This is information on a product in full production.
December 2015 DocID027590 Rev 3 1/222
STM32F745xx
STM32F746xx
ARM
®
-based Cortex
®
-M7 32b MCU+FPU, 462DMIPS, up to 1MB Flash/320+16+ 4KB
RAM, USB OTG HS/FS, ethernet, 18 TIMs, 3 ADCs, 25 com itf, cam & LCD
Datasheet - production data
Features
Core: ARM® 32-bit Cortex®-M7 CPU with FPU,
adaptive real-time accelerator (ART
Accelerator™) and L1-cache: 4KB data cache
and 4KB instruction cache, allowing 0-wait
state execution from embedded Flash memory
and external memories, frequency up to
216 MHz, MPU, 462 DMIPS/2.14 DMIPS/MHz
(Dhrystone 2.1), and DSP instructions.
Memories
Up to 1MB of Flash memory
1024 bytes of OTP memory
SRAM: 320KB (including 64KB of data
TCM RAM for critical real time data) +
16KB of instruction TCM RAM (for critical
real time routines) + 4KB of backup SRAM
(available in the lowest power modes)
Flexible external memory controller with up
to 32-bit data bus: SRAM, PSRAM,
SDRAM/LPSDR SDRAM, NOR/NAND
memories
Dual mode Quad-SPI
LCD parallel interface, 8080/6800 modes
LCD-TFT controller up to XGA resolution with
dedicated Chrom-ART Accelerator™ for
enhanced graphic content creation (DMA2D)
Clock, reset and supply management
1.7 V to 3.6 V application supply and I/Os
POR, PDR, PVD and BOR
Dedicated USB power
4-to-26 MHz crystal oscillator
Internal 16 MHz factory-trimmed RC (1%
accuracy)
32 kHz oscillator for RTC with calibration
Internal 32 kHz RC with calibration
Low-power
Sleep, Stop and Standby modes
–V
BAT supply for RTC, 32×32 bit backup
registers + 4KB backup SRAM
3×12-bit, 2.4 MSPS ADC: up to 24 channels
and 7.2 MSPS in triple interleaved mode
2×12-bit D/A converters
Up to 18 timers: up to thirteen 16-bit (1x low-
power 16-bit timer available in Stop mode) and
two 32-bit timers, each with up to 4
IC/OC/PWM or pulse counter and quadrature
(incremental) encoder input. All 15 timers
running up to 216 MHz. 2x watchdogs, SysTick
timer
General-purpose DMA: 16-stream DMA
controller with FIFOs and burst support
Debug mode
SWD & JTAG interfaces
–Cortex
®-M7 Trace Macrocell™
Up to 168 I/O ports with interrupt capability
Up to 164 fast I/Os up to 108 MHz
Up to 166 5 V-tolerant I/Os
Up to 25 communication interfaces
Up to 4× I2C interfaces (SMBus/PMBus)
Up to 4 USARTs/4 UARTs (27 Mbit/s,
ISO7816 interface, LIN, IrDA, modem
control)
Up to 6 SPIs (up to 50 Mbits/s), 3 with
muxed simplex I2S for audio class
accuracy via internal audio PLL or external
clock
2 x SAIs (serial audio interface)
2 × CANs (2.0B active) and SDMMC
interface
SPDIFRX interface
HDMI-CEC
Advanced connectivity
USB 2.0 full-speed device/host/OTG
controller with on-chip PHY
USB 2.0 high-speed/full-speed
device/host/OTG controller with dedicated
DMA, on-chip full-speed PHY and ULPI
10/100 Ethernet MAC with dedicated DMA:
supports IEEE 1588v2 hardware, MII/RMII
8- to 14-bit parallel camera interface up to
54 Mbytes/s
True random number generator
CRC calculation unit
RTC: subsecond accuracy, hardware calendar
96-bit unique ID
Table 1. Device summary
Reference Part number
STM32F745xx STM32F745IE, STM32F745VE, STM32F745VG,
STM32F745ZE, STM32F745ZG, STM32F745IG
STM32F746xx
STM32F746BE, STM32F746BG, STM32F746IE,
STM32F746IG, STM32F746NE, STM32F746NG,
STM32F746VE, STM32F746VG, STM32F746ZE,
STM32F746ZG
LQFP100 (14x14 mm)
LQFP144 (20x20 mm)
LQFP176 (24x24 mm) UFBGA176 (10x10 mm)
)%*$
TFBGA216 (13x13 mm)
LQFP208 (28x28 mm)
WLCSP143
(4.5x5.8 mm)
www.st.com
Contents STM32F745xx STM32F746xx
2/222 DocID027590 Rev 3
Contents
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1 ARM® Cortex®-M7 with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 18
2.5 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 AXI-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.8 Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.9 Quad-SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.10 LCD-TFT controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.11 Chrom-ART Accelerator™ (DMA2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.12 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 22
2.13 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.14 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.15 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.16 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.17 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.17.1 Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.17.2 Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.18 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.18.1 Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.18.2 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.18.3 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 30
2.19 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 30
2.20 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.21 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.22 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.22.1 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 34
DocID027590 Rev 3 3/222
STM32F745xx STM32F746xx Contents
5
2.22.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.22.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.22.4 Low-power timer (LPTIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.22.5 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.22.6 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.22.7 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.23 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.24 Universal synchronous/asynchronous receiver transmitters (USART) . . 37
2.25 Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S) . 38
2.26 Serial audio interface (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.27 SPDIFRX Receiver Interface (SPDIFRX) . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.28 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.29 Audio and LCD PLL(PLLSAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.30 SD/SDIO/MMC card host interface (SDMMC) . . . . . . . . . . . . . . . . . . . . . 40
2.31 Ethernet MAC interface with dedicated DMA and IEEE 1588 support . . . 40
2.32 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.33 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 41
2.34 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 41
2.35 High-definition multimedia interface (HDMI) - consumer
electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.36 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.37 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.38 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.39 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.40 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.41 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.42 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.43 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Contents STM32F745xx STM32F746xx
4/222 DocID027590 Rev 3
5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.2 VCAP1/VCAP2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.3 Operating conditions at power-up / power-down (regulator ON) . . . . . 100
5.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . 100
5.3.5 Reset and power control block characteristics . . . . . . . . . . . . . . . . . . 100
5.3.6 Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.3.7 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.3.8 Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3.9 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3.10 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.3.11 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.3.12 PLL spread spectrum clock generation (SSCG) characteristics . . . . . 130
5.3.13 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.3.14 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.3.15 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 136
5.3.16 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.3.17 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.3.18 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.3.19 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.3.20 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.3.21 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.3.22 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.3.23 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.3.24 Reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.3.25 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.3.26 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.3.27 FMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
5.3.28 Quad-SPI interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
DocID027590 Rev 3 5/222
STM32F745xx STM32F746xx Contents
5
5.3.29 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 190
5.3.30 LCD-TFT controller (LTDC) characteristics . . . . . . . . . . . . . . . . . . . . . 191
5.3.31 SD/SDIO MMC card host interface (SDMMC) characteristics . . . . . . . 193
6 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
6.1 LQFP100, 14 x 14 mm low-profile quad flat package information . . . . . 195
6.2 WLCSP143, 4.539x 5.849 mm, 0.4 mm pitch wafer level chip
scale package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.3 LQFP144, 20 x 20 mm low-profile quad flat package information . . . . . 201
6.4 LQFP176 24 x 24 mm low-profile quad flat package information . . . . . . 204
6.5 LQFP208 28 x 28 mm low-profile quad flat package information . . . . . . 208
6.6 UFBGA 176+25, 10 x 10, 0.65 mm ultra thin-pitch ball grid
array package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
6.7 TFBGA216, 13 × 13 × 0.8mm thin fine-pitch ball grid array
package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
6.8 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
7 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Appendix A Recommendations when using internal reset OFF . . . . . . . . . . . 220
A.1 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
List of tables STM32F745xx STM32F746xx
6/222 DocID027590 Rev 3
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32F745xx and STM32F746xx features and peripheral counts . . . . . . . . . . . . . . . . . . 13
Table 3. Voltage regulator configuration mode versus device operating mode . . . . . . . . . . . . . . . . 27
Table 4. Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 5. Voltage regulator modes in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 6. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 7. I2C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 8. USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 9. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 10. STM32F745xx and STM32F746xx pin and ball definition . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 11. FMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 12. STM32F745xx and STM32F746xx alternate function mapping . . . . . . . . . . . . . . . . . . . . . 75
Table 13. STM32F745xx and STM32F746xx register boundary addresses. . . . . . . . . . . . . . . . . . . . 89
Table 14. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 15. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 16. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 17. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 18. Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 99
Table 19. VCAP1/VCAP2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 20. Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . 100
Table 21. Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . 100
Table 22. reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 23. Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 24. Typical and maximum current consumption in Run mode, code with data processing
running from ITCM RAM, regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 25. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART ON except prefetch / L1-cache ON)
or SRAM on AXI (L1-cache ON), regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 26. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory or SRAM on AXI (L1-cache disabled), regulator ON . . . . . 105
Table 27. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory on ITCM interface (ART disabled), regulator ON . . . . . . . . 106
Table 28. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART ON except prefetch / L1-cache ON)
or SRAM on AXI (L1-cache ON), regulator OFF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 29. Typical and maximum current consumption in Sleep mode, regulator ON. . . . . . . . . . . . 108
Table 30. Typical and maximum current consumption in Sleep mode, regulator OFF . . . . . . . . . . . 108
Table 31. Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . 109
Table 32. Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . 110
Table 33. Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . 111
Table 34. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 35. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 36. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 37. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 38. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 39. HSE 4-26 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 40. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 41. HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
DocID027590 Rev 3 7/222
STM32F745xx STM32F746xx List of tables
8
Table 42. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 43. Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 44. PLLI2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 45. PLLISAI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 46. SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 47. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 48. Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 49. Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Table 50. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 51. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 52. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 53. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Table 54. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Table 55. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 56. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 57. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 58. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Table 59. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 60. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 61. RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 62. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 63. ADC static accuracy at fADC = 18 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Table 64. ADC static accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Table 65. ADC static accuracy at fADC = 36 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Table 66. ADC dynamic accuracy at fADC = 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 147
Table 67. ADC dynamic accuracy at fADC = 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 147
Table 68. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Table 69. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Table 70. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Table 71. internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Table 72. Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 73. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 74. Minimum I2CCLK frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 75. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 76. SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Table 77. I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Table 78. SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Table 79. USB OTG full speed startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Table 80. USB OTG full speed DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Table 81. USB OTG full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Table 82. USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Table 83. USB HS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Table 84. Dynamic characteristics: USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Table 85. Dynamics characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . 166
Table 86. Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 166
Table 87. Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 167
Table 88. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 170
Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT timings . . . . . . . . . . 170
Table 90. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 171
Table 91. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings. . . . . . . . . . 172
Table 92. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Table 93. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 173
List of tables STM32F745xx STM32F746xx
8/222 DocID027590 Rev 3
Table 94. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Table 95. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 175
Table 96. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Table 97. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Table 98. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 180
Table 99. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Table 100. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Table 101. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Table 102. SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Table 103. LPSDR SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Table 104. SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Table 105. LPSDR SDRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Table 106. Quad-SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Table 107. Quad-SPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Table 108. DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Table 109. LTDC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Table 110. Dynamic characteristics: SD / MMC characteristics, VDD=2.7V to 3.6V . . . . . . . . . . . . . 194
Table 111. Dynamic characteristics: eMMC characteristics, VDD=1.71V to 1.9V . . . . . . . . . . . . . . . 194
Table 112. LQPF100, 14 x 14 mm 100-pin low-profile quad flat package mechanical data. . . . . . . . 196
Table 113. WLCSP143 - 143-ball, 4.539x 5.849 mm, 0.4 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Table 114. WLCSP143 recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Table 115. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Table 116. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Table 117. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Table 118. UFBGA176+25, 10 × 10 × 0.65 mm ultra thin fine-pitch ball grid array
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Table 119. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA) . . . . . . . . . . . . . 213
Table 120. TFBGA216, 13 × 13 × 0.8mm thin fine-pitch ball grid array
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Table 121. TFBGA216 recommended PCB design rules (0.8 mm pitch BGA). . . . . . . . . . . . . . . . . . 216
Table 122. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Table 123. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Table 124. Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . 220
Table 125. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
DocID027590 Rev 3 9/222
STM32F745xx STM32F746xx List of figures
11
List of figures
Figure 1. Compatible board design for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 2. STM32F745xx and STM32F746xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 3. STM32F745xx and STM32F746xx AXI-AHB bus matrix architecture . . . . . . . . . . . . . . . . 19
Figure 4. VDDUSB connected to VDD power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 5. VDDUSB connected to external power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 6. Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 25
Figure 7. PDR_ON control with internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 8. Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 9. Startup in regulator OFF: slow VDD slope
- power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 10. Startup in regulator OFF mode: fast VDD slope
- power-down reset risen before VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . 29
Figure 11. STM32F74xVx LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 12. STM32F74xZx WLCSP143 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 13. STM32F74xZx LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 14. STM32F74xIx LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 15. STM32F74xBx LQFP208 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 16. STM32F74xIx UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 17. STM32F74xNx TFBGA216 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 18. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 19. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 20. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 21. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 22. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 23. External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 24. Typical VBAT current consumption (RTC ON/BKP SRAM OFF and
LSE in low drive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 25. Typical VBAT current consumption (RTC ON/BKP SRAM OFF and
LSE in medium low drive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 26. Typical VBAT current consumption (RTC ON/BKP SRAM OFF and
LSE in medium high drive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 27. Typical VBAT current consumption (RTC ON/BKP SRAM OFF and
LSE in high drive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 28. Typical VBAT current consumption (RTC ON/BKP SRAM OFF and
LSE in high medium drive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 29. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 30. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 31. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 32. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Figure 33. HSI deviation versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Figure 34. LSI deviation versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Figure 35. PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure 36. PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Figure 37. FT I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Figure 38. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Figure 39. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Figure 40. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Figure 41. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
List of figures STM32F745xx STM32F746xx
10/222 DocID027590 Rev 3
Figure 42. Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 149
Figure 43. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 149
Figure 44. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Figure 45. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Figure 46. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Figure 47. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Figure 48. I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Figure 49. I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Figure 50. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Figure 51. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Figure 52. USB OTG full speed timings: definition of data signal rise and fall time. . . . . . . . . . . . . . 163
Figure 53. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Figure 54. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Figure 55. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Figure 56. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Figure 57. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 169
Figure 58. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 171
Figure 59. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 172
Figure 60. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 174
Figure 61. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Figure 62. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Figure 63. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 180
Figure 64. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Figure 65. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Figure 66. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Figure 67. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 184
Figure 68. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 184
Figure 69. SDRAM read access waveforms (CL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Figure 70. SDRAM write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Figure 71. Quad-SPI timing diagram - SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Figure 72. Quad-SPI timing diagram - DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Figure 73. DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Figure 74. LCD-TFT horizontal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Figure 75. LCD-TFT vertical timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Figure 76. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Figure 77. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Figure 78. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 195
Figure 79. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Figure 80. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package
top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Figure 81. WLCSP143 - 143-ball, 4.539x 5.849 mm, 0.4 mm pitch wafer level chip scale
package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Figure 82. WLCSP143 - 143-ball, 4.539x 5.849 mm, 0.4 mm pitch wafer level chip scale
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Figure 83. WLCSP143, 0.4 mm pitch wafer level chip scale package
top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Figure 84. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 201
Figure 85. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Figure 86. LQFP144, 20 x 20mm, 144-pin low-profile quad flat package
top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
DocID027590 Rev 3 11/222
STM32F745xx STM32F746xx List of figures
11
Figure 87. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 204
Figure 88. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Figure 89. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package
top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Figure 90. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 208
Figure 91. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Figure 92. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package
top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Figure 93. UFBGA 176+25, 10 × 10 × 0.65 mm ultra thin fine-pitch ball grid array
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Figure 94. UFBGA176+25, 10 x 10 mm x 0.65 mm, ultra fine-pitch ball grid array
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Figure 95. UFBGA176+25, 10 × 10 × 0.6 mm ultra thin fine-pitch ball grid array
package top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Figure 96. TFBGA216, 13 × 13 × 0.8mm thin fine-pitch ball grid array
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Figure 97. TFBGA216, 13 x 13 mm, 0.8 mm pitch, thin fine-pitch ball grid array
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Figure 98. TFBGA216, 13 × 13 × 0.8mm thin fine-pitch ball grid array
package top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Description STM32F745xx STM32F746xx
12/222 DocID027590 Rev 3
1 Description
The STM32F745xx and STM32F746xx devices are based on the high-performance ARM®
Cortex®-M7 32-bit RISC core operating at up to 216 MHz frequency. The Cortex®-M7 core
features a single floating point unit (SFPU) precision which supports all ARM® single-
precision data-processing instructions and data types. It also implements a full set of DSP
instructions and a memory protection unit (MPU) which enhances the application security.
The STM32F745xx and STM32F746xx devices incorporate high-speed embedded
memories with Flash memory up to 1 Mbyte, 320 Kbytes of SRAM (including 64 Kbytes of
Data TCM RAM for critical real time data), 16 Kbytes of instruction TCM RAM (for critical
real time routines), 4 Kbytes of backup SRAM available in the lowest power modes, and an
extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB
buses, a 32-bit multi-AHB bus matrix and a multi layer AXI interconnect supporting internal
and external memories access.
All the devices offer three 12-bit ADCs, two DACs, a low-power RTC, thirteen general-
purpose 16-bit timers including two PWM timers for motor control and one low-power timer
available in Stop mode, two general-purpose 32-bit timers, a true random number generator
(RNG). They also feature standard and advanced communication interfaces.
Up to four I2Cs
Six SPIs, three I2Ss in duplex mode. To achieve the audio class accuracy, the I2S
peripherals can be clocked via a dedicated internal audio PLL or via an external clock
to allow synchronization.
Four USARTs plus four UARTs
An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the
ULPI),
Two CANs
Two SAI serial audio interfaces
An SDMMC host interface
Ethernet and camera interfaces
LCD-TFT display controller
Chrom-ART Accelerator™
SPDIFRX interface
HDMI-CEC
Advanced peripherals include an SDMMC interface, a flexible memory control (FMC)
interface, a Quad-SPI Flash memory interface, a camera interface for CMOS sensors. Refer
to Table 2: STM32F745xx and STM32F746xx features and peripheral counts for the list of
peripherals available on each part number.
The STM32F745xx and STM32F746xx devices operate in the –40 to +105 °C temperature
range from a 1.7 to 3.6 V power supply. A dedicated supply input for USB (OTG_FS and
OTG_HS) is available on all the packages except LQFP100 for a greater power supply
choice.
The supply voltage can drop to 1.7 V with the use of an external power supply supervisor
(refer to Section 2.17.2: Internal reset OFF). A comprehensive set of power-saving mode
allows the design of low-power applications.
The STM32F745xx and STM32F746xx devices offer devices in 7 packages ranging from
100 pins to 216 pins. The set of included peripherals changes with the device chosen.
STM32F745xx STM32F746xx Description
DocID027590 Rev 3 13/222
These features make the STM32F745xx and STM32F746xx microcontrollers suitable for a wide range of applications:
Motor drive and application control,
Medical equipment,
Industrial applications: PLC, inverters, circuit breakers,
Printers, and scanners,
Alarm systems, video intercom, and HVAC,
Home audio appliances,
Mobile applications, Internet of Things,
Wearable devices: smartwatches.
Figure 2 shows the general block diagram of the device family.
Table 2. STM32F745xx and STM32F746xx features and peripheral counts
Peripherals STM32F745Vx STM32F746Vx STM32F745Zx STM32F746Zx STM32F745Ix STM32F746Ix STM32F745Bx STM32F746Bx STM32F745Nx STM32F746Nx
Flash memory in Kbytes 512 1024 512 1024 512 1024 512 1024 512 1024 512 1024 512 1024 512 1024 512 1024 512 1024
SRAM in
Kbytes
System 320(240+16+64)
Instruction 16
Backup 4
FMC memory controller Yes(1)
Ethernet Yes
Timers
General-
purpose 10
Advanced-
control 2
Basic 2
Low-power 1
Random number generator Yes
Description STM32F745xx STM32F746xx
14/222 DocID027590 Rev 3
Communication
interfaces
SPI / I2S 4/3 (simplex)(2) 6/3 (simplex)(2)
I2C 4
USART/
UART 4/4
USB OTG
FS Yes
USB OTG
HS Yes
CAN 2
SAI 2
SPDIFRX 4 inputs
SDMMC Yes
Camera interface Yes
LCD-TFT No Yes No Yes No Yes No Yes No Yes
Chrom-ART Accelerator™
(DMA2D) Yes
GPIOs 82 114 140 168
12-bit ADC
Number of channels
3
16 24
12-bit DAC
Number of channels
Yes
2
Maximum CPU frequency 216 MHz(3)
Operating voltage 1.7 to 3.6 V(4)
Operating temperatures
Ambient temperatures: –40 to +85 °C /–40 to +105 °C
Junction temperature: –40 to + 125 °C
Package LQFP100 WLCSP143
LQFP144
UFBGA176
LQFP176 LQFP208 TFBGA216
1. For the LQFP100 package, only FMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select.
2. The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.
3. 216 MHz maximum frequency for -40°C to + 85°C ambient temperature range (200 MHz maximum frequency for -40°C to + 105°C ambient temperature range).
4. VDD/VDDA minimum value of 1.7 V is obtained when the internal reset is OFF (refer to Section 2.17.2: Internal reset OFF).
Table 2. STM32F745xx and STM32F746xx features and peripheral counts (continued)
Peripherals STM32F745Vx STM32F746Vx STM32F745Zx STM32F746Zx STM32F745Ix STM32F746Ix STM32F745Bx STM32F746Bx STM32F745Nx STM32F746Nx
DocID027590 Rev 3 15/222
STM32F745xx STM32F746xx Description
44
1.1 Full compatibility throughout the family
The STM32F745xx and STM32F746xx devices are fully pin-to-pin, compatible with the
STM32F4xxxx devices, allowing the user to try different peripherals, and reaching higher
performances (higher frequency) for a greater degree of freedom during the development
cycle.
Figure 1 give compatible board designs between the STM32F4xx families.
Figure 1. Compatible board design for LQFP100 package
The STM32F745xx and STM32F746xx LQFP144, LQFP176, LQFP208, TFBGA216,
UFBGA176, WLCSP143 packages are fully pin to pin compatible with STM32F4xxxx
devices.
06Y9








3&
9''
966$
95()
9''$

3$
966
9''
3$
3$
3$
3$
3&
3%
3%
3%
3(
3(
3(
3(
3(
3(
3(
3(
3&
3%
3%
9&$3
9''
3(
670)[[670)[[
670)[[670)[[
670)[[670)[[
670)[[670)[[
670)[[670)[[









