.0 5.5
VSS_LV3SR V oltage on VSS_L V (low voltage digital supply) pins
with respect to ground (VSS)—V
SS 0.1 VSS +0.1 V
VDD_BV4SR Vo ltage on VDD_BV pin (regulator supply) with
respect to ground (VSS)—4.55.5V
Voltage drop23.0 5.5
Relative to VDD 3.0 VDD +0.1
VSS_ADC SR V oltage on VSS_HV_ADC0, VSS_HV_ADC1 (ADC
reference) pin with respect to groun d (VSS)—V
SS 0.1 VSS +0.1 V
Table 9. Recommended operating conditions (3.3 V) (continued)
Symbol Parameter Conditions Value Unit
Min Max
MPC5606BK Microcontroller Data Sheet, Rev. 4
30 Freescale Semiconductor
NOTE
RAM data retention is guaranteed with VDD_LV not below 1.08 V.
VDD_ADC5SR Voltage on VDD_HV_ADC0, VDD_HV_ADC1
(ADC reference) with respect to ground (VSS)—4.55.5V
Voltage drop23.0 5.5
Relative to VDD VDD 0.1 VDD +0.1
VIN SR Voltage on any GPIO pin with respect to ground
(VSS)—V
SS 0.1 V
Relative to VDD —V
DD +0.1
IINJPAD SR Injected input current on any pin during overlo ad
condition 55mA
IINJSUM SR Absolute sum of all injected input currents during
overload condition 50 50
TVDD SR VDD slope to ensure correct power up6 0.25 V/µs
TA C-Grade
Part
SR Ambient temperature under bias fCPU < 64 MHz740 85 °C
TJ C-Grade
Part
SR Junction temperature under bias 40 110
TA V-Grade
Part
SR Ambient temperature under bias fCPU < 64 MHz740 105
TJ V-Grade
Part
SR Junction temperature under bias 40 130
TA M-Grade
Part
SR Ambient temperature under bias fCPU < 64 MHz740 125
TJ M-Grade
Part
SR Junction temperature under bias 40 150
1100 nF capacitance needs to be provided between each VDD/VSS pair.
2Full device operation is guaranteed by design when the voltage drops below 4.5 V down to 3.0 V . However, cert ain
analog electrical characteristi cs wil l not be guaranteed to stay within the stated limits.
3330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.
4470 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed
depending on external regulator characteristics). While the supply voltage ramps up, the slope on VDD_BV should
be less than 0.9V DD_HV in order to ensure the device does not enter regul ator bypass mode.
5100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.
6Guaranteed by device validation. Please refer to Sect ion 3.5.1, External ballast resistor recommendations for
minimum VDD slope to be guaranteed to ensure correct power up in case of external resistor usage.
7This frequency includes the 4% frequency modulation guard band.
Table 10. Recommended operating conditions (5.0 V) (continued)
Symbol Parameter Conditions Value Unit
Min Max
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 31
3.5 Thermal characteristics
3.5.1 External ballast resistor recommendations
External ballast resistor on VDD_BV pin helps in reducing the overall power dissipation inside the device. This resistor is
required only when maximum power consumption exceeds the limit imposed by package thermal characteristics.
As stated in Table 11 LQFP thermal characteristics, considering a thermal resistance of 144 LQFP as 48.3 °C/W, at ambient
temperature TA = 125 °C, the junction temperature Tj will cross 150 °C if the total power dissipation is greater than
(150 125)/48.3 = 51 7 mW. Therefore, the total device current IDDMAX at 125 °C/5.5 V must not exceed 94.1 mA (i.e.,
PD/VDD). Assuming an average IDD(VDD_HV) of 15–20 mA consumption typically during device RUN mode, the LV domain
consumption IDD(VDD_BV) is thus limited to IDDMAX –I
DD(VDD_HV), i.e., 80 mA.
Therefore, respecting the maximum power allowed as explained in Section 3.5.2, Package thermal characteristics, it is
recommended to use this resistor only in the 125 °C/5.5 V operating corner as per the following guidelines:
•If I
DD(VDD_BV) < 80 mA, then no resistor is required.
•If 80 mA < I
DD(VDD_BV) < 90 mA, then 4 resistor can be used.
•If I
DD(VDD_BV) > 90 mA, then 8 resistor can be used.
Using resistance in the range of 4–8 , the gain will be around 10–20% of total consumption on VDD_BV. For example, if 8
resistor is used, then power consumption when IDD(VDD_BV) is 110 mA is equivalen t to pow er consum ption when
IDD(VDD_BV) is 90 mA (approximately) when resistor not used.
In order to ensure correct power up, the minimum VDD_BV to be guaranteed is 30 ms/V. If the supply ramp is slower than this
value, then LVDHV3B monit oring bal last supply VDD_BV pin gets triggered le ading to device reset. Until the supply reach es
certain threshold, this low voltage monitor generates destructive reset event in the system. This threshold depends on the
maximum IDD(VDD_BV) possible across the external resistor.
3.5.2 Package thermal characteristics
Table 11. LQFP thermal characteristics1
Symbol C Parameter Conditions2Pin count Value Unit
Min Typ Max
RJA CC D Thermal resistance,
junction-to-ambient natural
convection3
Single-layer board — 1s 100 64 °C/W
144 64
176 64
Four-layer board —
2s2p 100 49.7
144 48.3
176 47.3
RJB CC Thermal resistance,
junction-to-board4Single-layer board — 1s 100 36 °C/W
144 38
176 38
Four-layer board —
2s2p 100 33.6
144 33.4
176 33.4
MPC5606BK Microcontroller Data Sheet, Rev. 4
32 Freescale Semiconductor
3.5.3 Power considerations
The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using Equation 1:
TJ = TA + (PD x RJA)Eqn. 1
Where:
TA is the ambient temperature in °C.
RJA is the package junction-to-ambient thermal resistance, in °C/W.
PD is the sum of PINT and PI/O (PD = PINT + PI/O).
PINT is the product of IDD and VDD, expressed in watts. This is the chip internal power.
PI/O represents the power dissipation on input and output pins; user determined.
Most of the time for the applications, PI/O< PINT and may be neglected. On the other hand, PI/O may be significant, if the device
is configured to continuously drive external mo dules and/ or memories.
An approximate relationship between PD and TJ (if PI/O is neglected) is given by:
PD = K / (TJ + 273 °C) Eqn. 2
Therefore, solving equations 1 and 2:
K = PD x (TA + 273 °C) + RJA x PD2Eqn. 3
Where:
RJC CC Thermal resistance,
junction-to-case5Single-layer board — 1s 10 0 23 °C/W
144 23
176 23
Four-layer board —
2s2p 100 19.8
144 19.2
176 18.8
1Thermal characteristics are targets based on simulation.
2VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C.
3Junction-to-ambient thermal resistance dete rmined per JEDEC JESD51-3 and JESD51-6. Thermal test board
meets JEDEC specification for this package. When Greek letters are not available, the symbols are typed as RthJA
and RthJMA.
4Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC
specification for the specified package. When Gre ek letters are not available, the symbols are typed as RthJB.
5Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate
temperature is used for the case temperature. Reported value includes the thermal resistance of the interface
layer. When Greek letters are not available, the symbols are typed as R thJC.
Table 11. LQFP thermal characteristics1 (continued)
Symbol C Parameter Conditions2Pin count Value Unit
Min Typ Max
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 33
K is a constant for the particular part, which may be determined from Equation 3 by measuring PD (at equilibrium)
for a known TA. Using this value of K, the values of PD and TJ may be obtained by solving equ ations 1 and 2
iteratively for any value of TA.
3.6 I/O pad electrical characteristics
3.6.1 I/O pad types
The device provides four main I/O pad types depending on the associated alternate functions:
Slow pads — are the most common pads, providing a good compromise between transition time and low
electromagnetic emission.
Medium pads — provide transition fast enou gh for the serial communication channel s with con trolled current to
reduce electromagnetic emission.
Fast pads — provide maximum speed. These are used for improved debugging capability.
Input only pads — are associated with ADC channels and 32 kHz low power external crystal oscillator providing low
input leakage.
Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance.
3.6.2 I/O input DC characteristics
Table 12 provides input DC electrical characteristics as described in Figure 5.
Figure 5. I/O input DC electrical characteristics definition
VIL
VIN
VIH
PDIx = ‘1
VDD
VHYS
(GPDI register of SIUL)
PDIx = ‘0’
MPC5606BK Microcontroller Data Sheet, Rev. 4
34 Freescale Semiconductor
3.6.3 I/O output DC characteristics
The following tables provide DC characteristics for bidirectional pads:
Table 13 provides weak pull figures. Both pull- up and pull-down resistances are supported.
Table 14 provides output driver characteristics for I/O pads when in SLOW configuration.
Table 15 provides output driver characteristics for I/O pads when in MEDIUM configuration.
Table 16 provides output driver characteristics for I/O pads when in FAST configuration.
Table 12. I/O input DC electrical characteristics
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, T A = 40 to 125 °C, unless otherwise specified
Value Unit
Min Typ Max
VIH SR P Input high level CMOS (Schmitt
Trigger) 0.65VDD —V
DD +0.4 V
VIL SR P Input low level CMOS (Schmitt
Trigger) 0.4 0.35VDD
VHYS CC C Input hysteresis CMOS (Schmitt
Trigger) —0.1V
DD ——
ILKG CC P Digital input leakage No injection
on adjacent
pin
TA=40 °C 2 nA
PT
A=25 °C 2
DT
A= 85 °C 5 300
DT
A=105 °C 12 500
PT
A= 125 °C 70 1000
WFI2
2In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating temperature and
voltage.
SR P Wakeup input filtered pulse 40 ns
WNFI2SR P Wakeup input not filtered pulse 1000 ns
Table 13. I/O pull-up/pull-down DC electric al chara cteristics
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
Value Unit
Min Typ Max
|IWPU| CC P Weak pull-up current
absolute value VIN = VIL, VDD = 5.0 V ± 10% PAD3V5V = 0 10 150 µA
C PAD3V5V = 12
2The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration du ring power-up. All pads but
RESET are configured in input or in high impedance state.
10 250
PV
IN = VIL, VDD = 3.3 V ± 10% PAD3V5V = 1 10 150
|IWPD| CC P Weak pull-down current
absolute value VIN = VIH, VDD = 5.0 V ± 10% PAD3V5V = 0 10 150 µA
C PAD3V5V = 1 10 250
PV
IN = VIH, VDD = 3.3 V ± 10% PAD3V5V = 1 10 150
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 35
Table 14. SLOW configuration output buffer electrical characteristics
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, T A = 40 to 125 °C, unless otherwise specified
Value Unit
Min Typ Max
VOH CC P Output high level
SLOW configuration Push Pull IOH = 2mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 0
(recommended)
0.8VDD ——V
CI
OH = 2mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 12
2The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but
RESET are configured in input or in high impedance state.
0.8VDD ——
CI
OH = 1mA,
VDD = 3.3 V ± 10%,
PAD3V5V = 1
(recommended)
VDD 0.8
VOL CC P Output low level
SLOW configuration Push Pull IOL = 2 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 0
(recommended)
——0.1V
DD V
CI
OL = 2 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 12
——0.1V
DD
CI
OL = 1 mA,
VDD = 3.3 V ± 10%,
PAD3V5V = 1
(recommended)
——0.5
Table 15. MEDIUM configuration output buffer electrical characteristics
Symbol C Parameter Conditions1Value Unit
Min Typ Max
VOH CC C Output high level
MEDIUM configuration Push Pull IOH = 3.8 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0 0.8VDD —— V
PI
OH = 2mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.8VDD ——
CI
OH = 1mA,
VDD = 5.0 V ± 10%, PAD3V5V = 120.8VDD ——
CI
OH = 1mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
VDD 0.8
CI
OH = 100 µA,
VDD = 5.0 V ± 10%, PAD3V5V = 0 0.8VDD ——
MPC5606BK Microcontroller Data Sheet, Rev. 4
36 Freescale Semiconductor
VOL CC C Output low level
MEDIUM configuration Push Pull IOL = 3.8 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0 0.2VDD V
PI
OL = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.1VDD
CI
OL = 1 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 12 0.1VDD
CI
OL = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
——0.5
CI
OL = 100 µA,
VDD = 5.0 V ± 10%, PAD3V5V = 0 0.1VDD
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, T A = 40 to 125 °C, unless otherwise specified
2The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but
RESET are configured in input or in high impedance state.
