SSM3K103TU
2006-02-27
1
TOSHIBA Field Effect Transistor Silicon N Channel MOS Type
SSM3K103TU
Power Management Switch Applications
High Speed Switching Applications
1.8 V drive
Low ON-resistance: Ron = 175 m (max) (@VGS = 1.8V)
R
on = 108 m (max) (@VGS = 2.5V)
R
on = 80 m (max) (@VGS = 4.0V)
Lead(Pb)-free
Maximum Ratings (Ta = 25°C)
Characteristic Symbol Rating Unit
Drain–source voltage VDS 20 V
Gate–source voltage VGSS ± 12 V
DC ID 2.4
Drain current
Pulse IDP 4.8
A
PD (Note 1) 800
Drain power dissipation
PD (Note 2) 500
mW
Channel temperature Tch 150 °C
Storage temperature range Tstg 55~150 °C
Note 1: Mounted on a ceramic board.
(25.4 mm × 25.4 mm × 0.8 t, Cu Pad: 645 mm2 )
Note 2: Mounted on an FR4 board.
(25.4 mm × 25.4 mm × 1.6 t, Cu Pad: 645 mm2 )
Electrica l Characteristics (Ta = 25°C)
Characteristic Symbol Test Condition Min Typ. Max Unit
V (BR) DSS I
D = 1 mA, VGS = 0 20 V
Drain–source breakdown voltage
V (BR) DSX I
D = 1 mA, VGS = –12 V 10 V
Drain cutoff current IDSS V
DS = 20 V, VGS = 0 1 µA
Gate leakage current IGSS V
GS = ± 12 V, VDS = 0 ±1 µA
Gate threshold voltage Vth V
DS = 3 V, ID = 1 mA 0.4 1.0 V
Forward transfer admittance Yfs V
DS = 3 V, ID = 1.0 A (Note3) 2.8 5.5 S
ID = 1.0 A, VGS = 4.0 V (Note3) 60 80
ID = 0.5 A, VGS = 2.5 V (Note3) 80 108
Drain–source ON-resistance RDS (ON)
ID = 0.2 A, VGS = 1.8 V (Note3) 110 175
m
Input capacitance Ciss V
DS = 10 V, VGS = 0, f = 1 MHz
220 pF
Output capacitance Coss V
DS = 10 V, VGS = 0, f = 1 MHz 51 pF
Reverse transfer capacitance Crss VDS = 10 V, VGS = 0, f = 1 MHz 42 pF
Turn-on time ton 12
Switching time
Turn-off time toff
VDD = 10 V, ID = 2.0 A,
VGS = 0 to 2.5 V, RG = 4.7 10
ns
Drain–source forward voltage VDSF I
D = 2.4 A, VGS = 0 V (Note3) – 0.85 – 1.20 V
Note3: Pulse test
Unit: mm
JEDEC
JEITA
TOSHIBA 2-2U1A
Weight: 6.6 mg (typ.)
1 :Gate
2 :Source
3 :Drain
UFM
-0.05
1.7±0.1
2.1±0.1
0.65±0.05
1
2
2.0±0.1
3
0.7±0.05
+0.1
0.3
0.166±0.05
Tentative
SSM3K103TU
2006-02-27
2
Switching Time Test Circuit
(a) Test Circuit (b) VIN
Marking Equivalent Circuit
(top view)
Notice on Usage
Vth can be expressed as the voltage between gate and source when the low operating current value is ID = 1 mA for
this product. For normal switching operation, VGS (on) requires a higher voltage than Vth and VGS (off) requires a lower
voltage than Vth.
(The relationship can be established as follows: VGS (off) < Vth < VGS (on).)
Take this into consideration when using the device. The VGS recommended voltage for turning on this product is 1.8 V
or higher.
Handling Precaution
When handling individual devices that are not yet mounted on a circuit board, make sure that the environment is
protected against electrostatic discharge. Operators should wear antistatic clothing, and containers and other objects that
come into direct contact with devices should be made of antistatic materials.
(c) VOUT
VDD = 10 V
RG = 4.7
D.U.