966
9''
966
3$
3$
3$
3$
3&
3%
3%
3%
3(
3(
3(
3(
3(
3(
3(
3(
3&
3%
3%
9&$3
9''
3(
3&
966$
95()
9''$
3LQVWRDUHQRWFRPSDWLEOH
3$:.83
3$
3$
3$
3$:.83
3$
3$
Description STM32F745xx STM32F746xx
16/222 DocID027590 Rev 3
Figure 2. STM32F745xx and STM32F746xx block diagram
1. The timers connected to APB2 are clocked from TIMxCLK up to 216 MHz, while the timers connected to APB1 are clocked
from TIMxCLK either up to 108 MHz or 216 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.
06Y9
'W/KWKZd
,WϮ
yd/dt<hW
ϭϲϴ&
W΀ϭϱϬ΁
d/DϭWtD
ϰĐŽŵƉůĐŚĂŶ;d/Dϭͺ,ϭ΀ϭϰ΁EͿ
ϰĐŚĂŶ;d/Dϭͺ,ϭ΀ϭϰ΁dZ
</EĂƐ&
h^Zdϭ
Zydy<
d^Zd^ĂƐ&
^W/ϭ/Ϯ^ϭ
W Ϯ ϲϬ D ,nj
Wϭ ϯϬD,nj
ϴĂŶĂůŽŐŝŶƉƵƚƐĐŽŵŵŽŶ
ƚŽƚŚĞϯƐ
sZ&ͺ
hZdϰ
DK^/^^<<
E^^t^D<ĂƐ&
^W/ϯ/Ϯ^ϯ
dyZy
ďdžEϮ
ͺKhdϭ
ĂƐ&
/d&
tt'
ϰ<<W^ZD
K^ϯϮͺ/E
K^ϯϮͺKhd
ss^^
EZ^d
ƐŵĐĂƌĚ
ŝƌ
ϭϲď
^DDϭ
΀ϳϬ΁
D<ĂƐ&
sdсϭϲϱƚŽϯϲs
DϮ
^>^^DĂƐ&
/Ϯϯ^Dh^
ƚŚĞƌŶĞƚD
ϭϬϭϬϬ
D
&/&K
D//ŽƌZD//ĂƐ&
D/KĂƐ&
h^
Kd',^
WD
h>W/<΀ϳϬ΁/Z^dWEyd
/sh^^K&
DϮ
6WUHDPV
),)2
Zd
^ZDϭϮϰϬ<
><E΀ϯϬ΁΀ϮϯϬ΁
΀ϯϭϬ΁EKEEtE
E>΀ϯϬ΁^><΀ϭϬ΁^E΀ϭϬ΁
^EtE>
Et/d/EdZ
ZE'
ĂŵĞƌĂ
ŝŶƚĞƌĨĂĐĞ
,^zEs^zE
Wh/y><΀ϭϯϬ΁
W,z
h^
Kd'&^
W
D
/sh^^K&
&/&K
,ϭϮϭϲD,nj
W,z
&/&K
h^Z d ϮDƉƐ
dĞŵƉĞƌĂƚƵƌĞƐĞŶƐŽƌ
ϭ
Ϯ
ϯ
/&
/&
WKZWZ
KZ
^ƵƉƉůLJ
ƐƵƉĞƌǀŝƐŝŽŶ
Ws
/Ŷƚ
WKZ
ƌĞƐĞƚ
yd>ϯϮŬ,nj
DE ' d
Zd
Z ,^
Z >^
^ƚĂŶĚďLJ
ŝŶƚĞƌĨĂĐĞ
/t'
Λs
th
ZĞƐĞƚΘ
ĐůŽĐŬ
ĐŽŶƚƌŽů
W>>ϭϮϯ
W><dž
sсϭϳϭϴƚŽϯϲs
s^^
sWϭsWϮ
sŽůƚĂŐĞ
ƌĞŐƵůĂƚŽƌ
ϭϮs
s WŽǁĞƌŵĂŶĂŐŵƚ
ĂĐŬƵƉƌĞŐŝƐƚĞƌ
,ďƵƐͲŵĂƚƌŝdžϴ^ϳD
WϮϭϬϴD,nj;ŵĂdžͿ
>^
d/Dϭϰ
d/Dϵ
ϮĐŚĂŶŶĞůƐĂƐ&
ƵĂů
ĐŚĂŶŶĞůƐ
&>^,ϭD
d/Dϲ
d/Dϳ
d/DϮ
d/Dϯ
d/Dϰ
d/Dϱ
d/DϭϮ
&/&K
WϭϱϰD,nj;ŵĂdžͿ
^ZDϮϭϲ<
,ϮϮϭϲD,nj
D
&/&K
Dϭ
6WUHDPV
),)2
W΀ϭϱϬ΁
W΀ϭϱϬ΁
W΀ϭϱϬ΁
W΀ϭϱϬ΁
W&΀ϭϱϬ΁
W'΀ϭϱϬ΁
W,΀ϭϱϬ΁
W/΀ϭϱϬ΁
'W/KWKZd
'W/KWKZd
'W/KWKZd
'W/KWKZd
'W/KWKZd&
'W/KWKZd'
'W/KWKZd,
'W/KWKZd/
d/DϴWtD ϭϲď
ϭϲď
d/DϭϬ ϭϲď
d/Dϭϭ ϭϲď
ƐŵĐĂƌĚ
ŝƌ h^Zdϲ
ϰĐŽŵƉůĐŚĂŶ;d/Dϴͺ,ϭ΀ϭϰ΁EͿ
ϰĐŚĂŶ;d/Dϴͺ,ϭ΀ϭϰ΁dZ
</EĂƐ&
ϭĐŚĂŶŶĞůĂƐ&
ϭĐŚĂŶŶĞůĂƐ&
Zydy<
d^Zd^ĂƐ&
ϴĂŶĂůŽŐŝŶƉƵƚƐĐŽŵŵŽŶ
ƚŽƚŚĞϭΘϮ
ϴĂŶĂůŽŐŝŶƉƵƚƐĨŽƌϯ
ͺKhdϮ
ĂƐ&
ϭϲď
ϭϲď
ďdžEϭ
/ϮϮ^Dh^
/Ϯϭ^Dh^
^>^^DĂƐ&
^>^^DĂƐ&
^W/Ϯ/Ϯ^Ϯ DK^/^^<<
E^^t^D<ĂƐ&
dyZy
ZydyĂƐ&
ZydyĂƐ&
ZydyĂƐ&
d^Zd^ĂƐ&
ZydyĂƐ&
d^Zd^ĂƐ&
ϭĐŚĂŶŶĞůĂƐ&
hZdϱ
h^Zdϯ
h^ZdϮ
ƐŵĐĂƌĚ
ŝƌ
ƐŵĐĂƌĚ
ŝƌ
ϭϲď
ϭϲď
ϭϲď
ϭĐŚĂŶŶĞůĂƐ&
d/Dϭϯ
ϮĐŚĂŶŶĞůƐĂƐ&
ϯϮď
ϭϲď
ϭϲď
ϯϮď
ϰĐŚĂŶŶĞůƐ
ϰĐŚĂŶŶĞůƐdZĂƐ&
ϰĐŚĂŶŶĞůƐdZĂƐ&
ϰĐŚĂŶŶĞůƐdZĂƐ&
Dϭ
,Wϭ
>^
K^ͺ/E
K^ͺKhd
,><dž
yd>K^
ϰͲϮϲD,nj
&/&K
^W/ϰ
^<E^^ĂƐ&
^W/ϱ
^<E^^ĂƐ&
DK^/D/^K
DK^/D/^K
^W/ϲ
^<E^^ĂƐ&
DK^/D/^K
ZydyĂƐ&
hZdϳ
ZydyĂƐ&
hZdϴ
),)2
>Ͳd&d
),)2
,ZKDͲZd
;DϮͿ
W:΀ϭϱϬ΁ 'W/KWKZd:
W<΀ϳϬ΁ 'W/KWKZd<
^/ϭ
^^<&^D><ĂƐ&
&/&K
EZ^E^Es
>ͺZ΀ϳϬ΁>ͺ'΀ϳϬ΁>ͺ΀ϳϬ΁
>ͺ,^zE>ͺs^zE>ͺ
>ͺ><
Zdͺ&ϭ
Zdͺ&ϭ
ZdͺϱϬ,
ZD
ŽƌƚĞdžͲDϳ
y/D
,W
,^
dD
/dD
dZ<
dZ΀ϯϬ΁
:dZ^d:d/
:d<^t><
:dK^t:dK
:d'Θ^t
Es/
dD
DWh
dDZDϲϰ<
/dDZDϭϲ<
YƵĂĚͲ^W/ ><^΀ϯϬ΁
,h^ͲDdZ/yϭϭ^ϴD
sh^сϯϬƚŽϯϲs
t<hW΀ϰϬ΁
>Wd/Dϭ ϭϲď
,D/ͺĂƐ&
,D/Ͳ
^W/&Zy ^W/&Zy΀ϯϬ΁ĂƐ&
^>^^DĂƐ&
/Ϯϰ^Dh^
^/Ϯ
^^<&^D><ĂƐ&
&/&K
džƚĞƌŶĂůŵĞŵŽƌLJĐŽŶƚƌŽůůĞƌ;&DͿ
^ZD^ZDW^ZDEKZ&ůĂƐŚ
EE&ůĂƐŚ
ϮϭϲD,nj
/ͲĂĐŚĞ
ϰ<
ͲĂĐŚĞ
ϰ<
,Ϯy/
Λs
ΛsΛs
Λsd
ŝŐŝƚĂůĨŝůƚĞƌ
Λs
Λs
DK^/^^<<
E^^t^D<ĂƐ&
DocID027590 Rev 3 17/222
STM32F745xx STM32F746xx Functional overview
44
2 Functional overview
2.1 ARM® Cortex®-M7 with FPU
The ARM® Cortex®-M7 with FPU processor is the latest generation of ARM processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
MCU implementation, with a reduced pin count and a low-power consumption, while
delivering an outstanding computational performance and low interrupt latency.
The Cortex®-M7 processor is a highly efficient high-performance featuring:
Six-stage dual-issue pipeline
Dynamic branch prediction
Harvard caches (4 Kbytes of I-cache and 4 Kbytes of D-cache)
64-bit AXI4 interface
64-bit ITCM interface
2x32-bit DTCM interfaces
The processor supports the following memory interfaces:
Tightly Coupled Memory (TCM) interface.
Harvard instruction and data caches and AXI master (AXIM) interface.
Dedicated low-latency AHB-Lite peripheral (AHBP) interface.
The processor supports a set of DSP instructions which allow efficient signal processing and
complex algorithm execution.
Its single precision FPU (floating point unit) speeds up the software development by using
metalanguage development tools, while avoiding saturation.
Figure 2 shows the general block diagram of the STM32F745xx and STM32F746xx
devices.
Note: Cortex®-M7 with FPU core is binary compatible with the Cortex®-M4 core.
2.2 Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4
gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-
time operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
Functional overview STM32F745xx STM32F746xx
18/222 DocID027590 Rev 3
2.3 Embedded Flash memory
The STM32F745xx and STM32F746xx devices embed a Flash memory of up to 1 Mbytes
available for storing programs and data.
2.4 CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify the data transmission
or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a mean of
verifying the Flash memory integrity. The CRC calculation unit helps to compute a signature
of the software during runtime, to be compared with a reference signature generated at link-
time and stored at a given memory location.
2.5 Embedded SRAM
All the devices features:
System SRAM up to 320 Kbytes:
SRAM1 on AHB bus Matrix: 240 Kbytes
SRAM2 on AHB bus Matrix: 16 Kbytes
DTCM-RAM on TCM interface (Tighly Coupled Memory interface): 64 Kbytes for
critical real time data.
Instruction RAM (ITCM-RAM) 16 Kbytes:
It is mapped on TCM interface and reserved only for CPU Execution/Instruction
useful for critical real time routines.
The Data TCM RAM is accessible by the GP-DMAs and peripherals DMAs through specific
AHB slave of the CPU.The TCM RAM instruction is reserved only for CPU. It is accessed at
CPU clock speed with 0-wait states.
4 Kbytes of backup SRAM
This area is accessible only from the CPU. Its content is protected against possible
unwanted write accesses, and is retained in Standby or VBAT mode.
2.6 AXI-AHB bus matrix
The STM32F745xx and STM32F746xx system architecture is based on 2 sub-systems:
An AXI to multi AHB bridge converting AXI4 protocol to AHB-Lite protocol:
3x AXI to 32-bit AHB bridges connected to AHB bus matrix
1x AXI to 64-bit AHB bridge connected to the embedded flash
A multi-AHB Bus-Matrix:
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs,
Ethernet, USB HS, LCD-TFT, and DMA2D) and the slaves (Flash memory, RAM,
FMC, Quad-SPI, AHB and APB peripherals) and ensures a seamless and an
efficient operation even when several high-speed peripherals work
simultaneously.
DocID027590 Rev 3 19/222
STM32F745xx STM32F746xx Functional overview
44
Figure 3. STM32F745xx and STM32F746xx AXI-AHB bus matrix architecture
1. The above figure has large wires for 64-bits bus and thin wires for 32-bits bus.
2.7 DMA controller (DMA)
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8
streams each. They are able to manage memory-to-memory, peripheral-to-memory and
memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals,
support burst transfer and are designed to provide the maximum peripheral bandwidth
(AHB/APB).
The two DMA controllers support circular buffer management, so that no specific code is
needed when the controller reaches the end of the buffer. The two DMA controllers also
have a double buffering feature, which automates the use and switching of two memory
buffers without requiring any special code.
069
ZDŽƌƚĞdžͲDϳ
ϯϮͲďŝƚƵƐDĂƚƌŝdžͲ^
Zd
&>^,
ϭD
^ZDϭ
ϮϰϬ<
^ZDϮ
ϭϲ<
,
ƉĞƌŝƉŚϮ
&DĞdžƚĞƌŶĂů
DĞŵƚů
YƵĂĚͲ^W/
,W
y/ƚŽ
ŵƵůƚŝͲ,
,
WĞƌŝƉŚϭ
dDZD
/dDZD
dD
/dD
y/D
ϭϲ<
ϲϰ<
ϲϰͲďŝƚ,
ϲϰͲďŝƚƵ^DĂƚƌŝdž
/dD
Wϭ
WϮ
,^
,'&DFKH
.%
'W
Dϭ
'W
DϮ
D
ƚŚĞƌŶĞƚ
h^Kd'
,^
DͺW/
DͺDDϭ
DͺDDϮ
DͺWϮ
d,ZEdͺD
h^ͺ,^ͺD
>Ͳd&d ŚƌŽŵͲZd
>Ͳd&dͺD
DϮ
ĐĐĞůĞƌĂƚŽƌ
;DϮͿ
Functional overview STM32F745xx STM32F746xx
20/222 DocID027590 Rev 3
Each stream is connected to dedicated hardware DMA requests, with support for software
trigger on each stream. Configuration is made by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals:
SPI and I2S
I2C
USART
General-purpose, basic and advanced-control timers TIMx
DAC
SDMMC
Camera interface (DCMI)
ADC
SAI
SPDIFRX
Quad-SPI
HDMI-CEC
2.8 Flexible memory controller (FMC)
The Flexible memory controller (FMC) includes three memory controllers:
The NOR/PSRAM memory controller
The NAND/memory controller
The Synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) controller
The main features of the FMC controller are the following:
Interface with static-memory mapped devices including:
Static random access memory (SRAM)
NOR Flash memory/OneNAND Flash memory
PSRAM (4 memory banks)
NAND Flash memory with ECC hardware to check up to 8 Kbytes of data
Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories
8-,16-,32-bit data bus width
Independent Chip Select control for each memory bank
Independent configuration for each memory bank
Write FIFO
Read FIFO for SDRAM controller
The Maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is
HCLK/2.
LCD parallel interface
The FMC can be configured to interface seamlessly with most graphic LCD controllers. It
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to
specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-
DocID027590 Rev 3 21/222
STM32F745xx STM32F746xx Functional overview
44
effective graphic applications using LCD modules with embedded controllers or high
performance solutions using external controllers with dedicated acceleration.
2.9 Quad-SPI memory interface (QUADSPI)
All devices embed a Quad-SPI memory interface, which is a specialized communication
interface targetting Single, Dual or Quad-SPI Flash memories. It can work in:
Direct mode through registers.
External flash status register polling mode.
Memory mapped mode.
Up to 256 Mbytes external flash are memory mapped, supporting 8, 16 and 32-bit access.
Code execution is supported.
The opcode and the frame format are fully programmable. Communication can be either in
Single Data Rate or Dual Data Rate.
2.10 LCD-TFT controller
The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue)
and delivers all signals to interface directly to a broad range of LCD and TFT panels up to
XGA (1024x768) resolution with the following features:
2 displays layers with dedicated FIFO (64x32-bit)
Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer
Up to 8 Input color formats selectable per layer
Flexible blending between two layers using alpha value (per pixel or constant)
Flexible programmable parameters for each layer
Color keying (transparency color)
Up to 4 programmable interrupt events.
2.11 Chrom-ART Accelerator™ (DMA2D)
The Chrom-Art Accelerator™ (DMA2D) is a graphic accelerator which offers advanced bit
blitting, row data copy and pixel format conversion. It supports the following functions:
Rectangle filling with a fixed color
Rectangle copy
Rectangle copy with pixel format conversion
Rectangle composition with blending and pixel format conversion.
Various image format coding are supported, from indirect 4bpp color mode up to 32bpp
direct color. It embeds dedicated memory to store color lookup tables.
An interrupt can be generated when an operation is complete or at a programmed
watermark.
All the operations are fully automatized and are running independently from the CPU or the
DMAs.
Functional overview STM32F745xx STM32F746xx
22/222 DocID027590 Rev 3
2.12 Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,
and handle up to 97 maskable interrupt channels plus the 16 interrupt lines of the Cortex®-
M7 with FPU core.
Closely coupled NVIC gives low-latency interrupt processing
Interrupt entry vector table address passed directly to the core
Allows early processing of interrupts
Processing of late arriving, higher-priority interrupts
Support tail chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
2.13 External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 24 edge-detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 168 GPIOs can be connected
to the 16 external interrupt lines.
2.14 Clocks and startup
On reset the 16 MHz internal HSI RC oscillator is selected as the default CPU clock. The
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy. The application can
then select as system clock either the RC oscillator or an external 4-26 MHz clock source.
This clock can be monitored for failure. If a failure is detected, the system automatically
switches back to the internal RC oscillator and a software interrupt is generated (if enabled).
This clock source is input to a PLL thus allowing to increase the frequency up to 216 MHz.
Similarly, full interrupt management of the PLL clock entry is available when necessary (for
example if an indirectly used external oscillator fails).
Several prescalers allow the configuration of the two AHB buses, the high-speed APB
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB
buses is 216 MHz while the maximum frequency of the high-speed APB domains is
108 MHz. The maximum allowed frequency of the low-speed APB domain is 54 MHz.
The devices embed two dedicated PLL (PLLI2S and PLLSAI) which allow to achieve audio
class performance. In this case, the I2S and SAI master clock can generate all standard
sampling frequencies from 8 kHz to 192 kHz.
DocID027590 Rev 3 23/222
STM32F745xx STM32F746xx Functional overview
44
2.15 Boot modes
At startup, the boot memory space is selected by the BOOT pin and BOOT_ADDx option
bytes, allowing to program any boot memory address from 0x0000 0000 to 0x3FFF FFFF
which includes:
All Flash address space mapped on ITCM or AXIM interface
All RAM address space: ITCM, DTCM RAMs and SRAMs mapped on AXIM interface
The System memory bootloader
The boot loader is located in system memory. It is used to reprogram the Flash memory
through a serial interface.
2.16 Power supply schemes
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
VDD = 1.7 to 3.6 Vexternal power supply for I/Os and the internal regulator (when
enabled), provided externally through VDD pins.
VSSA, VDDA = 1.7 to 3.6 V: external analog power supplies for ADC, DAC, reset blocks,
RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
Note: VDD/VDDA minimum value of 1.7 V is obtained when the internal reset is OFF (refer to
Section 2.17.2: Internal reset OFF). Refer to Table 3: Voltage regulator configuration mode
versus device operating mode to identify the packages supporting this option.
VDDUSB can be connected either to VDD or an external independent power supply (3.0
to 3.6V) for USB transceivers (refer to Figure 4 and Figure 5). For example, when
device is powered at 1.8V, an independent power supply 3.3V can be connected to
VDDUSB. When the VDDUSB is connected to a separated power supply, it is independent
from VDD or VDDA but it must be the last supply to be provided and the first to
disappear. The following conditions VDDUSB must be respected:
During power-on phase (VDD < VDD_MIN), VDDUSB should be always lower than
VDD
During power-down phase (VDD < VDD_MIN), VDDUSB should be always lower than
VDD
–V
DDSUB rising and falling time rate specifications must be respected (see Table 20
and Table 21)
In operating mode phase, VDDUSB could be lower or higher than VDD:
- If USB (USB OTG_HS/OTG_FS) is used, the associated GPIOs powered by
VDDUSB are operating between VDDUSB_MIN and VDDUSB_MAX.
- The VDDUSB supply both USB transceiver (USB OTG_HS and USB OTG_FS). If
only one USB transceiver is used in the application, the GPIOs associated to the
other USB transceiver are still supplied by VDDUSB.
- If USB (USB OTG_HS/OTG_FS) is not used, the associated GPIOs powered by
VDDUSB are operating between VDD_MIN and VDD_MAX.
Functional overview STM32F745xx STM32F746xx
24/222 DocID027590 Rev 3
Figure 4. VDDUSB connected to VDD power supply
Figure 5. VDDUSB connected to external power supply
2.17 Power supply supervisor
2.17.1 Internal reset ON
On packages embedding the PDR_ON pin, the power supply supervisor is enabled by
holding PDR_ON high. On the other packages, the power supply supervisor is always
enabled.
The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and
ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is
9
''B0,1
WLPH
9
''
9
''$
9
''86%
3RZHURQ 3RZHUGRZQ
2SHUDWLQJPRGH
9
''B0$;
9''
069
069
9
''86%B0,1
9
''B0,1
WLPH
9
''86%B0$;
86% IXQFWLRQDODUHD
9
''
9
''$
86%QRQ
IXQFWLRQDO
DUHD
9
''86%
3RZHURQ 3RZHUGRZQ
2SHUDWLQJPRGH
86%QRQ
IXQFWLRQDO
DUHD
DocID027590 Rev 3 25/222
STM32F745xx STM32F746xx Functional overview
44
reached, the option byte loading process starts, either to confirm or modify default BOR
thresholds, or to disable BOR permanently. Three BOR thresholds are available through
option bytes. The device remains in reset mode when VDD is below a specified threshold,
VPOR/PDR or VBOR, without the need for an external reset circuit.
The device also features an embedded programmable voltage detector (PVD) that monitors
the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
2.17.2 Internal reset OFF
This feature is available only on packages featuring the PDR_ON pin. The internal power-on
reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin.
An external power supply supervisor should monitor VDD and should maintain the device in
reset mode as long as VDD is below a specified threshold. PDR_ON should be connected to
VSS. Refer to Figure 6: Power supply supervisor interconnection with internal reset OFF.
Figure 6. Power supply supervisor interconnection with internal reset OFF
The VDD specified threshold, below which the device must be maintained under reset, is
1.7 V (see Figure 7).
A comprehensive set of power-saving mode allows to design low-power applications.
When the internal reset is OFF, the following integrated features are no more supported:
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
The brownout reset (BOR) circuitry must be disabled
The embedded programmable voltage detector (PVD) is disabled
VBAT functionality is no more available and VBAT pin should be connected to VDD.
All the packages, except for the LQFP100, allow to disable the internal reset through the
PDR_ON signal when connected to VSS.
3'5B21
3'5QRWDFWLYHY9''Y
9%$7
$SSOLFDWLRQUHVHW
VLJQDORSWLRQDO
06Y9
9''
966
Functional overview STM32F745xx STM32F746xx
26/222 DocID027590 Rev 3
Figure 7. PDR_ON control with internal reset OFF
2.18 Voltage regulator
The regulator has four operating modes:
Regulator ON
Main regulator mode (MR)
Low-power regulator (LPR)
Power-down
Regulator OFF
2.18.1 Regulator ON
On packages embedding the BYPASS_REG pin, the regulator is enabled by holding
BYPASS_REG low. On all other packages, the regulator is always enabled.
There are three power modes configured by software when the regulator is ON:
MR mode used in Run/sleep modes or in Stop modes
In Run/Sleep mode
The MR mode is used either in the normal mode (default mode) or the over-drive
mode (enabled by software). Different voltages scaling are provided to reach the
best compromise between the maximum frequency and dynamic power
069
9''
WLPH
3'5 9
WLPH
1567
3'5B21 3'5B21
5HVHWE\RWKHUVRXUFHWKDQ
SRZHUVXSSO\VXSHUYLVRU
DocID027590 Rev 3 27/222
STM32F745xx STM32F746xx Functional overview
44
consumption. The over-drive mode allows operating at a higher frequency than
the normal mode for a given voltage scaling.
In Stop modes
The MR can be configured in two ways during Stop mode:
MR operates in normal mode (default mode of MR in Stop mode)
MR operates in under-drive mode (reduced leakage mode).
LPR is used in the Stop modes:
The LP regulator mode is configured by software when entering Stop mode.
Like the MR mode, the LPR can be configured in two ways during Stop mode:
LPR operates in normal mode (default mode when LPR is ON)
LPR operates in under-drive mode (reduced leakage mode).
Power-down is used in Standby mode.
The Power-down mode is activated only when entering in Standby mode. The regulator
output is in high impedance and the kernel circuitry is powered down, inducing zero
consumption. The contents of the registers and SRAM are lost.
Refer to Table 3 for a summary of voltage regulator modes versus device operating modes.
Two external ceramic capacitors should be connected on VCAP_1 and VCAP_2 pin.
All packages have the regulator ON feature.
2.18.2 Regulator OFF
This feature is available only on packages featuring the BYPASS_REG pin. The regulator is
disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply
externally a V12 voltage source through VCAP_1 and VCAP_2 pins.
Since the internal voltage scaling is not managed internally, the external voltage value must
be aligned with the targeted maximum frequency.The two 2.2 µF ceramic capacitors should
be replaced by two 100 nF decoupling capacitors.
When the regulator is OFF, there is no more internal monitoring on V12. An external power
supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin
should be used for this purpose, and act as power-on reset on V12 power domain.
Table 3. Voltage regulator configuration mode versus device operating mode(1)
1. ‘-’ means that the corresponding configuration is not available.
Voltage regulator
configuration Run mode Sleep mode Stop mode Standby mode
Normal mode MR MR MR or LPR -
Over-drive
mode(2)
2. The over-drive mode is not available when VDD = 1.7 to 2.1 V.
MR MR - -
Under-drive mode - - MR or LPR -
Power-down mode - - - Yes
Functional overview STM32F745xx STM32F746xx
28/222 DocID027590 Rev 3
In regulator OFF mode, the following features are no more supported:
PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power
domain which is not reset by the NRST pin.
As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As
a consequence, PA0 and NRST pins must be managed separately if the debug
connection under reset or pre-reset is required.
The over-drive and under-drive modes are not available.
The Standby mode is not available.
Figure 8. Regulator OFF
The following conditions must be respected:
VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection
between power domains.
If the time for VCAP_1 and VCAP_2 to reach V12 minimum value is faster than the time for
VDD to reach 1.7 V, then PA0 should be kept low to cover both conditions: until VCAP_1
and VCAP_2 reach V12 minimum value and until VDD reaches 1.7 V (see Figure 9).
Otherwise, if the time for VCAP_1 and VCAP_2 to reach V12 minimum value is slower
than the time for VDD to reach 1.7 V, then PA0 could be asserted low externally (see
Figure 10).
If VCAP_1 and VCAP_2 go below V12 minimum value and VDD is higher than 1.7 V, then a
reset must be asserted on PA0 pin.
Note: The minimum value of V12 depends on the maximum frequency targeted in the application.
DocID027590 Rev 3 29/222
STM32F745xx STM32F746xx Functional overview
44
Figure 9. Startup in regulator OFF: slow VDD slope
- power-down reset risen after VCAP_1/VCAP_2 stabilization
1. This figure is valid whatever the internal reset mode (ON or OFF).
Figure 10. Startup in regulator OFF mode: fast VDD slope
- power-down reset risen before VCAP_1/VCAP_2 stabilization
1. This figure is valid whatever the internal reset mode (ON or OFF).
DLI
9''
WLPH
0LQ9
3'5 9RU9 9&$3B9&$3B
9
1567
WLPH
9''
WLPH
0LQ9
9&$3B9&$3B
9
3$DVVHUWHGH[WHUQDOO\
1567
WLPH DLH
3'5 9RU9
Functional overview STM32F745xx STM32F746xx
30/222 DocID027590 Rev 3
2.18.3 Regulator ON/OFF and internal reset ON/OFF availability
2.19 Real-time clock (RTC), backup SRAM and backup registers
The RTC is an independent BCD timer/counter. It supports the following features:
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
Two programmable alarms.
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal
inaccuracy.
Three anti-tamper detection pins with programmable filter.
Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to
VBAT mode.
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable
resolution and period.
The RTC and the 32 backup registers are supplied through a switch that takes power either
from the VDD supply when present or from the VBAT pin.
The backup registers are 32-bit registers used to store 128 bytes of user application data
when VDD power is not present. They are not reset by a system or power reset, or when the
device wakes up from Standby mode.
The RTC clock sources can be:
A 32.768 kHz external crystal (LSE)
An external resonator or oscillator(LSE)
The internal low-power RC oscillator (LSI, with typical frequency of 32 kHz)
The high-speed external clock (HSE) divided by 32.
Table 4. Regulator ON/OFF and internal reset ON/OFF availability
Package Regulator ON Regulator OFF Internal reset ON Internal reset OFF
LQFP100
Yes No
Yes No
LQFP144,
LQFP208 Yes
PDR_ON set to
VDD
Yes
PDR_ON set to
VSS
LQFP176,
WLCSP143,
UFBGA176,
TFBGA216
Yes
BYPASS_REG set
to VSS
Yes
BYPASS_REG set
to VDD
DocID027590 Rev 3 31/222
STM32F745xx STM32F746xx Functional overview
44
The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the
LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in
all low-power modes.
All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt
and wakeup the device from the low-power modes.
2.20 Low-power modes
The devices support three low-power modes to achieve the best compromise between low-
power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
Stop mode
The Stop mode achieves the lowest power consumption while retaining the contents of
SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled.
The voltage regulator can be put either in main regulator mode (MR) or in low-power
mode (LPR). Both modes can be configured as follows (see Table 5: Voltage regulator
modes in Stop mode):
Normal mode (default mode when MR or LPR is enabled)
Under-drive mode.
The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line
source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup /
tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup and
LPTIM1 asynchronous interrupt).
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.2 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, the SRAM and register contents are lost except for registers in the
backup domain and the backup SRAM when selected.
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,
a rising or falling edge on one of the 6 WKUP pins (PA0, PA2, PC1, PC13, PI8, PI11),
or an RTC alarm / wakeup / tamper /time stamp event occurs.
The Standby mode is not supported when the embedded voltage regulator is bypassed
and the 1.2 V domain is controlled by an external power.
Table 5. Voltage regulator modes in Stop mode
Voltage regulator
configuration Main regulator (MR) Low-power regulator (LPR)
Normal mode MR ON LPR ON
Under-drive mode MR in under-drive mode LPR in under-drive mode
Functional overview STM32F745xx STM32F746xx
32/222 DocID027590 Rev 3
2.21 VBAT operation
The VBAT pin allows to power the device VBAT domain from an external battery, an external
supercapacitor, or from VDD when no external battery and an external supercapacitor are
present.
VBAT operation is activated when VDD is not present.
The VBAT pin supplies the RTC, the backup registers and the backup SRAM.
Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation.
When PDR_ON pin is connected to VSS (Internal Reset OFF), the VBAT functionality is no
more available and VBAT pin should be connected to VDD.
2.22 Timers and watchdogs
The devices include two advanced-control timers, eight general-purpose timers, two basic
timers and two watchdog timers.
All timer counters can be frozen in debug mode.
Table 6 compares the features of the advanced-control, general-purpose and basic timers.
DocID027590 Rev 3 33/222
STM32F745xx STM32F746xx Functional overview
44
Table 6. Timer feature comparison
Timer
type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complem
entary
output
Max
interfac
e clock
(MHz)
Max
timer
clock
(MHz)(1)
Advance
d-control
TIM1,
TIM8 16-bit
Up,
Down,
Up/down
Any
integer
between 1
and 65536
Yes 4 Yes 108 216
General
purpose
TIM2,
TIM5 32-bit
Up,
Down,
Up/down
Any
integer
between 1
and 65536
Yes 4 No 54 108/216
TIM3,
TIM4 16-bit
Up,
Down,
Up/down
Any
integer
between 1
and 65536
Yes 4 No 54 108/216
TIM9 16-bit Up
Any
integer
between 1
and 65536
No 2 No 108 216
TIM10,
TIM11 16-bit Up
Any
integer
between 1
and 65536
No 1 No 108 216
TIM12 16-bit Up
Any
integer
between 1
and 65536
No 2 No 54 108/216
TIM13,
TIM14 16-bit Up
Any
integer
between 1
and 65536
No 1 No 54 108/216
Basic TIM6,
TIM7 16-bit Up
Any
integer
between 1
and 65536
Yes 0 No 54 108/216
1. The maximum timer clock is either 108 or 216 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR
register.
Functional overview STM32F745xx STM32F746xx
34/222 DocID027590 Rev 3
2.22.1 Advanced-control timers (TIM1, TIM8)
The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators
multiplexed on 6 channels. They have complementary PWM outputs with programmable
inserted dead times. They can also be considered as complete general-purpose timers.
Their 4 independent channels can be used for:
Input capture
Output compare
PWM generation (edge- or center-aligned modes)
One-pulse mode output
If configured as standard 16-bit timers, they have the same features as the general-purpose
TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-
100%).
The advanced-control timer can work together with the TIMx timers via the Timer Link
feature for synchronization or event chaining.
TIM1 and TIM8 support independent DMA request generation.
2.22.2 General-purpose timers (TIMx)
There are ten synchronizable general-purpose timers embedded in the STM32F74xxx
devices (see Table 6 for differences).
TIM2, TIM3, TIM4, TIM5
The STM32F74xxx include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3,
and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload
up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-
bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent
channels for input capture/output compare, PWM or one-pulse mode output. This gives
up to 16 input capture/output compare/PWMs on the largest packages.
The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the
other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the
Timer Link feature for synchronization or event chaining.
Any of these general-purpose timers can be used to generate PWM outputs.
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are
capable of handling quadrature (incremental) encoder signals and the digital outputs
from 1 to 4 hall-effect sensors.
TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9
and TIM12 have two independent channels for input capture/output compare, PWM or
one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5
full-featured general-purpose timers. They can also be used as simple time bases.
DocID027590 Rev 3 35/222
STM32F745xx STM32F746xx Functional overview
44
2.22.3 Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger and waveform generation. They can also be
used as a generic 16-bit time base.
TIM6 and TIM7 support independent DMA request generation.
2.22.4 Low-power timer (LPTIM1)
The low-power timer has an independent clock and is running also in Stop mode if it is
clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode.
This low-power timer supports the following features:
16-bit up counter with 16-bit autoreload register
16-bit compare register
Configurable output: pulse, PWM
Continuous / one-shot mode
Selectable software / hardware input trigger
Selectable clock source:
Internal clock source: LSE, LSI, HSI or APB clock
External clock source over LPTIM input (working even with no internal clock source
running, used by the Pulse Counter Application)
Programmable digital glitch filter
Encoder mode
2.22.5 Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes.
2.22.6 Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
2.22.7 SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
downcounter. It features:
A 24-bit downcounter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source.
Functional overview STM32F745xx STM32F746xx
36/222 DocID027590 Rev 3
2.23 Inter-integrated circuit interface (I2C)
The device embeds 4 I2C. Refer to Table 7: I2C implementation for the features
implementation.
The I2C bus interface handles communication between the microcontroller and the serial
I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing.
The I2C peripheral supports:
I2C-bus specification and user manual rev. 5 compatibility:
Slave and master modes, multimaster capability
Standard-mode (Sm), with a bitrate up to 100 kbit/s
Fast-mode (Fm), with a bitrate up to 400 kbit/s
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
Programmable setup and hold times
Optional clock stretching
System Management Bus (SMBus) specification rev 2.0 compatibility:
Hardware PEC (Packet Error Checking) generation and verification with ACK
control
Address resolution protocol (ARP) support
SMBus alert
Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility
Independent clock: a choice of independent clock sources allowing the I2C
communication speed to be independent from the PCLK reprogramming.
Programmable analog and digital noise filters
1-byte buffer with DMA capability
Table 7. I2C implementation
I2C features(1)
1. X: supported
I2C1 I2C2 I2C3 I2C4
Standard-mode (up to 100 kbit/s) X X X X
Fast-mode (up to 400 kbit/s) X X X X
Programmable analog and digital noise filters X X X X
SMBus/PMBus hardware support X X X X
Independent clock X X X X
DocID027590 Rev 3 37/222
STM32F745xx STM32F746xx Functional overview
44
2.24 Universal synchronous/asynchronous receiver transmitters
(USART)
The device embeds USART. Refer to Table 8: USART implementation for the features
implementation.
The universal synchronous asynchronous receiver transmitter (USART) offers a flexible
means of full-duplex data exchange with external equipment requiring an industry standard
NRZ asynchronous serial data format.
The USART peripheral supports:
Full-duplex asynchronous communications
Configurable oversampling method by 16 or 8 to give flexibility between speed and
clock tolerance
Dual clock domain allowing convenient baud rate programming independent from the
PCLK reprogramming
A common programmable transmit and receive baud rate of up to 27 Mbit/s when
USART clock source is system clock frequency (Max is 216 MHz) and oversampling by
8 is used.
Auto baud rate detection
Programmable data word length (7 or 8 or 9 bits) word length
Programmable data order with MSB-first or LSB-first shifting
Programmable parity (odd, even, no parity)
Configurable stop bits (1 or 1.5 or 2 stop bits)
Synchronous mode and clock output for synchronous communications
Single-wire half-duplex communications
Separate signal polarity control for transmission and reception
Swappable Tx/Rx pin configuration
Hardware flow control for modem and RS-485 transceiver
Multiprocessor communications
LIN master synchronous break send capability and LIN slave break detection capability
IrDA SIR encoder decoder supporting 3/16 bit duration for normal mode
Smartcard mode ( T=0 and T=1 asynchronous protocols for Smartcards as defined in
the ISO/IEC 7816-3 standard )
Support for Modbus communication
The table below summarizes the implementation of all U(S)ARTs instances
Table 8. USART implementation
features(1) USART1/2/3/6 UART4/5/7/8
Data Length 7, 8 and 9 bits
Hardware flow control for modem X X
Continuous communication using DMA X X
Multiprocessor communication X X
Synchronous mode X -
Functional overview STM32F745xx STM32F746xx
38/222 DocID027590 Rev 3
2.25 Serial peripheral interface (SPI)/inter- integrated sound
interfaces (I2S)
The devices feature up to six SPIs in slave and master modes in full-duplex and simplex
communication modes. SPI1, SPI4, SPI5, and SPI6 can communicate at up to 50 Mbits/s,
SPI2 and SPI3 can communicate at up to 25 Mbit/s. The 3-bit prescaler gives 8 master
mode frequencies and the frame is configurable from 4 to 16 bits. The SPI interfaces
support NSS pulse mode, TI mode and Hardware CRC calculation. All SPIs can be served
by the DMA controller.
Three standard I2S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available. They
can be operated in master or slave mode, in simplex communication modes, and can be
configured to operate with a 16-/32-bit resolution as an input or output channel. Audio
sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the
I2S interfaces is/are configured in master mode, the master clock can be output to the
external DAC/CODEC at 256 times the sampling frequency.
All I2Sx can be served by the DMA controller.
2.26 Serial audio interface (SAI)
The devices embed two serial audio interfaces.
The serial audio interface is based on two independent audio subblocks which can operate
as transmitter or receiver with their FIFO. Many audio protocols are supported by each
block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF output,
supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both subblocks can be
configured in master or in slave mode.
In master mode, the master clock can be output to the external DAC/CODEC at 256 times of
the sampling frequency.
The two sub-blocks can be configured in synchronous mode when full-duplex mode is
required.
Smartcard mode X -
Single-wire half-duplex communication X X
IrDA SIR ENDEC block X X
LIN mode X X
Dual clock domain X X
Receiver timeout interrupt X X
Modbus communication X X
Auto baud rate detection X X
Driver Enable X X
1. X: supported.
Table 8. USART implementation (continued)
features(1) USART1/2/3/6 UART4/5/7/8
DocID027590 Rev 3 39/222
STM32F745xx STM32F746xx Functional overview
44
SAI1 and SAI2 can be served by the DMA controller
2.27 SPDIFRX Receiver Interface (SPDIFRX)
The SPDIFRX peripheral, is designed to receive an S/PDIF flow compliant with IEC-60958
and IEC-61937. These standards support simple stereo streams up to high sample rate,
and compressed multi-channel surround sound, such as those defined by Dolby or DTS (up
to 5.1).
The main features of the SPDIFRX are the following:
Up to 4 inputs available
Automatic symbol rate detection
Maximum symbol rate: 12.288 MHz
Stereo stream from 32 to 192 kHz supported
Supports Audio IEC-60958 and IEC-61937, consumer applications
Parity bit management
Communication using DMA for audio samples
Communication using DMA for control and user channel information
Interrupt capabilities
The SPDIFRX receiver provides all the necessary features to detect the symbol rate, and
decode the incoming data stream. The user can select the wanted SPDIF input, and when a
valid signal will be available, the SPDIFRX will re-sample the incoming signal, decode the
manchester stream, recognize frames, sub-frames and blocks elements. It delivers to the
CPU decoded data, and associated status flags.
The SPDIFRX also offers a signal named spdif_frame_sync, which toggles at the S/PDIF
sub-frame rate that will be used to compute the exact sample rate for clock drift algorithms.
2.28 Audio PLL (PLLI2S)
The devices feature an additional dedicated PLL for audio I2S and SAI applications. It allows
to achieve error-free I2S sampling clock accuracy without compromising on the CPU
performance, while using USB peripherals.
The PLLI2S configuration can be modified to manage an I2S/SAI sample rate change
without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.
The audio PLL can be programmed with very low error to obtain sampling rates ranging
from 8 KHz to 192 KHz.
In addition to the audio PLL, a master clock input pin can be used to synchronize the
I2S/SAI flow with an external PLL (or Codec output).
Functional overview STM32F745xx STM32F746xx
40/222 DocID027590 Rev 3
2.29 Audio and LCD PLL(PLLSAI)
An additional PLL dedicated to audio and LCD-TFT is used for SAI1 peripheral in case the
PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or
11.2896 MHz) and the audio application requires both sampling frequencies simultaneously.
The PLLSAI is also used to generate the LCD-TFT clock.
2.30 SD/SDIO/MMC card host interface (SDMMC)
An SDMMC host interface is available, that supports MultiMediaCard System Specification
Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.
The interface allows data transfer at up to 50 MHz, and is compliant with the SD Memory
card specification version 2.0.
The SDMMC card specification version 2.0 is also supported with two different databus
modes: 1-bit (default) and 4-bit.
The current version supports only one SD/SDMMC/MMC4.2 card at any one time and a
stack of MMC4.1 or previous.
The SDMMC can be served by the DMA controller
2.31 Ethernet MAC interface with dedicated DMA and IEEE 1588
support
The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for
ethernet LAN communications through an industry-standard medium-independent interface
(MII) or a reduced medium-independent interface (RMII). The microcontroller requires an
external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair,
fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals
for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller.
The devices include the following features:
Support of 10 and 100 Mbit/s rates
Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM
and the descriptors
Tagged MAC frame support (VLAN support)
Half-duplex (CSMA/CD) and full-duplex operation
MAC control sublayer (control frames) support
32-bit CRC generation and removal
Several address filtering modes for physical and multicast address (multicast and
group addresses)
32-bit status code for each transmitted or received frame
Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the
receive FIFO are both 2 Kbytes.
Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008
(PTP V2) with the time stamp comparator connected to the TIM2 input
Triggers interrupt when system time becomes greater than target time
DocID027590 Rev 3 41/222
STM32F745xx STM32F746xx Functional overview
44
2.32 Controller area network (bxCAN)
The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1
Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as
extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive
FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one
CAN is used). 256 bytes of SRAM are allocated for each CAN.
2.33 Universal serial bus on-the-go full-speed (OTG_FS)
The device embeds an USB OTG full-speed device/host/OTG peripheral with integrated
transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and
with the OTG 2.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that is
generated by a PLL connected to the HSE oscillator.
The major features are:
Combined Rx and Tx FIFO size of 1.28 Kbytes with dynamic FIFO sizing
Support of the session request protocol (SRP) and host negotiation protocol (HNP)
1 bidirectional control endpoint + 5 IN endpoints + 5 OUT endpoints
12 host channels with periodic OUT support
Software configurable to OTG1.3 and OTG2.0 modes of operation
USB 2.0 LPM (Link Power Management) support
Internal FS OTG PHY support
HNP/SNP/IP inside (no need for any external resistor)
For OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
2.34 Universal serial bus on-the-go high-speed (OTG_HS)
The device embeds a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral.
The USB OTG HS supports both full-speed and high-speed operations. It integrates the
transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI)
for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an
external PHY device connected to the ULPI is required.
The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG
2.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that is
generated by a PLL connected to the HSE oscillator.
Functional overview STM32F745xx STM32F746xx
42/222 DocID027590 Rev 3
The major features are:
Combined Rx and Tx FIFO size of 4 Kbytes with dynamic FIFO sizing
Support of the session request protocol (SRP) and host negotiation protocol (HNP)
8 bidirectional endpoints
16 host channels with periodic OUT support
Software configurable to OTG1.3 and OTG2.0 modes of operation
USB 2.0 LPM (Link Power Management) support
Internal FS OTG PHY support
External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is
connected to the microcontroller ULPI port through 12 signals. It can be clocked using
the 60 MHz output.
Internal USB DMA
HNP/SNP/IP inside (no need for any external resistor)
for OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
2.35 High-definition multimedia interface (HDMI) - consumer
electronics control (CEC)
The device embeds a HDMI-CEC controller that provides hardware support for the
Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).
This protocol provides high-level control functions between all audiovisual products in an
environment. It is specified to operate at low speeds with minimum processing and memory
overhead. It has a clock domain independent from the CPU clock, allowing the HDMI-CEC
controller to wakeup the MCU from Stop mode on data reception.
2.36 Digital camera interface (DCMI)
The devices embed a camera interface that can connect with camera modules and CMOS
sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera
interface can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz. It features:
Programmable polarity for the input pixel clock and synchronization signals
Parallel data communication can be 8-, 10-, 12- or 14-bit
Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2
progressive video, RGB 565 progressive video or compressed data (like JPEG)
Supports continuous mode or snapshot (a single frame) mode
Capability to automatically crop the image
2.37 Random number generator (RNG)
All devices embed an RNG that delivers 32-bit random numbers generated by an integrated
analog circuit.
DocID027590 Rev 3 43/222
STM32F745xx STM32F746xx Functional overview
44
2.38 General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current-capable and have speed selection to better
manage internal noise, power consumption and electromagnetic emission.
The I/O configuration can be locked if needed by following a specific sequence in order to
avoid spurious writing to the I/Os registers.
Fast I/O handling allowing maximum I/O toggling up to 108 MHz.
2.39 Analog-to-digital converters (ADCs)
Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16
external channels, performing conversions in the single-shot or scan mode. In scan mode,
automatic conversion is performed on a selected group of analog inputs.
Additional logic functions embedded in the ADC interface allow:
Simultaneous sample and hold
Interleaved sample and hold
The ADC can be served by the DMA controller. An analog watchdog feature allows very
precise monitoring of the converted voltage of one, some or all selected channels. An
interrupt is generated when the converted voltage is outside the programmed thresholds.
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,
TIM2, TIM3, TIM4, TIM5, or TIM8 timer.
2.40 Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with temperature. The
conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally
connected to the same input channel as VBAT
, ADC1_IN18, which is used to convert the
sensor output voltage into a digital value. When the temperature sensor and VBAT
conversion are enabled at the same time, only VBAT conversion is performed.
As the offset of the temperature sensor varies from chip to chip due to process variation, the
internal temperature sensor is mainly suitable for applications that detect temperature
changes instead of absolute temperatures. If an accurate temperature reading is needed,
then an external temperature sensor part should be used.
2.41 Digital-to-analog converter (DAC)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two
analog voltage signal outputs.
Functional overview STM32F745xx STM32F746xx
44/222 DocID027590 Rev 3
This dual digital Interface supports the following features:
two DAC converters: one for each output channel
8-bit or 12-bit monotonic output
left or right data alignment in 12-bit mode
synchronized update capability
noise-wave generation
triangular-wave generation
dual DAC channel independent or simultaneous conversions
DMA capability for each channel
external triggers for conversion
input voltage reference VREF+
Eight DAC trigger inputs are used in the device. The DAC channels are triggered through
the timer update outputs that are also connected to different DMA streams.
2.42 Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could
be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to
switch between JTAG-DP and SW-DP.
2.43 Embedded Trace Macrocell™
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F74xxx through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or
any other high-speed channel. Real-time instruction and data flow activity can be recorded
and then formatted for display on the host computer that runs the debugger software. TPA
hardware is commercially available from common development tool vendors.
The Embedded Trace Macrocell operates with third party debugger software tools.
DocID027590 Rev 3 45/222
STM32F745xx STM32F746xx Pinouts and pin description
87
3 Pinouts and pin description
Figure 11. STM32F74xVx LQFP100 pinout
1. The above figure shows the package top view.
ϭϬϬ
ϵϵ
ϵϴ
ϵϳ
ϵϲ
ϵϱ
ϵϰ
ϵϯ
ϵϮ
ϵϭ
ϵϬ
ϴϵ
ϴϴ
ϴϳ
ϴϲ
ϴϱ
ϴϰ
ϴϯ
ϴϮ
ϴϭ
ϴϬ
ϳϵ
ϳϴ
ϳϳ
ϳϲ
ϭ
Ϯ
ϯ
ϰ
ϱ
ϲ
ϳ
ϴ
ϵ
ϭϬ
ϭϭ
ϭϮ
ϭϯ
ϭϰ
ϭϱ
ϭϲ
ϭϳ
ϭϴ
ϭϵ
ϮϬ
Ϯϭ
ϮϮ
Ϯϯ
Ϯϰ
Ϯϱ
ϳϱ
ϳϰ
ϳϯ
ϳϮ
ϳϭ
ϳϬ
ϲϵ
ϲϴ
ϲϳ
ϲϲ
ϲϱ
ϲϰ
ϲϯ
ϲϮ
ϲϭ
ϲϬ
ϱϵ
ϱϴ
ϱϳ
ϱϲ
ϱϱ
ϱϰ
ϱϯ
ϱϮ
ϱϭ
WϮ
Wϯ
Wϰ
Wϱ
Wϲ
WϭϰͲK^ϯϮͺ/E
WϭϱͲK^ϯϮͺKhd
s^^
s
W,ϬͲK^ͺ/E
WϬ
Wϭ
WϮ
Wϯ
s^^
sZ&н
s
s
s^^
sWϮ
Wϵ
Wϴ
Wϳ
Wϲ
s^^
s
Wϰ
Wϭ
WϮ
Wϳ
Wϴ
Wϵ
sWϭ
s
s
s^^
Wϳ
Wϲ
Wϱ
Wϰ
Wϯ
WϮ
Wϭ
WϬ
WϭϮ
Wϭϭ
WϭϬ
Ϯϲ
Ϯϳ
Ϯϴ
Ϯϵ
ϯϬ
ϯϭ
ϯϮ
ϯϯ
ϯϰ
ϯϱ
ϯϲ
ϯϳ
ϯϴ
ϯϵ
ϰϬ
ϰϭ
ϰϮ
ϰϯ
ϰϰ
ϰϱ
ϰϲ
ϰϳ
ϰϴ
ϰϵ
ϱϬ
06Y9
/4)3
WϭϯͲEd/ͺdDW
W,ϭͲK^ͺKhd
WϬͲt<hW
Wϭ
WϮ
Wϯ
Wϱ
Wϲ
Wϳ
Wϰ
WϬ
Wϱ
Wϭϯ
Wϭϰ
Wϭϱ
WϭϬ
Wϭϭ
WϭϬ
WϭϮ
Wϭϭ
s^^
WϭϮ
Wϭϭ
Wϴ
Wϭϱ
Wϭϰ
Wϭϯ
WϭϮ
Wϵ
WϭϬ
Wϭϯ
Wϭϰ
Wϭϱ
Wϵ
Wϴ
WϭϬ
Wϭϭ
WϭϮ
Wϭϯ
Wϭϱ
Wϭϰ
Wϭ
WϬ
Wϵ
Wϴ
KKdϬ
Wϳ
Wϲ
Wϱ
Wϰ
Wϯ
sd
EZ^d
Pinouts and pin description STM32F745xx STM32F746xx
46/222 DocID027590 Rev 3
Figure 12. STM32F74xZx WLCSP143 ballout
1. The above figure shows the package bump view.
9%$7
3'5
B21
069
$
%
&
'
(
)
*
+
-
.
/
0
1

3(
3&
3&
3)
3)
3)
3+
3&
95()
3$
%<3$66B
5(*
3(
3(
3(
3&
9''
3)
3)
3+
3&
966$
9''$
3&
3$
3$
3% 3% 3* 3* 3' 3' 3' 3& 9''
3% 3% 3% 3* 3' 3' 3' 3& 3$
%227
3% 3% 3* 9'' 3' 3& 3$ 9''
3( 3( 9'' 3$ 3$ 3$ 966 9&$3
B
3) 3( 966 9'' 3* 3& 3& 3$ 3$
3) 3) 3) 3* 966 3' 3& 3& 3$
3) 3) 9'' 3* 3* 3* 3* 3* 9''86%
1567 3& 966 3' 3' 3' 966 966 3*
3&
3)
3)
3* 3( 3% 3' 3'3$ 3$ 3%
9'' 9'' 9'' 9'' 3( 3% 3' 3*
3$ 3$ 3% 3( 3( 3( 3' 9''
3$ 3& 3) 3) 3( 3( 3% 3% 3'
3& 3% 3) 3* 3( 3( 3% 9&$3
B 3%
3*
DocID027590 Rev 3 47/222
STM32F745xx STM32F746xx Pinouts and pin description
87
Figure 13. STM32F74xZx LQFP144 pinout
1. The above figure shows the package top view.
9''
3'5B21
3(
3(
3%
3%
%227
3%
3%
3%
3%
3%
3*
9''
966
3*
3*
3*
3*
3*
3*
3'
3'
9''
966
3'
3'
3'
3'
3'
3'
3&
3&
3&
3$
3$
3( 9''
3( 966
3(
3( 3$
3( 3$
9%$7 3$
3& 3$
3& 3$
3& 3$
3) 3&
3) 3&
3) 3&
3) 3&
3) 9''86%
3) 966
966 3*
9'' 3*
3) 3*
3) 3*
3) 3*
3) 3*
3) 3*
3+ 3'
3+ 3'
15 67 9''
3& 966
3& 3'
3& 3'
3& 3'
966$
3'
9''
3'
95() 3'
9''$ 3%
3$ 3%
3$ 3%
3$ 3%
3$
966
9''
3$
3$
3$
3$
3&
3&
3%
3%
3%
3)
3)
9''
3)
3)
3)
3*
3*
3(
3(
3(
966
9''
3(
3(
3(
3(
3(
3(
3%
3%
9''



























































































/4)3












































9&$3B
966
DLF
9&$3B
Pinouts and pin description STM32F745xx STM32F746xx
48/222 DocID027590 Rev 3
Figure 14. STM32F74xIx LQFP176 pinout
1. The above figure shows the package top view.
069
3'5B21
9''
3(
3(
3%
3%
%227
3%
3%
3%
3%
3%
3*
9''
966
3*
3*
3*
3*
3*
3*
3'
3'
9''
966
3'
3'
3'
3'
3'
3'
3&
3&
3&
3,
3,
3(
9''
3(
966
3(
3(
3$
3(
3$
9%$7
3$
3,
3$
3&
3$
3&
3$
3)
3&
3)
3&
3)
3&
3)
3&
3)
9''86%
3)
966
3*
3*
3)
3*
3)
3*
3)
3*
3)
3*
3)
3*
3+
3'
3+
3'
1567
9''
3&
966
3&
3'
3&
3'
3&
3'
3'
3'
95()
3'
3%
3$
3%
3$
3%
3$
3%
3$
%<3$66B5(*
9''
3$
3$
3$
3$
3&
3&
3%
3%
3%
3)
3)
966
9''
3)
3)
3)
3*
3*
3(
3(
3(
966
9''
3(
3(
3(
3(
3(
3(
3%
3%
9&$3B
9''



























































































/4)3












































9&$3B
3,
3$
3$
9''
966
3,
3,
3,








3+
3+
3+
3+
3+
3+
3+
3+








3,
3,
3+
3+
3+
9''
966
3+
















3&
3,
3,
3,
966
3+
3+
9''
966
9''
9''
966$
9''$
DocID027590 Rev 3 49/222
STM32F745xx STM32F746xx Pinouts and pin description
87
Figure 15. STM32F74xBx LQFP208 pinout
1. The above figure shows the package top view.
069
W/ϳ
W/ϲ
W/ϱ
W/ϰ
s
s^^
Wϭ
WϬ
Wϵ
Wϴ
Wϳ
Wϲ
Wϱ
Wϰ
Wϯ
W'ϭϱ
W<ϳ
W<ϲ
W<ϱ
W<ϰ
W<ϯ
s
s^^
W'ϭϰ
W'ϭϯ
W'ϭϮ
W'ϭϭ
W'ϭϬ
W'ϵ
W:ϭϱ
W:ϭϰ
W:ϭϯ
W:ϭϮ
Wϳ
Wϲ
s
s^^
Wϱ
Wϰ
Wϯ
WϮ
Wϭ
WϬ
WϭϮ
Wϭϭ
WϭϬ
Wϭϱ
Wϭϰ
s
W/ϯ
ϭϭϱϲ
Ϯϭϱϱ
ϯϭϱϰ
ϰϭϱϯ
ϱϭϱϮ
ϲϭϱϭ
ϳϭϱϬ
ϴϭϰϵ
ϵϭϰϴ
ϭϬ ϭϰϳ
ϭϭ ϭϰϲ
ϭϮ ϭϰϱ
ϭϯ ϭϰϰ
ϭϰ ϭϰϯ
ϭϱ ϭϰϮ
ϭϲ ϭϰϭ
ϭϳ ϭϰϬ
ϭϴ ϭϯϵ
ϭϵ ϭϯϴ
ϮϬ ϭϯϳ
Ϯϭ ϭϯϲ
ϮϮ
Ϯϯ
Ϯϰ
Ϯϱ >Y&WϮϬϴ
Ϯϲ
Ϯϳ
Ϯϴ
Ϯϵ
ϯϬ
ϯϭ
ϯϮ
ϯϯ
ϯϰ
ϯϱ
ϯϲ
ϯϳ
ϯϴ
ϯϵ
ϰϬ
ϰϭ
ϰϮ
ϰϯ
ϰϰ
ϰϱ
ϰϲ
ϰϳ
ϰϴ
ϰϵ
ϱϬ
ϱϭ
ϱϮ
ϱϯ
ϱϰ
ϱϱ
ϱϲ
ϱϳ
ϱϴ
ϱϵ
ϲϬ
ϲϭ
ϲϮ
ϲϯ
ϲϰ
ϲϱ
ϲϲ
ϲϳ
ϲϴ
ϲϵ
ϳϬ
ϳϭ
ϳϮ
ϳϯ
ϳϰ
ϳϱ
ϳϲ
ϳϳ
ϳϴ
ϳϵ
ϴϬ
ϴϭ
ϴϮ
ϴϯ
ϴϰ
ϴϱ
ϴϲ
ϴϳ
ϴϴ
ϴϵ
ϵϬ
ϵϭ
ϵϮ
ϵϯ
ϵϰ
ϵϱ
ϵϲ
ϵϳ
ϵϴ
ϵϵ
ϭϬϬ
ϭϬϭ
ϭϬϮ
ϭϬϯ
ϭϬϰ
WϮ
Wϯ
Wϰ
Wϱ
Wϲ
sd
W/ϴ
Wϭϯ
Wϭϰ
Wϭϱ
W/ϵ
W/ϭϬ
W/ϭϭ
s^^
s
W&Ϭ
W&ϭ
W&Ϯ
W/ϭϮ
W/ϭϯ
W/ϭϰ
W&ϯ
W&ϰ
W&ϱ
s^^
s
W&ϲ
W&ϳ
W&ϴ
W&ϵ
W&ϭϬ
W,Ϭ
W,ϭ
EZ^d
WϬ
Wϭ
WϮ
Wϯ
s
s^^
sZ&н
s
WϬ
Wϭ
WϮ
W,Ϯ
W,ϯ
W,ϰ
W,ϱ
Wϯ
s^^
s
W/Ϯ
W/ϭ
W/Ϭ
W,ϭϱ
W,ϭϰ
W,ϭϯ
s
s^^
sWͺϮ
Wϭϯ
WϭϮ
Wϭϭ
WϭϬ
Wϵ
Wϴ
Wϵ
Wϴ
Wϳ
Wϲ
sh^
s^^
W'ϴ
W'ϳ
W'ϲ
W'ϱ
W'ϰ
W'ϯ
W'Ϯ
W<Ϯ
W<ϭ
W<Ϭ
s^^
s
W:ϭϭ
W:ϭϬ
W:ϵ
W:ϴ
W:ϳ
W:ϲ
Wϭϱ
Wϭϰ
s
s^^
Wϭϯ
WϭϮ
Wϭϭ
WϭϬ
Wϵ
Wϴ
Wϭϱ
Wϭϰ
Wϭϯ
ϭϯϱ
ϭϯϰ
ϭϯϯ
ϭϯϮ
ϭϯϭ
ϭϯϬ
ϭϮϵ
ϭϮϴ
ϭϮϳ
ϭϮϲ
ϭϮϱ
ϭϮϰ
ϭϮϯ
ϭϮϮ
ϭϮϭ
ϭϮϬ
ϭϭϵ
ϭϭϴ
ϭϭϳ
ϭϭϲ
ϭϭϱ
ϭϭϰ
ϭϭϯ
ϭϭϮ
ϭϭϭ
ϭϭϬ
ϭϬϵ
ϭϬϴ
ϭϬϳ
ϭϬϲ
ϭϬϱ
WZͺKE
KKdϬ
ϮϬϴ
ϮϬϳ
ϮϬϲ
ϮϬϱ
ϮϬϰ
ϮϬϯ
ϮϬϮ
ϮϬϭ
ϮϬϬ
ϭϵϵ
ϭϵϴ
ϭϵϳ
ϭϵϲ
ϭϵϱ
ϭϵϰ
ϭϵϯ
ϭϵϮ
ϭϵϭ
ϭϵϬ
ϭϴϵ
ϭϴϴ
ϭϴϳ
ϭϴϲ
ϭϴϱ
ϭϴϰ
ϭϴϯ
ϭϴϮ
ϭϴϭ
ϭϴϬ
ϭϳϵ
ϭϳϴ
ϭϳϳ
ϭϳϲ
ϭϳϱ
ϭϳϰ
ϭϳϯ
ϭϳϮ
ϭϳϭ
ϭϳϬ
ϭϲϵ
ϭϲϴ
ϭϲϳ
ϭϲϲ
ϭϲϱ
ϭϲϰ
ϭϲϯ
ϭϲϮ
ϭϲϭ
ϭϲϬ
ϭϱϵ
ϭϱϴ
ϭϱϳ
Wϰ
Wϱ
Wϲ
Wϳ
Wϰ
Wϱ
s
s^^
WϬ
Wϭ
WϮ
W/ϭϱ
W:Ϭ
W:ϭ
W:Ϯ
W:ϯ
W:ϰ
W&ϭϭ
W&ϭϮ
s^^
s
W&ϭϯ
W&ϭϰ
W&ϭϱ
W'Ϭ
W'ϭ
Wϳ
Wϴ
Wϵ
s^^
s
WϭϬ
Wϭϭ
WϭϮ
Wϭϯ
Wϭϰ
Wϭϱ
WϭϬ
Wϭϭ
sWͺϭ
s^^
s
W:ϱ
W,ϲ
W,ϳ
W,ϴ
W,ϵ
W,ϭϬ
W,ϭϭ
W,ϭϮ
s
WϭϮ
Pinouts and pin description STM32F745xx STM32F746xx
50/222 DocID027590 Rev 3
Figure 16. STM32F74xIx UFBGA176 ballout
1. The above figure shows the package bump view.
DLG
     