Table 16. FAST configuration output buffer electrical characteristics
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Value Unit
Min Typ Max
VOH CC P Ou tput high level
FAST configuration Push Pull IOH = 14 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 0
(recommended)
0.8VDD ——V
CI
OH = 7mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 12
0.8VDD ——
CI
OH = 11 mA,
VDD = 3.3 V ± 10%,
PAD3V5V = 1
(recommended)
VDD 0.8
VOL CC P Ou tput low level
FAST configuration Push Pull IOL = 14 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 0
(recommended)
0.1VDD V
CI
OL = 7 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 12
0.1VDD
CI
OL = 11 mA,
VDD = 3.3 V ± 10%,
PAD3V5V = 1
(recommended)
——0.5
Table 15. MEDIUM configuration output buffer electrical characteristics (continued)
Symbol C Parameter Conditions1Value Unit
Min Typ Max
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 37
3.6.4 Output pin transition times
3.6.5 I/O pad current specification
The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a VDD/VSS supply pair as
described in Table 18.
Table 19 provides I/O consumption figures.
In order to ensure device reliability, the average current of the I/O on a single segment should remain below the IAVGSEG
maximum value.
2The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but
RESET are configured in input or in high impedance state.
Table 17. Output pin transition times
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless oth erwise specified
Value Unit
Min Typ Max
Ttr CC D Output transition time output pin2
SLOW configuration
2CL includes device and package capacitances (CPKG < 5 pF).
CL = 25 pF VDD = 5.0 V ± 10%,
PAD3V5V = 0 50 ns
TC
L = 50 pF 100
DC
L = 100 pF 125
DC
L = 25 pF VDD = 3.3 V ± 10%,
PAD3V5V = 1 ——50
TC
L = 50 pF 100
DC
L = 100 pF 125
Ttr CC D Output transition time output pin2
MEDIUM configuration CL = 25 pF VDD = 5.0 V ± 10%,
PAD3V5V = 0
SIUL.PCRx.SRC = 1
10 ns
TC
L = 50 pF 20
DC
L = 100 pF 40
DC
L = 25 pF VDD = 3.3 V ± 10%,
PAD3V5V = 1
SIUL.PCRx.SRC = 1
——12
TC
L = 50 pF 25
DC
L = 100 pF 40
Ttr CC D Output transition time output pin2
FAST configuration CL = 25 pF VDD = 5.0 V ± 10%,
PAD3V5V = 0 —— 4 ns
CL = 50 pF 6
CL = 100 pF 12
CL = 25 pF VDD = 3.3 V ± 10%,
PAD3V5V = 1 —— 4
CL = 50 pF 7
CL = 100 pF 12
MPC5606BK Microcontroller Data Sheet, Rev. 4
38 Freescale Semiconductor
Table 18. I/O supply segments
Package Supply segment
12345678
176 LQFP pin7 –
pin27 pin28 –
pin57 pin59 –
pin85 pin86 –
pin123 pin124 –
pin150 pin151 –
pin6
144 LQFP pin20 –
pin49 pin51 –
pin99 pin100 –
pin122 pin 123 –
pin19
100 LQFP pin16 –
pin35 pin37 –
pin69 pin70 –
pin83 pin84 –
pin15
Table 19. I/O consumption
Symbol C Parameter Conditions1Value Unit
Min Typ Max
ISWTSLW,2 CC D Dynamic I/O current for
SLOW configuration CL = 25 pF VDD = 5.0 V ± 10%,
PAD3V5V = 0 ——20mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1 ——16
ISWTMED2CC D Dynamic I/O current for
MEDIUM configuration CL = 25 pF VDD = 5.0 V ± 10%,
PAD3V5V = 0 ——29mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1 ——17
ISWTFST2CC D Dynamic I/O current for
FAST configuration CL = 25 pF VDD = 5.0 V ± 10%,
PAD3V5V = 0 ——110mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1 ——50
IRMSSLW CC D Root medium square I/O
current for SLOW
configuration
CL = 25 pF, 2 MHz VDD = 5.0 V ± 10%,
PAD3V5V = 0 ——2.3mA
CL = 25 pF, 4 MHz 3.2
CL = 100 pF, 2 MHz 6.6
CL = 25 pF, 2 MHz VDD = 3.3 V ± 10%,
PAD3V5V = 1 ——1.6
CL = 25 pF, 4 MHz 2.3
CL = 100 pF, 2 MHz 4.7
IRMSMED CC D Root medium square I/O
current for MEDIUM
configuration
CL = 25 pF, 13 MHz VDD = 5.0 V ± 10%,
PAD3V5V = 0 ——6.6mA
CL = 25 pF, 40 MHz 13.4
CL = 100 pF, 13 MHz 18.3
CL = 25 pF, 13 MHz VDD = 3.3 V ± 10%,
PAD3V5V = 1 —— 5
CL = 25 pF, 40 MHz 8.5
CL = 100 pF, 13 MHz 11
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 39
Table 20 provides the weight of concurrent switching I/Os.
In order to ensure device functionality, the sum of the weight of concurrent switching I/Os on a single segment should remain
below the 100%.
IRMSFST CC D Root medium square I/O
current for FAST
configuration
CL = 25 pF, 40 MHz VDD = 5.0 V ± 10%,
PAD3V5V = 0 ——22mA
CL = 25 pF, 64 MHz 33
CL = 100 pF, 40 MHz 56
CL = 25 pF, 40 MHz VDD = 3.3 V ± 10%,
PAD3V5V = 1 ——14
CL = 25 pF, 64 MHz 20
CL = 100 pF, 40 MHz 35
IAVGSEG SR D Sum of all the static I/O
current within a supply
segment
VDD = 5.0 V ± 10%, PAD3V5V = 0 70 mA
VDD = 3.3 V ± 10%, PAD3V5V = 1 65
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to125 °C, unless otherwise specified
2Stated maximum values represent peak co nsumption that lasts only a few ns during I/O transition.
Table 20. I/O weight1
Supply segment Pad
176 LQFP 144/100 LQFP
Weight 5V Weight 3.3V Weight 5V Weight 3.3V
176 LQFP 144 LQFP 100 LQFP SRC2=0 SRC=1 SRC=0 SRC=1 SRC=0 SRC=1 SRC=0 SRC=1
6 4 4 PB[3] 5% 6% 13% 15%
PC[9] 4% 5% 13% 15%
PC[14] 4% 4% 13% 15%
PC[15] 3% 4% 4% 4% 12% 18% 15% 16%
PJ[4] 3% 4% 3% 3%
Table 19. I/O consumption (continu ed)
Symbol C Parameter Conditions1Value Unit
Min Typ Max
MPC5606BK Microcontroller Data Sheet, Rev. 4
40 Freescale Semiconductor
1PH[15]2% 3%3%3%
PH[13]3% 4%3%4%
PH[14]3% 4%4%4%
PI[6] 4% 4%
PI[7] 4% 4%
4 PG[5] 4% 5% 10% 12%
PG[4] 4% 6% 5% 5% 9% 13% 11% 12%
PG[3] 4% 5% 9% 11%
PG[2] 4% 6% 5% 5% 9% 12% 10% 11%
4 PA[2] 4% 5% 8% 10%
PE[0] 4% 5% 8% 9%
PA[1] 4% 5% 8% 9%
PE[1] 4% 6% 5% 6% 7% 10% 9% 9%
PE[8] 4% 6% 5% 6% 7% 10% 8% 9%
PE[9] 4% 5% 6% 8%
PE[10] 4% 5% 6% 7%
PA[0]4% 6%5%5%6%8%7%7%
PE[11] 4% 5% 5% 6%
Table 20. I/O weight1 (continued)
Supply segment Pad
176 LQFP 144/100 LQFP
Weight 5V Weight 3.3V Weight 5V Weight 3.3V
176 LQFP 144 LQFP 100 LQFP SRC2=0 SRC=1 SRC=0 SRC=1 SRC=0 SRC=1 SRC=0 SRC=1
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 41
21 PG[9] 9% 10% 9% 10%
PG[8] 9% 11% 9% 11%
1 PC[11] 9% 11% 9% 11%
PC[10] 9% 13% 11% 12% 9% 13% 11% 12%
PG[7] 9% 11% 9% 11%
PG[6] 10% 14% 11% 12% 10% 14% 11% 12%
1 PB[0] 10% 14% 12% 12% 10% 14% 12% 12%
PB[1] 10% 12% 10% 12%
PF[9] 10% 12% 10% 12%
PF[8] 10% 14% 12% 13% 10% 14% 12% 13%
PF[12] 10% 15% 12% 13% 10% 15% 12% 13%
1 PC[6] 10% 12% 10% 12%
PC[7] 10% 12% 10% 12%
PF[10] 10% 14% 11% 12% 10% 14% 11% 12%
PF[11] 9% 11% 9% 11%
1 PA[15] 8% 12% 10% 10% 8% 12% 10% 10%
PF[13] 8% 10% 8% 10%
1 PA[14] 8% 11% 9% 10% 8% 11% 9% 10%
PA[4] 7% 9% 7% 9%
PA[13] 7% 10% 8% 9% 7% 10% 8% 9%
PA[12] 7% 8% 7% 8%
Table 20. I/O weight1 (continued)
Supply segment Pad
176 LQFP 144/100 LQFP
Weight 5V Weight 3.3V Weight 5V Weight 3.3V
176 LQFP 144 LQFP 100 LQFP SRC2=0 SRC=1 SRC=0 SRC=1 SRC=0 SRC=1 SRC=0 SRC=1
MPC5606BK Microcontroller Data Sheet, Rev. 4
42 Freescale Semiconductor
3 2 2 PB[9] 1% 1% 1% 1%
PB[8] 1% 1% 1% 1%
PB[10] 5% 6% 6% 7%
PF[0] 5% 6% 6% 8%
PF[1] 5% 6% 7% 8%
PF[2] 6% 7% 7% 9%
PF[3] 6% 7% 8% 9%
PF[4] 6% 7% 8% 10%
PF[5] 6% 7% 9% 10%
PF[6] 6% 7% 9% 11%
PF[7] 6% 7% 9% 11%
PJ[3]6%—7%—————
PJ[2]6%—7%—————
PJ[1]6%—7%—————
PJ[0]6%—7%—————
PI[15] 6% 7%
PI[14] 6% 7%
2 2 PD[0] 1% 1% 1% 1%
PD[1] 1% 1% 1% 1%
PD[2] 1% 1% 1% 1%
PD[3] 1% 1% 1% 1%
PD[4] 1% 1% 1% 1%
PD[5] 1% 1% 1% 1%
PD[6] 1% 1% 1% 2%
PD[7] 1% 1% 1% 2%
Table 20. I/O weight1 (continued)
Supply segment Pad
176 LQFP 144/100 LQFP
Weight 5V Weight 3.3V Weight 5V Weight 3.3V
176 LQFP 144 LQFP 100 LQFP SRC2=0 SRC=1 SRC=0 SRC=1 SRC=0 SRC=1 SRC=0 SRC=1
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 43
4 2 2 PD[8] 1% 1% 1% 2%
PB[4] 1% 1% 1% 2%
PB[5] 1% 1% 1% 2%
PB[6] 1% 1% 1% 2%
PB[7] 1% 1% 1% 2%
PD[9] 1% 1% 1% 2%
PD[10] 1% 1% 1% 2%
PD[11] 1% 1% 1% 2%
4 PB[11] 1% 1%
PD[12] 11% 13%
2 2 PB[12] 11% 13% 15% 17%
PD[13] 11% 13% 14% 17%
PB[13] 11% 13% 14% 17%
PD[14] 11% 13% 14% 17%
PB[14] 11% 13% 14% 16%
PD[15] 11% 13% 13% 16%
PB[15] 11% 13% 13% 15%
PI[8] 10% 12%
PI[9] 10% 12%
PI[10] 10% 12%
PI[11] 10% 12%
PI[12] 10% 12%
PI[13] 10% 11%
2 2 PA[3] 9% 11% 11% 13%
PG[13] 9% 13% 11% 11% 10% 14% 12% 13%
PG[12] 9% 13% 10% 11% 10% 14% 12% 12%
PH[0] 6% 8% 7% 7% 6% 9% 7% 8%
PH[1] 6% 8% 7% 7% 6% 8% 7% 7%
PH[2] 5% 7% 6% 6% 5% 7% 6% 7%
PH[3] 5% 7% 5% 6% 5% 7% 6% 6%
PG[1] 4% 5% 4% 5%
PG[0] 4% 5% 4% 5% 4% 5% 4% 5%
Table 20. I/O weight1 (continued)
Supply segment Pad
176 LQFP 144/100 LQFP
Weight 5V Weight 3.3V Weight 5V Weight 3.3V
176 LQFP 144 LQFP 100 LQFP SRC2=0 SRC=1 SRC=0 SRC=1 SRC=0 SRC=1 SRC=0 SRC=1
MPC5606BK Microcontroller Data Sheet, Rev. 4
44 Freescale Semiconductor
53
PF[15] 4% 4% 4% 4%
PF[14] 4% 6% 5% 5% 4% 6% 5% 5%
PE[13] 4% 5% 4% 5%
3 PA[7] 5% 6% 5% 6%
PA[8] 5% 6% 5% 6%
PA[9] 6% 7% 6% 7%
PA[10] 6% 8% 6% 8%
PA[11] 8% 9% 8% 9%
PE[12] 8% 9% 8% 9%
PG[14] 8% 9% 8% 9%
PG[15] 8% 11% 9% 10% 8% 11% 9% 10%
PE[14] 8% 9% 8% 9%
PE[15] 8% 11% 9% 10% 8% 11% 9% 10%
PG[10] 8% 9% 8% 9%
PG[11] 7% 11% 9% 9% 7% 11% 9% 9%
PH[11] 7% 10% 9% 9%
PH[12] 7% 10% 8% 9%
PI[5] 7% 8%
PI[4] 7% 8%
3 3 PC[3] 6% 8% 6% 8%
PC[2]6% 8%7%7%6%8%7%7%
PA[5]6% 8%7%7%6%8%7%7%
PA[6] 5% 6% 5% 6%
PH[10] 5% 7% 6% 6% 5% 7% 6% 6%
PC[1] 5% 19% 5% 13% 5% 19% 5% 13%
Table 20. I/O weight1 (continued)
Supply segment Pad
176 LQFP 144/100 LQFP
Weight 5V Weight 3.3V Weight 5V Weight 3.3V
176 LQFP 144 LQFP 100 LQFP SRC2=0 SRC=1 SRC=0 SRC=1 SRC=0 SRC=1 SRC=0 SRC=1
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 45
3.7 RESET electrical characteristics
The device implements a dedicated bidirectional RESET pin.