<
=
1%
VIN: tr, tf < 5 ns
Common Source
Ta = 25°C
VDD
OUT
IN
2.5 V
0
10 µs
RG
tf
ton
90%
10%
2.5 V
0 V
10%
90%
toff
tr
VDD
VDS
(
ON
)
KK3
1 2
3
1 2
3
SSM3K103TU
2006-02-27
3
VGS = 4.0
ID – VDS
0
4
0 0.2 0.4 0.6 1
3
VGS = 1.2 V
1.5 V
10 V
1
2
1.8 V
2.5 V
0.8
5
RDS (ON) – Ta
0
50
ID = 1.0 A / VGS = 4.0 V
0 50 150
100
200
300
100
0 2 6 8
4
0
100
200
RDS (ON)VGS
150
50
0.5 A / 2.5 V
10
ID – VGS
10
0
0.1
1
0.001
0.01
0.0001
2.0
25 °C
Ta = 85 °C
25 °C
1.0
Vth – Ta
1.0
0
50 0 150
0.5
50 100
0 1 3 4
2
0
100
200
150
50
5
2.5 V
4.0 V
1.8 V
250
150
50
0.2 A / 1.8 V
Drain–source voltage VDS (V)
Drain current ID (A)
Gate–source voltage VGS (V)
Drain current ID (A)
Common Source
VDS = 3 V
Common Source
Ta = 25°C
ID = 1.0 A
Common Source
Ta = 25°C
Drain current ID (A)
Drain–source ON-resistance
RDS (ON) (m)
Gate–source voltage VGS (V)
Drain–source ON-resistance
RDS (ON) (m)
Common Source
Ta = 25°C
Ambient temperature Ta (°C)
Gate threshold voltage Vth (V)
Ambient temperature Ta (°C)
Drain–source on-resistance
RDS (ON) (m)
Common Source
Common source
VDS = 3 V
ID = 1 mA
RDS (ON) – ID
SSM3K103TU
2006-02-27
4
PDTa
800
0
200
120
b
100 140
400
600
160
1000
80 60 40
20 0 –20 –40
a
Transient thermal impedance
Rth (°C/W)
Pulse Width tw (s)
t – ID
1
100
600
10
0.001 0.01 0.1 600
b
c
a
110 100
a
: Mounted on an FR4 board
(25.4 x 25.4 x 1.6 mm Cu Pad : 645 mm2)
b
: Mounted on a ceramic board
(
25.4 x 25.4 x 0.8 mm Cu Pad : 645 mm2
)
Ambient temperature Ta (°C)
Drain Power Dissipation PD (mW)
a
: Mounted on a ceramic board
(25.4 x 25.4 x 0.8 mm Cu Pad : 645 mm2)
b
: Mounted on an FR4 board
(25.4 x 25.4 x 1.6 mm Cu Pad : 645 mm2)
c
: Mounted on an FR4 board
(25.4 x 25.4 x 1.6 mm Cu Pad : 0.36 mm2 x 3)
t – ID
1
0.01
100
0.1
1000
1 10
toff
10
IDRVDS
|Yfs| – ID
0.1
10
1
10
0.1 1
3
0.3
C – VDS
10
0.1 1 10 100
100
1000
300
500
30
50
Ciss
Coss
Crss
0.01
10
0
0.1
1
0.001
0.01
–0.2 –0.6 –0.4 –1.0 –0.8
25 °C
Ta =85 °C
25 °C
tf
ton
tr
Common Source
VGS = 0 V
Ta = 25°C
Drain reverse current IDR (A)
Drain–source voltage VDS (V)
Drain current ID (A)
Forward transfer admittance Yfs (S)
Common Source
VDS = 5 V
Ta = 25°C
G
D
S
IDR
Switching time t (ns)
Drain current ID (A)
Drain–source voltage VDS (V)
Capacitance C (pF)
Common Source
Ta = 25°C
f = 1 MHz
VGS = 0 V
Common Source
VDD = 10 V
VGS = 0 to 2.5 V
Ta = 25°C
RG = 4.7
SSM3K103TU
2006-02-27
5