$3(3(
3( 3( 3% 3% 3* 3* 3% 3% 3' 3& 3$ 3$ 3$
%3(3(
3( 3% 3% 3% 3* 3* 3* 3* 3' 3' 3& 3& 3$
&9%$7 3, 3, 3, 3'5B21
9'' 9'' 9'' 9'' 3* 3' 3' 3, 3, 3$
'3& 3, 3, 3, %227 966 966 966 3' 3' 3' 3+ 3, 3$
(3& 3) 3, 3, 3+ 3+ 3, 3$
)3&
966 9'' 3+ 966 966 966 966 966 966 9&$3 3& 3$
*3+ 966 9'' 3+ 966 966 966 966 966 966 9'' 3& 3&
+3+ 3) 3) 3+ 966 966 966 966 966 966 9''86% 3* 3&
-1567 3) 3+ 966 966 966 966 966 9'' 9'' 3* 3*
.3) 3)
3)
9'' 966 966 966 966 966 3+ 3* 3* 3*
/3) 3)
3)
%<3$66B
5(* 3+ 3+ 3' 3*
0966$3&
3)
3& 3& 3& 3% 3* 966 966 9&$3B 3+ 3+ 3+ 3' 3'
195() 3$ 3$ 3& 3) 3* 9'' 9'' 9'' 3( 3+ 3' 3' 3'
395()
3$ 3$ 3$ 3& 3) 3) 3( 3( 3( 3( 3% 3% 3' 3'
5 9''$ 3$ 3$ 3% 3% 3) 3) 3( 3( 3( 3( 3% 3% 3% 3%
966

3$
DocID027590 Rev 3 51/222
STM32F745xx STM32F746xx Pinouts and pin description
87
Figure 17. STM32F74xNx TFBGA216 ballout
1. The above figure shows the package bump view.
069