6 4 4 PC[0] 6% 9% 7% 8% 7% 10% 8% 8%
PH[9] 7% 8% 7% 9%
PE[2] 7% 10% 8% 9% 8% 11% 9% 10%
PE[3] 7% 10% 9% 9% 8% 12% 10% 10%
PC[5] 7% 11% 9% 9% 8% 12% 10% 11%
PC[4] 8% 11% 9% 10% 9% 13% 10% 11%
PE[4] 8% 11% 9% 10% 9% 13% 11% 12%
PE[5] 8% 11% 10% 10% 9% 14% 11% 12%
PH[4] 8% 12% 10% 10% 10% 14% 12% 12%
PH[5] 8% 10% 10% 12%
PH[6] 8% 12% 10% 11% 10% 15% 12% 13%
PH[7] 9% 12% 10% 11% 11% 15% 13% 13%
PH[8] 9% 12% 10% 11% 11% 16% 13% 14%
4 PE[6] 9% 12% 10% 11% 11% 16% 13% 14%
PE[7] 9% 12% 10% 11% 11% 16% 14% 14%
PI[3] 9% 10%
PI[2] 9% 10%
PI[1] 9% 10%
PI[0] 9% 10%
4 4 PC[12] 8% 12% 10% 11% 12% 18% 15% 16%
PC[13] 8% 10% 13% 15%
PC[8] 8% 10% 13% 15%
PB[2] 8% 11% 9% 10% 13% 18% 15% 16%
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
2SRC is the Slew Rate Control bit in SIU_PCRx
Table 20. I/O weight1 (continued)
Supply segment Pad
176 LQFP 144/100 LQFP
Weight 5V Weight 3.3V Weight 5V Weight 3.3V
176 LQFP 144 LQFP 100 LQFP SRC2=0 SRC=1 SRC=0 SRC=1 SRC=0 SRC=1 SRC=0 SRC=1
MPC5606BK Microcontroller Data Sheet, Rev. 4
46 Freescale Semiconductor
Figure 6. Start-up reset requirements
Figure 7. Noise filtering on reset signal
Table 21. Reset electrical characteristics
Symbol C Parameter Conditions1Value Unit
Min Typ Max
VIH SR P Input High Level CMOS
(Schmitt Trigge r) —0.65V
DD —V
DD +0.4 V
VIL
VDD
device reset forced by RESET
VDDMIN
RESET
VIH
device start-up phase
VRESET
VIL
VIH
VDD
filtered by
hysteresis filtered by
lowpass filter
WFRST WNFRST
hw_rst
‘1’
‘0’
filtered by
lowpass filter
WFRST
unknown reset
state device under hardware rese t
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 47
VIL SR P Input low Level CMOS
(Schmitt Trigge r) 0.4 0.35VDD V
VHYS CC C Input hysteresis CMOS
(Schmitt Trigge r) —0.1V
DD —— V
VOL CC P Output low level Push Pull, IOL = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.1VDD V
Push Pull, IOL = 1 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 12 0.1VDD
Push Pull, IOL = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
——0.5
Ttr CC D Output transition time output
pin3 MEDIUM configuration CL = 25 pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0 10 ns
CL = 50 pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0 —— 20
CL = 100 pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0 —— 40
CL = 25 pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1 —— 12
CL = 50 pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1 —— 25
CL = 100 pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1 —— 40
WFRST SR P RESET input filtered pulse 40 ns
WNFRST SR P RESET input not filtered pulse 1000 ns
|IWPU| CC P Weak pull-up current absolute
value VDD = 3.3 V ± 10%, PAD3V5V = 1 10 150 µA
VDD = 5.0 V ± 10%, PAD3V5V = 0 10 150
VDD = 5.0 V ± 10%, PAD3V5V = 1410 250
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, T A = 40 to 125 °C, unless otherwise specified
2This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to the MC_RGM chapter of
the MPC5606BK Microcontroller Reference Manual).
3CL includes device and package capacitance (CPKG <5pF).
4The configuration P AD3V5 = 1 when VDD = 5 V is only transient configuration during power-up. All pads but RESET
are configured in input or in high impedance state.
Table 21. Reset electrical characteristics (continued)
Symbol C Parameter Conditions1Value Unit
Min Typ Max
MPC5606BK Microcontroller Data Sheet, Rev. 4
48 Freescale Semiconductor
3.8 Power management electrical characteristics
3.8.1 Voltage regulator electrical characteristics
The device implements an internal volt age regulator to generate the low volt age core supply VDD_LV from the high voltage
ballast supply VDD_BV. The regulator itself is supplied by the common I/O supply VDD. The following supp lies are involved:
HV: High voltage external power supply for voltage regulator module. This must be provided externally through VDD
power pin.
BV : High voltage external power supply for internal ballast module. This must be provided externally through VDD_BV
power pin. Voltage values should be aligne d wit h VDD.
LV: Low voltage internal power supply for core, FMPLL and Flash digital logic. This is generat ed by the int e rnal
voltage regulator but provided outside to connect stability capacitor . It is further split into four main domains to ensure
noise isolation between critical LV modules within the device:
LV_COR: Low voltage supply for the core. It is also used to provide supply for FMPLL through double bonding.
LV_CFLA: Low voltage supply for code Flash modu le. It is supplied wit h de dicat ed ba llast and shorted to
LV_COR through double bo nding.
LV_DFLA: Low voltage supply for data Flash module. It is supplied with dedicated ballast and shorted to
LV_COR through double bo nding.
LV_PLL: Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding.
Figure 8. Voltage regulator capacitance connection
The internal voltage regulator requires external capacitance (CREGn) to be connected to the device in order to provide a stable
low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins.
Care should also be taken to limit the serial inductance of the board to less than 5 nH.
CREG1 (LV_COR/LV_DFLA)
DEVICE
VSS_LV
VDD_BV
VDD_LV
CDEC1 (Ballast decoupling)
VSS_LV VDD_LV VDD
VSS_LV VDD_LV
CREG2 (LV_COR/LV_CFLA)
CREG3 (LV_COR/LV_PLL) CDEC2 (supply/IO decoupling)
DEVICE
VDD_BV
I
VDD_LVn
VREF
VDD
Voltage Regulator
VSS
VSS_LVn
GND
GND GND
GND
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 49
Each decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable voltage (see
Section 3.4, Recommended operating conditions).
The internal voltage regulator requires controlled slew rate of VDD/VDD_BV as described in Figure 9.
Figure 9. VDD and VDD_BV maximum slope
When STANDBY mode is used, further constraints apply to the VDD/VDD_BV in order to guarantee correct regulator
functionality during STANDBY exit. This is described in Figure 10.
STANDBY regu lator constraints should normally be guarant eed by implementing equivalent of CSTDBY capacitance on
application board (capacitance and ESR typical values), but would actually depend on the exact characteristics of the
application’s external regulator.
VDD_HV
POWER UP POWER DOWN
V
DD_HV
(MAX)
FUNCTIONAL RANGE
V
DD_HV
(MIN)
MPC5606BK Microcontroller Data Sheet, Rev. 4
50 Freescale Semiconductor
Figure 10. VDD and VDD_BV supply constraints during STANDBY mode exit
Tabl e 22. Voltage reg u lat o r elec tri ca l ch ara cteristic s
Symbol C Parameter Conditions1Value Unit
Min Typ Max
CREGn SR Internal voltage regulator external
capacitance 200 500 nF
RREG SR Stability capacitor equivalent serial
resistance ——0.2
CDEC1 SR Decoupling capacitance2 ballast VDD_BV/VSS_LV pair:
VDD_BV = 4.5 V to
5.5 V
10034704—nF
VDD_BV/VSS_LV pair:
VDD_BV = 3V to 3.6V 400
CDEC2 SR Decoupling capacitance regulator
supply VDD/VSS pair 10 100 nF
VMREG CC PMain regulator output voltage Before exiting from
reset 1.32 V
After trimming 1.15 1.28 1.32
IMREG SR Main regulator current provided to
VDD_LV domain ——150 mA
VDD_HV
V
DD_HV
(MIN)
ΔVDD(STDBY)
VDD_HV
V
DD_HV
(MAX)
VDD_LV
td
dVDD STDBY()
td
dVDD STDBY()
ΔVDD(STDBY)
VDD_LV(NOMINAL)
0V
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 51
3.8.2 Voltage monitor electrical characteristics
The device implements a Power-on Reset module to ensure correct power-up initialization, as well as four low voltage detectors
to monitor the VDD and the VDD_LV voltage while device is supplied:
IMREGINT CC DMain regulator module current
consumption IMREG = 200 mA 2mA
IMREG = 0 mA 1
VLPREG CC PLow power regulator output voltage After trimming 1.15 1.23 1.32 V
ILPREG SR Low power regulator current provided
to VDD_LV domain ——15 mA
ILPREGINT CC DLow power regulator module current
consumption ILPREG = 15 mA;
TA = 55 °C ——600 µA
ILPREG = 0 mA;
TA = 55 °C 5—
VULPREG CC PUltra low power regulator output
voltage After trimming 1.15 1.23 1.32 V
IULPREG SR Ultra low power regulator current
provided to VDD_LV domain ——5mA
IULPREGINT CC DUltra low power regulator module
current consumption IULPREG = 5 mA;
TA = 55 °C ——100 µA
IULPREG = 0 mA;
TA = 55 °C 2—
IDD_BV CC DInrush average current on VDD_BV
during power-up5——3006mA
SR Maximum slope on VDD ——250 mV/µs
SR Maximum instant variation on VDD
during STANDBY exit ——30 mV
SR Maximum slope on VDD during
STANDBY exit ——15 mV/µs
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, T A = 40 to 125 °C, unless otherwise specified
2This capacitance value is driven by the constraints of the external voltage regulator supplying the VDD_BV voltage. A typical
value is in the range of 470 nF.
3This value is acceptable to guarantee operation from 4.5 V to 5.5 V
4External regulator and capacitance circuitry must be capable of providing IDD_BV while maintaining supply VDD_BV in operating
range.
5Inrush current is seen only for short time during power-up and on standby exit (max 20 µs, depending on external capacitances
to be load).
6The duration of the inrush current depends on the capacitance placed on LV pins. BV decoupling capacitors must be sized
accordingly. Refer to IMREG value for minimum amount of current to be provided in cc.
Table 22. Voltage regulator electrical characteristics (continued)
Symbol C Parameter Conditions1Value Unit
Min Typ Max
VDD STDBY
MPC5606BK Microcontroller Data Sheet, Rev. 4
52 Freescale Semiconductor
POR monitors VDD during the power-up phase to ensure device is maintained in a safe reset state
LVDHV3 monitors VDD to ensure device reset belo w mi nimum functional supply
LVDHV3B monitors VDD_BV to ensure device reset below minimum functional supply
LVDHV5 monitors VDD when application uses device in the 5.0 V ± 10% range
LVDLVCOR monitors pow er dom ain No. 1
LVDLVBKP monitors power domain No. 0
NOTE
When enabled, power domain No. 2 is mon itored through LVDLVBKP.
Figure 11. Low voltage monitor vs. reset
Table 23. Low voltage monitor electrical characteristics
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless oth erwise specified
Value Unit
Min Typ Max
VPORUP SR D Supply for functional POR module TA = 25 °C,
after trimming 1.0 5.5 V
VPORH CC P Power-on reset threshold 1.5 2.6
VLVDHV3H CC T LVDHV3 low voltage detector high threshold 2.95
VLVDHV3L CC P LVDHV3 low voltage detector low threshold 2.6 2.9
VLVDHV3BH CC T LVDHV3B low voltage detector high threshold 2.95
VLVDHV3BL CC P LVDHV3BL low voltage detector low threshold 2.6 2.9
VLVDHV5H CC T LVDHV5 low voltage detector high th reshold 4.5
VLVDHV5L CC P LVDHV5 low voltage detector low threshold 3.8 4.4
VLVDLVCORL CC P LVDLVCOR low voltage detector low threshold 1.08
VLVDLVBKPL CC P LVDLVBKP low voltage detector low threshold 1.08 1.14
VDD
VLVDHVxH
RESET
VLVDHVxL
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 53
3.9 Power consumption in different application modes
Table 24 provides DC electrical characteristics for significant application modes. These values are indicative values; actual
consumption depends on the application.
Table 24. Electrical characteristics in different application modes1
1Except for IDDMAX, all consumptions in this table apply to VDD_BV only and do not include VDD_HV.
Symbol C Parameter Conditions2
2VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless oth erwise specified
Value Unit
Min Typ Max
IDDMAX3
3Running consumption is given on voltage regulator supply (VDDREG). IDDMAX is composed of three components:
IDDMAX = IDD(VDD_BV) + IDD(VDD_HV) + IDD(VDD_HV_ADC). It does not include a fourth component linked to I/Os
toggling which is highly dependent on the application. T he given value is thought to be a worst case value
(64 MHz at 125 °C) with all peripherals running, and code fetched from code flash while modify operation on-going
on data flash. Note that this value can be significantly reduced by the application: switch off unused peripherals
(default), reduce peripheral fre quency through internal prescaler, fetch from RAM most used functions, use low
power mode when possible.
CC C RUN mode maximum average
current 81 1304mA
IDDRUN5CC T RUN mode typical average
current6fCPU = 8 MHz 12 mA
Tf
CPU = 16 MHz 27
Cf
CPU = 32 MHz 40
Pf
CPU = 48 MHz 54 95
Pf
CPU = 64 MHz 67 120
IDDHALT CC C HALT mode current7Slow internal RC
oscillator (128 kHz)
running
TA= 25 °C 10 15 mA
PT
A=12C 15 28
IDDSTOP CC P STOP mode current8Slow internal RC
oscillator (128 kHz)
running
TA= 25 °C 130 500 µA
DT
A=5C 180
DT
A=8C 1 5 mA
DT
A=10C 3 9
PT
A= 125 °C 5 14
IDDSTDBY2 CC P STANDBY2 mode current9Slow internal RC
oscillator (128 kHz)
running
TA= 25 °C 17 80 µA
CT
A=5C 30
CT
A=8C 110
CT
A= 105 °C 280 950
CT
A= 125 °C 460 1700
IDDSTDBY1 CC C STANDBY1 mode current10 Slow internal RC
oscillator (128 kHz)
running
TA= 25 °C 12 50 µA
CT
A=5C 24
CT
A=8C 48
CT
A= 105 °C 150 500
CT
A= 125 °C 260
MPC5606BK Microcontroller Data Sheet, Rev. 4
54 Freescale Semiconductor
3.10 Flash memory electrical characteristics
3.10.1 Program/erase characteristics
Table 25 shows the program and erase characteristics.
4Higher current may be sunk by device during power-up and standby exit. Please refer to inrush current in Table 22.
5RUN current measured with typical application with accesses on both Flash and RAM.
6Only for the “P” classification: Data and Code Flash in Normal Power . Code fetched from RAM: Serial IPs CAN and
LIN in loop back mode, DSPI as Master , PLL as system clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and
running at max frequency, periodic SW/WDG timer reset enabled.
7Data Flash Power Down. Code Flash in Low Power. SIRC 128 kHz and FIRC 16 MHz on. 10 MHz XTAL clock.
FlexCAN: instances: 0, 1, 2 ON (clocked but not reception or transmission), instances: 4, 5, 6 clocks gated. LINFlex:
instances: 0, 1, 2 ON (clocked but not reception or transmission), instance: 3 to 9 clocks gated. eMIOS: instance:
0 ON (16 channels on PA[0]–PA[11] and PC[12]–PC[15] ) with PWM 20 kHz, instance: 1 clock gated. DSPI:
instance: 0 (clocked but no communication), instance: 1 to 5 clocks gated. R TC/A PI ON. PIT ON. STM ON. ADC1
OFF. ADC0 ON but no conversion except two analog watchdogs.
8Only for the “P” classification: No clock, FIRC 16 MHz off, SIRC 128 kHz on, PLL off, HPvreg off,
ULPVreg/LPVreg on. All possible peripherals off and clock gated. Flash in power down mode.
9Only for the “P” classification: ULPreg on, HP/LPVreg off, 32 KB RAM on, device configured for minimum
consumption, all possible modules switched off.
10 ULPreg on, HP/LPVreg off, 8 KB RAM on, device configured for minimum consumption, al l possible modules
switched off.
Table 25. Program and erase specifications
Symbol C Parameter Conditions
Value
Unit
Min Typ1Initial
max2Max3
Tdwprogram CC C D ouble word (64 bits) program time4Code Flash 18 50 500 µs
Data Flash 2 2
T16Kpperase 16 KB block preprogram and erase time Code Flash 200 500 5000 ms
Data Flash 300
T32Kpperase 32 KB block preprogram and erase time Code Flash 300 600 5000 ms
Data Flash 400
T32Kpperase 32 KB block preprogram and erase time for
sector B0F4 Code Flash 600 1200 10000 ms
T128Kpperase 128 KB block preprogram and erase time Code Flash 600 1300 7500 ms
Data Flash 800
T128Kpperase 128 KB block preprogram and erase time for
sector B0F5 Code Flash 1200 2600 15000 ms
Teslat D Erase Suspend Latency 30 30 µs
TESRT C Erase Suspend Request Rate Code Flash 20 ms
Data Flash 10
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 55
ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability results. Some units
will experience single bit corrections throughout the life of the product with no imp act to product reliability.
3.10.2 Flash power supply DC characteristics
Table 28 shows the power supply DC characteristics on external supply.
1Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to
change pending device charac terization.
2Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.
3The maximum program and erase times occur af ter the specified number of program/erase cycles. These maximum
values are characterized but not guaranteed.
4Actual hardware programming times. This does not include software overhead.
Table 26. Flash module life
Symbol C Parameter Conditions Value Unit
Min Typ Max
P/E CC C Number of program/erase
cycles per block for 16 KB
blocks over the operating
temperature range (TJ)
100000 cycles
P/E CC C Number of program/erase
cycles per block for 32 KB
blocks over the operating
temperature range (TJ)
10000 100000 cycles
P/E CC C Number of program/erase
cycles per block for 128 KB
blocks over the operating
temperature range (TJ)
1000 100000 cycles
Retention CC C Minimum data retention at 85
°C average ambient
temperature1
1Ambient temperature averaged over duration of application, not to exceed recommended product operating
temperature range.
Blocks with
0–1,000 P/E cycles 20 years
Blocks with
1,001–10,000 P/E
cycles
10 years
Blocks with
10,001–100,000 P/E
cycles
5 years
Table 27. Flash read access timing
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, T A = 40 to 125 °C, unle ss otherwise specified.
Max Unit
fREAD CC P Maximum frequency for Flash reading 2 wait states 64 MHz
C 1 wait state 40
C 0 wait states 20
MPC5606BK Microcontroller Data Sheet, Rev. 4
56 Freescale Semiconductor
3.10.3 Start-up/Switch-off timings
3.11 Electromagnetic compatibility (EMC) characteristics
Susceptibility tests are performed on a sample basis during product characterization.
3.11.1 Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical application environment and simplified
MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in
particular.
Table 28. Flash power supply DC electrical characteristics
Symbol Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 to 125 °C, unless otherwise specified.
Value Unit
Min Typ Max
ICFREAD CC Sum of the current consumption on
VDDHV and VDDBV on read access Flash module read
fCPU = 64 MHz2
2fCPU 64 MHz can be achieved at up to 125 °C.
Code Flash 33 mA
IDFREAD Data Flash 33
ICFMOD CC Sum of the current consumption on
VDDHV and VDDBV on matrix
modification (program/erase)
Program
/Erase on-going while
reading Flash registers
fCPU = 64 MHz2
Code Flash 52 mA
IDFMOD Data Flash 33
ICFLPW CC Sum of the current consumption on
VDDHV and VDDBV during Flash low
power mode
Code Flash 1.1 mA
IDFLPW Data Flash 900 µA
ICFPWD CC Sum of the current consumption on
VDDHV and VDDBV during Flash power
down mode
Code Flash 150 µA
IDFPWD Data Flash 150
Table 29. Start-up time/Switch-off time
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
Value Unit
Min Typ Max
TFLARSTEXIT CC T Delay for Flash module to exit reset mode 125 µs
TFLALPEXIT CC T Delay for Flash module to exit low-power mode 0.5
TFLAPDEXIT CC T Delay for Flash module to exit power-down
mode ——30
TFLALPENTRY CC T Delay for Flash module to enter low-power
mode ——0.5
TFLAPDENTRY CC T Delay for Flash module to enter power-down
mode ——1.5
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 57
Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC
level requested for the application.
Software recommendations The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical data corruption (control registers...)
Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the
software can be hardened to prevent unrecoverable errors occurring.
3.11.2 Electromagnetic interference (EMI)
The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC61967-1
standard, which specifies the general conditions for EMI measurements.
3.11.3 Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine
its performance in terms of electrical sensitivity.
3.11.3.1 Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according
to each pin combination. The sample size depends on the number of supply pins in the device (3 parts(n + 1) supply pin). This
test conforms to the AEC-Q100-002/-003/-011 standard.