$3( 3( 3( 3* 3( 3( 3% 3% 3% 3% 3' 3& 3$ 3$ 3$
%3( 3( 3* 3% 3% 3% 3* 3* 3- 3- 3' 3' 3& 3& 3$
&9%$7 3, 3, 3. 3. 3. 3* 3* 3- 3' 3' 3' 3, 3, 3$
'3& 3) 3, 3, 3, 3, 3. 3. 3* 3- 3' 3' 3+ 3, 3$
(3& 3) 3, 3, 3'5B
21
%227 9'' 9'' 9'' 9'' 9&$3 3+ 3+ 3, 3$
)3& 966 3, 9'' 9'' 966 966 9'' 3. 3. 3& 3$
*3+ 3) 3, 3, 9'' 966 9''86% 3- 3. 3& 3&
+3+ 3, 3+ 9'' 966 966 9'' 3- 3- 3* 3&
-1567 3) 3+ 3+ 9'' 966 966 9'' 3- 3- 3* 3*
.3) 3) 3) 3+ 9'' 966 966 966 966 966 9'' 3- 3' 3% 3'
/3) 3) 3) 3& %<3$66
5(* 966 9'' 9'' 9'' 9'' 9&$3 3' 3% 3' 3'
0966$ 3& 3& 3& 3% 3) 3* 3) 3- 3' 3' 3* 3* 3- 3+
195() 3$ 3$ 3$ 3& 3) 3* 3- 3( 3' 3* 3* 3+ 3+ 3+
95() 3$ 3$ 3$ 3& 3) 3- 3) 3( 3( 3( 3% 3+ 3+ 3+
3$ 3$ 3% 3% 3- 3- 3( 3( 3( 3( 3( 3% 3% 3%
966
3)
3
5 9''$
966 966 966
Pinouts and pin description STM32F745xx STM32F746xx
52/222 DocID027590 Rev 3
Table 9. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
Pin type
S Supply pin
I Input only pin
I/O Input / output pin
I/O structure
FT 5 V tolerant I/O
TTa 3.3 V tolerant I/O directly connected to ADC
B Dedicated BOOT pin
RST Bidirectional reset pin with weak pull-up resistor
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
Table 10. STM32F745xx and STM32F746xx pin and ball definition
Pin Number
Pin
name
(function
after
reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP100
WLCSP143
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
1 D8 1 A2 1 1 A3 PE2 I/O FT -
TRACECLK, SPI4_SCK,
SAI1_MCLK_A,
QUADSPI_BK1_IO2,
ETH_MII_TXD3,
FMC_A23, EVENTOUT
-
2 C10 2 A1 2 2 A2 PE3 I/O FT - TRACED0, SAI1_SD_B,
FMC_A19, EVENTOUT -
3 B11 3 B1 3 3 A1 PE4 I/O FT -
TRACED1, SPI4_NSS,
SAI1_FS_A, FMC_A20,
DCMI_D4, LCD_B0,
EVENTOUT
-
DocID027590 Rev 3 53/222
STM32F745xx STM32F746xx Pinouts and pin description
87
4 D9 4 B2 4 4 B1 PE5 I/O FT -
TRACED2, TIM9_CH1,
SPI4_MISO,
SAI1_SCK_A, FMC_A21,
DCMI_D6, LCD_G0,
EVENTOUT
-
5 E8 5 B3 5 5 B2 PE6 I/O FT -
TRACED3, TIM1_BKIN2,
TIM9_CH2, SPI4_MOSI,
SAI1_SD_A,
SAI2_MCK_B, FMC_A22,
DCMI_D7, LCD_G1,
EVENTOUT
-
------G6VSSS-- - -
------F5VDDS-- - -
6 C11 6 C1 6 6 C1 VBAT S - - - -
- - - D2 7 7 C2 PI8 I/O FT
(2)
(3) EVENTOUT RTC_TAMP2/
RTC_TS,WKUP5
7 D10 7 D1 8 8 D1 PC13 I/O FT
(2)
(3) EVENTOUT
RTC_TAMP1/
RTC_TS/RTC_OUT
,WKUP4
8D118 E1 9 9 E1
PC14-
OSC32_I
N(PC14)
I/O FT
(2)
(3) EVENTOUT OSC32_IN
9E119 F11010F1
PC15-
OSC32_
OUT(PC
15)
I/O FT
(2)
(3) EVENTOUT OSC32_OUT
------G5VDDS-- - -
- - - D3 11 11 E4 PI9 I/O FT -
CAN1_RX, FMC_D30,
LCD_VSYNC,
EVENTOUT
-
- - - E3 12 12 D5 PI10 I/O FT -
ETH_MII_RX_ER,
FMC_D31, LCD_HSYNC,
EVENTOUT
-
Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)
Pin Number
Pin
name
(function
after
reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP100
WLCSP143
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
Pinouts and pin description STM32F745xx STM32F746xx
54/222 DocID027590 Rev 3
- - - E4 13 13 F3 PI11 I/O FT - OTG_HS_ULPI_DIR,
EVENTOUT WKUP6
- E7 - F2 14 14 F2 VSS S - - - -
-E10- F31515F4 VDD S - - - -
- F11 10 E2 16 16 D2 PF0 I/O FT - I2C2_SDA, FMC_A0,
EVENTOUT -
- E9 11 H3 17 17 E2 PF1 I/O FT - I2C2_SCL, FMC_A1,
EVENTOUT -
- F10 12 H2 18 18 G2 PF2 I/O FT - I2C2_SMBA, FMC_A2,
EVENTOUT -
- - - - - 19 E3 PI12 I/O FT - LCD_HSYNC,
EVENTOUT -
- - - - - 20 G3 PI13 I/O FT - LCD_VSYNC,
EVENTOUT -
- - - - - 21 H3 PI14 I/O FT - LCD_CLK, EVENTOUT -
- G11 13 J2 19 22 H2 PF3 I/O FT - FMC_A3, EVENTOUT ADC3_IN9
- F9 14 J3 20 23 J2 PF4 I/O FT - FMC_A4, EVENTOUT ADC3_IN14
- F8 15 K3 21 24 K3 PF5 I/O FT - FMC_A5, EVENTOUT ADC3_IN15
10 H7 16 G2 22 25 H6 VSS S - - - -
11 - 17 G3 23 26 H5 VDD S - - - -
- G10 18 K2 24 27 K2 PF6 I/O FT -
TIM10_CH1, SPI5_NSS,
SAI1_SD_B, UART7_Rx,
QUADSPI_BK1_IO3,
EVENTOUT
ADC3_IN4
- F7 19 K1 25 28 K1 PF7 I/O FT -
TIM11_CH1, SPI5_SCK,
SAI1_MCLK_B,
UART7_Tx,
QUADSPI_BK1_IO2,
EVENTOUT
ADC3_IN5
Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)
Pin Number
Pin
name
(function
after
reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP100
WLCSP143
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
DocID027590 Rev 3 55/222
STM32F745xx STM32F746xx Pinouts and pin description
87
- H11 20 L3 26 29 L3 PF8 I/O FT -
SPI5_MISO,
SAI1_SCK_B,
UART7_RTS,
TIM13_CH1,
QUADSPI_BK1_IO0,
EVENTOUT
ADC3_IN6
- G8 21 L2 27 30 L2 PF9 I/O FT -
SPI5_MOSI, SAI1_FS_B,
UART7_CTS,
TIM14_CH1,
QUADSPI_BK1_IO1,
EVENTOUT
ADC3_IN7
- G9 22 L1 28 31 L1 PF10 I/O FT - DCMI_D11, LCD_DE,
EVENTOUT ADC3_IN8
12 J11 23 G1 29 32 G1
PH0-
OSC_IN(
PH0)
I/O FT - EVENTOUT OSC_IN(4)
13 H10 24 H1 30 33 H1
PH1-
OSC_OU
T(PH1)
I/O FT - EVENTOUT OSC_OUT(4)
14 H9 25 J1 31 34 J1 NRST I/O RS
T-- -
15 H8 26 M2 32 35 M2 PC0 I/O FT (4)
SAI2_FS_B,
OTG_HS_ULPI_STP,
FMC_SDNWE, LCD_R5,
EVENTOUT
ADC123_IN10
16 K11 27 M3 33 36 M3 PC1 I/O FT (4)
TRACED0,
SPI2_MOSI/I2S2_SD,
SAI1_SD_A, ETH_MDC,
EVENTOUT
ADC123_IN11,
RTC_TAMP3,
WKUP3
17 J10 28 M4 34 37 M4 PC2 I/O FT (4)
SPI2_MISO,
OTG_HS_ULPI_DIR,
ETH_MII_TXD2,
FMC_SDNE0,
EVENTOUT
ADC123_IN12
Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)
Pin Number
Pin
name
(function
after
reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP100
WLCSP143
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
Pinouts and pin description STM32F745xx STM32F746xx
56/222 DocID027590 Rev 3
18 J9 29 M5 35 38 L4 PC3 I/O FT (4)
SPI2_MOSI/I2S2_SD,
OTG_HS_ULPI_NXT,
ETH_MII_TX_CLK,
FMC_SDCKE0,
EVENTOUT
ADC123_IN13
-G730G33639J5 VDD S-- - -
------J6VSSS-- - -
19 K10 31 M1 37 40 M1 VSSA S - - - -
---N1--N1VREF-S-- - -
20 L11 32 P1 38 41 P1 VREF+ S - - - -
21 L10 33 R1 39 42 R1 VDDA S - - - -
22 K9 34 N3 40 43 N3
PA0-
WKUP(P
A0)
I/O FT (5)
TIM2_CH1/TIM2_ETR,
TIM5_CH1, TIM8_ETR,
USART2_CTS,
UART4_TX, SAI2_SD_B,
ETH_MII_CRS,
EVENTOUT
ADC123_IN0,
WKUP1(4)
23 K8 35 N2 41 44 N2 PA1 I/O FT (4)
TIM2_CH2, TIM5_CH2,
USART2_RTS,
UART4_RX,
QUADSPI_BK1_IO3,
SAI2_MCK_B,
ETH_MII_RX_CLK/ETH_
RMII_REF_CLK,
LCD_R2, EVENTOUT
ADC123_IN1
24 L9 36 P2 42 45 P2 PA2 I/O FT (4)
TIM2_CH3, TIM5_CH3,
TIM9_CH1, USART2_TX,
SAI2_SCK_B,
ETH_MDIO, LCD_R1,
EVENTOUT
ADC123_IN2,
WKUP2
- - - F4 43 46 K4 PH2 I/O FT
LPTIM1_IN2,
QUADSPI_BK2_IO0,
SAI2_SCK_B,
ETH_MII_CRS,
FMC_SDCKE0, LCD_R0,
EVENTOUT
-
Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)
Pin Number
Pin
name
(function
after
reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP100
WLCSP143
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
DocID027590 Rev 3 57/222
STM32F745xx STM32F746xx Pinouts and pin description
87
- - - G4 44 47 J4 PH3 I/O FT -
QUADSPI_BK2_IO1,
SAI2_MCK_B,
ETH_MII_COL,
FMC_SDNE0, LCD_R1,
EVENTOUT
-
- - - H4 45 48 H4 PH4 I/O FT -
I2C2_SCL,
OTG_HS_ULPI_NXT,
EVENTOUT
-
- - - J4 46 49 J3 PH5 I/O FT -
I2C2_SDA, SPI5_NSS,
FMC_SDNWE,
EVENTOUT
-
25 M11 37 R2 47 50 R2 PA3 I/O FT (4)
TIM2_CH4, TIM5_CH4,
TIM9_CH2, USART2_RX,
OTG_HS_ULPI_D0,
ETH_MII_COL, LCD_B5,
EVENTOUT
ADC123_IN3
26 - 38 - - 51 K6 VSS S - - - -
-N11- L448 - L5
BYPASS
_REG IFT- - -
27 J8 39 K4 49 52 K5 VDD S - - - -
28 M10 40 N4 50 53 N4 PA4 I/O TT
a
(4)
SPI1_NSS/I2S1_WS,
SPI3_NSS/I2S3_WS,
USART2_CK,
OTG_HS_SOF,
DCMI_HSYNC,
LCD_VSYNC,
EVENTOUT
ADC12_IN4,
DAC_OUT1
29 M9 41 P4 51 54 P4 PA5 I/O TT
a
(4)
TIM2_CH1/TIM2_ETR,
TIM8_CH1N,
SPI1_SCK/I2S1_CK,
OTG_HS_ULPI_CK,
LCD_R4, EVENTOUT
ADC12_IN5,
DAC_OUT2
30 N10 42 P3 52 55 P3 PA6 I/O FT (4)
TIM1_BKIN, TIM3_CH1,
TIM8_BKIN, SPI1_MISO,
TIM13_CH1,
DCMI_PIXCLK, LCD_G2,
EVENTOUT
ADC12_IN6
Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)
Pin Number
Pin
name
(function
after
reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP100
WLCSP143
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
Pinouts and pin description STM32F745xx STM32F746xx
58/222 DocID027590 Rev 3
31 L8 43 R3 53 56 R3 PA7 I/O FT (4)
TIM1_CH1N, TIM3_CH2,
TIM8_CH1N,
SPI1_MOSI/I2S1_SD,
TIM14_CH1,
ETH_MII_RX_DV/ETH_R
MII_CRS_DV,
FMC_SDNWE,
EVENTOUT
ADC12_IN7
32 M8 44 N5 54 57 N5 PC4 I/O FT (4)
I2S1_MCK,
SPDIFRX_IN2,
ETH_MII_RXD0/ETH_RM
II_RXD0, FMC_SDNE0,
EVENTOUT
ADC12_IN14
33 N9 45 P5 55 58 P5 PC5 I/O FT (4)
SPDIFRX_IN3,
ETH_MII_RXD1/ETH_RM
II_RXD1, FMC_SDCKE0,
EVENTOUT
ADC12_IN15
- J7 - - - 59 L7 VDD S - - - -
-----60L6VSSS-- - -
34 N8 46 R5 56 61 R5 PB0 I/O FT (4)
TIM1_CH2N, TIM3_CH3,
TIM8_CH2N,
UART4_CTS, LCD_R3,
OTG_HS_ULPI_D1,
ETH_MII_RXD2,
EVENTOUT
ADC12_IN8
35 K7 47 R4 57 62 R4 PB1 I/O FT (4)
TIM1_CH3N, TIM3_CH4,
TIM8_CH3N, LCD_R6,
OTG_HS_ULPI_D2,
ETH_MII_RXD3,
EVENTOUT
ADC12_IN9
36 L7 48 M6 58 63 M5 PB2 I/O FT -
SAI1_SD_A,
SPI3_MOSI/I2S3_SD,
QUADSPI_CLK,
EVENTOUT
-
- - - - - 64 G4 PI15 I/O FT - LCD_R0, EVENTOUT -
- - - - - 65 R6 PJ0 I/O FT - LCD_R1, EVENTOUT -
- - - - - 66 R7 PJ1 I/O FT - LCD_R2, EVENTOUT -
Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)
Pin Number
Pin
name
(function
after
reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP100
WLCSP143
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
DocID027590 Rev 3 59/222
STM32F745xx STM32F746xx Pinouts and pin description
87
- - - - - 67 P7 PJ2 I/O FT - LCD_R3, EVENTOUT -
- - - - - 68 N8 PJ3 I/O FT - LCD_R4, EVENTOUT -
- - - - - 69 M9 PJ4 I/O FT - LCD_R5, EVENTOUT -
- M749R659 70P8 PF11 I/OFT-
SPI5_MOSI, SAI2_SD_B,
FMC_SDNRAS,
DCMI_D12, EVENTOUT
-
- N7 50 P6 60 71 M6 PF12 I/O FT - FMC_A6, EVENTOUT -
- - 51 M8 61 72 K7 VSS S - - - -
- - 52 N8 62 73 L8 VDD S - - - -
- K6 53 N6 63 74 N6 PF13 I/O FT - I2C4_SMBA, FMC_A7,
EVENTOUT -
- L6 54 R7 64 75 P6 PF14 I/O FT - I2C4_SCL, FMC_A8,
EVENTOUT -
- M655P76576M8 PF15 I/OFT- I2C4_SDA, FMC_A9,
EVENTOUT -
- N6 56 N7 66 77 N7 PG0 I/O FT - FMC_A10, EVENTOUT -
- K5 57 M7 67 78 M7 PG1 I/O FT - FMC_A11, EVENTOUT -
37 L5 58 R8 68 79 R8 PE7 I/O FT -
TIM1_ETR, UART7_Rx,
QUADSPI_BK2_IO0,
FMC_D4, EVENTOUT
-
38 M5 59 P8 69 80 N9 PE8 I/O FT -
TIM1_CH1N, UART7_Tx,
QUADSPI_BK2_IO1,
FMC_D5, EVENTOUT
-
39 N5 60 P9 70 81 P9 PE9 I/O FT -
TIM1_CH1, UART7_RTS,
QUADSPI_BK2_IO2,
FMC_D6, EVENTOUT
-
-H361M97182K8 VSS S-- - -
-J562N97283L9 VDD S-- - -
40 J4 63 R9 73 84 R9 PE10 I/O FT -
TIM1_CH2N,
UART7_CTS,
QUADSPI_BK2_IO3,
FMC_D7, EVENTOUT
-
Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)
Pin Number
Pin
name
(function
after
reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP100
WLCSP143
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
Pinouts and pin description STM32F745xx STM32F746xx
60/222 DocID027590 Rev 3
41 K4 64 P10 74 85 P10 PE11 I/O FT -
TIM1_CH2, SPI4_NSS,
SAI2_SD_B, FMC_D8,
LCD_G3, EVENTOUT
-
42 L4 65 R10 75 86 R10 PE12 I/O FT -
TIM1_CH3N, SPI4_SCK,
SAI2_SCK_B, FMC_D9,
LCD_B4, EVENTOUT
-
43 N4 66 N11 76 87 R12 PE13 I/O FT -
TIM1_CH3, SPI4_MISO,
SAI2_FS_B, FMC_D10,
LCD_DE, EVENTOUT
-
44 M4 67 P11 77 88 P11 PE14 I/O FT -
TIM1_CH4, SPI4_MOSI,
SAI2_MCK_B, FMC_D11,
LCD_CLK, EVENTOUT
-
45 L3 68 R11 78 89 R11 PE15 I/O FT - TIM1_BKIN, FMC_D12,
LCD_R7, EVENTOUT -
46 M3 69 R12 79 90 P12 PB10 I/O FT -
TIM2_CH3, I2C2_SCL,
SPI2_SCK/I2S2_CK,
USART3_TX,
OTG_HS_ULPI_D3,
ETH_MII_RX_ER,
LCD_G4, EVENTOUT
-
47 N3 70 R13 80 91 R13 PB11 I/O FT -
TIM2_CH4, I2C2_SDA,
USART3_RX,
OTG_HS_ULPI_D4,
ETH_MII_TX_EN/ETH_R
MII_TX_EN, LCD_G5,
EVENTOUT
-
48 N2 71 M10 81 92 L11 VCAP_1 S - - - -
49 H2 - - - 93 K9 VSS S - - - -
50 J6 72 N10 82 94 L10 VDD S - - - -
- - - - - 95 M14 PJ5 I/O FT - LCD_R6, EVENTOUT -
- - - M11 83 96 P13 PH6 I/O FT -
I2C2_SMBA, SPI5_SCK,
TIM12_CH1,
ETH_MII_RXD2,
FMC_SDNE1, DCMI_D8,
EVENTOUT
-
Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)
Pin Number
Pin
name
(function
after
reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP100
WLCSP143
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
DocID027590 Rev 3 61/222
STM32F745xx STM32F746xx Pinouts and pin description
87
- - - N12 84 97 N13 PH7 I/O FT -
I2C3_SCL, SPI5_MISO,
ETH_MII_RXD3,
FMC_SDCKE1,
DCMI_D9, EVENTOUT
-
- - - M12 85 98 P14 PH8 I/O FT -
I2C3_SDA, FMC_D16,
DCMI_HSYNC, LCD_R2,
EVENTOUT
-
- - - M13 86 99 N14 PH9 I/O FT -
I2C3_SMBA,
TIM12_CH2, FMC_D17,
DCMI_D0, LCD_R3,
EVENTOUT
-
- - - L13 87 100 P15 PH10 I/O FT -
TIM5_CH1, I2C4_SMBA,
FMC_D18, DCMI_D1,
LCD_R4, EVENTOUT
-
- - - L12 88 101 N15 PH11 I/O FT -
TIM5_CH2, I2C4_SCL,
FMC_D19, DCMI_D2,
LCD_R5, EVENTOUT
-
- - - K12 89 102 M15 PH12 I/O FT -
TIM5_CH3, I2C4_SDA,
FMC_D20, DCMI_D3,
LCD_R6, EVENTOUT
-
- - - H12 90 - K10 VSS S - - - -
- - - J12 91 103 K11 VDD S - - - -
51 M2 73 P12 92 104 L13 PB12 I/O FT -
TIM1_BKIN, I2C2_SMBA,
SPI2_NSS/I2S2_WS,
USART3_CK, CAN2_RX,
OTG_HS_ULPI_D5,
ETH_MII_TXD0/ETH_RM
II_TXD0, OTG_HS_ID,
EVENTOUT
-
52 N1 74 P13 93 105 K14 PB13 I/O FT -
TIM1_CH1N,
SPI2_SCK/I2S2_CK,
USART3_CTS,
CAN2_TX,
OTG_HS_ULPI_D6,
ETH_MII_TXD1/ETH_RM
II_TXD1, EVENTOUT
OTG_HS_VBUS
Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)
Pin Number
Pin
name
(function
after
reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP100
WLCSP143
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
Pinouts and pin description STM32F745xx STM32F746xx
62/222 DocID027590 Rev 3
53 K3 75 R14 94 106 R14 PB14 I/O FT -
TIM1_CH2N,
TIM8_CH2N,
SPI2_MISO,
USART3_RTS,
TIM12_CH1,
OTG_HS_DM,
EVENTOUT
-
54 J3 76 R15 95 107 R15 PB15 I/O FT -
RTC_REFIN,
TIM1_CH3N,
TIM8_CH3N,
SPI2_MOSI/I2S2_SD,
TIM12_CH2,
OTG_HS_DP,
EVENTOUT
-
55 L2 77 P15 96 108 L15 PD8 I/O FT -
USART3_TX,
SPDIFRX_IN11,
FMC_D13, EVENTOUT
-
56 M1 78 P14 97 109 L14 PD9 I/O FT - USART3_RX, FMC_D14,
EVENTOUT -
57 H4 79 N15 98 110 K15 PD10 I/O FT - USART3_CK, FMC_D15,
LCD_B3, EVENTOUT -
58 K2 80 N14 99 111 N10 PD11 I/O FT -
I2C4_SMBA,
USART3_CTS,
QUADSPI_BK1_IO0,
SAI2_SD_A,
FMC_A16/FMC_CLE,
EVENTOUT
-
59 H6 81 N13 100 112 M10 PD12 I/O FT -
TIM4_CH1, LPTIM1_IN1,
I2C4_SCL,
USART3_RTS,
QUADSPI_BK1_IO1,
SAI2_FS_A,
FMC_A17/FMC_ALE,
EVENTOUT
-
60 H5 82 M15 101 113 M11 PD13 I/O FT -
TIM4_CH2,
LPTIM1_OUT, I2C4_SDA,
QUADSPI_BK1_IO3,
SAI2_SCK_A, FMC_A18,
EVENTOUT
-
Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)
Pin Number
Pin
name
(function
after
reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP100
WLCSP143
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
DocID027590 Rev 3 63/222
STM32F745xx STM32F746xx Pinouts and pin description
87
- - 83 - 102 114 J10 VSS S - - - -
- L1 84 J13 103 115 J11 VDD S - - - -
61 J2 85 M14 104 116 L12 PD14 I/O FT - TIM4_CH3, UART8_CTS,
FMC_D0, EVENTOUT -
62 K1 86 L14 105 117 K13 PD15 I/O FT - TIM4_CH4, UART8_RTS,
FMC_D1, EVENTOUT -
- - - - - 118 K12 PJ6 I/O FT - LCD_R7, EVENTOUT -
- - - - - 119 J12 PJ7 I/O FT - LCD_G0, EVENTOUT -
- - - - - 120 H12 PJ8 I/O FT - LCD_G1, EVENTOUT -
- - - - - 121 J13 PJ9 I/O FT - LCD_G2, EVENTOUT -
- - - - - 122 H13 PJ10 I/O FT - LCD_G3, EVENTOUT -
- - - - - 123 G12 PJ11 I/O FT - LCD_G4, EVENTOUT -
- - - - - 124 H11 VDD S - - - -
-----125H10VSSS-- - -
- - - - - 126 G13 PK0 I/O FT - LCD_G5, EVENTOUT -
- - - - - 127 F12 PK1 I/O FT - LCD_G6, EVENTOUT -
- - - - - 128 F13 PK2 I/O FT - LCD_G7, EVENTOUT -
- J1 87 L15 106 129 M13 PG2 I/O FT - FMC_A12, EVENTOUT -
- G3 88 K15 107 130 M12 PG3 I/O FT - FMC_A13, EVENTOUT -
- G5 89 K14 108 131 N12 PG4 I/O FT - FMC_A14/FMC_BA0,
EVENTOUT -
- G6 90 K13 109 132 N11 PG5 I/O FT - FMC_A15/FMC_BA1,
EVENTOUT -
- G4 91 J15 110 133 J15 PG6 I/O FT - DCMI_D12, LCD_R7,
EVENTOUT -
- H1 92 J14 111 134 J14 PG7 I/O FT -
USART6_CK, FMC_INT,
DCMI_D13, LCD_CLK,
EVENTOUT
-
Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)
Pin Number
Pin
name
(function
after
reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP100
WLCSP143
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
Pinouts and pin description STM32F745xx STM32F746xx
64/222 DocID027590 Rev 3
- G2 93 H14 112 135 H14 PG8 I/O FT -
SPI6_NSS,
SPDIFRX_IN2,
USART6_RTS,
ETH_PPS_OUT,
FMC_SDCLK,
EVENTOUT
-
- D2 94 G12 113 136 G10 VSS S - - - -
- G1 95 H13 114 137 G11 VDDUSB S - - - -
63 F2 96 H15 115 138 H15 PC6 I/O FT -
TIM3_CH1, TIM8_CH1,
I2S2_MCK, USART6_TX,
SDMMC1_D6, DCMI_D0,
LCD_HSYNC,
EVENTOUT
-
64 F3 97 G15 116 139 G15 PC7 I/O FT -
TIM3_CH2, TIM8_CH2,
I2S3_MCK, USART6_RX,
SDMMC1_D7, DCMI_D1,
LCD_G6, EVENTOUT
-
65 E4 98 G14 117 140 G14 PC8 I/O FT -
TRACED1, TIM3_CH3,
TIM8_CH3, UART5_RTS,
USART6_CK,
SDMMC1_D0, DCMI_D2,
EVENTOUT
-
66 E3 99 F14 118 141 F14 PC9 I/O FT -
MCO2, TIM3_CH4,
TIM8_CH4, I2C3_SDA,
I2S_CKIN, UART5_CTS,
QUADSPI_BK1_IO0,
SDMMC1_D1, DCMI_D3,
EVENTOUT
-
67 F1 100 F15 119 142 F15 PA8 I/O FT -
MCO1, TIM1_CH1,
TIM8_BKIN2, I2C3_SCL,
USART1_CK,
OTG_FS_SOF, LCD_R6,
EVENTOUT
-
68 E2 101 E15 120 143 E15 PA9 I/O FT -
TIM1_CH2, I2C3_SMBA,
SPI2_SCK/I2S2_CK,
USART1_TX, DCMI_D0,
EVENTOUT
OTG_FS_VBUS
Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)
Pin Number
Pin
name
(function
after
reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP100
WLCSP143
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
DocID027590 Rev 3 65/222
STM32F745xx STM32F746xx Pinouts and pin description
87
69 D5 102 D15 121 144 D15 PA10 I/O FT -
TIM1_CH3, USART1_RX,
OTG_FS_ID, DCMI_D1,
EVENTOUT
-
70 D4 103 C15 122 145 C15 PA11 I/O FT -
TIM1_CH4,
USART1_CTS,
CAN1_RX, OTG_FS_DM,
LCD_R4, EVENTOUT
-
71 E1 104 B15 123 146 B15 PA12 I/O FT -
TIM1_ETR,
USART1_RTS,
SAI2_FS_B, CAN1_TX,
OTG_FS_DP, LCD_R5,
EVENTOUT
-
72 D3 105 A15 124 147 A15
PA13(JT
MS-
SWDIO)
I/O FT - JTMS-SWDIO,
EVENTOUT -
73 D1 106 F13 125 148 E11 VCAP_2 S - - - -
74 D2 107 F12 126 149 F10 VSS S - - - -
75 C1 108 G13 127 150 F11 VDD S - - - -
- - - E12 128 151 E12 PH13 I/O FT -
TIM8_CH1N, CAN1_TX,
FMC_D21, LCD_G2,
EVENTOUT
-
- - - E13 129 152 E13 PH14 I/O FT -
TIM8_CH2N, FMC_D22,
DCMI_D4, LCD_G3,
EVENTOUT
-
- - - D13 130 153 D13 PH15 I/O FT -
TIM8_CH3N, FMC_D23,
DCMI_D11, LCD_G4,
EVENTOUT
-
- - - E14 131 154 E14 PI0 I/O FT -
TIM5_CH4,
SPI2_NSS/I2S2_WS,
FMC_D24, DCMI_D13,
LCD_G5, EVENTOUT
-
- - - D14 132 155 D14 PI1 I/O FT -
TIM8_BKIN2,
SPI2_SCK/I2S2_CK,
FMC_D25, DCMI_D8,
LCD_G6, EVENTOUT
-
Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)
Pin Number
Pin
name
(function
after
reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP100
WLCSP143
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
Pinouts and pin description STM32F745xx STM32F746xx
66/222 DocID027590 Rev 3
- - - C14 133 156 C14 PI2 I/O FT -
TIM8_CH4, SPI2_MISO,
FMC_D26, DCMI_D9,
LCD_G7, EVENTOUT
-
- - - C13 134 157 C13 PI3 I/O FT -
TIM8_ETR,
SPI2_MOSI/I2S2_SD,
FMC_D27, DCMI_D10,
EVENTOUT
-
-F5-D9135-F9 VSS S-- - -
- A1 - C9 136 158 E10 VDD S - - - -
76 B1 109 A14 137 159 A14
PA14(JT
CK-
SWCLK)
I/O FT - JTCK-SWCLK,
EVENTOUT -
77 C2 110 A13 138 160 A13 PA15(JT
DI) I/O FT -
JTDI,
TIM2_CH1/TIM2_ETR,
HDMI-CEC,
SPI1_NSS/I2S1_WS,
SPI3_NSS/I2S3_WS,
UART4_RTS,
EVENTOUT
-
78 A2 111 B14 139 161 B14 PC10 I/O FT -
SPI3_SCK/I2S3_CK,
USART3_TX,
UART4_TX,
QUADSPI_BK1_IO1,
SDMMC1_D2, DCMI_D8,
LCD_R2, EVENTOUT
-
79 B2 112 B13 140 162 B13 PC11 I/O FT -
SPI3_MISO,
USART3_RX,
UART4_RX,
QUADSPI_BK2_NCS,
SDMMC1_D3, DCMI_D4,
EVENTOUT
-
80 C3 113 A12 141 163 A12 PC12 I/O FT -
TRACED3,
SPI3_MOSI/I2S3_SD,
USART3_CK,
UART5_TX,
SDMMC1_CK, DCMI_D9,
EVENTOUT
-
Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)
Pin Number
Pin
name
(function
after
reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP100
WLCSP143
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
DocID027590 Rev 3 67/222
STM32F745xx STM32F746xx Pinouts and pin description
87
81 B3 114 B12 142 164 B12 PD0 I/O FT - CAN1_RX, FMC_D2,
EVENTOUT -
82 C4 115 C12 143 165 C12 PD1 I/O FT - CAN1_TX, FMC_D3,
EVENTOUT -
83 A3 116 D12 144 166 D12 PD2 I/O FT -
TRACED2, TIM3_ETR,
UART5_RX,
SDMMC1_CMD,
DCMI_D11, EVENTOUT
-
84 B4 117 D11 145 167 C11 PD3 I/O FT -
SPI2_SCK/I2S2_CK,
USART2_CTS,
FMC_CLK, DCMI_D5,
LCD_G7, EVENTOUT
-
85 B5 118 D10 146 168 D11 PD4 I/O FT - USART2_RTS,
FMC_NOE, EVENTOUT -
86 A4 119 C11 147 169 C10 PD5 I/O FT - USART2_TX, FMC_NWE,
EVENTOUT -
- - 120 D8 148 170 F8 VSS S - - - -
- C5 121 C8 149 171 E9 VDD S - - - -
87 F4 122 B11 150 172 B11 PD6 I/O FT -
SPI3_MOSI/I2S3_SD,
SAI1_SD_A,
USART2_RX,
FMC_NWAIT, DCMI_D10,
LCD_B2, EVENTOUT
-
88 A5 123 A11 151 173 A11 PD7 I/O FT -
USART2_CK,
SPDIFRX_IN0,
FMC_NE1, EVENTOUT
-
- - - - - 174 B10 PJ12 I/O FT - LCD_B0, EVENTOUT -
- - - - - 175 B9 PJ13 I/O FT - LCD_B1, EVENTOUT -
- - - - - 176 C9 PJ14 I/O FT - LCD_B2, EVENTOUT -
- - - - - 177 D10 PJ15 I/O FT - LCD_B3, EVENTOUT -
Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)
Pin Number
Pin
name
(function
after
reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP100
WLCSP143
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
Pinouts and pin description STM32F745xx STM32F746xx
68/222 DocID027590 Rev 3
- E5 124 C10 152 178 D9 PG9 I/O FT -
SPDIFRX_IN3,
USART6_RX,
QUADSPI_BK2_IO2,
SAI2_FS_B,
FMC_NE2/FMC_NCE,
DCMI_VSYNC,
EVENTOUT
-
- C6 125 B10 153 179 C8 PG10 I/O FT -
LCD_G3, SAI2_SD_B,
FMC_NE3, DCMI_D2,
LCD_B2, EVENTOUT
-
- B6 126 B9 154 180 B8 PG11 I/O FT -
SPDIFRX_IN0,
ETH_MII_TX_EN/ETH_R
MII_TX_EN, DCMI_D3,
LCD_B3, EVENTOUT
-
- A6 127 B8 155 181 C7 PG12 I/O FT -
LPTIM1_IN1,
SPI6_MISO,
SPDIFRX_IN1,
USART6_RTS, LCD_B4,
FMC_NE4, LCD_B1,
EVENTOUT
-
- D6 128 A8 156 182 B3 PG13 I/O FT -
TRACED0, LPTIM1_OUT,
SPI6_SCK,
USART6_CTS,
ETH_MII_TXD0/ETH_RM
II_TXD0, FMC_A24,
LCD_R0, EVENTOUT
-
- F6 129 A7 157 183 A4 PG14 I/O FT -
TRACED1, LPTIM1_ETR,
SPI6_MOSI,
USART6_TX,
QUADSPI_BK2_IO3,
ETH_MII_TXD1/ETH_RM
II_TXD1, FMC_A25,
LCD_B0, EVENTOUT
-
- - 130 D7 158 184 F7 VSS S - - - -
- E6 131 C7 159 185 E8 VDD S - - - -
Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)
Pin Number
Pin
name
(function
after
reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP100
WLCSP143
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
DocID027590 Rev 3 69/222
STM32F745xx STM32F746xx Pinouts and pin description
87
- - - - - 186 D8 PK3 I/O FT - LCD_B4, EVENTOUT -
- - - - - 187 D7 PK4 I/O FT - LCD_B5, EVENTOUT -
- - - - - 188 C6 PK5 I/O FT - LCD_B6, EVENTOUT -
- - - - - 189 C5 PK6 I/O FT - LCD_B7, EVENTOUT -
- - - - - 190 C4 PK7 I/O FT - LCD_DE, EVENTOUT -
- A7 132 B7 160 191 B7 PG15 I/O FT -
USART6_CTS,
FMC_SDNCAS,
DCMI_D13, EVENTOUT
-
89 B7 133 A10 161 192 A10
PB3(JTD
O/TRAC
ESWO)
I/O FT -
JTDO/TRACESWO,
TIM2_CH2,
SPI1_SCK/I2S1_CK,
SPI3_SCK/I2S3_CK,
EVENTOUT
-
90 C7 134 A9 162 193 A9 PB4(NJT
RST) I/O FT -
NJTRST, TIM3_CH1,
SPI1_MISO, SPI3_MISO,
SPI2_NSS/I2S2_WS,
EVENTOUT
-
91 C8 135 A6 163 194 A8 PB5 I/O FT -
TIM3_CH2, I2C1_SMBA,
SPI1_MOSI/I2S1_SD,
SPI3_MOSI/I2S3_SD,
CAN2_RX,
OTG_HS_ULPI_D7,
ETH_PPS_OUT,
FMC_SDCKE1,
DCMI_D10, EVENTOUT
-
92 A8 136 B6 164 195 B6 PB6 I/O FT -
TIM4_CH1, HDMI-CEC,
I2C1_SCL, USART1_TX,
CAN2_TX,
QUADSPI_BK1_NCS,
FMC_SDNE1, DCMI_D5,
EVENTOUT
-
93 B8 137 B5 165 196 B5 PB7 I/O FT -
TIM4_CH2, I2C1_SDA,
USART1_RX, FMC_NL,
DCMI_VSYNC,
EVENTOUT
-
94 C9 138 D6 166 197 E6 BOOT I B - - VPP
Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)
Pin Number
Pin
name
(function
after
reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP100
WLCSP143
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
Pinouts and pin description STM32F745xx STM32F746xx
70/222 DocID027590 Rev 3
95 A9 139 A5 167 198 A7 PB8 I/O FT -
TIM4_CH3, TIM10_CH1,
I2C1_SCL, CAN1_RX,
ETH_MII_TXD3,
SDMMC1_D4, DCMI_D6,
LCD_B6, EVENTOUT
-
96 B9 140 B4 168 199 B4 PB9 I/O FT -
TIM4_CH4, TIM11_CH1,
I2C1_SDA,
SPI2_NSS/I2S2_WS,
CAN1_TX, SDMMC1_D5,
DCMI_D7, LCD_B7,
EVENTOUT
-
97 B10 141 A4 169 200 A6 PE0 I/O FT -
TIM4_ETR,
LPTIM1_ETR,
UART8_Rx,
SAI2_MCK_A,
FMC_NBL0, DCMI_D2,
EVENTOUT
-
98 A10 142 A3 170 201 A5 PE1 I/O FT -
LPTIM1_IN2, UART8_Tx,
FMC_NBL1, DCMI_D3,
EVENTOUT
-
99 - - D5 - 202 F6 VSS S - - - -
- A11 143 C6 171 203 E5 PDR_ON S - - - -
100 D7 144 C5 172 204 E7 VDD S - - - -
- - - D4 173 205 C3 PI4 I/O FT -
TIM8_BKIN,
SAI2_MCK_A,
FMC_NBL2, DCMI_D5,
LCD_B4, EVENTOUT
-
- - - C4 174 206 D3 PI5 I/O FT -
TIM8_CH1,
SAI2_SCK_A,
FMC_NBL3,
DCMI_VSYNC, LCD_B5,
EVENTOUT
-
Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)
Pin Number
Pin
name
(function
after
reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP100
WLCSP143
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
DocID027590 Rev 3 71/222
STM32F745xx STM32F746xx Pinouts and pin description
87
- - - C3 175 207 D6 PI6 I/O FT -
TIM8_CH2, SAI2_SD_A,
FMC_D28, DCMI_D6,
LCD_B6, EVENTOUT
-
- - - C2 176 208 D4 PI7 I/O FT -
TIM8_CH3, SAI2_FS_A,
FMC_D29, DCMI_D7,
LCD_B7, EVENTOUT
-
1. Function availability depends on the chosen device.
2. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current
(3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF.
- These I/Os must not be used as a current source (e.g. to drive an LED).
3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after
reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC
register description sections in the STM32F75xxx and STM32F74xxx reference manual.
4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
5. If the device is delivered in an WLCSP143, UFBGA176, LQFP176 or TFBGA216 package, and the BYPASS_REG pin is
set to VDD (Regulator OFF/internal reset ON mode), then PA0 is used as an internal Reset (active low).
Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)
Pin Number
Pin
name
(function
after
reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP100
WLCSP143
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
Pinouts and pin description STM32F745xx STM32F746xx
72/222 DocID027590 Rev 3
Table 11. FMC pin definition
Pin name NOR/PSRAM/SR
AM
NOR/PSRAM
Mux NAND16 SDRAM
PF0 A0 - - A0
PF1 A1 - - A1
PF2 A2 - - A2
PF3 A3 - - A3
PF4 A4 - - A4
PF5 A5 - - A5
PF12 A6 - - A6
PF13 A7 - - A7
PF14 A8 - - A8
PF15 A9 - - A9
PG0 A10 - - A10
PG1 A11 - - A11
PG2 A12 - - A12
PG3 A13 - - -
PG4 A14 - - BA0
PG5 A15 - - BA1
PD11 A16 A16 CLE -
PD12 A17 A17 ALE -
PD13 A18 A18 - -
PE3 A19 A19 - -
PE4 A20 A20 - -
PE5 A21 A21 - -
PE6 A22 A22 - -
PE2 A23 A23 - -
PG13 A24 A24 - -
PG14 A25 A25 - -
PD14 D0 DA0 D0 D0
PD15 D1 DA1 D1 D1
PD0 D2 DA2 D2 D2
PD1 D3 DA3 D3 D3
PE7 D4 DA4 D4 D4
PE8 D5 DA5 D5 D5
PE9 D6 DA6 D6 D6
PE10 D7 DA7 D7 D7
DocID027590 Rev 3 73/222
STM32F745xx STM32F746xx Pinouts and pin description
87
PE11 D8 DA8 D8 D8
PE12 D9 DA9 D9 D9
PE13 D10 DA10 D10 D10
PE14 D11 DA11 D11 D11
PE15 D12 DA12 D12 D12
PD8 D13 DA13 D13 D13
PD9 D14 DA14 D14 D14
PD10 D15 DA15 D15 D15
PH8 D16 - - D16
PH9 D17 - - D17
PH10 D18 - - D18
PH11 D19 - - D19
PH12 D20 - - D20
PH13 D21 - - D21
PH14 D22 - - D22
PH15 D23 - - D23
PI0 D24 - - D24
PI1 D25 - - D25
PI2 D26 - - D26
PI3 D27 - - D27
PI6 D28 - - D28
PI7 D29 - - D29
PI9 D30 - - D30
PI10 D31 - - D31
PD7 NE1 NE1 - -
PG9 NE2 NE2 NCE -
PG10 NE3 NE3 - -
PG11----
PG12 NE4 NE4 - -
PD3 CLK CLK - -
PD4 NOE NOE NOE -
PD5 NWE NWE NWE -
PD6 NWAIT NWAIT NWAIT -
PB7 NADV NADV - -
Table 11. FMC pin definition (continued)
Pin name NOR/PSRAM/SR
AM
NOR/PSRAM
Mux NAND16 SDRAM
Pinouts and pin description STM32F745xx STM32F746xx
74/222 DocID027590 Rev 3
PF6 - - - -
PF7 - - - -
PF8 - - - -
PF9 - - - -
PF10----
PG6 - - - -
PG7 - - INT -
PE0 NBL0 NBL0 - NBL0
PE1 NBL1 NBL1 - NBL1
PI4 NBL2 - - NBL2
PI5 NBL3 - - NBL3
PG8 - - - SDCLK
PC0 - - - SDNWE
PF11 - - - SDNRAS
PG15 - - - SDNCAS
PH2 - - - SDCKE0
PH3 - - - SDNE0
PH6 - - - SDNE1
PH7 - - - SDCKE1
PH5 - - - SDNWE
PC2 - - - SDNE0
PC3 - - - SDCKE0
PB5 - - - SDCKE1
PB6 - - - SDNE1
Table 11. FMC pin definition (continued)
Pin name NOR/PSRAM/SR
AM
NOR/PSRAM
Mux NAND16 SDRAM
STM32F745xx STM32F746xx Pinouts and pin description
DocID027590 Rev 3 75/222
Table 12. STM32F745xx and STM32F746xx alternate function mapping
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5
TIM8/9/10/
11/LPTIM
1/CEC
I2C1/2/3/
4/CEC
SPI1/2/3/
4/5/6
SPI3/
SAI1
SPI2/3/U
SART1/2/
3/UART5/
SPDIFRX
SAI2/US
ART6/UA
RT4/5/7/8
/SPDIFR
X
CAN1/2/T
IM12/13/
14/QUAD
SPI/LCD
SAI2/QU
ADSPI/O
TG2_HS/
OTG1_FS
ETH/
OTG1_FS
FMC/SD
MMC1/O
TG2_FS
DCMI LCD SYS
Port A
PA0 -
TIM2_C
H1/TIM2
_ETR
TIM5_C
H1
TIM8_ET
R---
USART2
_CTS
UART4_
TX -SAI2_SD_
B
ETH_MII_
CRS ---
EVEN
TOUT
PA1 - TIM2_C
H2
TIM5_C
H2 ----
USART2
_RTS
UART4_
RX
QUADSP
I_BK1_IO
3
SAI2_MC
K_B
ETH_MII_
RX_CLK/
ETH_RMI
I_REF_C
LK
- - LCD_R2 EVEN
TOUT
PA2 - TIM2_C
H3
TIM5_C
H3
TIM9_CH
1---
USART2
_TX
SAI2_SC
K_B --
ETH_MDI
O- - LCD_R1 EVEN
TOUT
PA3 - TIM2_C
H4
TIM5_C
H4
TIM9_CH
2---
USART2
_RX --
OTG_HS_
ULPI_D0
ETH_MII_
COL --LCD_B5
EVEN
TOUT
PA4 - - - - -
SPI1_NS
S/I2S1_
WS
SPI3_NS
S/I2S3_
WS
USART2
_CK -- - -
OTG_HS
_SOF
DCMI_H
SYNC
LCD_VS
YNC
EVEN
TOUT
PA5 -
TIM2_C
H1/TIM2
_ETR
-TIM8_CH
1N -
SPI1_SC
K/I2S1_
CK
----
OTG_HS_
ULPI_CK - - - LCD_R4 EVEN
TOUT
PA6 - TIM1_B
KIN
TIM3_C
H1
TIM8_BKI
N-SPI1_MI
SO -- -
TIM13_C
H1 ---
DCMI_PI
XCLK LCD_G2 EVEN
TOUT
PA7 - TIM1_C
H1N
TIM3_C
H2
TIM8_CH
1N -
SPI1_M
OSI/I2S1
_SD
-- -
TIM14_C
H1 -
ETH_MII_
RX_DV/E
TH_RMII_
CRS_DV
FMC_SD
NWE --
EVEN
TOUT
PA8 MCO1 TIM1_C
H1 -TIM8_BKI
N2
I2C3_SC
L--
USART1
_CK --
OTG_FS_
SOF - - - LCD_R6 EVEN
TOUT
PA9 - TIM1_C
H2 --
I2C3_SM
BA
SPI2_SC
K/I2S2_
CK
-USART1
_TX -- - --
DCMI_D
0-EVEN
TOUT
PA10 - TIM1_C
H3 -- ---
USART1
_RX --
OTG_FS_
ID --
DCMI_D
1-EVEN
TOUT
PA11 - TIM1_C
H4 -- ---
USART1
_CTS -CAN1_R
X
OTG_FS_
DM - - - LCD_R4 EVEN
TOUT
Pinouts and pin description STM32F745xx STM32F746xx
76/222 DocID027590 Rev 3
Port A
PA12 - TIM1_ET
R-- ---
USART1
_RTS
SAI2_FS
_B
CAN1_T
X
OTG_FS_
DP - - - LCD_R5 EVEN
TOUT
PA13 JTMS-
SWDIO -- - - -- - - - - - ---
EVEN
TOUT
PA14 JTCK-
SWCLK -- - - -- - - - - - ---
EVEN
TOUT
PA15 JTDI
TIM2_C
H1/TIM2
_ETR
--
HDMI-
CEC
SPI1_NS
S/I2S1_
WS
SPI3_NS
S/I2S3_
WS
-UART4_
RTS - - - ---
EVEN
TOUT
Port B
PB0 - TIM1_C
H2N
TIM3_C
H3
TIM8_CH
2N ----
UART4_
CTS LCD_R3 OTG_HS_
ULPI_D1
ETH_MII_
RXD2 ---
EVEN
TOUT
PB1 - TIM1_C
H3N
TIM3_C
H4
TIM8_CH
3N - - - - - LCD_R6 OTG_HS_
ULPI_D2
ETH_MII_
RXD3 ---
EVEN
TOUT
PB2 - - - - - - SAI1_SD
_A
SPI3_MO
SI/I2S3_
SD
QUADSP
I_CLK - - ---
EVEN
TOUT
PB3
JTDO/T
RACES
WO
TIM2_C
H2 -- -
SPI1_SC
K/I2S1_
CK
SPI3_SC
K/I2S3_
CK
--- - ----
EVEN
TOUT
PB4 NJTRST - TIM3_C
H1 --
SPI1_MI
SO
SPI3_MI
SO
SPI2_NS
S/I2S2_
WS
- - - - ---
EVEN
TOUT
PB5 - - TIM3_C
H2 -I2C1_SM
BA
SPI1_M
OSI/I2S1
_SD
SPI3_M
OSI/I2S3
_SD
--
CAN2_R
X
OTG_HS_
ULPI_D7
ETH_PPS
_OUT
FMC_SD
CKE1
DCMI_D
10 -EVEN
TOUT
PB6 - - TIM4_C
H1
HDMI-
CEC
I2C1_SC
L--
USART1
_TX -CAN2_T
X
QUADSPI
_BK1_NC
S
-FMC_SD
NE1
DCMI_D
5-EVEN
TOUT
PB7 - - TIM4_C
H2 -I2C1_SD
A--
USART1
_RX - - - - FMC_NL DCMI_V
SYNC -EVEN
TOUT
PB8 - - TIM4_C
H3
TIM10_C
H1
I2C1_SC
L-- - -
CAN1_R
X
ETH_MII_
TXD3
SDMMC
1_D4
DCMI_D
6LCD_B6 EVEN
TOUT
Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5
TIM8/9/10/
11/LPTIM
1/CEC
I2C1/2/3/
4/CEC
SPI1/2/3/
4/5/6
SPI3/
SAI1
SPI2/3/U
SART1/2/
3/UART5/
SPDIFRX
SAI2/US
ART6/UA
RT4/5/7/8
/SPDIFR
X
CAN1/2/T
IM12/13/
14/QUAD
SPI/LCD
SAI2/QU
ADSPI/O
TG2_HS/
OTG1_FS
ETH/
OTG1_FS
FMC/SD
MMC1/O
TG2_FS
DCMI LCD SYS
STM32F745xx STM32F746xx Pinouts and pin description
DocID027590 Rev 3 77/222
Port B
PB9 - - TIM4_C
H4
TIM11_CH
1
I2C1_SD
A
SPI2_NS
S/I2S2_
WS
-- -
CAN1_T
X--
SDMMC
1_D5
DCMI_D
7LCD_B7 EVEN
TOUT
PB10 - TIM2_C
H3 --
I2C2_SC
L
SPI2_SC
K/I2S2_
CK
-USART3
_TX --
OTG_HS_
ULPI_D3
ETH_MII_
RX_ER - - LCD_G4 EVEN
TOUT
PB11 - TIM2_C
H4 --
I2C2_SD
A--
USART3
_RX --
OTG_HS_
ULPI_D4
ETH_MII_
TX_EN/E
TH_RMII_
TX_EN
- - LCD_G5 EVEN
TOUT
PB12 - TIM1_B
KIN --
I2C2_SM
BA
SPI2_NS
S/I2S2_
WS
-USART3
_CK -CAN2_R
X
OTG_HS_
ULPI_D5
ETH_MII_
TXD0/ET
H_RMII_T
XD0
OTG_HS
_ID --
EVEN
TOUT
PB13 - TIM1_C
H1N -- -
SPI2_SC
K/I2S2_
CK
-USART3
_CTS -CAN2_T
X
OTG_HS_
ULPI_D6
ETH_MII_
TXD1/ET
H_RMII_T
XD1
---
EVEN
TOUT
PB14 - TIM1_C
H2N -TIM8_CH
2N -SPI2_MI
SO -USART3
_RTS -TIM12_C
H1 --
OTG_HS
_DM --
EVEN
TOUT
PB15 RTC_R
EFIN
TIM1_C
H3N -TIM8_CH
3N -
SPI2_M
OSI/I2S2
_SD
-- -
TIM12_C
H2 --
OTG_HS
_DP --
EVEN
TOUT
Port C
PC0--- - - -- -
SAI2_FS
_B -
OTG_HS_
ULPI_ST
P
-FMC_SD
NWE - LCD_R5 EVEN
TOUT
PC1 TRACE
D0 -- - -
SPI2_M
OSI/I2S2
_SD
SAI1_SD
_A --- -
ETH_MD
C---
EVEN
TOUT
PC2 - - - - - SPI2_MI
SO ----
OTG_HS_
ULPI_DIR
ETH_MII_
TXD2
FMC_SD
NE0 --
EVEN
TOUT
PC3 - - - - -
SPI2_M
OSI/I2S2
_SD
----
OTG_HS_
ULPI_NX
T
ETH_MII_
TX_CLK
FMC_SD
CKE0 --
EVEN
TOUT
Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5
TIM8/9/10/
11/LPTIM
1/CEC
I2C1/2/3/
4/CEC
SPI1/2/3/
4/5/6
SPI3/
SAI1
SPI2/3/U
SART1/2/
3/UART5/
SPDIFRX
SAI2/US
ART6/UA
RT4/5/7/8
/SPDIFR
X
CAN1/2/T
IM12/13/
14/QUAD
SPI/LCD
SAI2/QU
ADSPI/O
TG2_HS/
OTG1_FS
ETH/
OTG1_FS
FMC/SD
MMC1/O
TG2_FS
DCMI LCD SYS
Pinouts and pin description STM32F745xx STM32F746xx
78/222 DocID027590 Rev 3
Port C
PC4 - - - - - I2S1_M
CK --
SPDIFRX
_IN2 --
ETH_MII_
RXD0/ET
H_RMII_
RXD0
FMC_SD
NE0 --
EVEN
TOUT
PC5--- - - -- -
SPDIFRX
_IN3 --
ETH_MII_
RXD1/ET
H_RMII_
RXD1
FMC_SD
CKE0 --
EVEN
TOUT
PC6 - - TIM3_C
H1
TIM8_CH
1-I2S2_M
CK --
USART6
_TX ---
SDMMC
1_D6
DCMI_D
0
LCD_HS
YNC
EVEN
TOUT
PC7 - - TIM3_C
H2
TIM8_
CH2 --
I2S3_M
CK -USART6
_RX ---
SDMMC
1_D7
DCMI_D
1LCD_G6 EVEN
TOUT
PC8 TRACE
D1 -TIM3_C
H3
TIM8_
CH3 ---
UART5_
RTS
USART6
_CK ---
SDMMC
1_D0
DCMI_D
2-EVEN
TOUT
PC9 MCO2 - TIM3_C
H4
TIM8_
CH4
I2C3_SD
A
I2S_CKI
N-UART5_
CTS -
QUADSP
I_BK1_IO
0
--
SDMMC
1_D1
DCMI_D
3-EVEN
TOUT
PC10 - - - - - -
SPI3_SC
K/I2S3_
CK
USART3
_TX
UART4_T
X
QUADSP
I_BK1_IO
1
--
SDMMC
1_D2
DCMI_D
8LCD_R2 EVEN
TOUT
PC11 - - - - - - SPI3_MI
SO
USART3
_RX
UART4_
RX
QUADSP
I_BK2_N
CS
--
SDMMC
1_D3
DCMI_D
4-EVEN
TOUT
PC12 TRACE
D3 -- - - -
SPI3_M
OSI/I2S3
_SD
USART3
_CK
UART5_T
X---
SDMMC
1_CK
DCMI_D
9-EVEN
TOUT
PC13---- ------ - ----
EVEN
TOUT
PC14---- ------ - ----
EVEN
TOUT
PC15---- ------ - ----
EVEN
TOUT
Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5
TIM8/9/10/
11/LPTIM
1/CEC
I2C1/2/3/
4/CEC
SPI1/2/3/
4/5/6
SPI3/
SAI1
SPI2/3/U
SART1/2/
3/UART5/
SPDIFRX
SAI2/US
ART6/UA
RT4/5/7/8
/SPDIFR
X
CAN1/2/T
IM12/13/
14/QUAD
SPI/LCD
SAI2/QU
ADSPI/O
TG2_HS/
OTG1_FS
ETH/
OTG1_FS
FMC/SD
MMC1/O
TG2_FS
DCMI LCD SYS
STM32F745xx STM32F746xx Pinouts and pin description
DocID027590 Rev 3 79/222
Port D
PD0--- - - -- - -
CAN1_R
X- - FMC_D2 - - EVEN
TOUT
PD1--- - - -- - -
CAN1_T
X- - FMC_D3 - - EVEN
TOUT
PD2 TRACE
D2 -TIM3_ET
R-----
UART5_
RX ---
SDMMC
1_CMD
DCMI_D
11 -EVEN
TOUT
PD3 - - - - -
SPI2_SC
K/I2S2_
CK
-USART2
_CTS -- - -
FMC_CL
K
DCMI_D
5LCD_G7 EVEN
TOUT
PD4--- - - --
USART2
_RTS -- - -
FMC_N
OE --
EVEN
TOUT
PD5--- - - --
USART2
_TX -- - -
FMC_N
WE --
EVEN
TOUT
PD6 - - - - -
SPI3_M
OSI/I2S3
_SD
SAI1_SD
_A
USART2
_RX -- - -
FMC_N
WAIT
DCMI_D
10 LCD_B2 EVEN
TOUT
PD7--- - - --
USART2
_CK
SPDIFRX
_IN0 ---
FMC_NE
1--
EVEN
TOUT
PD8--- - - --
USART3
_TX
SPDIFRX
_IN1 ---
FMC_D1
3--
EVEN
TOUT
PD9--- - - --
USART3
_RX -- - -
FMC_D1
4--
EVEN
TOUT
PD10 - - - - - - - USART3
_CK -- - -
FMC_D1
5-LCD_B3
EVEN
TOUT
PD11 - - - - I2C4_SM
BA --
USART3
_CTS -
QUADSP
I_BK1_IO
0
SAI2_SD_
A-
FMC_A1
6/FMC_
CLE
--
EVEN
TOUT
PD12 - - TIM4_C
H1
LPTIM1_I
N1
I2C4_SC
L--
USART3
_RTS -
QUADSP
I_BK1_IO
1
SAI2_FS_
A-
FMC_A1
7/FMC_
ALE
--
EVEN
TOUT
PD13 - - TIM4_C
H2
LPTIM1_
OUT
I2C4_SD
A-- - -
QUADSP
I_BK1_IO
3
SAI2_SC
K_A -FMC_A1
8--
EVEN
TOUT
Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5
TIM8/9/10/
11/LPTIM
1/CEC
I2C1/2/3/
4/CEC
SPI1/2/3/
4/5/6
SPI3/
SAI1
SPI2/3/U
SART1/2/
3/UART5/
SPDIFRX
SAI2/US
ART6/UA
RT4/5/7/8
/SPDIFR
X
CAN1/2/T
IM12/13/
14/QUAD
SPI/LCD
SAI2/QU
ADSPI/O
TG2_HS/
OTG1_FS
ETH/
OTG1_FS
FMC/SD
MMC1/O
TG2_FS
DCMI LCD SYS
Pinouts and pin description STM32F745xx STM32F746xx
80/222 DocID027590 Rev 3
Port D
PD14 - - TIM4_C
H3 -----
UART8_
CTS ---FMC_D0--
EVEN
TOUT
PD15 - - TIM4_C
H4 -----
UART8_
RTS ---FMC_D1--
EVEN
TOUT
Port E
PE0 - - TIM4_ET
R
LPTIM1_E
TR ----
UART8_
Rx -SAI2_MC
K_A -FMC_NB
L0
DCMI_D
2-EVEN
TOUT
PE1 - - - LPTIM1_I
N2 ----
UART8_T
x---
FMC_NB
L1
DCMI_D
3-EVEN
TOUT
PE2 TRACE
CLK -- - -
SPI4_SC
K
SAI1_M
CLK_A --
QUADSP
I_BK1_IO
2
-ETH_MII_
TXD3
FMC_A2
3--
EVEN
TOUT
PE3 TRACE
D0 -- - - -
SAI1_SD
_B --- - -
FMC_A1
9--
EVEN
TOUT
PE4 TRACE
D1 -- - -
SPI4_NS
S
SAI1_FS
_A --- - -
FMC_A2
0
DCMI_D
4LCD_B0 EVEN
TOUT
PE5 TRACE
D2 --
TIM9_CH
1-SPI4_MI
SO
SAI1_SC
K_A --- - -
FMC_A2
1
DCMI_D
6LCD_G0 EVEN
TOUT
PE6 TRACE
D3
TIM1_B
KIN2 -TIM9_CH
2-SPI4_M
OSI
SAI1_SD
_A ---
SAI2_MC
K_B -FMC_A2
2
DCMI_D
7LCD_G1 EVEN
TOUT
PE7 - TIM1_ET
R-- ----
UART7_
Rx -QUADSPI
_BK2_IO0 -FMC_D4- -EVEN
TOUT
PE8 - TIM1_C
H1N -- ----
UART7_T
x-QUADSPI
_BK2_IO1 -FMC_D5- -EVEN
TOUT
PE9 - TIM1_C
H1 -- ----
UART7_
RTS -QUADSPI
_BK2_IO2 -FMC_D6- -EVEN
TOUT
PE10 - TIM1_C
H2N -- ----
UART7_
CTS -QUADSPI
_BK2_IO3 -FMC_D7- -EVEN
TOUT
PE11 - TIM1_C
H2 -- -
SPI4_NS
S----
SAI2_SD_
B- FMC_D8 - LCD_G3 EVEN
TOUT
PE12 - TIM1_C
H3N -- -
SPI4_SC
K----
SAI2_SC
K_B -FMC_D9-LCD_B4
EVEN
TOUT
PE13 - TIM1_C
H3 -- -
SPI4_MI
SO ----
SAI2_FS_
B-FMC_D1
0- LCD_DE EVEN
TOUT
Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5
TIM8/9/10/
11/LPTIM
1/CEC
I2C1/2/3/
4/CEC
SPI1/2/3/
4/5/6
SPI3/
SAI1
SPI2/3/U
SART1/2/
3/UART5/
SPDIFRX
SAI2/US
ART6/UA
RT4/5/7/8
/SPDIFR
X
CAN1/2/T
IM12/13/
14/QUAD
SPI/LCD
SAI2/QU
ADSPI/O
TG2_HS/
OTG1_FS
ETH/
OTG1_FS
FMC/SD
MMC1/O
TG2_FS
DCMI LCD SYS
STM32F745xx STM32F746xx Pinouts and pin description
DocID027590 Rev 3 81/222
Port E
PE14 - TIM1_C
H4 -- -
SPI4_M
OSI ----
SAI2_MC
K_B -FMC_D1
1-LCD_CL
K
EVEN
TOUT
PE15 - TIM1_B
KIN -- ------ - -
FMC_D1
2- LCD_R7 EVEN
TOUT
Port F
PF0 - - - - I2C2_SD
A-- - - - - -FMC_A0--
EVEN
TOUT
PF1 - - - - I2C2_SC
L-- - - - - -FMC_A1--
EVEN
TOUT
PF2 - - - - I2C2_SM
BA -- - - - - -FMC_A2--
EVEN
TOUT
PF3--- - - -- - - - - -FMC_A3--
EVEN
TOUT
PF4--- - - -- - - - - -FMC_A4--
EVEN
TOUT
PF5--- - - -- - - - - -FMC_A5--
EVEN
TOUT
PF6 - - - TIM10_C
H1 -SPI5_NS
S
SAI1_SD
_B -UART7_
Rx
QUADSP
I_BK1_IO
3
- - ---
EVEN
TOUT
PF7 - - - TIM11_CH
1-SPI5_SC
K
SAI1_M
CLK_B -UART7_T
x
QUADSP
I_BK1_IO
2
- - ---
EVEN
TOUT
PF8 - - - - - SPI5_MI
SO
SAI1_SC
K_B -UART7_
RTS
TIM13_C
H1
QUADSPI
_BK1_IO0 - ---
EVEN
TOUT
PF9 - - - - - SPI5_M
OSI
SAI1_FS
_B -UART7_
CTS
TIM14_C
H1
QUADSPI
_BK1_IO1 - ---
EVEN
TOUT
PF10---- ------ - --
DCMI_D
11 LCD_DE EVEN
TOUT
PF11 - - - - - SPI5_M
OSI ----
SAI2_SD_
B-FMC_SD
NRAS
DCMI_D
12 -EVEN
TOUT
PF12---- ------ - -FMC_A6--
EVEN
TOUT
Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5
TIM8/9/10/
11/LPTIM
1/CEC
I2C1/2/3/
4/CEC
SPI1/2/3/
4/5/6
SPI3/
SAI1
SPI2/3/U
SART1/2/
3/UART5/
SPDIFRX
SAI2/US
ART6/UA
RT4/5/7/8
/SPDIFR
X
CAN1/2/T
IM12/13/
14/QUAD
SPI/LCD
SAI2/QU
ADSPI/O
TG2_HS/
OTG1_FS
ETH/
OTG1_FS
FMC/SD
MMC1/O
TG2_FS
DCMI LCD SYS
Pinouts and pin description STM32F745xx STM32F746xx
82/222 DocID027590 Rev 3
Port F
PF13 - - - - I2C4_SM
BA -- - - - - -FMC_A7--
EVEN
TOUT
PF14 - - - - I2C4_SC
L-- - - - - -FMC_A8--
EVEN
TOUT
PF15 - - - - I2C4_SD
A-- - - - - -FMC_A9--
EVEN
TOUT
Port G
PG0--- - - -- - - - - -
FMC_A1
0--
EVEN
TOUT
PG1--- - - -- - - - - -
FMC_A1
1--
EVEN
TOUT
PG2--- - - -- - - - - -
FMC_A1
2--
EVEN
TOUT
PG3--- - - -- - - - - -
FMC_A1
3--
EVEN
TOUT
PG4--- - - -- - - - - -
FMC_A1
4/FMC_
BA0
--
EVEN
TOUT
PG5--- - - -- - - - - -
FMC_A1
5/FMC_
BA1
--
EVEN
TOUT
PG6--- - - -- - - - - - -
DCMI_D
12 LCD_R7 EVEN
TOUT
PG7--- - - -- -
USART6
_CK ---
FMC_IN
T
DCMI_D
13
LCD_CL
K
EVEN
TOUT
PG8 - - - - - SPI6_NS
S-SPDIFRX
_IN2
USART6
_RTS --
ETH_PPS
_OUT
FMC_SD
CLK --
EVEN
TOUT
PG9--- - - --
SPDIFRX
_IN3
USART6
_RX
QUADSP
I_BK2_IO
2
SAI2_FS_
B-
FMC_NE
2/FMC_
NCE
DCMI_V
SYNC -EVEN
TOUT
PG10 - - - - - - - - - LCD_G3 SAI2_SD_
B-FMC_NE
3
DCMI_D
2LCD_B2 EVEN
TOUT
Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5
TIM8/9/10/
11/LPTIM
1/CEC
I2C1/2/3/
4/CEC
SPI1/2/3/
4/5/6
SPI3/
SAI1
SPI2/3/U
SART1/2/
3/UART5/
SPDIFRX
SAI2/US
ART6/UA
RT4/5/7/8
/SPDIFR
X
CAN1/2/T
IM12/13/
14/QUAD
SPI/LCD
SAI2/QU
ADSPI/O
TG2_HS/
OTG1_FS
ETH/
OTG1_FS
FMC/SD
MMC1/O
TG2_FS
DCMI LCD SYS
STM32F745xx STM32F746xx Pinouts and pin description
DocID027590 Rev 3 83/222
Port G
PG11 - - - - - - - SPDIFRX
_IN0 -- -
ETH_MII_
TX_EN/E
TH_RMII_
TX_EN
-DCMI_D
3LCD_B3 EVEN
TOUT
PG12 - - - LPTIM1_I
N1 -SPI6_MI
SO -SPDIFRX
_IN1
USART6
_RTS LCD_B4 - - FMC_NE
4-LCD_B1
EVEN
TOUT
PG13 TRACE
D0 --
LPTIM1_
OUT -SPI6_SC
K--
USART6
_CTS --
ETH_MII_
TXD0/ET
H_RMII_T
XD0
FMC_A2
4- LCD_R0 EVEN
TOUT
PG14 TRACE
D1 --
LPTIM1_E
TR -SPI6_M
OSI --
USART6
_TX
QUADSP
I_BK2_IO
3
-
ETH_MII_
TXD1/ET
H_RMII_T
XD1
FMC_A2
5-LCD_B0
EVEN
TOUT
PG15 - - - - - - - - USART6
_CTS ---
FMC_SD
NCAS
DCMI_D
13 -EVEN
TOUT
Port H
PH0--- - - -- - - - - - ---
EVEN
TOUT
PH1--- - - -- - - - - - ---
EVEN
TOUT
PH2 - - - LPTIM1_I
N2 -----
QUADSP
I_BK2_IO
0
SAI2_SC
K_B
ETH_MII_
CRS
FMC_SD
CKE0 - LCD_R0 EVEN
TOUT
PH3--- - - -- - -
QUADSP
I_BK2_IO
1
SAI2_MC
K_B
ETH_MII_
COL
FMC_SD
NE0 - LCD_R1 EVEN
TOUT
PH4 - - - - I2C2_SC
L-----
OTG_HS_
ULPI_NX
T
- ---
EVEN
TOUT
PH5 - - - - I2C2_SD
A
SPI5_NS
S---- - -
FMC_SD
NWE --
EVEN
TOUT
PH6 - - - - I2C2_SM
BA
SPI5_SC
K-- -
TIM12_C
H1 -ETH_MII_
RXD2
FMC_SD
NE1
DCMI_D
8-EVEN
TOUT
PH7 - - - - I2C3_SC
L
SPI5_MI
SO ---- -
ETH_MII_
RXD3
FMC_SD
CKE1
DCMI_D
9-EVEN
TOUT
Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5
TIM8/9/10/
11/LPTIM
1/CEC
I2C1/2/3/
4/CEC
SPI1/2/3/
4/5/6
SPI3/
SAI1
SPI2/3/U
SART1/2/
3/UART5/
SPDIFRX
SAI2/US
ART6/UA
RT4/5/7/8
/SPDIFR
X
CAN1/2/T
IM12/13/
14/QUAD
SPI/LCD
SAI2/QU
ADSPI/O
TG2_HS/
OTG1_FS
ETH/
OTG1_FS
FMC/SD
MMC1/O
TG2_FS
DCMI LCD SYS
Pinouts and pin description STM32F745xx STM32F746xx
84/222 DocID027590 Rev 3
Port H
PH8 - - - - I2C3_SD
A----- - -
FMC_D1
6
DCMI_H
SYNC LCD_R2 EVEN
TOUT
PH9 - - - - I2C3_SM
BA -- - -
TIM12_C
H2 --
FMC_D1
7
DCMI_D
0LCD_R3 EVEN
TOUT
PH10 - - TIM5_C
H1 -I2C4_SM
BA ----- - -
FMC_D1
8
DCMI_D
1LCD_R4 EVEN
TOUT
PH11 - - TIM5_C
H2 -I2C4_SC
L----- - -
FMC_D1
9
DCMI_D
2LCD_R5 EVEN
TOUT
PH12 - - TIM5_C
H3 -I2C4_SD
A----- - -
FMC_D2
0
DCMI_D
3LCD_R6 EVEN
TOUT
PH13 - - - TIM8_CH
1N -----
CAN1_T
X--
FMC_D2
1- LCD_G2 EVEN
TOUT
PH14 - - - TIM8_CH
2N ------ - -
FMC_D2
2
DCMI_D
4LCD_G3 EVEN
TOUT
PH15 - - - TIM8_CH
3N ------ - -
FMC_D2
3
DCMI_D
11 LCD_G4 EVEN
TOUT
Port I
PI0 - - TIM5_C
H4 --
SPI2_NS
S/I2S2_
WS
---- - -
FMC_D2
4
DCMI_D
13 LCD_G5 EVEN
TOUT
PI1 - - - TIM8_BKI
N2 -
SPI2_SC
K/I2S2_
CK
---- - -
FMC_D2
5
DCMI_D
8LCD_G6 EVEN
TOUT
PI2 - - - TIM8_CH
4-SPI2_MI
SO ---- - -
FMC_D2
6
DCMI_D
9LCD_G7 EVEN
TOUT
PI3 - - - TIM8_ET
R-
SPI2_M
OSI/I2S2
_SD
---- - -
FMC_D2
7
DCMI_D
10 -EVEN
TOUT
PI4 - - - TIM8_BKI
N------
SAI2_MC
K_A -FMC_NB
L2
DCMI_D
5LCD_B4 EVEN
TOUT
PI5 - - - TIM8_CH
1------
SAI2_SC
K_A -FMC_NB
L3
DCMI_V
SYNC LCD_B5 EVEN
TOUT
PI6 - - - TIM8_CH
2------
SAI2_SD_
A-FMC_D2
8
DCMI_D
6LCD_B6 EVEN
TOUT
Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5
TIM8/9/10/
11/LPTIM
1/CEC
I2C1/2/3/
4/CEC
SPI1/2/3/
4/5/6
SPI3/
SAI1
SPI2/3/U
SART1/2/
3/UART5/
SPDIFRX
SAI2/US
ART6/UA
RT4/5/7/8
/SPDIFR
X
CAN1/2/T
IM12/13/
14/QUAD
SPI/LCD
SAI2/QU
ADSPI/O
TG2_HS/
OTG1_FS
ETH/
OTG1_FS
FMC/SD
MMC1/O
TG2_FS
DCMI LCD SYS
STM32F745xx STM32F746xx Pinouts and pin description
DocID027590 Rev 3 85/222
Port I
PI7 - - - TIM8_CH
3------
SAI2_FS_
A-FMC_D2
9
DCMI_D
7LCD_B7 EVEN
TOUT
PI8--- - - -- - - - - - ---
EVEN
TOUT
PI9--- - - -- - -
CAN1_R
X--
FMC_D3
0-LCD_VS
YNC
EVEN
TOUT
PI10---- ------ -
ETH_MII_
RX_ER
FMC_D3
1-LCD_HS
YNC
EVEN
TOUT
PI11---- ------
OTG_HS_
ULPI_DIR - ---
EVEN
TOUT
PI12---- ------ - ---
LCD_HS
YNC
EVEN
TOUT
PI13---- ------ - ---
LCD_VS
YNC
EVEN
TOUT
PI14---- ------ - ---
LCD_CL
K
EVEN
TOUT
PI15 - - - - - - - - - - - - - - LCD_R0 EVEN
TOUT
Port J
PJ0--- - - -- - - - - - --LCD_R1
EVEN
TOUT
PJ1--- - - -- - - - - - --LCD_R2
EVEN
TOUT
PJ2--- - - -- - - - - - --LCD_R3
EVEN
TOUT
PJ3--- - - -- - - - - - --LCD_R4
EVEN
TOUT
PJ4--- - - -- - - - - - --LCD_R5
EVEN
TOUT
PJ5--- - - -- - - - - - --LCD_R6
EVEN
TOUT
PJ6--- - - -- - - - - - --LCD_R7
EVEN
TOUT
Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5
TIM8/9/10/
11/LPTIM
1/CEC
I2C1/2/3/
4/CEC
SPI1/2/3/
4/5/6
SPI3/
SAI1
SPI2/3/U
SART1/2/
3/UART5/
SPDIFRX
SAI2/US
ART6/UA
RT4/5/7/8
/SPDIFR
X
CAN1/2/T
IM12/13/
14/QUAD
SPI/LCD
SAI2/QU
ADSPI/O
TG2_HS/
OTG1_FS
ETH/
OTG1_FS
FMC/SD
MMC1/O
TG2_FS
DCMI LCD SYS
Pinouts and pin description STM32F745xx STM32F746xx
86/222 DocID027590 Rev 3
Port J
PJ7--- - - -- - - - - - --LCD_G0
EVEN
TOUT
PJ8--- - - -- - - - - - --LCD_G1
EVEN
TOUT
PJ9--- - - -- - - - - - --LCD_G2
EVEN
TOUT
PJ10---- ------ - ---LCD_G3
EVEN
TOUT
PJ11---- ------ - ---LCD_G4
EVEN
TOUT
PJ12 - - - - - - - - - - - - - - LCD_B0 EVEN
TOUT
PJ13 - - - - - - - - - - - - - - LCD_B1 EVEN
TOUT
PJ14 - - - - - - - - - - - - - - LCD_B2 EVEN
TOUT
PJ15 - - - - - - - - - - - - - - LCD_B3 EVEN
TOUT
Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5
TIM8/9/10/
11/LPTIM
1/CEC
I2C1/2/3/
4/CEC
SPI1/2/3/
4/5/6
SPI3/
SAI1
SPI2/3/U
SART1/2/
3/UART5/
SPDIFRX
SAI2/US
ART6/UA
RT4/5/7/8
/SPDIFR
X
CAN1/2/T
IM12/13/
14/QUAD
SPI/LCD
SAI2/QU
ADSPI/O
TG2_HS/
OTG1_FS
ETH/
OTG1_FS
FMC/SD
MMC1/O
TG2_FS
DCMI LCD SYS
STM32F745xx STM32F746xx Pinouts and pin description
DocID027590 Rev 3 87/222
Port K
PK0--- - - -- - - - - - --LCD_G5
EVEN
TOUT
PK1--- - - -- - - - - - --LCD_G6
EVEN
TOUT
PK2--- - - -- - - - - - --LCD_G7
EVEN
TOUT
PK3--- - - -- - - - - - --LCD_B4
EVEN
TOUT
PK4--- - - -- - - - - - --LCD_B5
EVEN
TOUT
PK5--- - - -- - - - - - --LCD_B6
EVEN
TOUT
PK6--- - - -- - - - - - --LCD_B7
EVEN
TOUT
PK7--- - - -- - - - - - --LCD_DE
EVEN
TOUT
Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5
TIM8/9/10/
11/LPTIM
1/CEC
I2C1/2/3/
4/CEC
SPI1/2/3/
4/5/6
SPI3/
SAI1
SPI2/3/U
SART1/2/
3/UART5/
SPDIFRX
SAI2/US
ART6/UA
RT4/5/7/8
/SPDIFR
X
CAN1/2/T
IM12/13/
14/QUAD
SPI/LCD
SAI2/QU
ADSPI/O
TG2_HS/
OTG1_FS
ETH/
OTG1_FS
FMC/SD
MMC1/O
TG2_FS
DCMI LCD SYS
Memory mapping STM32F745xx STM32F746xx
88/222 DocID027590 Rev 3
4 Memory mapping
The memory map is shown in Figure 18.
Figure 18. Memory map
069
0E\WH
%ORFN
&RUWH[0
,QWHUQDO
SHULSKHUDOV
0E\WH
%ORFN
)0&
0E\WH
%ORFN
4XDG63,DQG
)0&EDQN
[
[)))))))
[
[)))))))
[
[)))))))
[
[)))))))
[
[)))))))
[&
[&)))))))
['
[')))))))
[(
[))))))))
65$0.%
5HVHUYHG
[[))))
[[%)))
[[)))))))
[
5HVHUYHG
[)))
[[))))
[
5HVHUYHG [&[)))))))
$+% [[')))))))
$+%
'7&0.%
[%))
[
65$0.% [&[))))
$3%
$3%
[%))
[&[))))
5HVHUYHG
[[)))))))
[))))
$+%
5HVHUYHG
)ODVKPHPRU\RQ$;,0LQWHUIDFH
[)))[))))
[[)))))
[[))))))
[[)))
5HVHUYHG
2SWLRQ%\WHV
5HVHUYHG [)))[)))))))
[
&RUWH[0LQWHUQDO
SHULSKHUDOV [([()))))
5HVHUYHG [([))))))))
0E\WH
%ORFN
)0&
0E\WH
%ORFN
)0&EDQNWR
EDQN
0E\WH
%ORFN
3HULSKHUDOV
0E\WH
%ORFN
65$0
0E\WH
%ORFN
5HVHUYHG [[))())))
)ODVKPHPRU\RQ,7&0LQWHUIDFH [[)))))
[[)))))
[[)))))
,7&05$0
5HVHUYHG
6\VWHPPHPRU\
5HVHUYHG
[[('%)
DocID027590 Rev 3 89/222
STM32F745xx STM32F746xx Memory mapping
92
Table 13. STM32F745xx and STM32F746xx register boundary addresses
Bus Boundary address Peripheral
0xE00F FFFF - 0xFFFF FFFF Reserved
Cortex-M7 0xE000 0000 - 0xE00F FFFF Cortex-M7 internal peripherals
AHB3
0xD000 0000 - 0xDFFF FFFF FMC bank 6
0xC000 0000 - 0xCFFF FFFF FMC bank 5
0xA000 2000 - 0xBFFF FFFF Reserved
0xA000 1000 - 0xA000 1FFF Quad-SPI control register
0xA000 0000- 0xA000 0FFF FMC control register
0x9000 0000 - 0x9FFF FFFF Quad-SPI
0x8000 0000 - 0x8FFF FFFF FMC bank 3
0x7000 0000 - 0x7FFF FFFF FMC bank 2
0x6000 0000 - 0x6FFF FFFF FMC bank 1
0x5006 0C00- 0x5FFF FFFF Reserved
AHB2
0x5006 0800 - 0x5006 0BFF RNG
0x5005 0400 - 0x5006 07FF Reserved
0x5005 0000 - 0x5005 03FF DCMI
0x5004 0000- 0x5004 FFFF Reserved
0x5000 0000 - 0x5003 FFFF USB OTG FS
Memory mapping STM32F745xx STM32F746xx
90/222 DocID027590 Rev 3
0x4008 0000- 0x4FFF FFFF Reserved
AHB1
0x4004 0000 - 0x4007 FFFF USB OTG HS
0x4002 BC00- 0x4003 FFFF Reserved
0x4002 B000 - 0x4002 BBFF Chrom-ART (DMA2D)
0x4002 9400 - 0x4002 AFFF Reserved
0x4002 9000 - 0x4002 93FF
ETHERNET MAC
0x4002 8C00 - 0x4002 8FFF
0x4002 8800 - 0x4002 8BFF
0x4002 8400 - 0x4002 87FF
0x4002 8000 - 0x4002 83FF
0x4002 6800 - 0x4002 7FFF Reserved
0x4002 6400 - 0x4002 67FF DMA2
0x4002 6000 - 0x4002 63FF DMA1
0x4002 5000 - 0X4002 5FFF Reserved
0x4002 4000 - 0x4002 4FFF BKPSRAM
0x4002 3C00 - 0x4002 3FFF Flash interface register
0x4002 3800 - 0x4002 3BFF RCC
0X4002 3400 - 0X4002 37FF Reserved
0x4002 3000 - 0x4002 33FF CRC
0x4002 2C00 - 0x4002 2FFF Reserved
0x4002 2800 - 0x4002 2BFF GPIOK
0x4002 2400 - 0x4002 27FF GPIOJ
0x4002 2000 - 0x4002 23FF GPIOI
0x4002 1C00 - 0x4002 1FFF GPIOH
0x4002 1800 - 0x4002 1BFF GPIOG
0x4002 1400 - 0x4002 17FF GPIOF
0x4002 1000 - 0x4002 13FF GPIOE
0X4002 0C00 - 0x4002 0FFF GPIOD
0x4002 0800 - 0x4002 0BFF GPIOC
0x4002 0400 - 0x4002 07FF GPIOB
0x4002 0000 - 0x4002 03FF GPIOA
Table 13. STM32F745xx and STM32F746xx register boundary addresses (continued)
Bus Boundary address Peripheral
DocID027590 Rev 3 91/222
STM32F745xx STM32F746xx Memory mapping
92
0x4001 6C00- 0x4001 FFFF Reserved
APB2
0x4001 6800 - 0x4001 6BFF LCD-TFT
0x4001 6000 - 0x4001 67FF Reserved
0x4001 5C00 - 0x4001 5FFF SAI2
0x4001 5800 - 0x4001 5BFF SAI1
0x4001 5400 - 0x4001 57FF SPI6
0x4001 5000 - 0x4001 53FF SPI5
0x4001 4C00 - 0x4001 4FFF Reserved
0x4001 4800 - 0x4001 4BFF TIM11
0x4001 4400 - 0x4001 47FF TIM10
0x4001 4000 - 0x4001 43FF TIM9
0x4001 3C00 - 0x4001 3FFF EXTI
0x4001 3800 - 0x4001 3BFF SYSCFG
0x4001 3400 - 0x4001 37FF SPI4
0x4001 3000 - 0x4001 33FF SPI1/I2S1
0x4001 2C00 - 0x4001 2FFF SDMMC
0x4001 2400 - 0x4001 2BFF Reserved
0x4001 2000 - 0x4001 23FF ADC1 - ADC2 - ADC3
0x4001 1800 - 0x4001 1FFF Reserved
0x4001 1400 - 0x4001 17FF USART6
0x4001 1000 - 0x4001 13FF USART1
0x4001 0800 - 0x4001 0FFF Reserved
0x4001 0400 - 0x4001 07FF TIM8
0x4001 0000 - 0x4001 03FF TIM1
Table 13. STM32F745xx and STM32F746xx register boundary addresses (continued)
Bus Boundary address Peripheral
Memory mapping STM32F745xx STM32F746xx
92/222 DocID027590 Rev 3
0x4000 8000- 0x4000 FFFF Reserved
APB1
0x4000 7C00 - 0x4000 7FFF UART8
0x4000 7800 - 0x4000 7BFF UART7
0x4000 7400 - 0x4000 77FF DAC
0x4000 7000 - 0x4000 73FF PWR
0x4000 6C00 - 0x4000 6FFF HDMI-CEC
0x4000 6800 - 0x4000 6BFF CAN2
0x4000 6400 - 0x4000 67FF CAN1
0x4000 6000 - 0x4000 63FF I2C4
0x4000 5C00 - 0x4000 5FFF I2C3
0x4000 5800 - 0x4000 5BFF I2C2
0x4000 5400 - 0x4000 57FF I2C1
0x4000 5000 - 0x4000 53FF UART5
0x4000 4C00 - 0x4000 4FFF UART4
0x4000 4800 - 0x4000 4BFF USART3
0x4000 4400 - 0x4000 47FF USART2
0x4000 4000 - 0x4000 43FF SPDIFRX
0x4000 3C00 - 0x4000 3FFF SPI3 / I2S3
0x4000 3800 - 0x4000 3BFF SPI2 / I2S2
0x4000 3400 - 0x4000 37FF Reserved
0x4000 3000 - 0x4000 33FF IWDG
0x4000 2C00 - 0x4000 2FFF WWDG
0x4000 2800 - 0x4000 2BFF RTC & BKP Registers
0x4000 2400 - 0x4000 27FF LPTIM1
0x4000 2000 - 0x4000 23FF TIM14
0x4000 1C00 - 0x4000 1FFF TIM13
0x4000 1800 - 0x4000 1BFF TIM12
0x4000 1400 - 0x4000 17FF TIM7
0x4000 1000 - 0x4000 13FF TIM6
0x4000 0C00 - 0x4000 0FFF TIM5
0x4000 0800 - 0x4000 0BFF TIM4
0x4000 0400 - 0x4000 07FF TIM3
0x4000 0000 - 0x4000 03FF TIM2
Table 13. STM32F745xx and STM32F746xx register boundary addresses (continued)
Bus Boundary address Peripheral
DocID027590 Rev 3 93/222
STM32F745xx STM32F746xx Electrical characteristics
194
5 Electrical characteristics
5.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
5.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3σ).
5.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
1.7 V VDD 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2σ).
5.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
5.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 19.
5.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 20.
Figure 19. Pin loading conditions Figure 20. Pin input voltage
069
& S)
0&8SLQ
069
0&8SLQ
9,1
Electrical characteristics STM32F745xx STM32F746xx
94/222 DocID027590 Rev 3
5.1.6 Power supply scheme
Figure 21. Power supply scheme
1. To connect BYPASS_REG and PDR_ON pins, refer to Section 2.17: Power supply supervisor and Section 2.18: Voltage
regulator
2. The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the voltage regulator is
OFF.
3. The 4.7 µF ceramic capacitor must be connected to one of the VDD pin.
4. VDDA=VDD and VSSA=VSS.
Caution: Each power supply pair (VDD/VSS, VDDA/VSSA ...) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB to ensure good operation of the
device. It is not recommended to remove filtering capacitors to reduce PCB size or cost.
This might cause incorrect operation of the device.
06Y9
s
ϭϮϭϰϮϬ
ŶĂůŽŐ
ZƐW>>