Table 30. EMI radiated emission measurement 1,2
1EMI testing and I/O port waveforms per IEC 61967-1, -2, -4
2For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your
local marke ting representative.
Symbol C Parameter Conditions Value Unit
Min Typ Max
SR Scan range 0.150 1000 MHz
fCPU SR Operating frequency 64 M Hz
VDD_LV SR LV operating voltages 1.28 V
SEMI CC T Peak level VDD = 5V, T
A=2C,
LQFP144 package
Test conforming to IEC
61967-2,
fOSC = 8 MHz/fCPU =
64 MHz
No PLL frequency
modulation 18 dBµV
± 2% PLL frequency
modulation 14 dBµV
MPC5606BK Microcontroller Data Sheet, Rev. 4
58 Freescale Semiconductor
3.11.3.2 Static latch-up (LU)
Two com pl ementary static tests are required on six parts to assess the latch-up performance:
A supply overvoltage is applied to each power supply pin.
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with the EIA/JESD 78 IC latch-up standard.
3.12 Fast external crystal oscillator (4 to 16 MHz) electrical
characteristics
The device provides an oscillator/resonator driver. Figure 12 describes a simple model of the internal oscillator driver and
provides an example of a connection for an oscillator or a resonator.
Table 33 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulatio ns.
Table 31. ESD absolute maximum ratings1,2
1All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated
Circuits.
2A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device
specification requirements. Complete DC parametric and functional testing shall be performed per applicable
device specification at room temperature followed by hot temperature, unless specified otherwise in the device
specification.
Symbol Ratings Conditions Class Max value3
3Data based on characterization results, not tested in production
Unit
VESD(HBM) Electrostatic discharge voltage
(Human Body Model) TA = 25 °C
conforming to AEC-Q100-002 H1C 2000 V
VESD(MM) Electrostatic discharge voltage
(Machin e Model) TA = 25 °C
conforming to AEC-Q100-003 M2 200
VESD(CDM) Electrostatic discharge voltage
(Charged Device Model) TA = 25 °C
conforming to AEC-Q100-011 C3A 500
750 (corners)
Table 32. Latch-up results
Symbol Parameter Conditions Class
LU Static latch-up class TA = 125 °C
conforming to JESD 78 II level A
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 59
Figure 12. Crystal oscillator and resonator connection scheme
NOTE
XTAL/EXTA L must not be directly used to drive external circuits.
Table 33. Crystal description
Nominal
frequency
(MHz)
NDK crystal
reference
Crystal
equivalent
series
resistance
ESR
Crystal
motional
capacitance
(Cm) fF
Crystal
motional
inductance
(Lm) mH
Load on
xtalin/xtalout
C1 = C2
(pF)1
1The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing
includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.
Shunt
capacitance
between
xtalout
and xtalin
C02 (pF)
2The value of C0 specified here includ es 2 p F additional capacitance for parasitics (to be seen with bond-pads,
package, etc.).
4 NX8045GB 300 2.68 591.0 21 2.93
8 NX5032GA 300 2.46 160.7 17 3.01
10 150 2.93 86.6 15 2.91
12 120 3.11 56.5 15 2.93
16 120 3.90 25.3 10 3.00
C2
C1
Crystal
XTAL
EXTAL
Resonator
XTAL
EXTAL
DEVICE
DEVICE
DEVICE XTAL
EXTAL
I
R
VDD
MPC5606BK Microcontroller Data Sheet, Rev. 4
60 Freescale Semiconductor
Figure 13. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics
Table 34. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics
Symbol C Parameter Conditions1Value Unit
Min Typ Max
fFXOSC SR Fast external crystal
oscillator frequency —4.016.0MHz
gmFXOSC CC C Fast external crystal
oscillator
transconductance
VDD = 3.3 V ± 10%,
PAD3V5V = 1
OSCILLATOR_MARGIN = 0
2.2 8.2 mA/V
CC P VDD = 5.0 V ± 10%,
PAD3V5V = 0
OSCILLATOR_MARGIN = 0
2.0 7.4
CC C VDD = 3.3 V ± 10%,
PAD3V5V = 1
OSCILLATOR_MARGIN = 1
2.7 9.7
CC C VDD = 5.0 V ± 10%,
PAD3V5V = 0
OSCILLATOR_MARGIN = 1
2.5 9.2
VFXOSC CC T Oscillation amplitude at
EXTAL fOSC =4MHz,
OSCILLATOR_MARGIN = 0 1.3 V
fOSC =16MHz,
OSCILLATOR_MARGIN = 1 1.3
VFXOSCOP CC P Oscillation operating point 0.95 V
IFXOSC2CC T Fast external crystal
oscillator consumption ——23mA
VMXOSCOP
TMXOSCSU
VXTAL
VMXOSC
valid internal clock
90%
10%
1/fMXOSC
S_MTRANS bit (ME_GS register)
1
0
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 61
3.13 Slow external cryst al oscillator (32 kHz) electrical characteristics
The device provides a low power oscillator/resonator driver .
Figure 14. Crystal oscillator and resonator connection scheme
NOTE
OSC32K_XTAL/OSC32K_EXTAL must not be directly used to drive external circuits.
TFXOSCSU CC T Fast external crystal
oscillator start-up time fOSC = 4 MHz,
OSCILLATOR_MARGIN = 0 —— 6ms
fOSC = 16 MHz,
OSCILLATOR_MARGIN = 1 ——1.8
VIH SR P Input high level CMOS
(Schmitt Trigge r) Oscillator bypass mode 0.65VDD —V
DD +0.4 V
VIL SR P Input lo w le ve l CMOS
(Schmitt Trigge r) Oscillator bypass mode 0.4 0.35VDD V
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, T A = 40 to 125 °C, unless otherwise specified
2Stated values take into account only analog module consumption but not the digital contributor (clock tree and
enabled peripherals).
Table 34. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics (continued)
Symbol C Parameter Conditions1Value Unit
Min Typ Max
OSC32K_XTAL
OSC32K_EXTAL
DEVICE
C2
C1
Crystal
OSC32K_XTAL
OSC32K_EXTAL
R
P
Resonator
DEVICE
MPC5606BK Microcontroller Data Sheet, Rev. 4
62 Freescale Semiconductor
l
Figure 15. Equivalent circuit of a quartz crystal
Table 35. Crystal motional characteristics1
1The crystal used is Epson Toyocom MC306.
Symbol Parameter Conditions Value Unit
Min Typ Max
LmMotional inductance 11.796 KH
CmMotional capacitance 2 f F
C1/C2 Load capacitance at OSC32K_XTAL an d
OSC32K_EXTAL with respect to ground2
2This is the recommended range of load capacitance at OSC32K_XTA L and OSC32K_EXTAL with respect to
ground. It includes all the parasitics due to board traces, crystal and package.
—1828pF
Rm3
3Maximum ESR (Rm) of the crystal is 50 k
Motional resistance AC coupled at C0 = 2.85 pF4
4C0 Includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins.
——65k
AC coupled at C0 = 4.9 pF4——50
AC coupled at C0 = 7.0 pF4——35
AC coupled at C0 = 9.0 pF4——30
C0
C2C1 C2
Rm
C1
Lm
Cm
Crystal
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 63
Figure 16. Slow external crystal oscillator (32 kHz) electrical characteristics
3.14 FMPLL electrical characteristics
The device provides a frequency modulated phase locked loop (FMPLL) module to generate a fast system clock from the
FXOSC or FIRC sources.
Table 36. Slow external crystal oscillator (32 kHz) electrical chara ct eris tic s
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, T A = 40 to 125 °C, unless otherwise specified
Value Unit
Min Typ Max
fSXOSC SR Slow external crystal oscillator
frequency 32 32.768 40 kHz
VSXOSC CC T Oscillation amplitude 2 .1 V
ISXOSCBIAS CC T Oscillation bias current 2.5 µA
ISXOSC CC T Slow external crystal oscillator
consumption ——8µA
TSXOSCSU CC T Slow external crystal oscillator
start-up time ——2
2
2S tart-up time has been measured with EPSON TOYOCOM MC306 crystal. V ariation may be seen with other crystal.
s
Table 37. FMPLL electrical characteristics
Symbol C Parameter Conditions1Value Unit
Min Typ Max
fPLLIN SR FMPLL reference clock2—464MHz
PLLIN SR FMPLL reference clock duty
cycle2—4060%
OSCON bit (OSC_CTL register)
TLPXOSC32KSU
1
VOSC32K_XTAL
VLPXOSC32K
valid internal clock
90%
10%
1/fLPXOSC32K
0
MPC5606BK Microcontroller Data Sheet, Rev. 4
64 Freescale Semiconductor
3.15 Fast internal RC oscillator (16 MHz) electrical characteristics
The device provides a 16 MHz main internal RC oscillator. This is used as the default clock at the power-up of the device.
fPLLOUT CC P FMPLL output clock frequency 16 64 MHz
fVCO3CC P VCO frequ ency without
frequency modu l a ti on 256 512 MHz
P VCO frequency with frequency
modulation 245.76 532.48
fCPU SR System clock frequency 644MHz
fFREE CC P Free-running frequency 20 150 MHz
tLOCK CC P FMPLL lock time Stable oscillator (fPLLIN = 16 MHz) 40 100 µs
tSTJIT CC FMPLL short term jitter5fsys maximum –4 4 %
tLTJIT CC FMPLL long term jitter fPLLCLK at 64 MHz, 4000 cycles 10 ns
IPLL CC C FMPLL consumption TA = 25 °C 4 mA
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, T A = 40 to 125 °C, unless otherwise specified
2PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in
functional mode. When bypass mode is used, oscillator input clock should verify fPLLIN and PLLIN.
3Frequency modulati on is considered ± 4%.
4fCPU 64 MHz can be achieved only at up to 105 °C.
5Short term jitter is measured on the clock rising edge at cycle n and n+4.
Table 38. Fast internal RC oscillator (16 MHz) electrical characteristics
Symbol C Parameter Conditions1Value Unit
Min Typ Max
fFIRC CC P Fast internal RC oscillator high
frequency TA = 25 °C, trimmed 16 MHz
SR 12 20
IFIRCRUN2, CC T Fast internal RC oscillator high
frequency current in running
mode
TA = 25 °C, trimmed 2 00 µA
IFIRCPWD CC D Fast internal RC oscillator high
frequency current in power
down mode
TA = 25 °C 10 µA
IFIRCSTOP CC T Fast internal RC oscillator high
frequency and system clock
current in stop mode
TA = 25 °C sysclk = off 500 µA
sysclk = 2 MHz 600
sysclk = 4 MHz 700
sysclk = 8 MHz 900
sysclk = 16 MHz 1250
Table 37. FMPLL electrical characteristics (continued)
Symbol C Parameter Conditions1Value Unit
Min Typ Max
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 65
3.16 Slow internal RC oscillator (128 kHz) electrical characteristics
The device provides a 128 kHz low power internal RC oscillator. This can be used as the reference clock for the RTC module.
TFIRCSU CC C Fast internal RC oscillator
start-up time VDD = 5.0 V ± 10% 1.1 2.0 µs
FIRCPRE CC C Fast internal RC oscillator
precision after software
trimming of fFIRC
TA = 25 °C 1— 1%
FIRCTRIM CC C Fast internal RC oscillator
trimming step TA = 25 °C 1.6 %
FIRCVAR CC C Fast internal RC oscillator
variatio n over temperature and
supply with respect to fFIRC at
TA= 25 °C in high-frequency
configuration
5— 5%
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, T A = 40 to 125 °C, unless otherwise specified
2This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is
ON.
Table 39. Slow internal RC oscillator (128 kHz) elect rical characteristics
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, T A = 40 to 125 °C, unless otherwise specified
Value Unit
Min Typ Max
fSIRC CC P Slow internal RC oscillator low
frequency TA = 25 °C, trimmed 128 kHz
SR 100 150
ISIRC2,
2This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is
ON.