WŽǁĞƌ ƐǁŝƚĐŚ
s d
'W /KƐ
Khd
/E <ĞƌŶĞůůŽŐŝĐ
;Wh
ĚŝŐŝƚĂů
ΘZDͿ
ĂĐŬƵƉĐŝƌĐƵŝƚƌLJ
;K^ϯϮ<Zd
ĂĐŬƵƉƌĞŐŝƐƚĞƌƐ
ďĂĐŬƵƉZDͿ
tĂŬĞƵƉůŽŐŝĐ
ϭϵпϭϬϬŶ&
нϭпϰϳђ&
sdс
ϭϲϱƚŽϯϲs
sŽůƚĂŐĞ
ƌĞŐ ƵůĂƚŽƌ
s^^
ϭϮϭϰϮϬ
s
sZ&н
sZ&Ͳ
s^^

>ĞǀĞůƐŚŝĨƚĞƌ
/K
>ŽŐŝĐ
s
нϭђ&
sZ&
ϭϬϬŶ&
нϭђ&
s
&ůĂƐŚŵĞŵŽƌLJ
sWͺϭ
sWͺϮ
ϮпϮϮђ&
zW^^ͺZ'
WZͺKE
ZĞƐĞƚ
ĐŽŶƚƌŽůůĞƌ
ϭϬϬŶ&
Kd'&^
W,z
ϭϬϬŶ&
sh^
нϭђ&
sh^
DocID027590 Rev 3 95/222
STM32F745xx STM32F746xx Electrical characteristics
194
5.1.7 Current consumption measurement
Figure 22. Current consumption measurement scheme
5.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 14: Voltage characteristics,
Table 15: Current characteristics, and Table 16: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
DL
9%$7
9''
9''$
,''B9%$7
,''
Table 14. Voltage characteristics
Symbol Ratings Min Max Unit
VDD–VSS
External main supply voltage (including VDDA, VDD,
VBAT and VDDUSB) (1)
1. All main power (VDD, VDDA, VDDUSB) and ground (VSS, VSSA) pins must always be connected to the
external power supply, in the permitted range.
0.3 4.0
V
VIN
Input voltage on FT pins(2)
2. VIN maximum value must always be respected. Refer to Table 15 for the values of the maximum allowed
injected current.
VSS 0.3 VDD+4.0
Input voltage on TTa pins VSS 0.3 4.0
Input voltage on any other pin VSS 0.3 4.0
Input voltage on BOOT pin VSS 9.0
|ΔVDDx| Variations between different VDD power pins - 50
mV
|VSSX VSS| Variations between all the different ground pins(3)
3. Include VREF- pin.
-50
VESD(HBM) Electrostatic discharge voltage (human body model)
see Section 5.3.15:
Absolute maximum
ratings (electrical
sensitivity)
-
Electrical characteristics STM32F745xx STM32F746xx
96/222 DocID027590 Rev 3
Table 15. Current characteristics
Symbol Ratings Max. Unit
ΣIVDD Total current into sum of all VDD_x power lines (source)(1) 320
mA
Σ IVSS Total current out of sum of all VSS_x ground lines (sink)(1) 320
Σ IVDDUSB Total current into VDDUSB power line (source) 25
IVDD Maximum current into each VDD_x power line (source)(1) 100
IVSS Maximum current out of each VSS_x ground line (sink)(1) 100
IIO
Output current sunk by any I/O and control pin 25
Output current sourced by any I/Os and control pin 25
ΣIIO
Total output current sunk by sum of all I/O and control pins (2) 120
Total output current sunk by sum of all USB I/Os 25
Total output current sourced by sum of all I/Os and control pins(2) 120
IINJ(PIN)
Injected current on FT, FTf, RST and B pins (3) 5/+0
Injected current on TTa pins(4) ±5
ΣIINJ(PIN)(4) Total injected current (sum of all I/O and control pins)(5) ±25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
4. A positive injection is induced by VIN>VDDA while a negative injection is induced by VIN<VSS. IINJ(PIN) must never be
exceeded. Refer to Table 14: Voltage characteristics for the values of the maximum allowed input voltage.
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 16. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range 65 to +150
°C
TJMaximum junction temperature 125
DocID027590 Rev 3 97/222
STM32F745xx STM32F746xx Electrical characteristics
194
5.3 Operating conditions
5.3.1 General operating conditions
Table 17. General operating conditions
Symbol Parameter Conditions(1) Min Typ Max Unit
fHCLK Internal AHB clock frequency
Power Scale 3 (VOS[1:0] bits in
PWR_CR register = 0x01), Regulator
ON, over-drive OFF
0 - 144
MHz
Power Scale 2 (VOS[1:0] bits in
PWR_CR register = 0x10),
Regulator ON
Over-
drive
OFF
0
-168
Over-
drive
ON
-180
Power Scale 1 (VOS[1:0] bits in
PWR_CR register= 0x11),
Regulator ON
Over-
drive
OFF
0
-180
Over-
drive
ON
- 216(2)
fPCLK1 Internal APB1 clock frequency
Over-drive OFF 0 - 45
Over-drive ON 0 - 54
fPCLK2 Internal APB2 clock frequency
Over-drive OFF 0 - 90
Over-drive ON 0 - 108
VDD Standard operating voltage - 1.7(3) -3.6
V
VDDA(4)
(5)
Analog operating voltage
(ADC limited to 1.2 M samples)
Must be the same potential as VDD(6)
1.7(3) -2.4
Analog operating voltage
(ADC limited to 2.4 M samples) 2.4 - 3.6
VDDUSB
USB supply voltage (supply
voltage for PA11,PA12, PB14
and PB15 pins)
USB not used 1.7 3.3 3.6
USB used 3.0 - 3.6
VBAT Backup operating voltage - 1.65 - 3.6
Electrical characteristics STM32F745xx STM32F746xx
98/222 DocID027590 Rev 3
V12
Regulator ON: 1.2 V internal
voltage on VCAP_1/VCAP_2 pins
Power Scale 3 ((VOS[1:0] bits in
PWR_CR register = 0x01), 144 MHz
HCLK max frequency
1.08 1.14 1.20
V
Power Scale 2 ((VOS[1:0] bits in
PWR_CR register = 0x10), 168 MHz
HCLK max frequency with over-drive
OFF or 180 MHz with over-drive ON
1.20 1.26 1.32
Power Scale 1 ((VOS[1:0] bits in
PWR_CR register = 0x11), 180 MHz
HCLK max frequency with over-drive
OFF or 216 MHz with over-drive ON
1.26 1.32 1.40
Regulator OFF: 1.2 V external
voltage must be supplied from
external regulator on
VCAP_1/VCAP_2 pins(7)
Max frequency 144 MHz 1.10 1.14 1.20
Max frequency 168MHz 1.20 1.26 1.32
Max frequency 180 MHz 1.26 1.32 1.38
VIN
Input voltage on RST and FT
pins(8)
2 V VDD 3.6 V 0.3 - 5.5
VDD 2 V 0.3 - 5.2
Input voltage on TTa pins - 0.3 - VDDA+
0.3
Input voltage on BOOT pin - 0 - 9
PD
Power dissipation at TA = 85 °C
for suffix 6 or TA = 105 °C for
suffix 7(9)
LQFP100 - - 465
mW
WLCSP143 - - 641
LQFP144 - - 500
LQFP176 - - 526
UFBGA176 - - 513
LQFP208 - - 1053
TFBGA216 - - 690
TA
Ambient temperature for 6 suffix
version
Maximum power dissipation 40 - 85
°C
Low power dissipation(10) 40 - 105
Ambient temperature for 7 suffix
version
Maximum power dissipation 40 - 105
°C
Low power dissipation(10) 40 - 125
TJ Junction temperature range
6 suffix version 40 - 105
°C
7 suffix version 40 - 125
1. The over-drive mode is not supported at the voltage ranges from 1.7 to 2.1 V.
2. 216 MHz maximum frequency for 6 suffix version (200 MHz maximum frequency for 7 suffix version).
3. VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.17.2:
Internal reset OFF).
4. When the ADC is used, refer to Table 62: ADC characteristics.
5. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V.
6. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and
VDDA can be tolerated during power-up and power-down operation.
Table 17. General operating conditions (continued)
Symbol Parameter Conditions(1) Min Typ Max Unit
DocID027590 Rev 3 99/222
STM32F745xx STM32F746xx Electrical characteristics
194
5.3.2 VCAP1/VCAP2 external capacitor
Stabilization for the main regulator is achieved by connecting an external capacitor CEXT to
the VCAP1/VCAP2 pins. CEXT is specified in Table 19.
Figure 23. External capacitor CEXT
1. Legend: ESR is the equivalent series resistance.
7. The over-drive mode is not supported when the internal regulator is OFF.
8. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled
9. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.
10. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax.
Table 18. Limitations depending on the operating power supply range
Operating
power supply
range
ADC operation
Maximum Flash
memory access
frequency with
no wait states
(fFlashmax)
Maximum HCLK
frequency vs Flash
memory wait states
(1)(2)
I/O operation
Possible Flash
memory
operations
VDD =1.7 to
2.1 V(3)
Conversion time
up to 1.2 Msps 20 MHz
180 MHz with 8 wait
states and over-drive
OFF
No I/O
compensation
8-bit erase and
program
operations only
VDD = 2.1 to
2.4 V
Conversion time
up to 1.2 Msps 22 MHz
216 MHz with 9 wait
states and over-drive
ON
No I/O
compensation
16-bit erase and
program
operations
VDD = 2.4 to
2.7 V
Conversion time
up to 2.4 Msps 24 MHz
216 MHz with 8 wait
states and over-drive
ON
I/O compensation
works
16-bit erase and
program
operations
VDD = 2.7 to
3.6 V(4)
Conversion time
up to 2.4 Msps 30 MHz
216 MHz with 7 wait
states and over-drive
ON
I/O compensation
works
32-bit erase and
program
operations
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is
required.
2. Thanks to the ART accelerator on ITCM interface and L1-cache on AXI interface, the number of wait states given here
does not impact the execution speed from Flash memory since the ART accelerator or L1-cache allows to achieve a
performance equivalent to 0-wait state program execution.
3. VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.17.2:
Internal reset OFF).
4. The voltage range for USB full speed PHYs can drop down to 2.7 V. However the electrical characteristics of D- and D+
pins will be degraded between 2.7 and 3 V.
069
(65
5/HDN
&
Electrical characteristics STM32F745xx STM32F746xx
100/222 DocID027590 Rev 3
5.3.3 Operating conditions at power-up / power-down (regulator ON)
Subject to general operating conditions for TA.
Table 20. Operating conditions at power-up / power-down (regulator ON)
5.3.4 Operating conditions at power-up / power-down (regulator OFF)
Subject to general operating conditions for TA.
5.3.5 Reset and power control block characteristics
The parameters given in Table 22 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 17.
Table 19. VCAP1/VCAP2 operating conditions(1)
1. When bypassing the voltage regulator, the two 2.2 µF VCAP capacitors are not required and should be
replaced by two 100 nF decoupling capacitors.
Symbol Parameter Conditions
CEXT Capacitance of external capacitor 2.2 µF
ESR ESR of external capacitor < 2 Ω
Symbol Parameter Min Max Unit
tVDD
VDD rise time rate 20
µs/V
VDD fall time rate 20
Table 21. Operating conditions at power-up / power-down (regulator OFF)(1)
1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when VDD reach below
1.08 V.
Symbol Parameter Conditions Min Max Unit
tVDD
VDD rise time rate Power-up 20
µs/V
VDD fall time rate Power-down 20
tVCAP
VCAP_1 and VCAP_2 rise time rate Power-up 20
VCAP_1 and VCAP_2 fall time rate Power-down 20
DocID027590 Rev 3 101/222
STM32F745xx STM32F746xx Electrical characteristics
194
Table 22. reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
VPVD
Programmable voltage
detector level selection
PLS[2:0]=000 (rising edge) 2.09 2.14 2.19 V
PLS[2:0]=000 (falling edge) 1.98 2.04 2.08 V
PLS[2:0]=001 (rising edge) 2.23 2.30 2.37 V
PLS[2:0]=001 (falling edge) 2.13 2.19 2.25 V
PLS[2:0]=010 (rising edge) 2.39 2.45 2.51 V
PLS[2:0]=010 (falling edge) 2.29 2.35 2.39 V
PLS[2:0]=011 (rising edge) 2.54 2.60 2.65 V
PLS[2:0]=011 (falling edge) 2.44 2.51 2.56 V
PLS[2:0]=100 (rising edge) 2.70 2.76 2.82 V
PLS[2:0]=100 (falling edge) 2.59 2.66 2.71 V
PLS[2:0]=101 (rising edge) 2.86 2.93 2.99 V
PLS[2:0]=101 (falling edge) 2.65 2.84 2.92 V
PLS[2:0]=110 (rising edge) 2.96 3.03 3.10 V
PLS[2:0]=110 (falling edge) 2.85 2.93 2.99 V
PLS[2:0]=111 (rising edge) 3.07 3.14 3.21 V
PLS[2:0]=111 (falling edge) 2.95 3.03 3.09 V
VPVDhyst(1) PVD hysteresis - - 100 - mV
VPOR/PDR
Power-on/power-down
reset threshold
Falling edge 1.60 1.68 1.76 V
Rising edge 1.64 1.72 1.80 V
VPDRhyst(1) PDR hysteresis - - 40 - mV
VBOR1
Brownout level 1
threshold
Falling edge 2.13 2.19 2.24 V
Rising edge 2.23 2.29 2.33 V
VBOR2
Brownout level 2
threshold
Falling edge 2.44 2.50 2.56 V
Rising edge 2.53 2.59 2.63 V
VBOR3
Brownout level 3
threshold
Falling edge 2.75 2.83 2.88 V
Rising edge 2.85 2.92 2.97 V
VBORhyst(1) BOR hysteresis - - 100 - mV
TRSTTEMPO
(1)(2) POR reset temporization - 0.5 1.5 3.0 ms
IRUSH(1)
InRush current on
voltage regulator power-
on (POR or wakeup
from Standby)
- - 160 250 mA
ERUSH(1)
InRush energy on
voltage regulator power-
on (POR or wakeup
from Standby)
VDD = 1.7 V, TA = 105 °C,
IRUSH = 171 mA for 31 µs --5.4µC
Electrical characteristics STM32F745xx STM32F746xx
102/222 DocID027590 Rev 3
5.3.6 Over-drive switching characteristics
When the over-drive mode switches from enabled to disabled or disabled to enabled, the
system clock is stalled during the internal voltage set-up.
The over-drive switching characteristics are given in Table 23. They are sbject to general
operating conditions for TA.
5.3.7 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 22: Current consumption
measurement scheme.
All the run-mode current consumption measurements given in this section are performed
with a reduced code that gives a consumption equivalent to CoreMark code.
1. Guaranteed by design.
2. The reset temporization is measured from the power-on (POR reset or wakeup from VBAT) to the instant
when first instruction is read by the user application code.
Table 23. Over-drive switching characteristics(1)
1. Guaranteed by design.
Symbol Parameter Conditions Min Typ Max Unit
Tod_swen Over_drive switch
enable time
HSI -45 -
µs
HSE max for 4 MHz
and min for 26 MHz 45 -100
External HSE
50 MHz -40 -
Tod_swdis Over_drive switch
disable time
HSI -20 -
HSE max for 4 MHz
and min for 26 MHz. 20 -80
External HSE
50 MHz -15 -
DocID027590 Rev 3 103/222
STM32F745xx STM32F746xx Electrical characteristics
194
Typical and maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at VDD or VSS (no load).
All peripherals are disabled except if it is explicitly mentioned.
The Flash memory access time is adjusted both to fHCLK frequency and VDD range
(see Table 18: Limitations depending on the operating power supply range).
When the regulator is ON, the voltage scaling and over-drive mode are adjusted to
fHCLK frequency as follows:
Scale 3 for fHCLK 144 MHz
Scale 2 for 144 MHz < fHCLK 168 MHz
Scale 1 for 168 MHz < fHCLK 216 MHz. The over-drive is only ON at 216 MHz.
When the regulator is OFF, the V12 is provided externally as described in Table 17:
General operating conditions:
The system clock is HCLK, fPCLK1 = fHCLK/4, and fPCLK2 = fHCLK/2.
External clock frequency is 25 MHz and PLL is ON when fHCLK is higher than 25 MHz.
The typical current consumption values are obtained for 1.7 V VDD 3.6 V voltage
range and for TA= 25 °C unless otherwise specified.
The maximum values are obtained for 1.7 V VDD 3.6 V voltage range and a
maximum ambient temperature (TA) unless otherwise specified.
For the voltage range 1.7 V VDD 3.6 V, the maximum frequency is 180 MHz.
Table 24. Typical and maximum current consumption in Run mode, code with data processing
running from ITCM RAM, regulator ON
Symbol Parameter Conditions fHCLK (MHz) Typ
Max(1)
Unit
TA = 25 °C TA = 85 °C TA = 105 °C
IDD
Supply
current in
RUN mode
All peripherals
enabled(2)(3)
216 178 208(4) 230(4) -
mA
200 165 193 212 230
180 147 171(4) 185(4) 198(4)
168 130 152 164 177
144 100 116 127 137
60 44 52 63 73
25 21 25 36 46
All peripherals
disabled(3)
216 102 120(4) 141(4) -
200 95 111 131 149
180 84 98(4) 112(4) 125(4)
168 75 87 100 112
144 58 67 77 88
60 25 30 41 51
25 12 15 25 36
1. Guaranteed by characterization results.
Electrical characteristics STM32F745xx STM32F746xx
104/222 DocID027590 Rev 3
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC
for the analog part.
4. Guaranteed by test in production.
Table 25. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART ON except prefetch / L1-cache ON)
or SRAM on AXI (L1-cache ON), regulator ON
Symbol Parameter Conditions fHCLK (MHz) Typ
Max(1)
Unit
TA = 25 °C TA = 85 °C TA = 105 °C
IDD
Supply
current in
RUN mode
All peripherals
enabled(2)(3)
216 186 213 234 -
mA
200 172 197 217 235
180 152 175 189 202
168 135 155 168 180
144 104 119 130 140
60 46 53 64 74
25 22 25 36 47
All peripherals
disabled(3)
216 108 124 146 -
200 100 115 135 154
180 89 102 116 129
168 79 90 103 115
144 61 69 80 90
60 27 31 42 52
25 12 15 26 36
1. Guaranteed by characterization results.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC
for the analog part.
DocID027590 Rev 3 105/222
STM32F745xx STM32F746xx Electrical characteristics
194
Table 26. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory or SRAM on AXI (L1-cache disabled), regulator ON
Symbol Parameter Conditions fHCLK (MHz) Typ
Max(1)
Unit
TA= 25 °C TA=85 °C TA=105 °C
IDD
Supply
current in
RUN mode
All peripherals
enabled(2)(3)
216 181 210 233 -
mA
200 168 194 216 234
180 153 176 192 206
168 136 157 172 184
144 109 125 137 148
60 53 61 73 84
25 26 30 41 52
All peripherals
disabled(3)
216 105 121 145 -
200 98 112 134 153
180 90 103 119 132
168 81 93 107 120
144 67 76 88 89
60 34 40 51 62
25 17 20 31 42
1. Guaranteed by characterization results.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC
for the analog part.
Electrical characteristics STM32F745xx STM32F746xx
106/222 DocID027590 Rev 3
Table 27. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory on ITCM interface (ART disabled), regulator ON
Symbol Parameter Conditions fHCLK (MHz) Typ
Max(1)
Unit
TA= 25 °C TA=85 °C TA=105 °C
IDD
Supply
current in
RUN mode
All peripherals
enabled(2)(3)
216 205 237 261 -
mA
200 191 219 241 260
180 176 202 218 232
168 158 181 196 209
144 130 148 161 172
60 58 67 79 89
25 27 32 43 54
All peripherals
disabled(3)
216 130 149 173 -
200 121 138 160 179
180 113 129 145 159
168 102 116 131 144
144 88 100 112 123
60 40 45 57 68
25 19 22 33 44
1. Guaranteed by characterization results.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC
for the analog part.
DocID027590 Rev 3 107/222
STM32F745xx STM32F746xx Electrical characteristics
194
Table 28. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART ON except prefetch / L1-cache ON)
or SRAM on AXI (L1-cache ON), regulator OFF
Symbol Parameter Conditions fHCLK
(MHz)
Typ
Max(1)
Unit
TA= 25 °C TA= 85 °C TA= 105 °C
IDD12 IDD IDD12 IDD IDD12 IDD IDD12 IDD
IDD12/
IDD
Supply
current in
RUN mode
from V12
and VDD
supply
All
Peripherals
Enabled(2)(3)
180 151 1 174 2 190 2 204 2
mA
168 135 1 156 2 170 2 182 2
144 108 1 124 2 136 2 146 2
60 52 1 60 2 71 2 82 2
25 25 1 29 2 40 2 50 2
All
Peripherals
Disabled(3)
180 89 1 102 2 117 2 130 2
168 80 1 91 2 105 2 118 2
144 66 1 75 2 86 2 97 2
60 33 1 38 2 49 2 60 2
25 16 1 18 2 29 2 40 2
1. Guaranteed by characterization results.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC
for the analog part.
Electrical characteristics STM32F745xx STM32F746xx
108/222 DocID027590 Rev 3
Table 29. Typical and maximum current consumption in Sleep mode, regulator ON
Symbol Parameter Conditions fHCLK (MHz) Typ
Max(1)
Unit
TA = 25 °C TA = 85 °C TA = 105 °C
IDD
Supply
current in
Sleep mode
All
peripherals
enabled(2)
216 116 137(3) 159(3) -
mA
200 108 127 147 166
180 95 112(3) 126(3) 140(3)
168 85 99 112 125
144 65 76 87 98
60 30 35 46 57
25 15 18 29 39
All
peripherals
disabled
216 35 46(3) 71(3) -
200 32 43 66 86
180 28 38(3) 53(3) 70(3)
168 25 33 47 61
144 20 26 37 50
60 10 14 26 36
25 5 8 20 31
1. Guaranteed by characterization results.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
3. Guaranteed by test in production.
Table 30. Typical and maximum current consumption in Sleep mode, regulator OFF
Symbol Parameter Conditions fHCLK
(MHz)
Typ
Max(1)
Unit
TA= 25 °C TA= 85 °C TA= 105 °C
IDD12 IDD IDD12 IDD IDD12 IDD IDD12 IDD
IDD12/
IDD
Supply
current in
RUN mode
from V12
and VDD
supply
All
Peripherals
Enabled(2)
180 94 1 110 2 125 2 138 2
mA
168 83 1 96 2 111 2 123 2
144 64 1 74 2 85 2 96 2
60 29 1 34 2 44 2 55 2
25 14 1 16 2 27 2 37 2
All
Peripherals
Disabled
180 27 1 36 2 51 2 68 2
168 24 1 31 2 45 2 59 2
144 18 1 24 2 35 2 48 2
60 9 1 12 2 24 2 34 2
25 4 1 6 2 18 2 29 2
1. Guaranteed by characterization results.
DocID027590 Rev 3 109/222
STM32F745xx STM32F746xx Electrical characteristics
194
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
Table 31. Typical and maximum current consumptions in Stop mode
Symbol Parameter Conditions
Typ
Max(1)
Unit
VDD = 3.6 V
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD_STOP_NM
(normal mode)
Supply current in Stop
mode, main regulator in
Run mode
Flash memory in Stop mode,
all oscillators OFF, no IWDG 0.45 2.00 14.00 22.00
mA
Flash memory in Deep power
down mode, all oscillators OFF 0.40 2.00 14.00 22.00
Supply current in Stop
mode, main regulator in
Low-power mode
Flash memory in Stop mode, all
oscillators OFF, no IWDG 0.32 1.50 10.00 18.00
Flash memory in Deep power
down mode, all oscillators OFF, no
IWDG
0.27 1.50 10.00 18.00
IDD_STOP_UDM
(under-drive
mode)
Supply current in Stop
mode, main regulator in
Low voltage and under-
drive modes
Regulator in Run mode, Flash
memory in Deep power down
mode, all oscillators OFF, no
IWDG
0.15 0.80 4.00 7.00
Regulator in Low-power mode,
Flash memory in Deep power
down mode, all oscillators OFF, no
IWDG
0.10 0.70 4.00 7.00
1. Data based on characterization, tested in production.
Electrical characteristics STM32F745xx STM32F746xx
110/222 DocID027590 Rev 3
Table 32. Typical and maximum current consumptions in Standby mode
Symbol Parameter Conditions
Typ(1) Max(2)
Unit
TA = 25 °C TA =
25 °C
TA =
85 °C
TA =
105 °C
VDD =
1.7 V
VDD=
2.4 V
VDD =
3.3 V VDD = 3.3 V
IDD_STBY
Supply current
in Standby
mode
Backup SRAM OFF, RTC and
LSE OFF 1.7 1.9 2.3 5(3) 15(3) 31(3)
µA
Backup SRAM ON, RTC and
LSE OFF 2.4 2.6 3.0 6(3) 20(3) 40(3)
Backup SRAM OFF, RTC ON
and LSE in low drive mode 2.1 2.4 2.9 619 39
Backup SRAM OFF, RTC ON
and LSE in medium low drive
mode
2.1 2.4 2.9 619 39
Backup SRAM OFF, RTC ON
and LSE in medium high drive
mode
2.2 2.5 3.0 720 40
Backup SRAM OFF, RTC ON
and LSE in high drive mode 2.3 2.6 3.1 720 42
Backup SRAM ON, RTC ON
and LSE in low drive mode 2.7 3.0 3.6 823 49
Backup SRAM ON, RTC ON
and LSE in Medium low drive
mode
2.7 3.0 3.6 823 49
Backup SRAM ON, RTC ON
and LSE in Medium high drive
mode
2.8 3.1 3.7 824 50
Backup SRAM ON, RTC ON
and LSE in High drive mode 2.9 3.2 3.8 825 51
1. PDR is OFF for VDD=1.7V. When the PDR is OFF (internal reset OFF), the typical current consumption is reduced by
additional 1.2 µA.
2. Guaranteed by characterization results.
3. Based on characterization, tested in production.
DocID027590 Rev 3 111/222
STM32F745xx STM32F746xx Electrical characteristics
194
Table 33. Typical and maximum current consumptions in VBAT mode
Symbol Parameter Conditions(1)
Typ Max(2)
Unit
TA =25 °C TA =85 °C TA =105 °C
VBAT =
1.7 V
VBAT=
2.4 V
VBAT=
3.3 V VBAT = 3.6 V
IDD_VBAT
Supply current
in VBAT mode
Backup SRAM OFF, RTC and
LSE OFF 0.03 0.03 0.04 0.2 0.4
µA
Backup SRAM ON, RTC and
LSE OFF 0.74 0.75 0.78 3.0 7.0
Backup SRAM OFF, RTC ON
and LSE in low drive mode 0.40 0.52 0.72 2.8 6.5
Backup SRAM OFF, RTC ON
and LSE in medium low drive
mode
0.40 0.52 0.72 2.8 6.5
Backup SRAM OFF, RTC ON
and LSE in medium high drive
mode
0.54 0.64 0.85 3.3 7.6
Backup SRAM OFF, RTC ON
and LSE in high drive mode 0.62 0.73 0.94 3.6 8.4
Backup SRAM ON, RTC ON and
LSE in low drive mode 1.06 1.18 1.41 5.4 12.7
Backup SRAM ON, RTC ON and
LSE in Medium low drive mode 1.16 1.28 1.51 5.8 13.6
Backup SRAM ON, RTC ON and
LSE in Medium high drive mode 1.18 1.3 1.54 5.9 13.8
Backup SRAM ON, RTC ON and
LSE in High drive mode 1.36 1.48 1.73 6.7 15.5
1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.
2. Guaranteed by characterization results.
Electrical characteristics STM32F745xx STM32F746xx
112/222 DocID027590 Rev 3
Figure 24. Typical VBAT current consumption (RTC ON/BKP SRAM OFF and
LSE in low drive mode)
Figure 25. Typical VBAT current consumption (RTC ON/BKP SRAM OFF and
LSE in medium low drive mode)
Ϭ
Ϭϱ
ϭ
ϭϱ
Ϯ
Ϯϱ
ϯ
ϯϱ
ϰ
ϬϮϬϰϬϲϬϴϬϭϬϬϭϮϬ
dĞŵƉĞƌĂƚƵƌĞΣ
ϭϲϱs
ϭϳs
ϭϴs
Ϯs
Ϯϰs
Ϯϳs
ϯs
ϯϯs
ϯϲs
069
,''B9%$7X$
069
,''B9%$7X$
Ϭ
Ϭϱ
ϭ
ϭϱ
Ϯ
Ϯϱ
ϯ
ϯϱ
ϰ
ϰϱ
ϬϮϬϰϬϲϬϴϬϭϬϬϭϮϬ
dĞŵƉĞƌĂƚƵƌĞΣ
ϭϲϱs
ϭϳs
ϭϴs
Ϯs
Ϯϰs
Ϯϳs
ϯs
ϯϯs
ϯϲs
DocID027590 Rev 3 113/222
STM32F745xx STM32F746xx Electrical characteristics
194
Figure 26. Typical VBAT current consumption (RTC ON/BKP SRAM OFF and
LSE in medium high drive mode)
Figure 27. Typical VBAT current consumption (RTC ON/BKP SRAM OFF and
LSE in high drive mode)
Ϭ
Ϭϱ
ϭ
ϭϱ
Ϯ
Ϯϱ
ϯ
ϯϱ
ϰ
ϰϱ
ϬϮϬϰϬϲϬϴϬϭϬϬϭϮϬ
dĞŵƉĞƌĂƚƵƌĞΣ
ϭϲϱs
ϭϳs
ϭϴs
Ϯs
Ϯϰs
Ϯϳs
ϯs
ϯϯs
ϯϲs
,''B9%$7X$
069
069
Ϭ
Ϭϱ
ϭ
ϭϱ
Ϯ
Ϯϱ
ϯ
ϯϱ
ϰ
ϰϱ
ϬϮϬϰϬϲϬϴϬϭϬϬϭϮϬ
dĞŵƉĞƌĂƚƵƌĞΣ
ϭϲϱs
ϭϳs
ϭϴs
Ϯs
Ϯϰs
Ϯϳs
ϯs
ϯϯs
ϯϲs
,''B9%$7X$
Electrical characteristics STM32F745xx STM32F746xx
114/222 DocID027590 Rev 3
Figure 28. Typical VBAT current consumption (RTC ON/BKP SRAM OFF and
LSE in high medium drive mode)
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 56: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption (see Table 35: Peripheral current
consumption), the I/Os used by an application also contribute to the current consumption.
When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O
Ϭ
ϭ
Ϯ
ϯ
ϰ
ϱ
ϲ
ϳ
ϴ
ϵ
ϬϮϬϰϬϲϬϴϬϭϬϬϭϮϬ
dĞŵƉĞƌĂƚƵƌĞ;ΣͿ
ϭϲϱs
ϭϳs
ϭϴs
Ϯs
Ϯϰs
Ϯϳs
ϯs
ϯϯs
ϯϲs
,''B9%$7X$
069
DocID027590 Rev 3 115/222
STM32F745xx STM32F746xx Electrical characteristics
194
pin circuitry and to charge/discharge the capacitive load (internal or external) connected to
the pin:
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDD is the MCU supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
ISW VDD fSW C××=
Table 34. Switching output I/O current consumption(1)
Symbol Parameter Conditions
I/O toggling
frequency (fsw)
MHz
Typ
VDD = 3.3 V
Typ
VDD = 1.8 V Unit
IDDIO
I/O switching
Current
CEXT = 0 pF
C = CINT + CS + CEXT
2 0.1 0.1
mA
8 0.4 0.2
25 1.1 0.7
50 2.4 1.3
60 3.1 1.6
84 4.3 2.4
90 4.9 2.6
100 5.4 2.8
108 5.6 -
CEXT = 10 pF
C = CINT + CS + CEXT
20.20.1
80.60.3
25 1.8 1.1
50 3.1 2.3
60 4.6 3.4
84 9.7 3.6
90 10.12 5.2
100 14.92 5.4
108 18.11 -
Electrical characteristics STM32F745xx STM32F746xx
116/222 DocID027590 Rev 3
On-chip peripheral current consumption
The MCU is placed under the following conditions:
At startup, all I/O pins are in analog input configuration.
All peripherals are disabled unless otherwise mentioned.
I/O compensation cell enabled.
The ART/L1-cache is ON.
Scale 1 mode selected, internal digital voltage V12 = 1.32 V.
HCLK is the system clock. fPCLK1 = fHCLK/4, and fPCLK2 = fHCLK/2.
The given value is calculated by measuring the difference of current consumption
with all peripherals clocked off
with only one peripheral clocked on
–f
HCLK = 216 MHz (Scale 1 + over-drive ON), fHCLK = 168 MHz (Scale 2),
fHCLK = 144 MHz (Scale 3)
Ambient operating temperature is 25 °C and VDD=3.3 V.
IDDIO
I/O switching
Current
CEXT = 22 pF
C = CINT + CS + CEXT
20.30.1
mA
81.00.5
25 3.5 1.6
50 5.9 4.2
60 10.0 4.4
84 19.12 5.8
90 19.6 -
CEXT = 33 pF
C = CINT + CS + CEXT
20.30.2
81.30.7
25 3.5 2.3
50 10.26 5.19
60 16.53 -
1. CINT + CS, PCB board capacitance including the pad pin is estimated to15 pF.
Table 34. Switching output I/O current consumption(1) (continued)
Symbol Parameter Conditions
I/O toggling
frequency (fsw)
MHz
Typ
VDD = 3.3 V
Typ
VDD = 1.8 V Unit
DocID027590 Rev 3 117/222
STM32F745xx STM32F746xx Electrical characteristics
194
Table 35. Peripheral current consumption
Peripheral
IDD(Typ)(1)
Unit
Scale 1 Scale 2 Scale 3
AHB1
(up to
216 MHz)
GPIOA 2.2 2.1 1.9
µA/MHz
GPIOB 2.1 1.8 1.7
GPIOC 2.3 2.0 1.9
GPIOD 2.2 1.9 1.8
GPIOE 2.2 1.9 1.8
GPIOF 2.2 1.9 1.8
GPIOG 2.1 1.8 1.7
GPIOH 2.0 1.7 1.7
GPIOI 2.3 2.0 1.7
GPIOJ 2.2 1.9 1.7
GPIOK 2.0 1.7 1.7
CRC 1.0 0.9 0.8
BKPSRAM 0.8 0.7 0.6
DMA1 2.7 x N + 5.1 2.6 x N + 4.7 2.2 x N + 4
DMA2 2.2 x N + 4.9 2.6 x N + 4.4 2.2 x N + 4.1
DMA2D 87.1 82.5 69.6
ETH_MAC
ETH_MAC_TX
ETH_MAC_RX
ETH_MAC_PTP
42.1 39.7 34.1
OTG_HS
57.5 54.4 47.6
OTG_HS+ULPI
AHB2
(up to
216 MHz)
DCMI 5.1 4.7 4.0
µA/MHz
RNG 2.8 2.4 2.3
USB_OTG_FS 31.8 29.9 25.8
AHB3
(up to
216 MHz)
FMC 18.9 17.7 15.2
µA/MHz
QSPI 23.2 21.8 18.5
Bus matrix(2) 21.06 20.3 17.2 µA/MHz
Electrical characteristics STM32F745xx STM32F746xx
118/222 DocID027590 Rev 3
APB1
(up to
54 MHz)
TIM2 5.5 5.1 4.4
µA/MHz
TIM3 4.7 4.3 3.7
TIM4 4.7 4.3 3.7
TIM5 5.3 4.9 4.2
TIM6 1.2 1.1 0.9
TIM7 1.2 1.1 0.9
TIM12 3.7 3.4 2.9
TIM13 2.0 1.8 1.5
TIM14 2.0 1.8 1.5
LPTIM1 2.5 2.3 2.1
SPI2/I2S2(3) 1.2 1.1 0.9
SPI3/I2S3(3) 1.2 1.1 0.9
SPDIFRX 1.2 0.9 1.1
USART2 3.4 3.2 2.8
USART3 3.9 3.8 3.3
UART4 2.9 2.9 2.6
UART5 3.0 2.7 2.4
I2C1 2.7 2.4 2.2
I2C2 2.4 2.2 1.9
I2C3 2.4 2.2 1.9
I2C4 3.4 3.1 2.6
CAN1 2.2 2.0 1.7
CAN2 2.2 2.0 1.7
CEC 0.6 0.6 0.4
PWR 0.2 0.2 0.2
DAC(4) 1.3 1.1 0.9
UART7 3.4 2.9 2.6
UART8 2.9 2.7 2.3
Table 35. Peripheral current consumption (continued)
Peripheral
IDD(Typ)(1)
Unit
Scale 1 Scale 2 Scale 3
DocID027590 Rev 3 119/222
STM32F745xx STM32F746xx Electrical characteristics
194
APB2
(up to
108 MHz)
TIM1 13.0 12.2 10.7
µA/MHz
TIM8 13.1 12.3 8.5
USART1 5.5 5.2 4.5
USART6 5.4 5.0 4.4
ADC1(5) 2.6 2.3 2.1
ADC2(5) 2.6 2.3 2.1
ADC3(5) 2.6 2.3 2.1
SDMMC1 4.6 4.3 3.8
SPI1/I2S1(3) 1.9 1.8 1.5
SPI4 1.9 1.8 1.5
SYSCFG 1.5 1.4 1.0
TIM9 4.8 4.4 3.7
TIM10 3.2 2.9 2.5
TIM11 3.2 2.9 2.5
SPI5 1.9 1.8 1.5
SPI6 1.9 1.8 1.5
SAI1 2.2 2.1 1.8
SAI2 2.1 1.9 1.7
LTDC 28.8 27.2 23.7
1. When the I/O compensation cell is ON, IDD typical value increases by 0.22 mA.
2. The BusMatrix is automatically active when at least one master is ON.
3. To enable an I2S peripheral, first set the I2SMOD bit and then the I2SE bit in the SPI_I2SCFGR register.
4. When the DAC is ON and EN1/2 bits are set in DAC_CR register, add an additional power consumption of
0.75 mA per DAC channel for the analog part.
5. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of
1.73 mA per ADC for the analog part.
Table 35. Peripheral current consumption (continued)
Peripheral
IDD(Typ)(1)
Unit
Scale 1 Scale 2 Scale 3
Electrical characteristics STM32F745xx STM32F746xx
120/222 DocID027590 Rev 3
5.3.8 Wakeup time from low-power modes
The wakeup times given in Table 36 are measured starting from the wakeup event trigger up
to the first instruction executed by the CPU:
For Stop or Sleep modes: the wakeup event is WFE.
WKUP (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.
All timings are derived from tests performed under ambient temperature and VDD=3.3 V.
Table 36. Low-power mode wakeup timings
Symbol Parameter Conditions Typ(1) Max(1) Unit
tWUSLEEP(2) Wakeup from Sleep - 13 13
CPU
clock
cycles
tWUSTOP(2)
Wakeup from Stop mode
with MR/LP regulator in
normal mode
Main regulator is ON 14 14.9
µs
Main regulator is ON and Flash
memory in Deep power down mode 104.1 107.6
Low power regulator is ON 21.4 24.2
Low power regulator is ON and Flash
memory in Deep power down mode 111.5 116.5
tWUSTOP(2)
Wakeup from Stop mode
with MR/LP regulator in
Under-drive mode
Main regulator in under-drive mode
(Flash memory in Deep power-down
mode)
107.4 113.2
Low power regulator in under-drive
mode
(Flash memory in Deep power-down
mode )
112.7 120
tWUSTDBY
(2)
Wakeup from Standby
mode
Exit Standby mode on rising edge 308 313
Exit Standby mode on falling edge 307 313
1. Guaranteed by characterization results.
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first
DocID027590 Rev 3 121/222
STM32F745xx STM32F746xx Electrical characteristics
194
5.3.9 External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The
external clock signal has to respect the Table 56: I/O static characteristics. However, the
recommended clock input waveform is shown in Figure 29.
The characteristics given in Table 37 result from tests performed using an high-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 17.
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The
external clock signal has to respect the Table 56: I/O static characteristics. However, the
recommended clock input waveform is shown in Figure 30.
The characteristics given in Table 38 result from tests performed using an low-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 17.
Table 37. High-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext
External user clock source
frequency(1)
-
1-50MHz
VHSEH OSC_IN input pin high level voltage 0.7VDD -V
DD V
VHSEL OSC_IN input pin low level voltage VSS -0.3V
DD
tw(HSE)
tw(HSE)
OSC_IN high or low time(1)
1. Guaranteed by design.
5--
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time(1) --10
Cin(HSE) OSC_IN input capacitance(1) --5-pF
DuCy(HSE) Duty cycle - 45 - 55 %
ILOSC_IN Input leakage current VSS VIN VDD --±1µA
Electrical characteristics STM32F745xx STM32F746xx
122/222 DocID027590 Rev 3
Figure 29. High-speed external clock source AC timing diagram
Table 38. Low-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSE_ext
User External clock source
frequency(1)
-
- 32.768 1000 kHz
VLSEH
OSC32_IN input pin high level
voltage 0.7VDD -V
DD V
VLSEL OSC32_IN input pin low level voltage VSS -0.3V
DD
tw(LSE)
tf(LSE)
OSC32_IN high or low time(1) 450 - -
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time(1) --50
Cin(LSE) OSC32_IN input capacitance(1) --5-pF
DuCy(LSE) Duty cycle - 30 - 70 %
ILOSC32_IN Input leakage current VSS VIN VDD --±1µA
1. Guaranteed by design.
DL
26& B, 1
([WHUQDO
670)
FORFNVRXUFH
9+6(+
WI+6( W:+6(
,/


7+6(
W
WU+6( W:+6(
I+6(BH[W
9+6(/
DocID027590 Rev 3 123/222
STM32F745xx STM32F746xx Electrical characteristics
194
Figure 30. Low-speed external clock source AC timing diagram
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 39. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 39. HSE 4-26 MHz oscillator characteristics(1)
1. Guaranteed by design.
Symbol Parameter Conditions Min Typ Max Unit
fOSC_IN Oscillator frequency - 4 - 26 MHz
RFFeedback resistor - - 200 - kΩ
IDD HSE current consumption
VDD=3.3 V,
ESR= 30 ,
CL=5 pF@25 MHz
- 450 -
µA
VDD=3.3 V,
ESR= 30 ,
CL=10 pF@25 MHz
- 530 -
ACCHSE(2)
2. This parameter depends on the crystal used in the application. The minimum and maximum values must
be respected to comply with USB standard specifications.
HSE accuracy - 500 - 500 ppm
Gm_crit_max Maximum critical crystal gmStartup - - 1 mA/V
tSU(HSE(3)
3. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is based on characterization results. It is measured for a standard crystal
resonator and it can vary significantly with the crystal manufacturer.
Startup time VDD is stabilized - 2 - ms
DL
26&B,1
([WHUQDO
670)
FORFNVRXUFH
9/6(+
WI/6( W:/6(
,/


7/6(
W
WU/6( W:/6(
I/6(BH[W
9/6(/
Electrical characteristics STM32F745xx STM32F746xx
124/222 DocID027590 Rev 3
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 31). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 31. Typical application with an 8 MHz crystal
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 40. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 40. LSE oscillator characteristics (fLSE = 32.768 kHz) (1)
Symbol Parameter Conditions Min Typ Max Unit
IDD LSE current consumption
LSEDRV[1:0]=00
Low drive capability -250-
nA
LSEDRV[1:0]=10
Medium low drive capability -300-
LSEDRV[1:0]=01
Medium high drive capability -370-
LSEDRV[1:0]=11
High drive capability -480-
DocID027590 Rev 3 125/222
STM32F745xx STM32F746xx Electrical characteristics
194
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 32. Typical application with a 32.768 kHz crystal
Gm_crit_max Maximum critical crystal gm
LSEDRV[1:0]=00
Low drive capability - - 0.48
µA/V
LSEDRV[1:0]=10
Medium low drive capability - - 0.75
LSEDRV[1:0]=01
Medium high drive capability --1.7
LSEDRV[1:0]=11
High drive capability --2.7
tSU(2) start-up time VDD is stabilized - 2 - s
1. Guaranteed by design.
2. Guaranteed by characterization results. tSU is the start-up time measured from the moment it is enabled
(by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard
crystal resonator and it can vary significantly with the crystal manufacturer.
Table 40. LSE oscillator characteristics (fLSE = 32.768 kHz) (1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
DL
26&B287
26&B,1 I/6(
&/
5)
670)
N+]
UHVRQDWRU
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
%LDV
FRQWUROOHG
JDLQ
&/
Electrical characteristics STM32F745xx STM32F746xx
126/222 DocID027590 Rev 3
5.3.10 Internal clock source characteristics
The parameters given in Table 41 and Table 42 are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 17.
High-speed internal (HSI) RC oscillator
Figure 33. HSI deviation versus temperature
1. Guaranteed by characterization results.
Table 41. HSI oscillator characteristics (1)
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency - - 16 - MHz
ACCHSI
HSI user trimming step(2)
2. Guaranteed by design.
---1%
Accuracy of the HSI oscillator
TA = –40 to 105 °C(3)
3. Guaranteed by characterization results.
8-4.5%
TA = –10 to 85 °C(3) 4- 4 %
TA = 25 °C(4)
4. Factory calibrated, parts not soldered.
1- 1 %
tsu(HSI)(2) HSI oscillator startup time - - 2.2 4 µs
IDD(HSI)(2) HSI oscillator power consumption - - 60 80 µA
Ͳϭϱй
ͲϭϬй
ͲϬϱй
ϬϬй
Ϭϱй
ϭϬй
ϭϱй
ͲϰϬΣ ϬΣ ϮϱΣ ϴϱΣ ϭϬϱΣ ϭϮϱΣ
d;ΣͿ
DŝŶ
DĂdž
dLJƉŝĐ
Ăů
069
7HPSHUDWXUH&
1RUPDOL]HGGHYLDWLRQ
DocID027590 Rev 3 127/222
STM32F745xx STM32F746xx Electrical characteristics
194
Low-speed internal (LSI) RC oscillator
Figure 34. LSI deviation versus temperature
5.3.11 PLL characteristics
The parameters given in Table 43 and Table 44 are derived from tests performed under
temperature and VDD supply voltage conditions summarized in Table 17.
Table 42. LSI oscillator characteristics (1)
1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Min Typ Max Unit
fLSI(2)
2. Guaranteed by characterization results.
Frequency 17 32 47 kHz
tsu(LSI)(3)
3. Guaranteed by design.
LSI oscillator startup time - 15 40 µs
IDD(LSI)(3) LSI oscillator power consumption - 0.4 0.6 µA
069
7HPSHUDWXUH&
ͲϴϬй
ͲϲϬй
ͲϰϬй
ͲϮϬй
ϬϬй
ϮϬй
ϰϬй
ϲϬй
ϴϬй
ͲϰϬΣ ϬΣ ϮϱΣ ϴϱΣ ϭϬϱΣ ϭϮϱΣ
DŝŶ
DĂdž
dLJƉŝĐĂ
ů
1RUPDOL]HGGHYLDWLRQ
Table 43. Main PLL characteristics
Symbol Parameter Conditions Min Typ Max Unit
fPLL_IN PLL input clock(1) -0.95
(2) 12.10
MHz
fPLL_OUT PLL multiplier output clock - 24 - 216
fPLL48_OUT
48 MHz PLL multiplier output
clock - - 48 75
fVCO_OUT PLL VCO output - 100 - 432
Electrical characteristics STM32F745xx STM32F746xx
128/222 DocID027590 Rev 3
tLOCK PLL lock time
VCO freq = 100 MHz 75 - 200
µs
VCO freq = 432 MHz 100 - 300
Jitter(3)
Cycle-to-cycle jitter
System clock
216 MHz
RMS - 25 -
ps
peak
to
peak
-±150 -
Period Jitter
RMS - 15 -
peak
to
peak
-±200 -
Main clock output (MCO) for
RMII Ethernet
Cycle to cycle at 50 MHz
on 1000 samples -32 -
Main clock output (MCO) for MII
Ethernet
Cycle to cycle at 25 MHz
on 1000 samples -40 -
Bit Time CAN jitter Cycle to cycle at 1 MHz
on 1000 samples -330 -
IDD(PLL)(4) PLL power consumption on VDD
VCO freq = 100 MHz
VCO freq = 432 MHz
0.15
0.45 -0.40
0.75 mA
IDDA(PLL)(4) PLL power consumption on VDDA
VCO freq = 100 MHz
VCO freq = 432 MHz
0.30
0.55 -0.40
0.85 mA
1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between PLL and PLLI2S.
2. Guaranteed by design.
3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.
4. Guaranteed by characterization results.
Table 43. Main PLL characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 44. PLLI2S characteristics
Symbol Parameter Conditions Min Typ Max Unit
fPLLI2S_IN PLLI2S input clock(1) -0.95
(2) 12.10
MHz
fPLLI2SP_OUT
PLLI2S multiplier output clock for
SPDIFRX - - - 216
fPLLI2SQ_OUT
PLLI2S multiplier output clock for
SAI - - - 216
fPLLI2SR_OUT
PLLI2S multiplier output clock for
I2S - - - 216
fVCO_OUT PLLI2S VCO output - 100 - 432
tLOCK PLLI2S lock time
VCO freq = 100 MHz 75 - 200
µs
VCO freq = 432 MHz 100 - 300
DocID027590 Rev 3 129/222
STM32F745xx STM32F746xx Electrical characteristics
194
Jitter(3)
Master I2S clock jitter
Cycle to cycle at
12.288 MHz on
48KHz period,
N=432, R=5
RMS - 90 -
peak
to
peak
- ±280 - ps
Average frequency of
12.288 MHz
N = 432, R = 5
on 1000 samples
-90 -ps
WS I2S clock jitter Cycle to cycle at 48 KHz
on 1000 samples -400 - ps
IDD(PLLI2S)(4) PLLI2S power consumption on
VDD
VCO freq = 100 MHz
VCO freq = 432 MHz
0.15
0.45 -0.40
0.75 mA
IDDA(PLLI2S)(4) PLLI2S power consumption on
VDDA
VCO freq = 100 MHz
VCO freq = 432 MHz
0.30
0.55 -0.40
0.85 mA
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.
2. Guaranteed by design.
3. Value given with main PLL running.
4. Guaranteed by characterization results.
Table 44. PLLI2S characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 45. PLLISAI characteristics
Symbol Parameter Conditions Min Typ Max Unit
fPLLSAI_IN PLLSAI input clock(1) -0.95
(2) 12.10
MHz
fPLLSAIP_OUT
PLLSAI multiplier output clock
for 48 MHz - - 48 75
fPLLSAIQ_OUT
PLLSAI multiplier output clock
for SAI - - - 216
fPLLSAIR_OUT
PLLSAI multiplier output clock
for LCD-TFT - - - 216
fVCO_OUT PLLSAI VCO output - 100 - 432
tLOCK PLLSAI lock time
VCO freq = 100 MHz 75 - 200
µs
VCO freq = 432 MHz 100 - 300
Electrical characteristics STM32F745xx STM32F746xx
130/222 DocID027590 Rev 3
5.3.12 PLL spread spectrum clock generation (SSCG) characteristics
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic
interferences (see Table 52: EMI characteristics). It is available only on the main PLL.
Equation 1
The frequency modulation period (MODEPER) is given by the equation below:
fPLL_IN and fMod must be expressed in Hz.
As an example:
If fPLL_IN = 1 MHz, and fMOD = 1 kHz, the modulation depth (MODEPER) is given by
equation 1:
Jitter(3)
Master SAI clock jitter
Cycle to cycle at
12.288 MHz on
48KHz period,
N=432, R=5
RMS - 90 -
peak
to
peak
- ±280 - ps
Average frequency of
12.288 MHz
N = 432, R = 5
on 1000 samples
-90 -ps
FS clock jitter Cycle to cycle at 48 KHz
on 1000 samples -400 - ps
IDD(PLLSAI)(4) PLLSAI power consumption on
VDD
VCO freq = 100 MHz
VCO freq = 432 MHz
0.15
0.45 -0.40
0.75 mA
IDDA(PLLSAI)(4) PLLSAI power consumption on
VDDA
VCO freq = 100 MHz
VCO freq = 432 MHz
0.30
0.55 -0.40
0.85 mA
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.
2. Guaranteed by design.
3. Value given with main PLL running.
4. Guaranteed by characterization results.
Table 45. PLLISAI characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 46. SSCG parameters constraint
Symbol Parameter Min Typ Max(1) Unit
fMod Modulation frequency - - 10 KHz
md Peak modulation depth 0.25 - 2 %
MODEPER * INCSTEP - - - 215 1-
1. Guaranteed by design.
MODEPER round fPLL_IN 4f
Mod
×()[]=
MODEPER round 106410
3
×()[]250==
DocID027590 Rev 3 131/222
STM32F745xx STM32F746xx Electrical characteristics
194
Equation 2
Equation 2 allows to calculate the increment step (INCSTEP):
fVCO_OUT must be expressed in MHz.
With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):
An amplitude quantization error may be generated because the linear modulation profile is
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage
quantized modulation depth is given by the following formula:
As a result:
Figure 35 and Figure 36 show the main PLL output clock waveforms in center spread and
down spread modes, where:
F0 is fPLL_OUT nominal.
Tmode is the modulation period.
md is the modulation depth.
Figure 35. PLL output clock waveforms in center spread mode
INCSTEP round 215 1()md PLLN××()100 5×MODEPER×()[]=
INCSTEP round 215 1()2 240××()100 5×250×()[]126md(quantitazed)%==
mdquantized% MODEPER INCSTEP×100×5×()215 1()PLLN×()=
mdquantized%250126×100×5×()215 1()240×()2.002%(peak)==
)UHTXHQF\3//B287
7LPH
)
WPRGH [WPRGH
PG
DL
PG
Electrical characteristics STM32F745xx STM32F746xx
132/222 DocID027590 Rev 3
Figure 36. PLL output clock waveforms in down spread mode
5.3.13 Memory characteristics
Flash memory
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.
The devices are shipped to customers with the Flash memory erased.
)UHTXHQF\3//B287
7LPH
)
WPRGH [WPRGH
[PG
DLE
Table 47. Flash memory characteristics
Symbol Parameter Conditions Min Typ Max Unit
IDD Supply current
Write / Erase 8-bit mode, VDD = 1.7 V - 14 -
mAWrite / Erase 16-bit mode, VDD = 2.1 V - 17 -
Write / Erase 32-bit mode, VDD = 3.3 V - 24 -
Table 48. Flash memory programming
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
tprog Word programming time Program/erase parallelism
(PSIZE) = x 8/16/32 -16100
(2) µs
tERASE32KB Sector (32 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 - 400 800
ms
Program/erase parallelism
(PSIZE) = x 16 - 250 600
Program/erase parallelism
(PSIZE) = x 32 - 200 500
tERASE128KB Sector (128 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 - 1100 2400
ms
Program/erase parallelism
(PSIZE) = x 16 - 800 1400
Program/erase parallelism
(PSIZE) = x 32 - 500 1100
DocID027590 Rev 3 133/222
STM32F745xx STM32F746xx Electrical characteristics
194
tERASE256KB Sector (256 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 -2.14
s
Program/erase parallelism
(PSIZE) = x 16 -1.52.6
Program/erase parallelism
(PSIZE) = x 32 -12
tME Mass erase time
Program/erase parallelism
(PSIZE) = x 8 -816
s
Program/erase parallelism
(PSIZE) = x 16 -5.611.2
Program/erase parallelism
(PSIZE) = x 32 -48
Vprog Programming voltage
32-bit program operation 2.7 - 3 V
16-bit program operation 2.1 - 3.6 V
8-bit program operation 1.7 - 3.6 V
1. Guaranteed by characterization results.
2. The maximum programming time is measured after 100K erase operations.
Table 49. Flash memory programming with VPP
Symbol Parameter Conditions Min(1) Typ Max(1)
1. Guaranteed by design.
Unit
tprog Double word programming
TA = 0 to +40 °C
VDD = 3.3 V
VPP = 8.5 V
-16100
(2)
2. The maximum programming time is measured after 100K erase operations.
µs
tERASE32KB Sector (32 KB) erase time - 180 -
mstERASE128KB Sector (128 KB) erase time - 450 -
tERASE256KB Sector (256 KB) erase time - 900 -
tME Mass erase time - 6.9 - s
Vprog Programming voltage - 2.7 - 3.6 V
VPP VPP voltage range - 7 - 9 V
IPP
Minimum current sunk on
the VPP pin -10--mA
tVPP(3)
3. VPP should only be connected during programming/erasing.
Cumulative time during
which VPP is applied - - - 1 hour
Table 48. Flash memory programming (continued)
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
Electrical characteristics STM32F745xx STM32F746xx
134/222 DocID027590 Rev 3
5.3.14 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant
with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 51. They are based on the EMS levels and classes
defined in application note AN1709.
As a consequence, it is recommended to add a serial resistor (1 kΏ) located as close as
possible to the MCU to the pins exposed to noise (connected to tracks longer than 50 mm
on PCB).
Table 50. Flash memory endurance and data retention
Symbol Parameter Conditions
Value
Unit
Min(1)
1. Guaranteed by characterization results.
NEND Endurance TA = –40 to +85 °C (6 suffix versions)
TA = –40 to +105 °C (7 suffix versions) 10 kcycles
tRET Data retention
1 kcycle(2) at TA = 85 °C
2. Cycling performed over the whole temperature range.
30
Years1 kcycle(2) at TA = 105 °C 10
10 kcycles(2) at TA = 55 °C 20
Table 51. EMS characteristics
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin to
induce a functional disturbance
VDD = 3.3 V, LQFP176, TA = +25 °C,
fHCLK = 216 MHz, conforms to
IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, TFBGA216, TA
=+25 °C, fHCLK = 216 MHz,
conforms to IEC 61000-4-2
4A
DocID027590 Rev 3 135/222
STM32F745xx STM32F746xx Electrical characteristics
194
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application,
executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2
standard which specifies the test board and the pin loading.
Table 52. EMI characteristics
Symbol Parameter Conditions Monitored
frequency band
Max vs.
[fHSE/fCPU]Unit
25/180 MHz
SEMI Peak level
VDD = 3.6 V, TA = 25 °C, TFBGA216 package,
conforming to IEC61967-2 ART/L1-cache OFF,
over-drive ON, all peripheral clocks enabled, clock
dithering disabled.
0.1 to 30 MHz - 4
dBµV30 to 130 MHz 9
130 MHz to 1GHz 11
EMI Level 3 -
VDD = 3.6 V, TA = 25 °C, TFBGA216 package,
conforming to IEC61967-2 ART/L1-cache ON,
over-drive ON, all peripheral clocks enabled, clock
dithering disabled.
0.1 to 30 MHz 4
dBµV30 to 130 MHz 5
130 MHz to 1GHz 14
EMI level 3 -
VDD = 3.6 V, TA = 25 °C, TFBGA216 package,
conforming to IEC61967-2 ART/L1-cache ON,
over-drive ON, all peripheral clocks enabled, clock
dithering enabled.
0.1 to 30 MHz - 9
dBµV30 to 130 MHz -7
130 MHz to 1GHz -5
EMI level 1.5 -
Electrical characteristics STM32F745xx STM32F746xx
136/222 DocID027590 Rev 3
5.3.15 Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the ANSI/ESDA/JEDEC JS-001-2012 and ANSI/ESD S5.3.1-2009 standards.
Static latchup
Two complementary static tests are required on six parts to assess the latchup
performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latchup standard.
5.3.16 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibilty to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
Table 53. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum
value(1) Unit
VESD(HBM)
Electrostatic discharge
voltage (human body model)
TA = +25 °C conforming to
ANSI/ESDA/JEDEC JS-001-2012 2 2000
V
VESD(CDM)
Electrostatic discharge
voltage (charge device model)
TA = +25 °C conforming to ANSI/ESD
S5.3.1-2009, LQFP100, LQFP144,
LQFP176, LQFP208, WLCSP143,
UFBGA176 and TFBGA216 packages
C3 250
1. Guaranteed by characterization results.
Table 54. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = +105 °C conforming to JESD78A II level A
DocID027590 Rev 3 137/222
STM32F745xx STM32F746xx Electrical characteristics
194
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5
LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of –
5 µA/+0 µA range), or other functional failure (for example reset, oscillator frequency
deviation).
Negative induced leakage current is caused by negative injection and positive induced
leakage current by positive injection.
The test results are given in Table 55.
Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may
potentially inject negative currents.
5.3.17 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 56: I/O static characteristics are
derived from tests performed under the conditions summarized in Tabl e 17. All I/Os are
CMOS and TTL compliant.
Table 55. I/O current injection susceptibility(1)
Symbol Description
Functional susceptibility
Unit
Negative
injection
Positive
injection
IINJ
Injected current on BOOT pin 0NA
mA
Injected current on NRST pin 0NA
Injected current on PA0, PC0 pins 0NA
Injected current on any other FT pin 5NA
Injected current on any other pins 5+5
1. NA = not applicable.
Table 56. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL
FT, TTa and NRST I/O input
low level voltage 1.7 VVDD3.6 V - -
0.35VDD 0.04
(1)
V
0.3VDD(2)
BOOT I/O input low level
voltage
1.75 VVDD 3.6 V,
–40 °CTA 105 °C --
0.1VDD+0.1(1)
1.7 VVDD 3.6 V,
0 °CTA 105 °C --
Electrical characteristics STM32F745xx STM32F746xx
138/222 DocID027590 Rev 3
VIH
FT, TTa and NRST I/O input
high level voltage(5) 1.7 VVDD3.6 V
0.45VDD+0.3(1)
--
V
0.7VDD(2)
BOOT I/O input high level
voltage
1.75 VVDD 3.6 V,
–40 °CTA 105 °C
0.17VDD+0.7(1) --
1.7 VVDD 3.6 V,
0 °CTA 105 °C
VHYS
FT, TTa and NRST I/O input
hysteresis 1.7 VVDD3.6 V 10%VDD(3) --
V
BOOT I/O input hysteresis
1.75 VVDD 3.6 V,
–40 °CTA 105 °C
0.1 - -
1.7 VVDD 3.6 V,
0 °CTA 105 °C
Ilkg
I/O input leakage current (4) VSS VIN VDD --±1
µA
I/O FT input leakage current
(5) VIN = 5 V - - 3
RPU
Weak pull-up
equivalent
resistor(6)
All pins
except for
PA10/PB12
(OTG_FS_ID
,OTG_HS_ID
)VIN = VSS
30 40 50
kΩ
PA10/PB12
(OTG_FS_ID
,OTG_HS_ID
)
71014
RPD
Weak pull-
down
equivalent
resistor(7)
All pins
except for
PA10/PB12
(OTG_FS_ID
,OTG_HS_ID
)VIN = VDD
30 40 50
PA10/PB12
(OTG_FS_ID
,OTG_HS_ID
)
71014
CIO(8) I/O pin capacitance - - 5 - pF
1. Guaranteed by design.
2. Tested in production.
3. With a minimum of 200 mV.
4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 55: I/O
current injection susceptibility
5. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be
higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 55: I/O current injection
susceptibility
6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the
series resistance is minimum (~10% order).
Table 56. I/O static characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
DocID027590 Rev 3 139/222
STM32F745xx STM32F746xx Electrical characteristics
194
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements for FT I/Os is shown in Figure 37.
Figure 37. FT I/O input characteristics
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14, PC15 and PI8 which
can sink or source up to ±3mA. When using the PC13 to PC15 and PI8 GPIOs in output
mode, the speed should not exceed 2 MHz with a maximum load of 30 pF.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 5.2. In particular:
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
ΣIVDD (see Table 15).
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
ΣIVSS (see Table 15).
7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the
series resistance is minimum (~10% order).
8. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.
069



     



9''9
9,/9,+9
7HVWHGLQSURGXFWLRQ&026UHTXLUHPHQW9,+PLQ 9''
7HVWHGLQSURGXFWLRQ&026UHTXLUHPHQW9,/PD[ 9''
%DVHGRQ'HVLJQVLPXODWLRQV9,/PD[ 9''
77/UHTXLUHPHQW
9,+PLQ 9
77/UHTXLUHPHQW9,/PD[
9


$UHDQRW
GHWHUPLQHG


%DVHGRQ'HVLJQVLPXODWLRQV9,+PLQ 9''
Electrical characteristics STM32F745xx STM32F746xx
140/222 DocID027590 Rev 3
Output voltage levels
Unless otherwise specified, the parameters given in Table 57 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 17. All I/Os are CMOS and TTL compliant.
Table 57. Output voltage characteristics
Symbol Parameter Conditions Min Max Unit
VOL(1)
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 15.
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
Output low level voltage for an I/O pin
CMOS port(2)
IIO = +8 mA
2.7 V VDD 3.6 V
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
-0.4
V
VOH(3)
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 15 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
Output high level voltage for an I/O pin
except PC14
CMOS port(2)
IIO = -8 mA
2.7 V VDD 3.6 V
VDD 0.4 -
VOH(3) Output high level voltage for PC14
CMOS port(2)
IIO = -2 mA
2.7 V VDD 3.6 V
VDD 0.4 -
VOL (1) Output low level voltage for an I/O pin
TTL port(2)
IIO =+8mA
2.7 V VDD 3.6 V
-0.4
V
VOH (3) Output high level voltage for an I/O pin
except PC14
TTL port(2)
IIO =-8mA
2.7 V VDD 3.6 V
2.4 -
VOL(1) Output low level voltage for an I/O pin IIO = +20 mA
2.7 V VDD 3.6 V -1.3
(4)
4. Based on characterization data.
V
VOH(3) Output high level voltage for an I/O pin
except PC14
IIO = -20 mA
2.7 V VDD 3.6 V VDD 1.3(4) -
VOL(1) Output low level voltage for an I/O pin IIO = +6 mA
1.8 V VDD 3.6 V -0.4
(4)
V
VOH(3) Output high level voltage for an I/O pin
except PC14
IIO = -6 mA
1.8 V VDD 3.6 V VDD 0.4(4) -
VOL(1) Output low level voltage for an I/O pin IIO = +4 mA
1.7 V VDD 3.6V -0.4
(5)
5. Guaranteed by design.
VVOH(3) Output high level voltage for an I/O pin
except PC14
IIO = -4 mA
1.7 V VDD 3.6V VDD 0.4(5) -
VOH(3) Output high level voltage for PC14 IIO = -1 mA
1.7 V VDD 3.6V VDD 0.4(5) -
DocID027590 Rev 3 141/222
STM32F745xx STM32F746xx Electrical characteristics
194
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 38 and
Table 58, respectively.
Unless otherwise specified, the parameters given in Table 58 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 17.
Table 58. I/O AC characteristics(1)(2)
OSPEEDRy
[1:0] bit
value(1)
Symbol Parameter Conditions Min Typ Max Unit
00
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDD 2.7 V - - 4
MHz
CL = 50 pF, VDD 1.7 V - - 2
CL = 10 pF, VDD 2.7 V - - 8
CL = 10 pF, VDD 1.8 V - - 4
CL = 10 pF, VDD 1.7 V - - 3
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 50 pF, VDD = 1.7 V to
3.6 V --100ns
01
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDD 2.7 V - - 25
MHz
CL = 50 pF, VDD 1.8 V - - 12.5
CL = 50 pF, VDD 1.7 V - - 10
CL = 10 pF, VDD 2.7 V - - 50
CL = 10 pF, VDD 1.8 V - - 20
CL = 10 pF, VDD 1.7 V - - 12.5
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 50 pF, VDD 2.7 V - - 10
ns
CL = 10 pF, VDD 2.7 V - - 6
CL = 50 pF, VDD 1.7 V - - 20
CL = 10 pF, VDD 1.7 V - - 10
10
fmax(IO)out Maximum frequency(3)
CL = 40 pF, VDD 2.7 V - - 50(4)
MHz
CL = 10 pF, VDD 2.7 V - - 100(4)
CL = 40 pF, VDD 1.7 V - - 25
CL = 10 pF, VDD 1.8 V - - 50
CL = 10 pF, VDD 1.7 V - - 42.5
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 40 pF, VDD 2.7 V - - 6
ns
CL = 10 pF, VDD 2.7 V - - 4
CL = 40 pF, VDD 1.7 V - - 10
CL = 10 pF, VDD 1.7 V - - 6
Electrical characteristics STM32F745xx STM32F746xx
142/222 DocID027590 Rev 3
Figure 38. I/O AC characteristics definition
11
fmax(IO)out Maximum frequency(3)
CL = 30 pF, VDD 2.7 V - - 100(4)
MHz
CL = 30 pF, VDD 1.8 V - - 50
CL = 30 pF, VDD 1.7 V - - 42.5
CL = 10 pF, VDD 2.7 V - - 180(4)
CL = 10 pF, VDD 1.8 V - - 100
CL = 10 pF, VDD 1.7 V - - 72.5
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 30 pF, VDD 2.7 V - - 4
ns
CL = 30 pF, VDD 1.8 V - - 6
CL = 30 pF, VDD 1.7 V - - 7
CL = 10 pF, VDD 2.7 V - - 2.5
CL = 10 pF, VDD 1.8 V - - 3.5
CL = 10 pF, VDD 1.7 V - - 4
- tEXTIpw
Pulse width of external signals
detected by the EXTI
controller
-10--ns
1. Guaranteed by design.
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F75xxx and STM32F74xxx reference
manual for a description of the GPIOx_SPEEDR GPIO port output speed register.
3. The maximum frequency is defined in Figure 38.
4. For maximum frequencies above 50 MHz and VDD > 2.4 V, the compensation cell should be used.
Table 58. I/O AC characteristics(1)(2) (continued)
OSPEEDRy
[1:0] bit
value(1)
Symbol Parameter Conditions Min Typ Max Unit
DLG



WU,2RXW
287387
(;7(51$/
21&/
0D[LPXPIUHTXHQF\LVDFKLHYHGLIWUWI7DQGLIWKHGXW\F\FOHLV
ZKHQORDGHGE\&/VSHFLILHGLQWKHWDEOH³,2$&FKDUDFWHULVWLFV´



7
WI,2RXW
DocID027590 Rev 3 143/222
STM32F745xx STM32F746xx Electrical characteristics
194
5.3.18 NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 56: I/O static characteristics).
Unless otherwise specified, the parameters given in Table 59 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 17.
Figure 39. Recommended NRST pin protection
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 59. Otherwise the reset is not taken into account by the device.
Table 59. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
RPU Weak pull-up equivalent resistor(1) VIN = VSS 30 40 50 kΩ
VF(NRST)(2) NRST Input filtered pulse - - - 100 ns
VNF(NRST)(2) NRST Input not filtered pulse VDD > 2.7 V 300 - - ns
TNRST_OUT Generated reset pulse duration Internal Reset source 20 - - µs
1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance must be minimum (~10% order).
2. Guaranteed by design.
DLF
670)
538
1567