CC C Slow internal RC oscillator low
frequency current TA = 25 °C, trimmed 5 µA
TSIRCSU CC P Slow internal RC oscillator start-up
time TA = 25 °C, VDD = 5.0 V ± 10% 8 12 µs
SIRCPRE CC C Slow internal RC oscillator precision
after software trimming of fSIRC
TA = 25 °C 2— 2%
SIRCTRIM CC C Slow internal RC oscillator trimming
step ——2.7
SIRCVAR CC C Slow internal RC oscillator variation
in temperature and supply with
respect to fSIRC at TA= 55 °C in high
frequency configuration
High frequency configuration 10 10 %
Table 38. Fast internal RC oscillator (16 MHz) electrical characteristics (continued)
Symbol C Parameter Conditions1Value Unit
Min Typ Max
MPC5606BK Microcontroller Data Sheet, Rev. 4
66 Freescale Semiconductor
3.17 ADC electrical characteristics
3.17.1 Introduction
The device provides two Successive Approximation Register (SAR) analog-to-digital converters (10-bit and 12-bit).
Figure 17. ADC_0 characteristic and error definitions
3.17.2 I nput impedance and ADC accuracy
In the following analysis, th e input circuit corresponding to the precise channels is considered.
T o preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor
with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as
(2)
(1)
(3)
(4)
(5)
Offset Error OSE
Offs et Error OSE
Gain Error GE
1 LSB (ideal)
Vin(A) (LSBideal)
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) Differ ential non-linearity error (DNL)
(4) Integral non-linearity error (INL)
(5) Center of a step of the actual transfer curve
code out
1023
1022
1021
1020
1019
1018
5
4
3
2
1
0
7
6
1 2 3 4 5 6 7 1017 1018 1019 1020 1021 1022 1023
1 LSB ideal = VDD_ADC / 1024
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 67
possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin ; furthermore, it sources
charge during the sampling phase, when the analog signal source is a high-impedance source.
A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC
filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to
be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal
(bandwidth) and the equivalen t input impedance of the ADC itself.
In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: CS being
substantially a switched capacitance, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path
to ground. For instance, assuming a conversion rate of 1 MHz, with CS equal to 3 pF, a resistance of 330 k is obtained (REQ
= 1 / (fc × CS), where fc represents the conversion rate at the considered channel). T o minimize the error induced by the voltage
partitioning between this resistance (sampled voltage on CS) and the sum of RS + RF + RL + RSW + RAD, the external circuit
must be designed to respect the Equation 4:
Eqn. 4
Equation 4 generates a constraint for external network design, in particular on resist ive path. Internal switch resistances (RSW
and RAD) can be neglected with respect to external resistances.
Figure 18. Input equivalent circuit (precise channels)
VA
RSRFRLRSW RAD
+++ +
REQ
---------------------------------------------------------------------------
1
2
---LSB
R
F
C
F
R
S
R
L
R
SW1
C
P2
C
S
V
DD
Sampling
Source Filter Current Limiter
EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME
RS Source Impedance
RF Filter Resistance
CF Filter Capacitance
RL Current Limiter Resistance
RSW1 Channel Selection Switch Impedance
RAD Sampling Switch Impedance
CP Pin Capacitance (two contributions, CP1 and CP2)
CS Sampling Capacitance
C
P1
R
AD
Channel
Selection
V
A
MPC5606BK Microcontroller Data Sheet, Rev. 4
68 Freescale Semiconductor
Figure 19. Input equivalent circuit (extended channels)
A second aspect involving the capacitance network shall be considered. Assuming the three capacitances CF, CP1 and CP2 are
initially charged at the source voltage VA (refer to the equivalent circuit reported in Figure 18): A charge sharing phenomenon
is installed when the sampling phase is started (A/D switch close).
Figure 20. Transient behavior during sampling phase
In particular two different transient periods can be distinguished:
1. A first and quick charge transfer from the internal capacitance CP1 and CP2 to the sampling capacitance CS occurs (CS
is supposed initially completely discharged): considering a worst case (since the time constant in reality would be
faster) in which CP2 is reported in parallel to CP1 (call CP = CP1 + CP2), the two capacitances CP and CS are in series,
and the time constant is
R
F
C
F
R
S
R
L
R
SW1
C
P3
C
S
V
DD
Sampling
Source Filter Current Limiter
EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME
RS Source Impedance
RF Filter Resistance
CF Filter Capacitance
RL Current Limiter Resistance
RSW Channel Selection Switch Impedance (two contributions RSW1 and RSW2)
RAD Sampling Switch Impedance
CP Pin Capacitance (three contributions, CP1, CP2 and CP3)
CS Sampling Capacitance
C
P1
R
AD
Channel
Selection
V
A
C
P2
Extended
R
SW2
Switch
VA
VA1
VA2
t
TS
VCS Voltage Transient on CS
V <0.5 LSB
12
1 < (RSW + RAD) CS << TS
2
= R
L
(C
S
+ C
P1
+ C
P2
)
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 69
Eqn. 5
Equation 5 can again be simplified considering only CS as an additional worst condition. In reality, the transient is
faster , but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time TS
is always much longer than the internal time constant:
Eqn. 6
The charge of CP1 and CP2 is redistributed also on CS, determining a new value of the voltage VA1 on the capacitance
according to Equation 7:
Eqn. 7
2. A second charge transfer involves also CF (that is typically bigger than the on-chip capacitance) through the resistance
RL: again considering the worst case in which CP2 and CS were in parallel to CP1 (since the time constant in reality
would be faster), the time constant is:
Eqn. 8
In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed
well before the end of sampling time TS, a constraints on RL sizing is obtained:
Eqn. 9
Of course, RL shall be sized also according to the current limitation constraints, in combination with RS (source
impedance) and RF (filter resistance). Being CF definitively bigger than CP1, CP2 and CS, then the final voltage VA2
(at the end of the charge transfer transient) will be much higher than VA1. Equation 10 must be respected (charge
balance assuming now CS already charged at VA1):
Eqn. 10
The two transients above are not influenced by the voltage source that, due to the presence of the RFCF filter, is not able to
provide the extra charge to compensate the voltage drop on CS with respect to the ideal source VA; the time constant RFCF of
the filter is very high with respect to the sampling time (TS). The filter is typically designed to act as antialiasing.
1RSW RAD
+=CPCS
CPCS
+
---------------------
1RSW RAD
+CSTS
«
VA1 CSCP1 CP2
++VACP1 CP2
+=
2RL
CSCP1 CP2
++
10 2
10 RLCSCP1 CP2
++=T
S
VA2 CSCP1 CP2 CF
+++VACF
VA1
+C
P1 CP2
+C
S
+=
MPC5606BK Microcontroller Data Sheet, Rev. 4
70 Freescale Semiconductor
Figure 21. Spectral representation of input signal
Calling f0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the antialiasing filter , fF), according
to the Nyquist theorem the conversion rate fC must be at least 2f0; it means that the constant time of the filter is greater than or
at least equal to twice the conversion period (TC). Again the conversion period TC is longer than the sampling time TS, which
is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific
channel): in conclusion it is evident that the time constant of the filter RFCF is definitively much higher than the sampling time
TS, so the charge level on CS cannot be modified by the analog signal source during the time in which the sampling switch is
closed.
The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage
drop on CS; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled
voltage on CS:
Eqn. 11
From this formula, in the worst case (when VA is maximum, that is for instance 5 V), assuming to accept a maximum error of
half a count, a constraint is evident on CF value:
ADC_0 (10-bit) Eqn. 12
ADC_1 (12-bit) Eqn. 13
f0f
Analog source bandwidth (VA)
f0f
Sampled signal spectrum (fC = Conversion rate)
fC
f
Anti-aliasing filter (fF = RC filter pole)
fF
2 f0<fC (Nyquist)
fF = f0 (Anti-aliasing filtering condition)
TC<2 RFCF (Conversion rate vs. filter pole)
Noise
VA2
VA
------------CP1 CP2
+C
F
+
CP1 CP2
+C
FCS
++
--------------------------------------------------------=
CF2048 CS
CF8192 CS
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 71
3.17.3 ADC electrical characteristics
Table 40. ADC input leakage current
Symbol C Parameter Conditions Value Unit
Min Typ Max
ILKG CC C Input leakage current TA=40 °C No current injection on adjacent pin 1 nA
CT
A=25 °C 1
DT
A=85 °C 3 100
CT
A= 105 °C 8 200
PT
A= 125 °C 45 400
Table 41. ADC_0 conversion cha r acteristics (10-bit ADC_0)
Symbol C Parameter Conditions1Value Unit
Min Typ Max
VSS_ADC0 SR Voltage on VSS_HV_ADC0
(ADC_0 reference) pin with
respect to ground (VSS)2
0.1 0.1 V
VDD_ADC0 SR V oltage on VDD_HV_ADC pin
(ADC reference) with respect
to ground (VSS)
—V
DD 0.1 VDD +0.1 V
VAINx SR Analog input voltage3—V
SS_ADC0
0.1 —V
DD_ADC0
+0.1 V
IADC0pwd SR ADC_0 consumption in power
down mode ——50µA
IADC0run SR ADC_0 consumption in
running mode 5 mA
fADC0 SR ADC_0 analog frequency 6—32 + 4% MHz
ADC0_SYS SR ADC_0 digital clock duty cycle
(ipg_clk) ADCLKSEL = 1445 55 %
tADC0_PU SR ADC_0 power up delay ——1.5 µs
tADC0_S CC T Sample time5fADC = 32 MHz,
ADC0_conf_sample_input = 17 0.5 µs
fADC = 6 MHz,
INPSAMP = 255 ——42
tADC0_C CC P Conversion time6fADC = 32 MHz,
ADC_conf_comp = 2 0.625 µs
CSCC DADC_0 input sampling
capacitance ——3pF
CP1 CC DADC_0 input pin capacitance 1 3pF
CP2 CC DADC_0 input pin capacitance 2 ——1pF
CP3 CC DADC_0 input pin capacitance 3 1pF
MPC5606BK Microcontroller Data Sheet, Rev. 4
72 Freescale Semiconductor
RSW1 CC DInternal resistance of analog
source ——3 k
RSW2 CC DInternal resistance of analog
source 2 k
RAD CC DInternal resistance of analog
source ——2 k
IINJ SR Input current Injection Current injection
on one ADC_0
input, different
from the
converte d on e
VDD =
3.3 V ± 10% 5—5mA
VDD =
5.0 V ± 10% 5 5
| INL | CC TAbsolute value for integral
nonlinearity No overload 0.5 1.5 LSB
| DNL | CC TAbsolute differential
nonlinearity No overload 0.5 1.0 LSB
| OFS | CC TAbsolute offset error 0.5 LSB
| GNE | CC TAbsolute gain error ——0.6 LSB
TUEP CC PTotal unadjusted error7 for
precise channels, input only
pins
Without current injection 20.6 2LSB
TWith current injection 3 3
TUEX CC TTotal unadjusted error7 for
extended channel Without current injection 3 1 3 LSB
TWith current injection 4 4
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2Analog and digital VSS must be common (to be tied together externally).
3VAINx may exceed VSS_ADC0 and VDD_ADC0 limits, remaining on absolute maximum ratings, but the results of the
conversion will be clamped respectively to 0x000 or 0x3FF.
4Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured
by internal divider by 2.
5During the sample time the input capacitance CS can be charged/discharged by the external source . The internal
resistance of the analog source must allow the capacitance to reach its final volt age level within tADC0_S. After the
end of the sample time tADC0_S, changes of the analog input voltage have no effect on the conversion result. V alues
for the sample clock tADC0_S depend on programming.
6This parameter does not include the sample time tADC0_S, but only the time for determining the digital result and
the time to load the result’s register with the conversion result.
7Total Unadjusted Error: The maximum error that occurs without adjusting Of fset and Gain errors. This error is a
combination of Offset, Gain and Integral Linearity errors.
Table 41. ADC_0 conversion characteristics (10-bit ADC_0) (continued)
Symbol C Parameter Conditions1Value Unit
Min Typ Max
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 73
Figure 22. ADC_1 characteristic and error definitions
Table 42. ADC_1 conversion cha r acteristics (12-bit ADC_1)
Symbol C Parameter Conditions1Value Unit
Min Typ Max
VSS_ADC1 SR V oltage on VSS_HV_ADC1
(ADC_1 reference) pin with
respect to ground (VSS)2
—–0.10.1V
VDD_ADC1 SR Voltage on VDD_HV_ADC1
pin (ADC_1 reference) with
respect to ground (VSS)
—V
DD –0.1 V
DD +0.1 V
(2)
(1)
(3)
(4)
(5)
Offset Error OSE
Offset Error OSE
Gain Error GE
1 LSB (ideal)
Vin(A) (LSBideal)
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) Different ial non-linearity error (DNL)
(4) Integral non-linearity error (INL)
(5) Center of a step of the actual transfe r curve
code out
4095
4094
4093
4092
4091
4090
5
4
3
2
1
0
7
6
1 2 3 4 5 6 7 4090 4091 4092 4093 4094 4095
1 LSB ideal = AVDD / 4096
MPC5606BK Microcontroller Data Sheet, Rev. 4
74 Freescale Semiconductor
VAINx SR Analog input voltage3—V
SS_ADC1
–0.1 —V
DD_ADC1
+0.1 V
IADC1pwd SR ADC_1 consumption in power
down mode ——50µA
IADC1run SR ADC_1 consumption in running
mode ——6mA
fADC1 SR ADC_1 analog frequency VDD = 3.3 V 3.33 20 + 4% MHz
VDD = 5 V 3.33 32 + 4%
tADC1_PU SR ADC_1 power up delay ——1.5 µs
tADC1_S CC T Sample time4
VDD = 3.3 V fADC1 = 20 MHz,
ADC1_conf_sample_input = 12 600 ns
Sample time4
VDD = 5.0 V fADC1= 32 MHz,
ADC1_conf_sample_input = 17 500
Sample time4
VDD = 3.3 V fADC1= 3.33 MHz,
ADC1_conf_sample_input = 255 ——76.2µs
Sample time4
VDD = 5.0 V fADC1= 3.33 MHz,
ADC1_conf_sample_input = 255 ——76.2
tADC1_C CC P Conversion time5
VDD = 3.3 V fADC1 = 20MHz,
ADC1_conf_comp = 0 2.4 µs
Conversion time5
VDD = 5.0 V fADC 1 = 32 MHz,
ADC1_conf_comp = 0 1.5 µs
Conversion time5
VDD = 3.3 V fADC 1 = 13.33 MHz,
ADC1_conf_comp = 0 ——3.6µs
Conversion time5
VDD = 5.0 V fADC1 = 13.33 MHz,
ADC1_conf_comp = 0 ——3.6µs
ADC1_SYS SR ADC_1 digit al clock duty cycle ADCLKSEL = 1645 —55 %
CSCC DADC_1 input sampling
capacitance —5pF
CP1 CC DADC_1 input pin capacitance 1 —3pF
CP2 CC DADC_1 input pin capacitance 2 —1pF
CP3 CC DADC_1 input pin capacitance 3 —1.5pF
RSW1 CC DInternal resistance of analog
source ——1k
RSW2 CC DInternal resistance of analog
source ——2k
RAD CC DInternal resistance of analog
source ——0.3k
Table 42. ADC_1 conversion characteristics (12-bit ADC_1) (continued)
Symbol C Parameter Conditions1Value Unit
Min Typ Max
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 75
IINJ SR Input current Injection Current
injection on
one ADC_1
input, different
from the
converte d on e
VDD = 3.3 V ± 10% –5 5 mA
VDD = 5.0 V ± 10% –5 5
INLP CC TAbsolute Integral
non-linearity-Precise channels No overload 1 3 LSB
INLX CC TAbsolute Integral
non-linearity-Extended
channels
No overload 1.5 5 LSB
DNL CC TAbsolute Differential
non-linearity No overload 0.5 1 LSB
OFS CC TAbsolute Offset error ——2LSB
GNE CC TAbsolute Gain error ——2LSB
TUEP7CC PTotal Unadjusted Error for
precise channels, input only
pins
Without current injection –6 6 LSB
TWith current injection –8 8
TUEX7CC TTotal Unadjusted Error for
extended channel Without current injection –10 10 LSB
TWith current injection –12 12
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 to 125 °C, unless otherw ise specified
2Analog and digital VSS must be common (to be tied together externally).
3VAINx may exceed VSS_ADC1 and VDD_ADC1 limits, remaining on absolute maximum ratings, but the results of the
conversion will be clamped respectively to 0x000 or 0xFFF.
4During the sample time the input capacitance CS can be charged/discharged by the external source. The internal
resistance of the analog source must allow the capacitance to reach its final voltage level within tADC1_S. After the end
of the sample time tADC1_S, changes of the analog input voltage have no effect on the conversion result. Values for the
sample clock tADC1_S depend on programming.
5This parameter does not include the sample time tADC1_S, but only the time for determining the digital result and the
time to load the result’s register with the conversion result.
6Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by
internal divider by 2.
7Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a
combination of Offset, Gain and Integral Linearity errors.
Table 42. ADC_1 conversion characteristics (12-bit ADC_1) (continued)
Symbol C Parameter Conditions1Value Unit
Min Typ Max
MPC5606BK Microcontroller Data Sheet, Rev. 4
76 Freescale Semiconductor
3.18 On-chip peripherals
3.18.1 Current consumption
Table 43. On-chip peripherals current consumption1
Symbol C Parameter Conditions Value Unit
Typ
IDD_BV(CAN) CC T CAN
(FlexCAN)
supply current
on VDD_BV
Bit rate =
500 KB/s Total (static + dynamic)
consumption:
FlexCAN in loop-back
mode
XT AL at 8 MHz used as
CAN engine clock
source
Messag e sending
period is 580 µs
8 * fperiph + 85 µA
Bit rate =
125 KB/s 8 * fperiph + 27
IDD_BV(eMIOS) CC T eMIOS supply
current on
VDD_BV
Static consumption:
eMIOS channel OFF
Global prescaler enabled
29 * fperiph
Dynamic consumption:
It does not change varying the
frequency (0.003 mA)
3
IDD_BV(SCI) CC T SCI (LINFlex)
supply current
on VDD_BV
Total (static + dynamic) consumption:
LIN mode
Baud rate: 20 KB/s
5 * fperiph + 31
IDD_BV(SPI) CC T SPI (DSPI)
supply current
on VDD_BV
Ballast static consumption (only
clocked) 1
Ballast dynamic consumption
(continuous communication):
Baud rate: 2 Mb/s
Transmission every 8 µs
Frame: 16 bits
16 * fperiph
IDD_BV
(ADC_0/ADC_1)
CC T ADC_0/ADC_1
supply current
on VDD_BV
VDD = 5.5 V Ballast static consumption
(no conversion) 41 * fperiph µA
VDD = 5.5 V Ballast dynamic
consumption (continuous
conversion)
46 * fperiph
IDD_HV_ADC0 CC T ADC_0 supply
current on
VDD_HV_ADC0
VDD = 5.5 V Analog st atic con sumptio n
(no conversion) 200
VDD = 5.5 V Analog dynamic
consumption (continuous
conversion)
3mA
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 77
IDD_HV_ADC1 CC T ADC_1 supply
current on
VDD_HV_ADC1
VDD = 5.5 V Analog st atic con sumptio n
(no conversion) 300 * fperiph µA
VDD = 5.5 V Analog dynamic
consumption (continuous
conversion)
4mA
IDD_HV(FLASH) CC T CFlash +
DFlash supply
current on
VDD_HV
VDD = 5.5 V 12 mA
IDD_BV(PLL) CC T PLL supply
current on
VDD_BV
VDD = 5.5 V 2.5 mA
1Operating conditions: TA = 25 °C, fperiph = 8 MHz to 64 MHz
Table 43. On-chip peripherals current consumption1 (continued)
Symbol C Parameter Conditions Value Unit
Typ
MPC5606BK Microcontroller Data Sheet, Rev. 4
Electrical characteristics
Freescale Semiconductor78
3.18.2 DSPI characteristics
Table 44. DSPI characteristics1
No. Symbol C Parameter DSPI0/DSPI1/DSPI5/DSPI6 DSPI2/DSPI4 Unit
Min Typ Max Min Typ Max
1t
SCK SR D SCK cycle time Master mode
(MTFE = 0) 125 3332——ns
DSlave mode
(MTFE = 0) 125 333
D Master mode
(MTFE = 1) 83 125
DSlave mode
(MTFE = 1) 83 125
—f
DSPI SR D DSPI digital controller frequency f CPU ——f
CPU MHz
2t
CSCext3SR D CS to SCK delay Slave mode 32 32 ns
3t
ASCext4SR D After SCK delay Slave mode 1/fDSPI + 5 1/fDSPI + 5 ns
4t
SDC CC D SCK duty cycle Master mode tSCK/2 tSCK/2 ns
SR D Slave mode tSCK/2 tSCK/2
5t
ASR D Slave access time Slave mode 1/fDSPI + 70 1/fDSPI + 130 ns
6t
DI SR D Slave SOUT disable
time Slave mode 7 7 ns
7t
PCSC CC D PCSx to PCSS time 135—— 13
5——
8t
PASC CC D PCSS to PCSx time 135—— 13
5——
9t
SUI SR D Data setup time for
inputs Master mode 43 145 ns
Slave mode 5 5
10 tHI SR D Data hold time for inputs Master mode 0 0 ns
Slave mode 26—— 2
6——
11 tSUO7C C D Data valid after SCK
edge Master mode 32 50 ns
Slave mode 52 160
Electrical characteristics
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 79
12 tHO7CC D Data hold time for
outputs Master mode 0 0 ns
Slave mode 8 13
1Operating conditions: Cout = 10 to 50 pF, SlewIN = 3.5 to 15 ns.
2For DSPI4, if SOUT is mapped to a SLOW pad while SCK is mapped to a MEDIUM pad (or vice versa), the minimum cycle time for SCK
should be calculated based on the rise and fall times of the SLOW pad. For MTFE=1, SOUT must not be mapped to a SLOW pad while SCK
is mapped to a MEDIUM pad.
3The tCSC delay value is configurable through a register . When configuring tCSC (using PCSSCK and CSSCK fields in DSPI_CT ARx registers),
delay between internal CS and internal SCK must be higher than tCSC to ensure positive tCSCext.
4The tASC delay value is configurable through a register . When configuring tASC (using P ASC and ASC fields in DSPI_CTARx registers), delay
between internal CS and internal SCK must be higher than tASC to ensure positive tASCext.
5For DSPIx_CTARn[PCSSCK] = 11.
6This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of DSPI_MCR register.
7SCK and SOUT are configured as MEDIUM pad.
Table 44. DSPI characteristics1 (continued)
No. Symbol C Parameter DSPI0/DSPI1/DSPI5/DSPI6 DSPI2/DSPI4 Unit
Min Typ Max Min Typ Max
MPC5606BK Microcontroller Data Sheet, Rev. 4
80 Freescale Semiconductor
Figure 23. DSPI classic SPI timing — master, CPHA = 0
Figure 24. DSPI classic SPI timing — master, CPHA = 1
Data Last Data
First Data
First Data Data Last Data
SIN
SOUT
PCSx
SCK Output 4
9
12
1
11
10
4
SCK Output
(CPOL = 0)
(CPOL = 1)
3
2
Note: Numbers shown reference Table 44.
Data Last Data
First Data
SIN
SOUT
12 11
10
Last Data
Data
First Data
SCK Output
SCK Output
PCSx
9
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Table 44.
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 81
Figure 25. DSPI classic SPI timing — slave, CPHA = 0
Figure 26. DSPI classic SPI timing — slave, CPHA = 1
Last Data
First Data
3
4
1
Data
Data
SIN
SOUT
SS
4
5 6
9
11
10
12
SCK Input
First Data Last Data
SCK Input
2
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Table 44.
5 6
9
12
11
10
Last Data
Last Data
SIN
SOUT
SS
First Data
First Data
Data
Data
SCK Input
SCK Input
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Table 44.
MPC5606BK Microcontroller Data Sheet, Rev. 4
82 Freescale Semiconductor
Figure 27. DSPI modified transfer format timing — master, CPHA = 0
Figure 28. DSPI modified transfer format timing — master, CPHA = 1
PCSx 3
1
4
10
4
9
12 11
SCK Output
SCK Output
SIN
SOUT
First Data Data Last Data
First Data Data Last Data
2
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Table 44.
PCSx
10
9
12 11
SCK Output
SCK Output
SIN
SOUT
First Data Data Last Data
First Data Data Last Data
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Table 44.
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 83
Figure 29. DSPI modified transfer format timing — slave, CPHA = 0
Figure 30. DSPI modified transfer format timing — slave, CPHA = 1
Last Data
First Data
3
4
1
Data
Data
SIN
SOUT
SS
4
5 6
9
11
10
SCK Input
First Data Last Data
SCK Input
2
(CPOL = 0)
(CPOL = 1)
12
Note: Numbers shown reference Table 44.
5 6
9
12
11
10
Last Data
Last Data
SIN
SOUT
SS
First Data
First Data
Data
Data
SCK Input
SCK Input
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown refer ence Table 44.
MPC5606BK Microcontroller Data Sheet, Rev. 4
84 Freescale Semiconductor
Figure 31. DSPI PCS strobe (PCSS) timing
3.18.3 JTAG characteristics
Table 45. JTAG characteristics
No. Symbol C Parameter Value Unit
Min Typ Max
1t
JCYC CC D TCK cycle time 64 ns
2t
TDIS CC D TDI setup time 15 ns
3t
TDIH CC D TDI hold time 5 ns
4t
TMSS CC D TMS setup time 15 ns
5t
TMSH CC D TMS hold time 5 ns
6t
TDOV CC D TCK low to TDO valid 33 ns
7t
TDOI CC D TCK low to TDO invalid 6 ns
PCSx
78
PCSS
Note: Numbers shown refer ence Table 44.
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 85
Figure 32. Timing diagram — JTAG boundary scan
INPUT DATA VALID
OUTPUT DATA VALID
DATA INPUTS
DATA OUTPUTS
DATA OUTPUTS
TCK
Note: Numbers shown reference Table 45.
3/5
2/4
7
6
MPC5606BK Microcontroller Data Sheet, Rev. 4
86 Freescale Semiconductor
4 Package characteristics
4.1 Package mechanical data
4.1.1 176 LQFP
Figure 33. 176 LQFP package mechanical drawing (Part 1 of 3)
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 87
Figure 34. 176 LQFP package mechanical drawing (Part 2 of 3)
MPC5606BK Microcontroller Data Sheet, Rev. 4
88 Freescale Semiconductor
Figure 35. 176 LQFP package mechanical drawing (Part 3 of 3)
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 89
4.1.2 144 LQFP
Figure 36. 144 LQFP package mechanical drawing (Part 1 of 2)
MPC5606BK Microcontroller Data Sheet, Rev. 4
90 Freescale Semiconductor
Figure 37. 144 LQFP package mechanical drawing (Part 2 of 2)
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 91
4.1.3 100 LQFP
Figure 38. 100 LQFP package mechanical drawing (Part 1 of 3)
MPC5606BK Microcontroller Data Sheet, Rev. 4
92 Freescale Semiconductor
Figure 39. 100 LQFP package mechanical drawing (Part 2 of 3)
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 93
Figure 40. 100 LQFP package mechanical drawing (Part 3 of 3)
MPC5606BK Microcontroller Data Sheet, Rev. 4
94 Freescale Semiconductor
5 Ordering information
Figure 41. Commercial product code structure
Qualification status
Power Architecture Core
Automotive platform
Core version
Flash memory size (core dependent)
Product
Temperature spec.
MPC56 B MLL6
Example code: 06
Package code
Frequency
Qualifica tion status
M = General market qualified
S = Automotive qualified
P = Engineering samples
Automotive Platform
56 = Power Architecture in 90nm
Core version
0 = e200z0
Flash memory size (for z0 core)
5 = 768 KB
6 = 1024 KB
Product
B = Body
Fab and mask Indicator
K = TSMC Fab
0 = Version of the maskset
A = Mask set indicator (Blank = 1st
production maskset, A = 2nd,
B = 3rd, etc)
R = Tape & Reel (blank if Tray)
R
Temperature spec.
C = –40 to 85 °C
V = –40 to 105 °C
M = –40 to 125 °C
Package code
LL = 100 LQFP
LQ = 144 LQFP
LU = 176 LQFP
Frequency
4 = Up to 48 MHz
6 = Up to 64 MHz
Fab and mask Indicator
K0A
Note: Not all options are available on al l devices.
MPC5606BK Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor 95
6 Revision history Table 46. Revision history
Revision Date Description of changes
1 22 Apr 2011 Initial release.
2 15 May 2013 Changed device number to MPC5606BK.
In Table 2 (Functional port pi ns), updated PA [11] AF2, PD[13] AF2, and PH[11] AF3 I/O
direction to “I/O”.
In Table 3 (Pad types), corrected “Fast” in the “S” row to “Slow.”
In Table 5 (PAD 3V5V field description), updated foot no te 2.
In Table 6 (OSCILLATOR_MARGIN field description), updated footnote 2.
Inserted Section 3.2.3, NVUSRO[WATCHDOG_EN] field description.
In Table 8 (Absolute maximum ratings), Table 9 (Recommended operating conditions (3.3 V)),
and Table 10 (Recommended operating conditions (5.0 V)), corrected the parameter
description for VDD_ADC to “V oltage on VDD_HV_ADC0, VDD_HV_ADC1 (ADC reference)
with respect to ground (VSS)”
In Section 3.6 .1, I/O pad types bullet item, removed Nexus reference.
In Table 12 (I/O input DC electrical characteristics), added specifications for 85 °C.
In Table 13 (I/O pull-up/pull-down DC electrical characteristics), T able 14 (SLOW configuration
output buffer electrical characteristics), Table 15 (MEDIUM configuration output buffer
electrical characteristics), and Table 16 (FAST configuration output buffer electrical
characteristics), changed sentence in footnote 2 to “All pads but RESET are configured in
input or in high impedance state.”
In Table 15 (MEDIUM configuration output buffer electrical characteristics), for VOL, changed
IOH to IOL.
Updated Table 20 (I/O weight).
In Table 21 (Reset electrical characteristics) changed sentence in footnote 4 to “All pads but
RESET are configured in input or in high impedance state.”
in Table 22 (Voltage regulator electrical characteristics), corrected the maximum value for
IDD_BV in Table 22 (V oltage regulator electrical characteristics) to 300 mA.
In Table 23 (Low voltage monitor electrical characteristics), changed VPORUP classification tag
from “P” (Production testing guaranteed) to “D” (Design simulation). Chang ed VLVDHV3BH
classification tag from “P” (Production testing guaranteed) to “T” (Design characterization).
In Table 23 (Low voltage monitor electrical characteristics), changed VLVDHV3L, V LVDHV3BL
minimums from 2.7 V to 2.6 V.
MPC5606BK Microcontroller Data Sheet, Rev. 4
96 Freescale Semiconductor
2
(cont.) 15 May 2013 In Table 24 (Electrical charac teristics in different application modes),
— Changed IDDMAX Typ to 81 mA and IDDMAX Typ to 130 mA.
— Changed IDDRUN Typ for fCPU = 32 MHz to 40 mA.
— Changed IDDRUN Typ for fCPU = 48 MHz to 54 mA. Added IDDRUN Max of 96 mA.
— Changed IDDRUN Typ for fCPU = 64 MHz to 67 mA. Added IDDRUN Max of 120 mA.
— Changed IDDHALT at TA= 25 °C Typ to 10 mA and IDDHALT Max to 15 mA.
— Changed IDDHALT at TA= 125 °C Typ to 15 mA and IDDHALT Max to 28 mA.
— Changed IDDSTOP TA temperature from –40 °C to 25 °C.
— Changed IDDSTOP at TA= 25 °C Typ to 130 µA and IDDSTOP Max to 500 µA.
— Changed IDDSTOP at TA= 55 °C Typ to 180 µA.
— Changed IDDSTOP at TA= 85 °C Typ to 1 mA and IDDSTOP Max to 5 mA.
— Changed IDDSTOP at TA= 105 °C Typ to 3 mA and IDDSTOP Max to 9 mA.
— Changed IDDSTOP at TA= 125 °C Typ to 5 mA and IDDSTOP Max to 14 mA.
— Changed IDDSTDBY2 at TA= 25 °C Typ to 17 µA and Max to 80 µA.
— Changed IDDSTDBY2 at TA= 55 °C T yp to 30 µA.
— Changed IDDSTDBY2 at TA= 85 °C Typ to 100 µA.
— Changed IDDSTDBY2 at TA= 105 °C Typ to 280 µA and Max to 950 µA.
— Changed IDDSTDBY2 at TA= 125 °C Typ to 460 µA and Max to 1700 µA.
Changed the parameter classification for IDDSTANDBY2 (TA = 125 °C)
— Changed IDDSTDBY1 at TA= 25 °C Typ to 12 µA and Max to 50 µA.
— Changed IDDSTDBY1 at TA= 55 °C T yp to 24 µA.
— Changed IDDSTDBY1 at TA= 85 °C T yp to 48 µA.
— Changed IDDSTDBY1 at TA= 105 °C Typ to 150 µA and Max to 500 µA.
— Changed IDDSTDBY1 at TA= 125 °C Typ to 260 µA.
— Changed the third sentence of Footnote 3 to begin with “The given value is thought to be
a worst case value (64 MHz at 125 °C) with all peripherals running.”
— Removed footnotes 8 and 9 regarding IDDHALT and IDDSTOP.
— Corrected “C” characteristics to reflect testing status.
In Section 3.10, Flash memory electrical characte ristics, removed the "FLASH_BIU settings
vs. frequency of operation" table.
In Table 28 (Flash power supply DC electrical characteristics), corrected Foot note 2 to specify
125 °C.
In Section 3.14, FMPLL electrical characteristics, changed the text “the main oscillator driver”
to “the FXOSC or FIRC sources.”
In Table 40 (ADC input leakage current), added specifications for 85 °C.
In Table 44 (DSPI characteristics), added tSCK specifications for MTFE=1.
In Table 44 (DSPI characteristics), updated specifications 7 and 8 to 13 ns, all DSPIs.
in ADC section, corrected Equation 11.
In Figure 41 (Commercial product code structure), added “Note: Not all options are available
on all devices.”
Removed Sectio n 6, Abbreviations.
3 11 Sep 2013 Updated the temperature in table note 2 in Table 1 (MPC5606BK family comp arison) from 105
oC to 125 oC.
4 25 Nov 2015 Updated the Max value current for IADC0run from 40 mA to 5 mA in Table 41 (ADC_0 conversion
characteristics (10-bit ADC_0))
Table 46. Revision history (continued)
Revision Date Description of changes
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system
and software impleme nters to use Freescale products. There are
no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further
notice to any products herein. Freescale makes no warranty,
representation, or guarantee regarding the suitability of its
products for any particular purpose, nor does Freescale assume
any liability arising out of the application or use of any product or
circuit, and specifically disclaims any and all li ability, including
without limit ation consequential or incident al damages. “Typical”
parameters that may be provided in Freescal e data sheet s and/or
specifications can and do vary in dif ferent applications, and actual
performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer
application by custome r’s technical experts. Freescale does not
convey any license under its paten t rights nor the rights of others.
Freescale sells products pursuant to standa rd terms and
conditions of sale, which can be found at the fo llowing
address:freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale
Semiconductor, inc. Reg. U.S. Pat. & Tm. Off. the power
Architecture and Power.org word marks and the Power and
Power.org logos and related marks are trade marks and service
marks licensed by Power.org. All other product or service names
are the property of their respective owners.
© Freescale Semiconductor, Inc. 2015-2016. All rights reserved.
Document Number: MPC5606B
Rev. 4
02/2016