9''
)LOWHU
,QWHUQDO5HVHW
)
([WHUQDO
UHVHWFLUFXLW 
Electrical characteristics STM32F745xx STM32F746xx
144/222 DocID027590 Rev 3
5.3.19 TIM timer characteristics
The parameters given in Table 60 are guaranteed by design.
Refer to Section 5.3.17: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
5.3.20 RTC characteristics
5.3.21 12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 62 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Table 17.
Table 60. TIMx characteristics(1)(2)
1. TIMx is used as a general term to refer to the TIM1 to TIM12 timers.
2. Guaranteed by design.
Symbol Parameter Conditions(3)
3. The maximum timer frequency on APB1 or APB2 is up to 216 MHz, by setting the TIMPRE bit in the
RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCLK, otherwise TIMxCLK =
4x PCLKx.
Min Max Unit
tres(TIM) Timer resolution time
AHB/APBx prescaler=1
or 2 or 4, fTIMxCLK =
216 MHz
1-
tTIMxCLK
AHB/APBx
prescaler>4, fTIMxCLK =
108 MHz
1-
tTIMxCLK
fEXT Timer external clock
frequency on CH1 to CH4 fTIMxCLK = 216 MHz
0fTIMxCLK/2 MHz
ResTIM Timer resolution - 16/32 bit
tMAX_COUNT Maximum possible count
with 32-bit counter --
65536 ×
65536 tTIMxCLK
Table 61. RTC characteristics
Symbol Parameter Conditions Min Max
-f
PCLK1/RTCCLK frequency ratio Any read/write operation
from/to an RTC register 4-
Table 62. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA Power supply VDDA VREF+ < 1.2 V 1.7(1) -3.6V
VREF+ Positive reference voltage 1.7(1) -V
DDA V
VREF- Negative reference voltage - - 0 - V
DocID027590 Rev 3 145/222
STM32F745xx STM32F746xx Electrical characteristics
194
fADC ADC clock frequency VDDA = 1.7(1) to 2.4 V 0.6 15 18 MHz
VDDA = 2.4 to 3.6 V 0.6 30 36 MHz
fTRIG(2) External trigger frequency
fADC = 30 MHz,
12-bit resolution - - 1764 kHz
---171/f
ADC
VAIN Conversion voltage range(3) -
0
(VSSA or VREF-
tied to ground)
-V
REF+ V
RAIN(2) External input impedance See Equation 1 for
details --50kΩ
RADC(2)(4) Sampling switch resistance - - - 6 kΩ
CADC(2) Internal sample and hold
capacitor --47pF
tlat(2) Injection trigger conversion
latency
fADC = 30 MHz - - 0.100 µs
--3
(5) 1/fADC
tlatr(2) Regular trigger conversion
latency
fADC = 30 MHz - - 0.067 µs
--2
(5) 1/fADC
tS(2) Sampling time fADC = 30 MHz 0.100 - 16 µs
- 3 - 480 1/fADC
tSTAB(2) Power-up time - - 2 3 µs
tCONV(2) Total conversion time (including
sampling time)
fADC = 30 MHz
12-bit resolution 0.50 - 16.40 µs
fADC = 30 MHz
10-bit resolution 0.43 - 16.34 µs
fADC = 30 MHz
8-bit resolution 0.37 - 16.27 µs
fADC = 30 MHz
6-bit resolution 0.30 - 16.20 µs
9 to 492 (tS for sampling +n-bit resolution for successive
approximation) 1/fADC
fS(2)
Sampling rate
(fADC = 30 MHz, and
tS = 3 ADC cycles)
12-bit resolution
Single ADC - - 2 Msps
12-bit resolution
Interleave Dual ADC
mode
- - 3.75 Msps
12-bit resolution
Interleave Triple ADC
mode
- - 6 Msps
Table 62. ADC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F745xx STM32F746xx
146/222 DocID027590 Rev 3
Equation 1: RAIN max formula
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of
sampling periods defined in the ADC_SMPR1 register.
IVREF+(2)
ADC VREF DC current
consumption in conversion
mode
- - 300 500 µA
IVDDA(2)
ADC VDDA DC current
consumption in conversion
mode
--1.61.8mA
1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.17.2:
Internal reset OFF).
2. Guaranteed by characterization results.
3. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.
4. RADC maximum value is given for VDD=1.7 V, and minimum value for VDD=3.3 V.
5. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 62.
Table 62. ADC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 63. ADC static accuracy at fADC = 18 MHz
Symbol Parameter Test conditions Typ Max(1)
1. Guaranteed by characterization results.
Unit
ET Total unadjusted error
fADC =18 MHz
VDDA = 1.7 to 3.6 V
VREF = 1.7 to 3.6 V
VDDA VREF < 1.2 V
±3 ±4
LSB
EO Offset error ±2 ±3
EG Gain error ±1 ±3
ED Differential linearity error ±1 ±2
EL Integral linearity error ±2 ±3
Table 64. ADC static accuracy at fADC = 30 MHz
Symbol Parameter Test conditions Typ Max(1)
1. Guaranteed by characterization results.
Unit
ET Total unadjusted error
fADC = 30 MHz,
RAIN < 10 kΩ,
VDDA = 2.4 to 3.6 V,
VREF = 1.7 to 3.6 V,
VDDA VREF < 1.2 V
±2 ±5
LSB
EO Offset error ±1.5 ±2.5
EG Gain error ±1.5 ±4
ED Differential linearity error ±1 ±2
EL Integral linearity error ±1.5 ±3
RAIN
k0.5()
fADC CADC 2N2+
()ln××
-------------------------------------------------------------- RADC
=
DocID027590 Rev 3 147/222
STM32F745xx STM32F746xx Electrical characteristics
194
Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog
input pins should be avoided as this significantly reduces the accuracy of the conversion
being performed on another analog input. It is recommended to add a Schottky diode (pin to
ground) to analog pins which may potentially inject negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in
Section 5.3.17 does not affect the ADC accuracy.
Table 65. ADC static accuracy at fADC = 36 MHz
Symbol Parameter Test conditions Typ Max(1)
1. Guaranteed by characterization results.
Unit
ET Total unadjusted error
fADC =36 MHz,
VDDA = 2.4 to 3.6 V,
VREF = 1.7 to 3.6 V
VDDA VREF < 1.2 V
±4 ±7
LSB
EO Offset error ±2 ±3
EG Gain error ±3 ±6
ED Differential linearity error ±2 ±3
EL Integral linearity error ±3 ±6
Table 66. ADC dynamic accuracy at fADC = 18 MHz - limited test conditions(1)
Symbol Parameter Test conditions Min Typ Max Unit
ENOB Effective number of bits fADC =18 MHz
VDDA = VREF+= 1.7 V
Input Frequency = 20 KHz
Temperature = 25 °C
10.3 10.4 - bits
SINAD Signal-to-noise and distortion ratio 64 64.2 -
dBSNR Signal-to-noise ratio 64 65 -
THD Total harmonic distortion 67 72 -
1. Guaranteed by characterization results.
Table 67. ADC dynamic accuracy at fADC = 36 MHz - limited test conditions(1)
Symbol Parameter Test conditions Min Typ Max Unit
ENOB Effective number of bits fADC =36 MHz
VDDA = VREF+ = 3.3 V
Input Frequency = 20 KHz
Temperature = 25 °C
10.6 10.8 - bits
SINAD Signal-to noise and distortion ratio 66 67 -
dBSNR Signal-to noise ratio 64 68 -
THD Total harmonic distortion 70 72 -
1. Guaranteed by characterization results.
Electrical characteristics STM32F745xx STM32F746xx
148/222 DocID027590 Rev 3
Figure 40. ADC accuracy characteristics
1. See also Table 64.
2. Example of an actual transfer curve.
3. Ideal transfer curve.
4. End point correlation line.
5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset Error: deviation between the first actual transition and the first ideal one.
EG = Gain Error: deviation between the last ideal transition and the last actual one.
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point
correlation line.
Figure 41. Typical connection diagram using the ADC
1. Refer to Table 62 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,
fADC should be reduced.
DLF
(2
(*
/ 6%,'($/



    


(7
('
(/

9''$
966$
95()
 RUGHSHQGLQJRQSDFNDJH@
9''$

>/6% ,'($/
DL
670)
9''
$,1[
,/$
9
97
5$,1
&SDUDVLWLF
9$,1
9
97
5$'&
&$'&
ELW
FRQYHUWHU
6DPSOHDQGKROG$'&
FRQYHUWHU
DocID027590 Rev 3 149/222
STM32F745xx STM32F746xx Electrical characteristics
194
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 42 or Figure 43,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 42. Power supply and reference decoupling (VREF+ not connected to VDDA)
1. VREF+ input is available on all package whereas the VREF– s available only on UFBGA176 and TFBGA216.
When VREF- is not available, it is internally connected to VDDA and VSSA.
Figure 43. Power supply and reference decoupling (VREF+ connected to VDDA)
1. VREF+ input is available on all package whereas the VREF– s available only on UFBGA176 and TFBGA216.
670)
)Q)
)Q)
95()
9''$
966$95()

DLE
670)
)Q)
DLF
95()9''$
95()966$ 

Electrical characteristics STM32F745xx STM32F746xx
150/222 DocID027590 Rev 3
When VREF- is not available, it is internally connected to VDDA and VSSA.
5.3.22 Temperature sensor characteristics
5.3.23 VBAT monitoring characteristics
5.3.24 Reference voltage
The parameters given in Table 71 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 17.
Table 68. Temperature sensor characteristics
Symbol Parameter Min Typ Max Unit
TL(1) VSENSE linearity with temperature - ±1±C
Avg_Slope(1) Average slope - 2.5 - mV/°C
V25(1) Voltage at 25 °C - 0.76 - V
tSTART(2) Startup time - 6 10 µs
TS_temp(2) ADC sampling time when reading the temperature (1 °C accuracy) 10 - - µs
1. Guaranteed by characterization results.
2. Guaranteed by design.
Table 69. Temperature sensor calibration values
Symbol Parameter Memory address
TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V 0x1FF0 F44C - 0x1FF0 F44D
TS_CAL2 TS ADC raw data acquired at temperature of 110 °C, VDDA= 3.3 V 0x1FF0 F44E - 0x1FF0 F44F
Table 70. VBAT monitoring characteristics
Symbol Parameter Min Typ Max Unit
R Resistor bridge for VBAT -50-KΩ
QRatio on VBAT measurement - 4 - -
Er(1) Error on Q –1 - +1 %
TS_vbat(2)(2) ADC sampling time when reading the VBAT
1 mV accuracy 5--µs
1. Guaranteed by design.
2. Shortest sampling time can be determined in the application by multiple iterations.
Table 71. internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT Internal reference voltage –40 °C < TA < +105 °C 1.18 1.21 1.24 V
TS_vrefint(1) ADC sampling time when reading the
internal reference voltage -10--µs
DocID027590 Rev 3 151/222
STM32F745xx STM32F746xx Electrical characteristics
194
5.3.25 DAC electrical characteristics
VRERINT_s(2) Internal reference voltage spread over the
temperature range VDD = 3V ± 10mV - 3 5 mV
TCoeff(2) Temperature coefficient - - 30 50 ppm/°C
tSTART(2) Startup time - - 6 10 µs
1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design.
Table 71. internal reference voltage (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 72. Internal reference voltage calibration values
Symbol Parameter Memory address
VREFIN_CAL Raw data acquired at temperature of 30 °C VDDA = 3.3 V 0x1FF0 F44A - 0x1FF0 F44B
Table 73. DAC characteristics
Symbol Parameter Min Typ Max Unit Comments
VDDA Analog supply voltage 1.7(1) -3.6 V -
VREF+ Reference supply voltage 1.7(1) -3.6VV
REF+ VDDA
VSSA Ground 0- 0V -
RLOAD(2) Resistive load with buffer ON 5 - - kΩ-
RO(2) Impedance output with buffer
OFF --15kΩ
When the buffer is OFF, the Minimum
resistive load between DAC_OUT and
VSS to have a 1% accuracy is 1.5 MΩ
CLOAD(2) Capacitive load - - 50 pF Maximum capacitive load at DAC_OUT
pin (when the buffer is ON).
DAC_OUT
min(2)
Lower DAC_OUT voltage
with buffer ON 0.2 - - V
It gives the maximum output excursion of
the DAC.
It corresponds to 12-bit input code
(0x0E0) to (0xF1C) at VREF+ = 3.6 V and
(0x1C7) to (0xE38) at VREF+ = 1.7 V
DAC_OUT
max(2)
Higher DAC_OUT voltage
with buffer ON --
VDDA
0.2 V
DAC_OUT
min(2)
Lower DAC_OUT voltage
with buffer OFF -0.5 - mV
It gives the maximum output excursion of
the DAC.
DAC_OUT
max(2)
Higher DAC_OUT voltage
with buffer OFF --
VREF+
1LSB V
IVREF+(4)
DAC DC VREF current
consumption in quiescent
mode (Standby mode)
-170240
µA
With no load, worst code (0x800) at
VREF+ = 3.6 V in terms of DC
consumption on the inputs
-5075
With no load, worst code (0xF1C) at
VREF+ = 3.6 V in terms of DC
consumption on the inputs
Electrical characteristics STM32F745xx STM32F746xx
152/222 DocID027590 Rev 3
IDDA(4)
DAC DC VDDA current
consumption in quiescent
mode(3)
-280380µA
With no load, middle code (0x800) on the
inputs
-475625µA
With no load, worst code (0xF1C) at
VREF+ = 3.6 V in terms of DC
consumption on the inputs
DNL(4)
Differential non linearity
Difference between two
consecutive code-1LSB)
- - ±0.5 LSB Given for the DAC in 10-bit configuration.
- - ±2 LSB Given for the DAC in 12-bit configuration.
INL(4)
Integral non linearity
(difference between
measured value at Code i
and the value at Code i on a
line drawn between Code 0
and last Code 1023)
- - ±1 LSB Given for the DAC in 10-bit configuration.
- - ±4 LSB Given for the DAC in 12-bit configuration.
Offset(4)
Offset error
(difference between
measured value at Code
(0x800) and the ideal value =
VREF+/2)
- - ±10 mV Given for the DAC in 12-bit configuration
--±3LSB
Given for the DAC in 10-bit at VREF+ =
3.6 V
--±12LSB
Given for the DAC in 12-bit at VREF+ =
3.6 V
Gain
error(4) Gain error - - ±0.5 % Given for the DAC in 12-bit configuration
tSETTLING(4)
Settling time (full scale: for a
10-bit input code transition
between the lowest and the
highest input codes when
DAC_OUT reaches final
value ±4LSB
-3 6µs
CLOAD 50 pF,
RLOAD 5 kΩ
THD(4) Total Harmonic Distortion
Buffer ON -- -dB
CLOAD 50 pF,
RLOAD 5 kΩ
Update
rate(2)
Max frequency for a correct
DAC_OUT change when
small variation in the input
code (from code i to i+1LSB)
-- 1MS/s
CLOAD 50 pF,
RLOAD 5 kΩ
tWAKEUP(4)
Wakeup time from off state
(Setting the ENx bit in the
DAC Control register)
-6.510µs
CLOAD 50 pF, RLOAD 5 kΩ
input code between lowest and highest
possible ones.
PSRR+ (2)
Power supply rejection ratio
(to VDDA) (static DC
measurement)
- –67 –40 dB No RLOAD, CLOAD = 50 pF
1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.17.2:
Internal reset OFF).
2. Guaranteed by design.
3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic
consumption occurs.
4. Guaranteed by characterization results.
Table 73. DAC characteristics (continued)
Symbol Parameter Min Typ Max Unit Comments
DocID027590 Rev 3 153/222
STM32F745xx STM32F746xx Electrical characteristics
194
Figure 44. 12-bit buffered /non-buffered DAC
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the
DAC_CR register.
5.3.26 Communications interfaces
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev. 03 for:
Standard-mode (Sm): with a bit rate up to 100 kbit/s
Fast-mode (Fm): with a bit rate up to 400 kbit/s.
Fast-mode Plus (Fm+): with a bit rate up to 1Mbit/s.
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly
configured (refer to RM0385 reference manual) and when the I2CCLK frequency is greater
than the minimum shown in the table below:
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and
SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS
connected between the I/O pin and VDD is disabled, but is still present.
5/
&/
%XIIHUHG1RQEXIIHUHG'$&
'$&B287[
%XIIHU
ELW
GLJLWDOWR
DQDORJ
FRQYHUWHU
DL9
Table 74. Minimum I2CCLK frequency in all I2C modes
Symbol Parameter Condition Min Unit
f(I2CCLK) I2CCLK
frequency
Standard-mode 2
MHz
Fast-mode
Analog Filtre ON
DNF=0 10
Analog Filtre OFF
DNF=1 9
Fast-mode Plus
Analog Filtre ON
DNF=0 22.5
Analog Filtre OFF
DNF=1 16
Electrical characteristics STM32F745xx STM32F746xx
154/222 DocID027590 Rev 3
The 20mA output drive requirement in Fast-mode Plus is not supported. This limits the
maximum load Cload supported in Fm+, which is given by these formulas:
Tr(SDA/SCL)=0.8473xRpxCload
Rp(min)= (VDD-VOL(max))/IOL(max)
Where Rp is the I2C lines pull-up. Refer to
Section 5.3.17: I/O port characteristics
for the
I2C I/Os characteristics.
All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog
filter characteristics:
Table 75. I2C analog filter characteristics(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tAF
Maximum pulse width of spikes
that are suppressed by the analog
filter
50(2)
2. Spikes with widths below tAF(min) are filtered.
150(3)
3. Spikes with widths above tAF(max) are not filtered
ns
DocID027590 Rev 3 155/222
STM32F745xx STM32F746xx Electrical characteristics
194
SPI interface characteristics
Unless otherwise specified, the parameters given in Table 76 for the SPI interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 17, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 5.3.17: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI).
Table 76. SPI dynamic characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master mode
SPI1,4,5,6
2.7VDD3.6
--
54(2)
MHz
Master mode
SPI1,4,5,6
1.71VDD3.6
27
Master transmitter mode
SPI1,4,5,6
1.71VDD3.6
54
Slave receiver mode
SPI1,4,5,6
1.71VDD3.6
54
Slave mode transmitter/full duplex
SPI1,4,5,6
2.7VDD3.6
50(3)
Slave mode transmitter/full duplex
SPI1,4,5,6
1.71VDD3.6
38(3)
Master & Slave mode
SPI2,3
1.71VDD3.6
27
tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4*Tpclk - -
ns
th(NSS) NSS hold time Slave mode, SPI presc = 2 2*Tpclk - -
tw(SCKH)
tw(SCKL) SCK high and low time Master mode Tpclk-2 Tpclk Tpclk+2
Electrical characteristics STM32F745xx STM32F746xx
156/222 DocID027590 Rev 3
Figure 45. SPI timing diagram - slave mode and CPHA = 0
tsu(MI)
Data input setup time
Master mode 5.5 - -
ns
tsu(SI) Slave mode 4 - -
th(MI)
Data input hold time
Master mode 4 - -
th(SI) Slave mode 2 - -
ta(SO) Data output access time Slave mode 7 - 21
tdis(SO) Data output disable time Slave mode 5 - 12
tv(SO)
Data output valid time
Slave mode 2.7VDD3.6V - 6.5 10
Slave mode 1.71VDD3.6V - 6.5 13
tv(MO) Master mode - 2 4
th(SO) Data output hold time
Slave mode
1.71VDD3.6V 5.5 - -
th(MO) Master mode 0 - -
1. Guaranteed by characterization results.
2. Excepting SPI1 with SCK IO pin mapped on PA5. In this configuration, Maximum achievable frequency is 40MHz.
3. Maximum Frequency of Slave Transmitter is determined by sum of Tv(SO) and Tsu(MI) intervals which has to fit into SCK
level phase preceding the SCK sampling edge.This value can be achieved when it communicates with a Master having
Tsu(MI)=0 while signal Duty(SCK)=50%.
Table 76. SPI dynamic characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
DLF
6&.,QSXW
166LQSXW
W
68166
W
F6&.
W
K166
&3+$ 
&32/ 
&3+$ 
&32/ 
W
Z6&.+
W
Z6&./
W
962
W
K62
W
U6&.
W
I6&.
W
GLV62
W
D62
0,62
287387
026,
,1387
06%287 %,7287 /6%287
W
VX6,
W
K6,
06%,1 %,7,1 /6%,1
DocID027590 Rev 3 157/222
STM32F745xx STM32F746xx Electrical characteristics
194
Figure 46. SPI timing diagram - slave mode and CPHA = 1
Figure 47. SPI timing diagram - master mode
I2S interface characteristics
Unless otherwise specified, the parameters given in Table 77 for the I2S interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 17, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
DL
6&.,QSXW
&3+$
026,
,1387
0,62
287 3 87
&3+$
06 % 2 8 7
06% ,1
%, 7 28 7
/6% ,1
/6% 287
&32/ 
&32/ 
%,7 ,1
W68166 WF6&. WK166
WD62
WZ6&.+
WZ6&./
WY62 WK62 WU6&.
WI6&.
WGLV62
WVX6, WK6,
166LQSXW
DLF
6&.2XWSXW
&3+$
026,
287387
0,62
,13 87
&3+$
/6%287
/6%,1
&32/ 
&32/ 
% , 7287
166LQSXW
WF6&.
WZ6&.+
WZ6&./
WU6&.
WI6&.
WK0,
+LJK
6&.2XWSXW
&3+$
&3+$
&32/ 
&32/ 
WVX0,
WY02 WK02
06%,1 %,7,1
06%287
Electrical characteristics STM32F745xx STM32F746xx
158/222 DocID027590 Rev 3
Refer to Section 5.3.17: I/O port characteristics for more details on the input/output alternate
function characteristics (CK, SD, WS).
Note: Refer to RM0385 reference manual I2S section for more details on the sampling frequency
(FS).
fMCK, fCK, and DCK values reflect only the digital peripheral behavior. The values of these
parameters might be slightly impacted by the source clock precision. DCK depends mainly
on the value of ODD bit. The digital contribution leads to a minimum value of
(I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). FS
maximum value is supported for each mode/condition.
Table 77. I2S dynamic characteristics(1)
Symbol Parameter Conditions Min Max Unit
fMCK I2S Main clock output - 256x8K 256xFs(2) MHz
fCK I2S clock frequency
Master data: 32 bits - 64xFs
MHz
Slave data: 32 bits - 64xFs
DCK I2S clock frequency duty cycle Slave receiver 30 70 %
tv(WS) WS valid time Master mode - 5
ns
th(WS) WS hold time Master mode 0 -
tsu(WS) WS setup time
Slave mode 5 -
ns
Slave mode
PCM short pulse mode(3) 3-
th(WS) WS hold time
Slave mode 0 -
Slave mode
PCM short pulse mode(3) 2-
tsu(SD_MR) Data input setup time
Master receiver 5 -
tsu(SD_SR) Slave receiver 1 -
th(SD_MR) Data input hold time
Master receiver 5 -
th(SD_SR) Slave receiver 1.5 -
tv(SD_ST) Data output valid time
Slave transmitter (after enable edge) - 16
tv(SD_MT) Master transmitter (after enable edge) - 3.5
th(SD_ST) Data output hold time
Slave transmitter (after enable edge) 5 -
th(SD_MT) Master transmitter (after enable edge) 0 -
1. Guaranteed by characterization results.
2. The maximum value of 256xFs is 45 MHz (APB1 maximum frequency).
3. Measurement done with respect to I2S_CK rising edge.
DocID027590 Rev 3 159/222
STM32F745xx STM32F746xx Electrical characteristics
194
Figure 48. I2S slave timing diagram (Philips protocol)(1)
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 49. I2S master timing diagram (Philips protocol)(1)
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
&.,QSXW
&32/ 
&32/ 
WF&.
:6LQSXW
6'WUDQVPLW
6'UHFHLYH
WZ&.+ WZ&./
WVX:6 WY6'B67 WK6'B67
WK:6
WVX6'B65 WK6'B65
06%UHFHLYH %LWQUHFHLYH /6%UHFHLYH
06%WUDQVPLW %LWQWUDQVPLW /6%WUDQVPLW
DLE
/6%UHFHLYH
/6%WUDQVPLW
&.RXWSXW
&32/ 
&32/ 
WF&.
:6RXWSXW
6'UHFHLYH
6'WUDQVPLW
WZ&.+
WZ&./
WVX6'B05
WY6'B07 WK6'B07
WK:6
WK6'B05
06%UHFHLYH %LWQUHFHLYH /6%UHFHLYH
06%WUDQVPLW %LWQWUDQVPLW /6%WUDQVPLW
DLE
WI&. WU&.
WY:6
/6%UHFHLYH
/6%WUDQVPLW
Electrical characteristics STM32F745xx STM32F746xx
160/222 DocID027590 Rev 3
SAI characteristics
Unless otherwise specified, the parameters given in Table 78 for SAI are derived from tests
performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 17, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C=30 pF
Measurement points are performed at CMOS levels: 0.5VDD
Refer to Section 5.3.17: I/O port characteristics for more details on the input/output alternate
function characteristics (SCK,SD,WS).
Table 78. SAI characteristics(1)
Symbol Parameter Conditions Min Max Unit
fMCKL SAI Main clock output - 256 x 8K 256xFs(2) MHz
FSCK SAI clock frequency
Master data: 32 bits - 128xFs
MHz
Slave data: 32 bits - 128xFs
DSCK
SAI clock frequency duty
cycle Slave receiver 30 70 %
tv(FS) FS valid time Master mode 8 22
ns
tsu(FS) FS setup time Slave mode 2 -
th(FS) FS hold time
Master mode 8 -
Slave mode 0 -
tsu(SD_MR) Data input setup time
Master receiver 5 -
tsu(SD_SR) Slave receiver 3 -
th(SD_MR) Data input hold time
Master receiver 0 -
th(SD_SR) Slave receiver 6 -
tv(SD_ST)
th(SD_ST) Data output valid time
Slave transmitter (after enable
edge) -15
tv(SD_MT)
Master transmitter (after enable
edge) -20
th(SD_MT) Data output hold time Master transmitter (after enable
edge) 7-
1. Guaranteed by characterization results.
2. 256xFs maximum corresponds to 45 MHz (APB2 xaximum frequency)
DocID027590 Rev 3 161/222
STM32F745xx STM32F746xx Electrical characteristics
194
Figure 50. SAI master timing waveforms
Figure 51. SAI slave timing waveforms
069
6$,B6&.B;
6$,B)6B;
RXWSXW
I6&.
6$,B6'B;
WUDQVPLW
WY)6
6ORWQ
6$,B6'B;
UHFHLYH
WK)6
6ORWQ
WY6'B07 WK6'B07
6ORWQ
WVX6'B05 WK6'B05
069
6$,B6&.B;
6$,B)6B;
LQSXW
6$,B6'B;
WUDQVPLW
WVX)6
6ORWQ
6$,B6'B;
UHFHLYH
WZ&.+B; WK)6
6ORWQ
WY6'B67 WK6'B67
6ORWQ
WVX6'B65
WZ&./B;
WK6'B65
I6&.
Electrical characteristics STM32F745xx STM32F746xx
162/222 DocID027590 Rev 3
USB OTG full speed (FS) characteristics
This interface is present in both the USB OTG HS and USB OTG FS controllers.
Note: When VBUS sensing feature is enabled, PA9 and PB13 should be left at their default state
(floating input), not as alternate function. A typical 200 µA current consumption of the
sensing block (current to voltage conversion to determine the different sessions) can be
observed on PA9 and PB13 when the feature is enabled.
Table 79. USB OTG full speed startup time
Symbol Parameter Max Unit
tSTARTUP(1)
1. Guaranteed by design.
USB OTG full speed transceiver startup time 1 µs
Table 80. USB OTG full speed DC electrical characteristics
Symbol Parameter Conditions Min.
(1)
1. All the voltages are measured from the local ground potential.
Typ. Max.
(1) Unit
Input
levels
VDDUSB
USB OTG full speed
transceiver operating
voltage
-3.0
(2)
2. The USB OTG full speed transceiver functionality is ensured down to 2.7 V but not the full USB full speed
electrical characteristics which are degraded in the 2.7-to-3.0 V VDDUSB voltage range.
-3.6V
VDI(3)
3. Guaranteed by design.
Differential input sensitivity I(USB_FS_DP/DM,
USB_HS_DP/DM) 0.2 - -
VVCM(3) Differential common mode
range Includes VDI range 0.8 - 2.5
VSE(3) Single ended receiver
threshold -1.3-2.0
Output
levels
VOL Static output level low RL of 1.5 kΩ to 3.6 V(4)
4. RL is the load connected on the USB OTG full speed drivers.
--0.3
V
VOH Static output level high RL of 15 kΩ to VSS(4) 2.8 - 3.6
RPD
PA11, PA12, PB14, PB15
(USB_FS_DP/DM,
USB_HS_DP/DM)
VIN = VDD
17 21 24
kΩ
PA9, PB13
(OTG_FS_VBUS,
OTG_HS_VBUS)
0.65 1.1 2.0
RPU
PA12, PB15 (USB_FS_DP,
USB_HS_DP) VIN = VSS 1.5 1.8 2.1
PA9, PB13
(OTG_FS_VBUS,
OTG_HS_VBUS)
VIN = VSS 0.25 0.37 0.55
DocID027590 Rev 3 163/222
STM32F745xx STM32F746xx Electrical characteristics
194
Figure 52. USB OTG full speed timings: definition of data signal rise and fall time
USB high speed (HS) characteristics
Unless otherwise specified, the parameters given in Table 84 for ULPI are derived from
tests performed under the ambient temperature, fHCLK frequency summarized in Table 83
and VDD supply voltage conditions summarized in Table 82, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 11, unless otherwise specified
Capacitive load C = 20 pF, unless otherwise specified
Measurement points are done at CMOS levels: 0.5VDD.
Refer to Section 5.3.17: I/O port characteristics for more details on the input/output
characteristics.
Table 81. USB OTG full speed electrical characteristics(1)
1. Guaranteed by design.
Driver characteristics
Symbol Parameter Conditions Min Max Unit
trRise time(2)
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
Specification - Chapter 7 (version 2.0).
CL = 50 pF 420ns
tfFall time(2) CL = 50 pF 4 20 ns
trfm Rise/ fall time matching tr/tf90 110 %
VCRS Output signal crossover voltage - 1.3 2.0 V
ZDRV Output driver impedance(3)
3. No external termination series resistors are required on DP (D+) and DM (D-) pins since the matching
impedance is included in the embedded driver.
Driving high or
low 28 44 Ω
Table 82. USB HS DC electrical characteristics
Symbol Parameter Min.(1)
1. All the voltages are measured from the local ground potential.
Max.(1) Unit
Input level VDD USB OTG HS operating voltage 1.7 3.6 V
DL
WI
66
WU
9
&56
9
'LIIHUHQWLDO
GDWDOLQHV
&URVVRYHU
SRLQWV
Electrical characteristics STM32F745xx STM32F746xx
164/222 DocID027590 Rev 3
Figure 53. ULPI timing diagram
Table 83. USB HS clock timing parameters(1)
1. Guaranteed by design.
Symbol Parameter Min Typ Max Unit
-fHCLK value to guarantee proper operation of
USB HS interface 30 - - MHz
FSTART_8BIT Frequency (first transition) 8-bit ±10% 54 60 66 MHz
FSTEADY Frequency (steady state) ±500 ppm 59.97 60 60.03 MHz
DSTART_8BIT Duty cycle (first transition) 8-bit ±10% 40 50 60 %
DSTEADY Duty cycle (steady state) ±500 ppm 49.975 50 50.025 %
tSTEADY
Time to reach the steady state frequency and
duty cycle after the first transition --1.4ms
tSTART_DEV Clock startup time after the
de-assertion of SuspendM
Peripheral - - 5.6
ms
tSTART_HOST Host - - -
tPREP
PHY preparation time after the first transition
of the input clock ---µs
DocID027590 Rev 3 165/222
STM32F745xx STM32F746xx Electrical characteristics
194
Ethernet characteristics
Unless otherwise specified, the parameters given in Table 85, Table 86 and Table 87 for
SMI, RMII and MII are derived from tests performed under the ambient temperature, fHCLK
frequency summarized in Table 17 and VDD supply voltage conditions summarized in
Table 85, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 20 pF
Measurement points are done at CMOS levels: 0.5VDD.
Refer to Section 5.3.17: I/O port characteristics for more details on the input/output
characteristics.
Table 85 gives the list of Ethernet MAC signals for the SMI (station management interface)
and Figure 54 shows the corresponding timing diagram.
Figure 54. Ethernet SMI timing diagram
Table 84. Dynamic characteristics: USB ULPI(1)
Symbol Parameter Conditions Min. Typ. Max. Unit
tSC Control in (ULPI_DIR, ULPI_NXT) setup time - 3 - -
ns
tHC Control in (ULPI_DIR, ULPI_NXT) hold time - 1 - -
tSD Data in setup time - 1.5 - -
tHD Data in hold time - 0.5 - -
tDC/tDD Data/control output delay
2.7 V < VDD < 3.6 V,
CL = 20 pF and
OSPEEDRy[1:0] = 11
-5.59
--
5.5 11.5
1.7 V < VDD < 3.6 V,
CL = 15 pF and
OSPEEDRy[1:0] = 11
-
1. Guaranteed by characterization results.
069
(7+B0'&
(7+B0',22
(7+B0',2,
W0'&
WG0',2
WVX0',2 WK0',2
Electrical characteristics STM32F745xx STM32F746xx
166/222 DocID027590 Rev 3
Table 86 gives the list of Ethernet MAC signals for the RMII and Figure 55 shows the
corresponding timing diagram.
Figure 55. Ethernet RMII timing diagram
Table 85. Dynamics characteristics: Ethernet MAC signals for SMI(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Typ Max Unit
tMDC MDC cycle time(2.38 MHz) 400 400 403
ns
Td(MDIO) Write data valid time 10 10.5 12.5
tsu(MDIO) Read data setup time 12.5 - -
th(MDIO) Read data hold time 0 - -
Table 86. Dynamics characteristics: Ethernet MAC signals for RMII(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Typ Max Unit
tsu(RXD) Receive data setup time 1 - -
ns
tih(RXD) Receive data hold time 1.5 - -
tsu(CRS) Carrier sense setup time 1 - -
tih(CRS) Carrier sense hold time 1 - -
td(TXEN) Transmit enable valid delay time 5 6 10.5
td(TXD) Transmit data valid delay time 5 6 12
50,,B5()B&/.
50,,B7;B(1
50,,B7;'>@
50,,B5;'>@
50,,B&56B' 9
WG7;(1
WG7;'
WVX5;'
WVX&56
WLK5;'
WLK&56
DL
DocID027590 Rev 3 167/222
STM32F745xx STM32F746xx Electrical characteristics
194
Table 87 gives the list of Ethernet MAC signals for MII and Figure 55 shows the
corresponding timing diagram.
Figure 56. Ethernet MII timing diagram
CAN (controller area network) interface
Refer to Section 5.3.17: I/O port characteristics for more details on the input/output alternate
function characteristics (CANx_TX and CANx_RX).
Table 87. Dynamics characteristics: Ethernet MAC signals for MII(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Typ Max Unit
tsu(RXD) Receive data setup time 3 - -
ns
tih(RXD) Receive data hold time 1.5 - -
tsu(DV) Data valid setup time 0 - -
tih(DV) Data valid hold time 1.5 - -
tsu(ER) Error setup time 1.5 - -
tih(ER) Error hold time 0.5 - -
td(TXEN) Transmit enable valid delay time 6.5 7 13.5
td(TXD) Transmit data valid delay time 6.5 7 13.5
0,,B5;B&/.
0,,B5;'>@
0,,B5;B'9
0,,B5;B(5
WG7;(1
WG7;'
WVX5;'
WVX(5
WVX'9
WLK5;'
WLK(5
WLK'9
DL
0,,B7;B&/.
0,,B7;B(1
0,,B7;'>@
Electrical characteristics STM32F745xx STM32F746xx
168/222 DocID027590 Rev 3
5.3.27 FMC characteristics
Unless otherwise specified, the parameters given in Table 88 to Table 101 for the FMC
interface are derived from tests performed under the ambient temperature, fHCLK frequency
and VDD supply voltage conditions summarized in Table 17, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 5.3.17: I/O port characteristics for more details on the input/output
characteristics.
Asynchronous waveforms and timings
Figure 57 through Figure 60 represent asynchronous waveforms and Table 88 through
Table 95 provide the corresponding timings. The results shown in these tables are obtained
with the following FMC configuration:
AddressSetupTime = 0x1
AddressHoldTime = 0x1
DataSetupTime = 0x1 (except for asynchronous NWAIT mode , DataSetupTime = 0x5)
BusTurnAroundDuration = 0x0
Capcitive load CL = 30 pF
In all timing tables, the THCLK is the HCLK clock period
DocID027590 Rev 3 169/222
STM32F745xx STM32F746xx Electrical characteristics
194
Figure 57. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.
'DWD
)0&B1(
)0&B1%/>@
)0&B'>@
W
Y%/B1(
WK'DWDB1(
)0&B12(
$GGUHVV
)0&B$>@
W
Y$B1(
)0&B1:(
WVX'DWDB1(
WZ1(
069
Z12(
WWY12(B1( WK1(B12(
WK'DWDB12(
WK$B12(
WK%/B12(
WVX'DWDB12(
)0&B1$'9 
WY1$'9B1(
WZ1$'9
)0&B1:$,7
WVX1:$,7B1(
WK1(B1:$,7
Electrical characteristics STM32F745xx STM32F746xx
170/222 DocID027590 Rev 3
Table 88. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)
1. CL = 30 pF.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 2THCLK 0.5 2 THCLK+1.5
ns
tv(NOE_NE) FMC_NEx low to FMC_NOE low 0 1
tw(NOE) FMC_NOE low time 2THCLK 12T
HCLK+ 1
th(NE_NOE) FMC_NOE high to FMC_NE high hold time 0 -
tv(A_NE) FMC_NEx low to FMC_A valid - 0.5
th(A_NOE) Address hold time after FMC_NOE high 0 -
tv(BL_NE) FMC_NEx low to FMC_BL valid - 0.5
th(BL_NOE) FMC_BL hold time after FMC_NOE high 0 -
tsu(Data_NE) Data to FMC_NEx high setup time THCLK - 2 -
tsu(Data_NOE) Data to FMC_NOEx high setup time THCLK -2 -
th(Data_NOE) Data hold time after FMC_NOE high 0 -
th(Data_NE) Data hold time after FMC_NEx high 0 -
tv(NADV_NE) FMC_NEx low to FMC_NADV low - 0
tw(NADV) FMC_NADV low time - THCLK +1
Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 7THCLK 17T
HCLK
ns
tw(NOE) FMC_NWE low time 5THCLK 15T
HCLK +1
tw(NWAIT) FMC_NWAIT low time THCLK 0.5
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 5THCLK +1.5 -
th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid 4THCLK+1 -
DocID027590 Rev 3 171/222
STM32F745xx STM32F746xx Electrical characteristics
194
Figure 58. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.
Table 90. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 3THCLK0.5 3THCLK+1.5
ns
tv(NWE_NE) FMC_NEx low to FMC_NWE low THCLK0.5 THCLK+ 1
tw(NWE) FMC_NWE low time THCLK0.5 THCLK+ 1
th(NE_NWE) FMC_NWE high to FMC_NE high hold time THCLK 0.5 -
tv(A_NE) FMC_NEx low to FMC_A valid - 0
th(A_NWE) Address hold time after FMC_NWE high THCLK0.5 -
tv(BL_NE) FMC_NEx low to FMC_BL valid - 0
th(BL_NWE) FMC_BL hold time after FMC_NWE high THCLK0.5 -
tv(Data_NE) Data to FMC_NEx low to Data valid - THCLK+ 3
th(Data_NWE) Data hold time after FMC_NWE high THCLK+0.5 -
tv(NADV_NE) FMC_NEx low to FMC_NADV low - 0
tw(NADV) FMC_NADV low time - THCLK+ 0.5
Electrical characteristics STM32F745xx STM32F746xx
172/222 DocID027590 Rev 3
Figure 59. Asynchronous multiplexed PSRAM/NOR read waveforms
Table 91. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT
timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 8THCLK0.5 8THCLK+1.5
ns
tw(NWE) FMC_NWE low time 6THCLK0.5 6THCLK+1
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 6THCLK1-
th(NE_NWAIT)
FMC_NEx hold time after FMC_NWAIT
invalid 4THCLK+2 -
1%/
'DWD
)0&B 1%/>@
)0&B $'>@
W
Y%/B1(
WK'DWDB1(
$GGUHVV
)0&B $>@
W
Y$B1(
)0&B1:(
WY$B1(
069
$GGUHVV
)0&B1$'9
WY1$'9B1(
WZ1$'9
WVX'DWDB1(
W
K$'B1$'9
)0&B 1(
)0&B12(
WZ1(
WZ12(
WY12(B1( WK1(B12(
WK$B12(
WK%/B12(
WVX'DWDB12( WK'DWDB12(
)0&B1:$,7
WVX1:$,7B1(
WK1(B1:$,7
DocID027590 Rev 3 173/222
STM32F745xx STM32F746xx Electrical characteristics
194
Table 92. Asynchronous multiplexed PSRAM/NOR read timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 3THCLK0.5 3THCLK+1.5
ns
tv(NOE_NE) FMC_NEx low to FMC_NOE low 2THCLK12T
HCLK+0.5
ttw(NOE) FMC_NOE low time THCLK0.5 THCLK+0.5
th(NE_NOE) FMC_NOE high to FMC_NE high hold time 0 -
tv(A_NE) FMC_NEx low to FMC_A valid - 0.5
tv(NADV_NE) FMC_NEx low to FMC_NADV low 0 0.5
tw(NADV) FMC_NADV low time THCLK0.5 THCLK+1.5
th(AD_NADV)
FMC_AD(address) valid hold time after
FMC_NADV high) 0 -
th(A_NOE) Address hold time after FMC_NOE high THCLK0.5 -
th(BL_NOE) FMC_BL time after FMC_NOE high 0 -
tv(BL_NE) FMC_NEx low to FMC_BL valid - 0.5
tsu(Data_NE) Data to FMC_NEx high setup time THCLK2 -
tsu(Data_NOE) Data to FMC_NOE high setup time THCLK2 -
th(Data_NE) Data hold time after FMC_NEx high 0 -
th(Data_NOE) Data hold time after FMC_NOE high 0 -
Table 93. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 8THCLK18T
HCLK+2
ns
tw(NOE) FMC_NWE low time 5THCLK15T
HCLK +1
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 5THCLK +1.5 -
th(NE_NWAIT)
FMC_NEx hold time after FMC_NWAIT
invalid 4THCLK+1 -
Electrical characteristics STM32F745xx STM32F746xx
174/222 DocID027590 Rev 3
Figure 60. Asynchronous multiplexed PSRAM/NOR write waveforms
Table 94. Asynchronous multiplexed PSRAM/NOR write timings(1)
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 4THCLK0.5 4THCLK+1.5
ns
tv(NWE_NE) FMC_NEx low to FMC_NWE low THCLK1T
HCLK+0.5
tw(NWE) FMC_NWE low time 2THCLK0.5 2THCLK+0.5
th(NE_NWE) FMC_NWE high to FMC_NE high hold time THCLK -
tv(A_NE) FMC_NEx low to FMC_A valid - 0
tv(NADV_NE) FMC_NEx low to FMC_NADV low 0 0.5
tw(NADV) FMC_NADV low time THCLK0.5 THCLK+ 1.5
th(AD_NADV)
FMC_AD(adress) valid hold time after
FMC_NADV high) THCLK2-
th(A_NWE) Address hold time after FMC_NWE high THCLK -
th(BL_NWE) FMC_BL hold time after FMC_NWE high THCLK2-
tv(BL_NE) FMC_NEx low to FMC_BL valid - 0
tv(Data_NADV) FMC_NADV high to Data valid - THCLK +2
th(Data_NWE) Data hold time after FMC_NWE high THCLK +0.5 -
1%/
'DWD
)0&B 1([
)0&B 1%/>@
)0&B $'>@
W
Y%/B1(
WK'DWDB1:(
)0&B12(
$GGUHVV
)0&B $>@
W
Y$B1(
WZ1:(
)0&B1:(
WY1:(B1( WK1(B1:(
WK$B1:(
WK%/B1:(
WY$B1(
WZ1(
069
$GGUHVV
)0&B1$'9
WY1$'9B1(
WZ1$'9
WY'DWDB1$'9
W
K$'B1$'9
)0&B1:$,7
WVX1:$,7B1(
WK1(B1:$,7
DocID027590 Rev 3 175/222
STM32F745xx STM32F746xx Electrical characteristics
194
Synchronous waveforms and timings
Figure 61 through Figure 64 represent synchronous waveforms and Table 96 through
Table 99 provide the corresponding timings. The results shown in these tables are obtained
with the following FMC configuration:
BurstAccessMode = FMC_BurstAccessMode_Enable;
MemoryType = FMC_MemoryType_CRAM;
WriteBurst = FMC_WriteBurst_Enable;
CLKDivision = 1;
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM
CL = 30 pF on data and address lines. CL = 10 pF on FMC_CLK unless otherwise
specified.
In all timing tables, the THCLK is the HCLK clock period.
–For 2.7 VVDD3.6 V, maximum FMC_CLK = 108 MHz at CL=20 pF or 90 MHz at
CL=30 pF (on FMC_CLK).
–For 1.71 VVDD<2.7 V, maximum FMC_CLK = 70 MHz at CL=10 pF (on FMC_CLK).
1. Guaranteed by characterization results.
Table 95. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 9THCLK 9THCLK+1.5
ns
tw(NWE) FMC_NWE low time 7THCLK–0.5 7THCLK+0.5
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 6THCLK+2 -
th(NE_NWAIT)
FMC_NEx hold time after FMC_NWAIT
invalid 4THCLK–1 -
Electrical characteristics STM32F745xx STM32F746xx
176/222 DocID027590 Rev 3
Figure 61. Synchronous multiplexed NOR/PSRAM read timings
DocID027590 Rev 3 177/222
STM32F745xx STM32F746xx Electrical characteristics
194
Table 96. Synchronous multiplexed NOR/PSRAM read timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(CLK) FMC_CLK period 2THCLK0.5 -
ns
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) - 2
td(CLKH_NExH) FMC_CLK high to FMC_NEx high (x= 0…2) THCLK+0.5 -
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 1.5
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 -
td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 2
td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) THCLK -
td(CLKL-NOEL) FMC_CLK low to FMC_NOE low - 2
td(CLKH-NOEH) FMC_CLK high to FMC_NOE high THCLK0.5 -
td(CLKL-ADV) FMC_CLK low to FMC_AD[15:0] valid - 3
td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid 0 -
tsu(ADV-CLKH)
FMC_A/D[15:0] valid data before FMC_CLK
high 1.5 -
th(CLKH-ADV) FMC_A/D[15:0] valid data after FMC_CLK high 1 -
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 2 -
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 3.5 -
Electrical characteristics STM32F745xx STM32F746xx
178/222 DocID027590 Rev 3
Figure 62. Synchronous multiplexed PSRAM write timings
)0&B&/.
)0&B1([
)0&B1$'9
)0&B$>@
)0&B1:(
)0&B$'>@ $'>@ ' '
)0&B1:$,7
:$,7&)* E
:$,732/E
WZ&/. WZ&/.
'DWDODWHQF\ 
%867851 
WG&/./1([/ WG&/.+1([+
WG&/./1$'9/
WG&/./$9
WG&/./1$'9+
WG&/.+$,9
WG&/.+1:(+
WG&/./1:(/
WG&/.+1%/+
WG&/./$'9
WG&/./$',9 WG&/./'DWD
WVX1:$,79&/.+ WK&/.+1:$,79
069
WG&/./'DWD
)0&B1%/
DocID027590 Rev 3 179/222
STM32F745xx STM32F746xx Electrical characteristics
194
Table 97. Synchronous multiplexed PSRAM write timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(CLK) FMC_CLK period 2THCLK0.5 -
ns
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) - 1.5
td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2) THCLK+0.5 -
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 1.5
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 -
td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 2
td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) THCLK -
td(CLKL-NWEL) FMC_CLK low to FMC_NWE low - 1.5
t(CLKH-NWEH) FMC_CLK high to FMC_NWE high THCLK0.5 -
td(CLKL-ADV) FMC_CLK low to FMC_AD[15:0] valid - 3
td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid 0 -
td(CLKL-DATA) FMC_A/D[15:0] valid data after FMC_CLK low - 3.5
td(CLKL-NBLL) FMC_CLK low to FMC_NBL low 1 -
td(CLKH-NBLH) FMC_CLK high to FMC_NBL high THCLK+0.5 -
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 2 -
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 3.5 -
Electrical characteristics STM32F745xx STM32F746xx
180/222 DocID027590 Rev 3
Figure 63. Synchronous non-multiplexed NOR/PSRAM read timings
Table 98. Synchronous non-multiplexed NOR/PSRAM read timings(1)
Symbol Parameter Min Max Unit
tw(CLK) FMC_CLK period 2THCLK1 -
ns
t(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) - 2.5
td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2) THCLK+0.5 -
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 0
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 -
td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 2.5
td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) THCLK -
td(CLKL-NOEL) FMC_CLK low to FMC_NOE low - 2
td(CLKH-NOEH) FMC_CLK high to FMC_NOE high THCLK+0.5 -
tsu(DV-CLKH) FMC_D[15:0] valid data before FMC_CLK high 1.5 -
th(CLKH-DV) FMC_D[15:0] valid data after FMC_CLK high 1 -
t(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 2 -
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 3.5 -
)0&B&/.
)0&B1([
)0&B$>@
)0&B12(
)0&B'>@ ' '
)0&B1:$,7
:$,7&)* E
:$,732/E
)0&B1:$,7
:$,7&)* E
:$,732/E
WZ&/. WZ&/.
'DWDODWHQF\ 
WG&/./1([/ WG&/.+1([+
WG&/./$9 WG&/.+$,9
WG&/./12(/ WG&/.+12(+
WVX'9&/.+ WK&/.+'9
WVX'9&/.+ WK&/.+'9
WVX1:$,79&/.+ WK&/.+1:$,79
WVX1:$,79&/.+ WK&/.+1:$,79
WVX1:$,79&/.+ WK&/.+1:$,79
069
)0&B1$'9
WG&/./1$'9/ WG&/./1$'9+
DocID027590 Rev 3 181/222
STM32F745xx STM32F746xx Electrical characteristics
194
Figure 64. Synchronous non-multiplexed PSRAM write timings
1. Guaranteed by characterization results.
Electrical characteristics STM32F745xx STM32F746xx
182/222 DocID027590 Rev 3
NAND controller waveforms and timings
Figure 65 through Figure 68 represent synchronous waveforms, and Table 100 and
Table 101 provide the corresponding timings. The results shown in this table are obtained
with the following FMC configuration:
COM.FMC_SetupTime = 0x01;
COM.FMC_WaitSetupTime = 0x03;
COM.FMC_HoldSetupTime = 0x02;
COM.FMC_HiZSetupTime = 0x01;
ATT.FMC_SetupTime = 0x01;
ATT.FMC_WaitSetupTime = 0x03;
ATT.FMC_HoldSetupTime = 0x02;
ATT.FMC_HiZSetupTime = 0x01;
Bank = FMC_Bank_NAND;
MemoryDataWidth = FMC_MemoryDataWidth_16b;
ECC = FMC_ECC_Enable;
ECCPageSize = FMC_ECCPageSize_512Bytes;
TCLRSetupTime = 0;
TARSetupTime = 0.
In all timing tables, the THCLK is the HCLK clock period.
Table 99. Synchronous non-multiplexed PSRAM write timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
t(CLK) FMC_CLK period 2THCLK1 -
ns
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) - 2.5
t(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2) THCLK+0.5 -
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 1.5
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 -
td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 2.5
td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) 0 -
td(CLKL-NWEL) FMC_CLK low to FMC_NWE low - 1.5
td(CLKH-NWEH) FMC_CLK high to FMC_NWE high THCLK+1 -
td(CLKL-Data) FMC_D[15:0] valid data after FMC_CLK low - 3
td(CLKL-NBLL) FMC_CLK low to FMC_NBL low 1.5 -
td(CLKH-NBLH) FMC_CLK high to FMC_NBL high THCLK+0.5 -
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 2 -
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 3.5 -
DocID027590 Rev 3 183/222
STM32F745xx STM32F746xx Electrical characteristics
194
Figure 65. NAND controller waveforms for read access
Figure 66. NAND controller waveforms for write access
)0&B1:(
)0&B12(15(
)0&B'>@
WVX'12( WK12('
069
$/()0&B$
&/()0&B$
)0&B1&([
WG$/(12( WK12($/(
069
WK1:('
WY1:('
)0&B1:(
)0&B12(15(
)0&B'>@
$/()0&B$
&/()0&B$
)0&B1&([
WG$/(1:( WK1:($/(
Electrical characteristics STM32F745xx STM32F746xx
184/222 DocID027590 Rev 3
Figure 67. NAND controller waveforms for common memory read access
Figure 68. NAND controller waveforms for common memory write access
Table 100. Switching characteristics for NAND Flash read cycles(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(N0E) FMC_NOE low width 4THCLK0.5 4THCLK
ns
tsu(D-NOE) FMC_D[15-0] valid data before FMC_NOE high 13 -
th(NOE-D) FMC_D[15-0] valid data after FMC_NOE high 3 -
td(ALE-NOE) FMC_ALE valid before FMC_NOE low - 3THCLK0.5
th(NOE-ALE) FMC_NWE high to FMC_ALE invalid 3THCLK2-
069
)0&B1:(
)0&B12(
)0&B'>@
WZ12(
WVX'12( WK12('
$/()0&B$
&/()0&B$
)0&B1&([
WG$/(12( WK12($/(
069
WZ1:(
WK1:('
WY1:('
)0&B1:(
)0&B1
2(
)0&B'>@
WG'1:(
$/()0&B$
&/()0&B$
)0&B1&([
WG$/(12( WK12($/(
DocID027590 Rev 3 185/222
STM32F745xx STM32F746xx Electrical characteristics
194
SDRAM waveforms and timings
CL = 30 pF on data and address lines. CL = 10 pF on FMC_SDCLK unless otherwise
specified.
In all timing tables, the THCLK is the HCLK clock period.
–For 3.0 VVDD3.6 V, maximum FMC_SDCLK = 100 MHz at CL=20 pF (on
FMC_SDCLK).
–For 2.7 VVDD3.6 V, maximum FMC_SDCLK = 90 MHz at CL=30 pF (on FMC_SDCLK).
–For 1.71 VVDD<1.9 V, maximum FMC_SDCLK = 70 MHz at CL=10 pF (on
FMC_SDCLK).
Figure 69. SDRAM read access waveforms (CL = 1)
Table 101. Switching characteristics for NAND Flash write cycles(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(NWE) FMC_NWE low width 4THCLK0.5 4THCLK
ns
tv(NWE-D) FMC_NWE low to FMC_D[15-0] valid 0 -
th(NWE-D) FMC_NWE high to FMC_D[15-0] invalid 3THCLK1-
td(D-NWE) FMC_D[15-0] valid before FMC_NWE high 5THCLK3-
td(ALE-NWE) FMC_ALE valid before FMC_NWE low - 3THCLK0.5
th(NWE-ALE) FMC_NWE high to FMC_ALE invalid 3THCLK2-
Electrical characteristics STM32F745xx STM32F746xx
186/222 DocID027590 Rev 3
Table 102. SDRAM read timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(SDCLK) FMC_SDCLK period 2THCLK0.5 2THCLK+0.5
ns
tsu(SDCLKH _Data) Data input setup time 3.5 -
th(SDCLKH_Data) Data input hold time 1.5 -
td(SDCLKL_Add) Address valid time - 4
td(SDCLKL- SDNE) Chip select valid time - 0.5
th(SDCLKL_SDNE) Chip select hold time 0 -
td(SDCLKL_SDNRAS) SDNRAS valid time - 0.5
th(SDCLKL_SDNRAS) SDNRAS hold time 0 -
td(SDCLKL_SDNCAS) SDNCAS valid time - 0.5
th(SDCLKL_SDNCAS) SDNCAS hold time 0 -
Table 103. LPSDR SDRAM read timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tW(SDCLK) FMC_SDCLK period 2THCLK0.5 2THCLK+0.5
ns
tsu(SDCLKH_Data) Data input setup time 3 -
th(SDCLKH_Data) Data input hold time 1.5 -
td(SDCLKL_Add) Address valid time - 3.5
td(SDCLKL_SDNE) Chip select valid time - 0.5
th(SDCLKL_SDNE) Chip select hold time 0 -
td(SDCLKL_SDNRAS SDNRAS valid time - 0.5
th(SDCLKL_SDNRAS) SDNRAS hold time 0 -
td(SDCLKL_SDNCAS) SDNCAS valid time - 0.5
th(SDCLKL_SDNCAS) SDNCAS hold time 0 -
DocID027590 Rev 3 187/222
STM32F745xx STM32F746xx Electrical characteristics
194
Figure 70. SDRAM write access waveforms
Table 104. SDRAM write timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(SDCLK) FMC_SDCLK period 2THCLK0.5 2THCLK+0.5
ns
td(SDCLKL _Data) Data output valid time - 2
th(SDCLKL _Data) Data output hold time 0.5 -
td(SDCLKL_Add) Address valid time - 4
td(SDCLKL_SDNWE) SDNWE valid time - 0.5
th(SDCLKL_SDNWE) SDNWE hold time 0 -
td(SDCLKL_ SDNE) Chip select valid time - 0.5
th(SDCLKL-_SDNE) Chip select hold time 0 -
td(SDCLKL_SDNRAS) SDNRAS valid time - 0.5
th(SDCLKL_SDNRAS) SDNRAS hold time 0 -
td(SDCLKL_SDNCAS) SDNCAS valid time - 0.5
td(SDCLKL_SDNCAS) SDNCAS hold time 0 -
Electrical characteristics STM32F745xx STM32F746xx
188/222 DocID027590 Rev 3
5.3.28 Quad-SPI interface characteristics
Unless otherwise specified, the parameters given in Table 106 and Table 107 for Quad-SPI
are derived from tests performed under the ambient temperature, fAHB frequency and VDD
supply voltage conditions summarized in Table 17: General operating conditions, with the
following configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load C = 20 pF
Measurement points are done at CMOS levels: 0.5 VDD
Refer to Section 5.3.17: I/O port characteristics for more details on the input/output alternate
function characteristics.
Table 105. LPSDR SDRAM write timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(SDCLK) FMC_SDCLK period 2THCLK0.5 2THCLK+0.5
ns
td(SDCLKL _Data) Data output valid time - 4
th(SDCLKL _Data) Data output hold time 0 -
td(SDCLKL_Add) Address valid time - 3.5
td(SDCLKL-SDNWE) SDNWE valid time - 0.5
th(SDCLKL-SDNWE) SDNWE hold time 0 -
td(SDCLKL- SDNE) Chip select valid time - 0.5
th(SDCLKL- SDNE) Chip select hold time 0 -
td(SDCLKL-SDNRAS) SDNRAS valid time - 0.5
th(SDCLKL-SDNRAS) SDNRAS hold time 0 -
td(SDCLKL-SDNCAS) SDNCAS valid time - 0.5
td(SDCLKL-SDNCAS) SDNCAS hold time 0 -
Table 106. Quad-SPI characteristics in SDR mode(1)
Symbol Parameter Conditions Min Typ Max Unit
Fck1/t(CK) Quad-SPI clock
frequency
2.7 VVDD<3.6 V
CL=20 pF - - 108
MHz
1.71 V<VDD<3.6 V
CL=15 pF - - 100
DocID027590 Rev 3 189/222
STM32F745xx STM32F746xx Electrical characteristics
194
tw(CKH) Quad-SPI clock high and
low time -
t(CK)/2 -1 - t(CK)/2
ns
tw(CKL) t(CK)/2 - t(CK)/2+1
ts(IN) Data input setup time
-
1--
th(IN) Data input hold time 3 - -
tv(OUT) Data output valid time
2.7 V<VDD<3.6 V - 1.5 3
1.71 V<VDD<3.6 V - 1.5 4
th(OUT) Data output hold time - 0 - -
1. Guaranteed by characterization results.
Table 107. Quad-SPI characteristics in DDR mode(1)
1. Guaranteed by characterization results.
Symbol Parameter Conditions Min Typ Max Unit
Fck1/t(CK) Quad-SPI clock frequency
2.7 V<VDD<3.6 V
CL=20 pF --80
MHz
1.8 V<VDD<3.6 V
CL=15 pF --80
1.71 V<VDD<3.6 V
CL=10 pF --80
tw(CKH)
Quad-SPI clock high and
low time -
t(CK)/2
-1 -t(CK)/2
ns
tw(CKL) t(CK)/2 - t(CK)/2+
1
ts(IN),
tsf(IN) Data input setup time
2.7 V<VDD<3.6 V 1.5 - -
1.71 V<VDD<2 V 0.75 - -
thr(IN),
thf(IN) Data input hold time
2.7 V<VDD<3.6 V 3.5 - -
1.71 V<VDD<2 V 4.5
tvr(OUT),
tvf(OUT) Data output valid time
2.7 V<VDD<3.6 V - 8 10.5
1.71 V<VDD<3.6 V
DHHC=0 - 8 14.5
DHHC=1
Pres=1, 2... -Thclk/2
+1.75
Thclk/2
+2.25
thr(OUT),
thf(OUT) Data output hold time
DHHC=0 7.5 - -
DHHC=1
Pres=1, 2...
Thclk/2
+1.5 --
Table 106. Quad-SPI characteristics (continued)in SDR mode(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F745xx STM32F746xx
190/222 DocID027590 Rev 3
Figure 71. Quad-SPI timing diagram - SDR mode
Figure 72. Quad-SPI timing diagram - DDR mode
5.3.29 Camera interface (DCMI) timing specifications
Unless otherwise specified, the parameters given in Table 108 for DCMI are derived
from tests performed under the ambient temperature, fHCLK frequency and VDD supply
voltage summarized in Table 17, with the following configuration:
DCMI_PIXCLK polarity: falling
DCMI_VSYNC and DCMI_HSYNC polarity: high
Data formats: 14 bits
06Y9
'DWDRXWSXW ' ' '
&ORFN
'DWDLQSXW ' ' '
W&. WZ&.+ WZ&./
WU&. WI&.
WV,1 WK,1
WY287 WK287
06Y9
'DWDRXWSXW ' ' '
&ORFN
'DWDLQSXW ' ' '
W&. WZ&.+ WZ&./
WU&. WI&.
WVI,1 WKI,1
WYI287 WKU287
' ' '
' ' '
WYU287 WKI287
WVU,1 WKU,1
Table 108. DCMI characteristics(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
- Frequency ratio DCMI_PIXCLK/fHCLK -0.4
DCMI_PIXCLK Pixel clock input - 54 MHz
DPixel Pixel clock input duty cycle 30 70 %
tsu(DATA) Data input setup time 3.5 -
ns
th(DATA) Data input hold time 0 -
tsu(HSYNC)
tsu(VSYNC)
DCMI_HSYNC/DCMI_VSYNC input setup time 2.5 -
th(HSYNC)
th(VSYNC)
DCMI_HSYNC/DCMI_VSYNC input hold time 0 -
DocID027590 Rev 3 191/222
STM32F745xx STM32F746xx Electrical characteristics
194
Figure 73. DCMI timing diagram
5.3.30 LCD-TFT controller (LTDC) characteristics
Unless otherwise specified, the parameters given in Table 109 for LCD-TFT are derived
from tests performed under the ambient temperature, fHCLK frequency and VDD supply
voltage summarized in Table 17, with the following configuration:
LCD_CLK polarity: high
LCD_DE polarity : low
LCD_VSYNC and LCD_HSYNC polarity: high
Pixel formats: 24 bits
069
'&0,B3,;&/.
WVX96<1&
WVX+6<1&
'&0,B+6<1&
'&0,B96<1&
'$7$>@
'&0,B3,;&/.
WK+6<1&
WK+6<1&
WVX'$7$ WK'$7$
Table 109. LTDC characteristics (1)
1. Guaranteed by characterization results.
Symbol ParameterMinMaxUnit
fCLK LTDC clock output frequency - 45 MHz
DCLK LTDC clock output duty cycle 45 55 %
tw(CLKH)
tw(CLKL)
Clock High time, low time tw(CLK)/2 0.5 tw(CLK)/2+0.5
ns
tv(DATA) Data output valid time - 6
th(DATA) Data output hold time 2 -
tv(HSYNC)
HSYNC/VSYNC/DE output valid
time -3tv(VSYNC)
tv(DE)
th(HSYNC)
HSYNC/VSYNC/DE output hold
time 0.5 -th(VSYNC)
th(DE)
Electrical characteristics STM32F745xx STM32F746xx
192/222 DocID027590 Rev 3
Figure 74. LCD-TFT horizontal timing diagram
Figure 75. LCD-TFT vertical timing diagram
069
/&'B&/.
WY+6<1&
/&'B+6<1&
/&'B'(
/&'B5>@
/&'B*>@
/&'B%>@
W&/.
/&'B96<1&
WY+6<1&
WY'( WK'(
1JYFM
1JYFM
WY'$7$
WK'$7$
1JYFM
/
+6<1&
ZLGWK
+RUL]RQWDO
EDFNSRUFK
$FWLYHZLGWK +RUL]RQWDO
EDFNSRUFK
2QHOLQH
069
/&'B&/.
WY96<1&
/&'B5>@
/&'B*>@
/&'B%>@
W&/.
/&'B96<1&
WY96<1&
0OLQHVGDWD
96<1&
ZLGWK
9HUWLFDO
EDFNSRUFK
$FWLYHZLGWK 9HUWLFDO
EDFNSRUFK
2QHIUDPH
DocID027590 Rev 3 193/222
STM32F745xx STM32F746xx Electrical characteristics
194
5.3.31 SD/SDIO MMC card host interface (SDMMC) characteristics
Unless otherwise specified, the parameters given in Table 110 for the SDIO/MMC interface
are derived from tests performed under the ambient temperature, fPCLK2 frequency and VDD
supply voltage conditions summarized in Table 17, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 5.3.17: I/O port characteristics for more details on the input/output
characteristics.
Figure 76. SDIO high-speed mode
Figure 77. SD default mode
W:&.+
&.
'&0'
RXWSXW
'&0'
LQSXW
W&
W:&./
W29 W2+
W,68 W,+
WIWU
DL
DL
&.
'&0'
RXWSXW
W29' W2+'
Electrical characteristics STM32F745xx STM32F746xx
194/222 DocID027590 Rev 3
Table 110. Dynamic characteristics: SD / MMC characteristics, VDD=2.7V to 3.6V(1)
Symbol Parameter Conditions Min Typ Max Unit
fPP Clock frequency in data transfer mode - 0 - 50 MHz
- SDMMC_CK/fPCLK2 frequency ratio - - - 8/3 -
tW(CKL) Clock low time fpp =50 MHz 9.5 10.5 -
ns
tW(CKH) Clock high time fpp =50 MHz 8.5 9.5 -
CMD, D inputs (referenced to CK) in MMC and SD HS mode
tISU Input setup time HS fpp =50 MHz 2.5 - -
ns
tIH Input hold time HS fpp =50 MHz 3 - -
CMD, D outputs (referenced to CK) in MMC and SD HS mode
tOV Output valid time HS fpp =50 MHz - 11.5 12
ns
tOH Output hold time HS fpp =50 MHz 10.5 - -
CMD, D inputs (referenced to CK) in SD default mode
tISUD Input setup time SD fpp =25 MHz 2--
ns
tIHD Input hold time SD fpp =25 MHz 4- -
CMD, D outputs (referenced to CK) in SD default mode
tOVD Output valid default time SD fpp =25 MHz -1.52
ns
tOHD Output hold default time SD fpp =25 MHz 0.5 - -
1. Guaranteed by characterization results,.
Table 111. Dynamic characteristics: eMMC characteristics, VDD=1.71V to 1.9V(1)(2)
Symbol Parameter Conditions Min Typ Max Unit
fPP Clock frequency in data transfer mode - 0 - 50 MHz
- SDMMC_CK/fPCLK2 frequency ratio - - - 8/3 -
tW(CKL) Clock low time fpp =50 MHz 9.5 10.5 -
ns
tW(CKH) Clock high time fpp =50 MHz 8.5 9.5 -
CMD, D inputs (referenced to CK) in eMMC mode
tISU Input setup time HS fpp =50 MHz 0.5 - -
ns
tIH Input hold time HS fpp =50 MHz 3.5 - -
CMD, D outputs (referenced to CK) in eMMC mode
tOV Output valid time HS fpp =50 MHz - 12 12.5
ns
tOH Output hold time HS fpp =50 MHz 11 - -
1. Guaranteed by characterization results.
2. Cload = 20 pF.
DocID027590 Rev 3 195/222
STM32F745xx STM32F746xx Package information
221
6 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
6.1 LQFP100, 14 x 14 mm low-profile quad flat package
information
Figure 78. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline
1. Drawing is not to scale.
H
,'(17,),&$7,21
3,1
*$8*(3/$1(
PP
6($7,1*3/$1(
'
'
'
(
(
(
.
FFF &
&




 

/B0(B9
$
$
$
/
/
F
E
$
Package information STM32F745xx STM32F746xx
196/222 DocID027590 Rev 3
Table 112. LQPF100, 14 x 14 mm 100-pin low-profile quad flat package mechanical
data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 - 12.000 - - 0.4724 -
E 15.800 16.000 16.200 0.6220 0.6299 0.6378
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E3 - 12.000 - - 0.4724 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
DocID027590 Rev 3 197/222
STM32F745xx STM32F746xx Package information
221
Figure 79. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package
recommended footprint
1. Dimensions are expressed in millimeters.
Marking of engineering samples
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 80. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package
top view example
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
069
670)
9*7 5
3URGXFWLGHQWLILFDWLRQ 
5HYLVLRQFRGH
::<
'DWHFRGH
3LQLGHQWLILHU
Package information STM32F745xx STM32F746xx
198/222 DocID027590 Rev 3
6.2 WLCSP143, 4.539x 5.849 mm, 0.4 mm pitch wafer level chip
scale package information
Figure 81. WLCSP143 - 143-ball, 4.539x 5.849 mm, 0.4 mm pitch wafer level chip scale
package outline
1. Drawing is not to scale.
Table 113. WLCSP143 - 143-ball, 4.539x 5.849 mm, 0.4 mm pitch wafer level chip scale
package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 0.525 0.555 0.585 0.0207 0.0219 0.0230
A1 - 0.175 - - 0.0069 -
$B0(B9
H
)
*
H
H%RWWRPYLHZ
%XPSVLGH
H
$EDOOORFDWLRQ
'
$RULHQWDWLRQ
UHIHUHQFH
7RSYLHZ
:DIHUEDFNVLGH
'HWDLO$
$
$
6LGHYLHZ
$
(
'HWDLO$
5RWDWHG
%XPS
6HDWLQJ
SODQH
E
$
$
DDD
FFF
GGG
=
=
;<
EEE
HHH
DocID027590 Rev 3 199/222
STM32F745xx STM32F746xx Package information
221
Figure 82. WLCSP143 - 143-ball, 4.539x 5.849 mm, 0.4 mm pitch wafer level chip scale
package recommended footprint
A2 - 0.380 - - 0.0150 -
A3(2) - 0.025 - - 0.0010 -
b(3) 0.220 0.250 0.280 0.0087 0.0098 0.0110
D 4.504 4.539 4.574 0.1773 0.1787 0.1801
E 5.814 5.849 5.884 0.2289 0.2303 0.2317
e - 0.400 - - 0.0157 -
e1 - 4.000 - - 0.1575 -
e2 - 4.800 - - 0.1890 -
F - 0.2695 - - 0.0106 -
G - 0.5245 - - 0.0206 -
aaa - - 0.100 - - 0.0039
bbb - - 0.100 - - 0.0039
ccc - - 0.100 - - 0.0039
ddd - - 0.050 - - 0.0020
eee - - 0.050 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Back side coating.
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
Table 113. WLCSP143 - 143-ball, 4.539x 5.849 mm, 0.4 mm pitch wafer level chip scale
package mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
$B)3B9
'SDG
'VP
Package information STM32F745xx STM32F746xx
200/222 DocID027590 Rev 3
Marking of engineering samples
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Figure 83. WLCSP143, 0.4 mm pitch wafer level chip scale package
top view example
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
Table 114. WLCSP143 recommended PCB design rules
Dimension Recommended values
Pitch 0.4
Dpad 0.225 mm
Dsm 0.290 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening 0.250 mm
Stencil thickness 0.100 mm
069
::
%DOO$
LGHQWLILHU
(6)=*<
<
'DWHFRGH 5HYLVLRQFRGH
3URGXFWLGHQWLILFDWLRQ
5
DocID027590 Rev 3 201/222
STM32F745xx STM32F746xx Package information
221
6.3 LQFP144, 20 x 20 mm low-profile quad flat package
information
Figure 84. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline
1. Drawing is not to scale.
Table 115. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package
mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 21.800 22.000 22.200 0.8583 0.8661 0.874
H
,'(17,),&$7,21
3,1
*$8*(3/$1(
PP
6($7,1*
3/$1(
'
'
'
(
(
(
.
FFF &
&




 

$B0(B9
$
$
$
/
/
F
E
$
Package information STM32F745xx STM32F746xx
202/222 DocID027590 Rev 3
Figure 85. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package
recommended footprint
1. Dimensions are expressed in millimeters.
D1 19.800 20.000 20.200 0.7795 0.7874 0.7953
D3 - 17.500 - - 0.689 -
E 21.800 22.000 22.200 0.8583 0.8661 0.8740
E1 19.800 20.000 20.200 0.7795 0.7874 0.7953
E3 - 17.500 - - 0.6890 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 115. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package
mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
DocID027590 Rev 3 203/222
STM32F745xx STM32F746xx Package information
221
Marking of engineering samples
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 86. LQFP144, 20 x 20mm, 144-pin low-profile quad flat package
top view example
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
069
3LQ
LGHQWLILHU
5
5HYLVLRQFRGH
)=*7
3URGXFWLGHQWLILFDWLRQ
'DWHFRGH
<::
Package information STM32F745xx STM32F746xx
204/222 DocID027590 Rev 3
6.4 LQFP176 24 x 24 mm low-profile quad flat package
information
Figure 87. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package outline
1. Drawing is not to scale.
Table 116. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package
mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 - 1.450 0.0531 - 0.0060
b 0.170 - 0.270 0.0067 - 0.0106
C 0.090 - 0.200 0.0035 - 0.0079
D 23.900 - 24.100 0.9409 - 0.9488
7B0(B9
$
$
H
(+(
'
+'
='
=(
E
PP
JDXJHSODQH
$ /
/
N
F
,'(17,),&$7,21
3,1
6HDWLQJSODQH
&
$
DocID027590 Rev 3 205/222
STM32F745xx STM32F746xx Package information
221
E 23.900 - 24.100 0.9409 - 0.9488
e - 0.500 - - 0.0197 -
HD 25.900 - 26.100 1.0200 - 1.0276
HE 25.900 - 26.100 1.0200 - 1.0276
L 0.450 - 0.750 0.0177 - 0.0295
L1 - 1.000 - - 0.0394 -
ZD - 1.250 - - 0.0492 -
ZE - 1.250 - - 0.0492 -
ccc - - 0.080 - - 0.0031
k0 °-7 °0 °-7 °
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 116. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package
mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
Package information STM32F745xx STM32F746xx
206/222 DocID027590 Rev 3
Figure 88. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package
recommended footprint
1. Dimensions are expressed in millimeters.
7B)3B9






 







DocID027590 Rev 3 207/222
STM32F745xx STM32F746xx Package information
221
Marking of engineering samples
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 89. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package
top view example
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
069
::<
3LQ
LGHQWLILHU
670),*7
5
'DWHFRGH
3URGXFWLGHQWLILFDWLRQ
5HYLVLRQFRGH
Package information STM32F745xx STM32F746xx
208/222 DocID027590 Rev 3
6.5 LQFP208 28 x 28 mm low-profile quad flat package
information
Figure 90. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package outline
1. Drawing is not to scale.
Table 117. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package
mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 -- - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
DocID027590 Rev 3 209/222
STM32F745xx STM32F746xx Package information
221
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 29.800 30.000 30.200 1.1732 1.1811 1.1890
D1 27.800 28.000 28.200 1.0945 1.1024 1.1102
D3 - 25.500 - - 1.0039 -
E 29.800 30.000 30.200 1.1732 1.1811 1.1890
E1 27.800 28.000 28.200 1.0945 1.1024 1.1102
E3 - 25.500 - - 1.0039 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 3.5° 7.0° 3.5° 7.0°
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 117. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package
mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
Package information STM32F745xx STM32F746xx
210/222 DocID027590 Rev 3
Figure 91. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package
recommended footprint
1. Dimensions are expressed in millimeters.
DocID027590 Rev 3 211/222
STM32F745xx STM32F746xx Package information
221
Marking of engineering samples
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 92. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package
top view example
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
069
::<
3LQ
LGHQWLILHU
670)%*7
'DWHFRGH \HDUZHHN
5HYLVLRQFRGH
3URGXFWLGHQWLILFDWLRQ
5
Package information STM32F745xx STM32F746xx
212/222 DocID027590 Rev 3
6.6 UFBGA 176+25, 10 x 10, 0.65 mm ultra thin-pitch ball grid
array package information
Figure 93. UFBGA 176+25, 10 × 10 × 0.65 mm ultra thin fine-pitch ball grid array
package outline
1. Drawing is not to scale.
Table 118. UFBGA176+25, 10 × 10 × 0.65 mm ultra thin fine-pitch ball grid array
package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.460 0.530 0.600 0.0181 0.0209 0.0236
A1 0.050 0.080 0.110 0.002 0.0031 0.0043
A2 0.400 0.450 0.500 0.0157 0.0177 0.0197
b 0.230 0.280 0.330 0.0091 0.0110 0.0130
D 9.950 10.000 10.050 0.3917 0.3937 0.3957
E 9.950 10.000 10.050 0.3917 0.3937 0.3957
e - 0.650 - - 0.0256 -
F 0.400 0.450 0.500 0.0157 0.0177 0.0197
ddd - - 0.080 - - 0.0031
eee - - 0.150 - - 0.0059
fff - - 0.080 - - 0.0031
ϬϳͺDͺsϲ
^ĞĂƚŝŶŐƉůĂŶĞ
Ϯ ĚĚĚ
ϭ
Ğ&
&
Ğ
Z
ϭϱ ϭ
KddKDs/t
dKWs/t
EEDOOV
$
HHH 0
III0
&
&
$
&
$EDOO
LGHQWLILHU
$EDOO
LQGH[
DUHD
ď
ϰ
DocID027590 Rev 3 213/222
STM32F745xx STM32F746xx Package information
221
Figure 94. UFBGA176+25, 10 x 10 mm x 0.65 mm, ultra fine-pitch ball grid array
package recommended footprint
Table 119. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA)
Dimension Recommended values
Pitch 0.65 mm
Dpad 0.300 mm
Dsm 0.400 mm typ. (depends on the soldermask reg-
istration tolerance)
Stencil opening 0.300 mm
Stencil thickness Between 0.100 mm and 0.125 mm
Pad trace width 0.100 mm
Ϭϳͺ&Wͺsϭ
'SDG
'VP
Package information STM32F745xx STM32F746xx
214/222 DocID027590 Rev 3
Marking of engineering samples
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Figure 95. UFBGA176+25, 10 × 10 × 0.6 mm ultra thin fine-pitch ball grid array
package top view example
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
069
5HYLVLRQFRGH
670)
3URGXFWLGHQWLILFDWLRQ
'DWHFRGH
<::
%DOO$
LQGHQWLILHU
,*.
5
DocID027590 Rev 3 215/222
STM32F745xx STM32F746xx Package information
221
6.7 TFBGA216, 13 × 13 × 0.8mm thin fine-pitch ball grid array
package information
Figure 96. TFBGA216, 13 × 13 × 0.8mm thin fine-pitch ball grid array
package outline
1. Drawing is not to scale.
Table 120. TFBGA216, 13 × 13 × 0.8mm thin fine-pitch ball grid array
package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.100 - - 0.0433
A1 0.150 - - 0.0059 - -
A2 - 0.760 - - 0.0299 -
b 0.350 0.400 0.450 0.0138 0.0157 0.0177
D 12.850 13.000 13.150 0.5118 0.5118 0.5177
D1 - 11.200 - - 0.4409 -
E 12.850 13.000 13.150 0.5118 0.5118 0.5177
E1 - 11.200 - - 0.4409 -
e - 0.800 - - 0.0315 -
F - 0.900 - - 0.0354 -
$/B0(B9
6HDWLQJSODQH
$
H)
*
'
5
EEDOOV
$
(
7239,(:%277209,(:

H
$
$
<
;
=
GGG =
'
(
HHH = < ;
III
0
0=
$EDOO
LGHQWLILHU
$EDOO
LQGH[DUHD
Package information STM32F745xx STM32F746xx
216/222 DocID027590 Rev 3
Figure 97. TFBGA216, 13 x 13 mm, 0.8 mm pitch, thin fine-pitch ball grid array
package recommended footprint
G - 0.900 - - 0.0354 -
ddd - - 0.100 - - 0.0039
eee - - 0.150 - - 0.0059
fff - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 121. TFBGA216 recommended PCB design rules (0.8 mm pitch BGA)
Dimension Recommended values
Pitch 0.8
Dpad 0.400 mm
Dsm 0.470 mm typ. (depends on the soldermask reg-
istration tolerance)
Stencil opening 0.400 mm
Stencil thickness Between 0.100 mm and 0.125 mm
Pad trace width 0.120 mm
Table 120. TFBGA216, 13 × 13 × 0.8mm thin fine-pitch ball grid array
package mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
$/B)3B9
'SDG
'VP
DocID027590 Rev 3 217/222
STM32F745xx STM32F746xx Package information
221
Marking of engineering samples
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Figure 98. TFBGA216, 13 × 13 × 0.8mm thin fine-pitch ball grid array
package top view example
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
069
%DOO$
LGHQWLILHU 'DWHFRGH
<::
5HYLVLRQFRGH
3URGXFWLGHQWLILFDWLRQ
5
670)
1*+
Package information STM32F745xx STM32F746xx
218/222 DocID027590 Rev 3
6.8 Thermal characteristics
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x ΘJA)
Where:
TA max is the maximum ambient temperature in °C,
•Θ
JA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
Table 122. Package thermal characteristics
Symbol Parameter Value Unit
ΘJA
Thermal resistance junction-ambient
LQFP100 - 14 × 14 mm / 0.5 mm pitch 43
°C/W
Thermal resistance junction-ambient
WLCSP143 31.2
Thermal resistance junction-ambient
LQFP144 - 20 × 20 mm / 0.5 mm pitch 40
Thermal resistance junction-ambient
LQFP176 - 24 × 24 mm / 0.5 mm pitch 38
Thermal resistance junction-ambient
LQFP208 - 28 × 28 mm / 0.5 mm pitch 19
Thermal resistance junction-ambient
UFBGA176 - 10× 10 mm / 0.5 mm pitch 39
Thermal resistance junction-ambient
TFBGA216 - 13 × 13 mm / 0.8 mm pitch 29
DocID027590 Rev 3 219/222
STM32F745xx STM32F746xx Part numbering
221
7 Part numbering
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
Table 123. Ordering information scheme
Example: STM32 F 746 V G T 6 xxx
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
745= STM32F745xx, USB OTG FS/HS, camera interface Ethernet
746= STM32F746xx, USB OTG FS/HS, camera interface, Ethernet, LCD-TFT
Pin count
V = 100 pins
Z = 143 and 144 pins
I = 176 pins
B = 208 pins
N = 216 pins
Flash memory size
E = 512 Kbytes of Flash memory
G = 1024 Kbytes of Flash memory
Package
T = LQFP
K = UFBGA
H = TFBGA
Y = WLCSP
Temperature range
6 = Industrial temperature range, –40 to 85 °C.
7 = Industrial temperature range, –40 to 105 °C.
Options
xxx = programmed parts
TR = tape and reel
Recommendations when using internal reset OFF STM32F745xx STM32F746xx
220/222 DocID027590 Rev 3
Appendix A Recommendations when using internal reset
OFF
When the internal reset is OFF, the following integrated features are no longer supported:
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled.
The brownout reset (BOR) circuitry must be disabled.
The embedded programmable voltage detector (PVD) is disabled.
VBAT functionality is no more available and VBAT pin should be connected to VDD.
The over-drive mode is not supported.
A.1 Operating conditions
Table 124. Limitations depending on the operating power supply range
Operating
power
supply
range
ADC
operation
Maximum
Flash
memory
access
frequency
with no wait
states
(fFlashmax)
Maximum Flash
memory access
frequency with
wait states (1)(2)
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no
wait state is required.
2. Thanks to the ART accelerator on ITCM interface and L1-cache on AXI interface, the number of wait states
given here does not impact the execution speed from the Flash memory since the ART accelerator or L1-
cache allows to achieve a performance equivalent to 0-wait state program execution.
I/O operation
Possible Flash
memory
operations
VDD =1.7 to
2.1 V(3)
3. VDD/VDDA minimum value of 1.7 V, with the use of an external power supply supervisor (refer to
Section 2.17.1: Internal reset ON).
Conversion
time up to
1.2 Msps
20 MHz
180 MHz with 8
wait states and
over-drive OFF
No I/O
compensation
8-bit erase and
program
operations only
DocID027590 Rev 3 221/222
STM32F745xx STM32F746xx Revision history
221
Revision history
Table 125. Document revision history
Date Revision Changes
26-May-2015 1 Initial release.
20-Oct-2015 2
Updated Table 53: ESD absolute maximum ratings adding packages.
Updated note of Table 32: Typical and maximum current consumptions
in Standby mode.
Updated Figure 11: STM32F74xVx LQFP100 pinout replacing PB13
and PB14 by PE13 and PE14.
Updated Table 51: EMS characteristics replacing 168 MHz by
216 MHz.
Updated Section 2.9: Quad-SPI memory interface (QUADSPI)
removing ‘STM32F75xx’.
Updated Section 2.22.2: General-purpose timers (TIMx) and
Section 2.43: Embedded Trace Macrocell™ modifying STM32F756xx
by STM32F74xxx.
Updated Section 2.1: ARM® Cortex®-M7 with FPU modifying
STM32F756xx family by STM32F745xx and STM32F746xx devices.
Removed Table 86. Ethernet DC electrical characteristics.
Updated all the notes removing ‘not tested in production’.
Updated Table 43: Main PLL characteristics, Table 44: PLLI2S
characteristics and Table 45: PLLISAI characteristics fVCO_OUT
output at min value ‘100’ and VCO freq at 100 MHz.
Updated Table 13: STM32F745xx and STM32F746xx register
boundary addresses replacing cortex-M4 by Cortex-M7.
Updated Table 87: Dynamics characteristics: Ethernet MAC signals for
MII td (TXEN) and td (TXD) min value at 6.5 ns.
10-Dec-2015 3
Updated Table 10: STM32F745xx and STM32F746xx pin and ball
definition additional functions column: WKUP1, 2, 3, 4, 5, 6 must be
respectively PA0, PA2, PC1, PC13, PI8, PI11.
Updated Table 62: ADC characteristics adding VREF- negative voltage
reference.
Update Table 14: Voltage characteristics adding table note 3.
Updated Table 69: Temperature sensor calibration values memory
addresses.
Updated Table 72: Internal reference voltage calibration values
memory addresses.
STM32F745xx STM32F746xx
222/222 DocID027590 Rev 3
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved