STM32F745xx STM32F746xx ARM(R)-based Cortex(R)-M7 32b MCU+FPU, 462DMIPS, up to 1MB Flash/320+16+ 4KB RAM, USB OTG HS/FS, ethernet, 18 TIMs, 3 ADCs, 25 com itf, cam & LCD Datasheet - production data Features )%*$ (R) (R) * Core: ARM 32-bit Cortex -M7 CPU with FPU, adaptive real-time accelerator (ART AcceleratorTM) and L1-cache: 4KB data cache and 4KB instruction cache, allowing 0-wait state execution from embedded Flash memory and external memories, frequency up to 216 MHz, MPU, 462 DMIPS/2.14 DMIPS/MHz (Dhrystone 2.1), and DSP instructions. * Memories - Up to 1MB of Flash memory - 1024 bytes of OTP memory - SRAM: 320KB (including 64KB of data TCM RAM for critical real time data) + 16KB of instruction TCM RAM (for critical real time routines) + 4KB of backup SRAM (available in the lowest power modes) - Flexible external memory controller with up to 32-bit data bus: SRAM, PSRAM, SDRAM/LPSDR SDRAM, NOR/NAND memories * Dual mode Quad-SPI * LCD parallel interface, 8080/6800 modes * LCD-TFT controller up to XGA resolution with dedicated Chrom-ART AcceleratorTM for enhanced graphic content creation (DMA2D) * Clock, reset and supply management - 1.7 V to 3.6 V application supply and I/Os - POR, PDR, PVD and BOR - Dedicated USB power - 4-to-26 MHz crystal oscillator - Internal 16 MHz factory-trimmed RC (1% accuracy) - 32 kHz oscillator for RTC with calibration - Internal 32 kHz RC with calibration * Low-power - Sleep, Stop and Standby modes - VBAT supply for RTC, 32x32 bit backup registers + 4KB backup SRAM * 3x12-bit, 2.4 MSPS ADC: up to 24 channels and 7.2 MSPS in triple interleaved mode * 2x12-bit D/A converters * Up to 18 timers: up to thirteen 16-bit (1x lowpower 16-bit timer available in Stop mode) and two 32-bit timers, each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input. All 15 timers running up to 216 MHz. 2x watchdogs, SysTick timer December 2015 This is information on a product in full production. LQFP100 (14x14 mm) LQFP144 (20x20 mm) LQFP176 (24x24 mm) LQFP208 (28x28 mm) UFBGA176 (10x10 mm) TFBGA216 (13x13 mm) WLCSP143 (4.5x5.8 mm) * General-purpose DMA: 16-stream DMA controller with FIFOs and burst support * Debug mode - SWD & JTAG interfaces - Cortex(R)-M7 Trace MacrocellTM * Up to 168 I/O ports with interrupt capability - Up to 164 fast I/Os up to 108 MHz - Up to 166 5 V-tolerant I/Os * Up to 25 communication interfaces - Up to 4x I2C interfaces (SMBus/PMBus) - Up to 4 USARTs/4 UARTs (27 Mbit/s, ISO7816 interface, LIN, IrDA, modem control) - Up to 6 SPIs (up2to 50 Mbits/s), 3 with muxed simplex I S for audio class accuracy via internal audio PLL or external clock - 2 x SAIs (serial audio interface) - 2 x CANs (2.0B active) and SDMMC interface - SPDIFRX interface - HDMI-CEC * Advanced connectivity - USB 2.0 full-speed device/host/OTG controller with on-chip PHY - USB 2.0 high-speed/full-speed device/host/OTG controller with dedicated DMA, on-chip full-speed PHY and ULPI - 10/100 Ethernet MAC with dedicated DMA: supports IEEE 1588v2 hardware, MII/RMII * 8- to 14-bit parallel camera interface up to 54 Mbytes/s * True random number generator * CRC calculation unit * RTC: subsecond accuracy, hardware calendar * 96-bit unique ID Table 1. Device summary Reference Part number STM32F745xx STM32F745IE, STM32F745VE, STM32F745VG, STM32F745ZE, STM32F745ZG, STM32F745IG STM32F746xx STM32F746BE, STM32F746BG, STM32F746IE, STM32F746IG, STM32F746NE, STM32F746NG, STM32F746VE, STM32F746VG, STM32F746ZE, STM32F746ZG DocID027590 Rev 3 1/222 www.st.com Contents STM32F745xx STM32F746xx Contents 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.1 2 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1 ARM(R) Cortex(R)-M7 with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 18 2.5 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6 AXI-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.7 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.8 Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.9 Quad-SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.10 LCD-TFT controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.11 Chrom-ART AcceleratorTM (DMA2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.12 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 22 2.13 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.14 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.15 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.16 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.17 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.18 2.17.1 Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.17.2 Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.18.1 Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.18.2 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.18.3 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 30 2.19 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 30 2.20 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.21 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.22 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.22.1 2/222 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 34 DocID027590 Rev 3 STM32F745xx STM32F746xx Contents 2.22.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.22.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.22.4 Low-power timer (LPTIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.22.5 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.22.6 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.22.7 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.23 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.24 Universal synchronous/asynchronous receiver transmitters (USART) . . 37 2.25 Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S) . 38 2.26 Serial audio interface (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.27 SPDIFRX Receiver Interface (SPDIFRX) . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.28 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.29 Audio and LCD PLL(PLLSAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.30 SD/SDIO/MMC card host interface (SDMMC) . . . . . . . . . . . . . . . . . . . . . 40 2.31 Ethernet MAC interface with dedicated DMA and IEEE 1588 support . . . 40 2.32 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.33 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 41 2.34 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 41 2.35 High-definition multimedia interface (HDMI) - consumer electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.36 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.37 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.38 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.39 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.40 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.41 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.42 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.43 Embedded Trace MacrocellTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 DocID027590 Rev 3 3/222 5 Contents 4/222 STM32F745xx STM32F746xx 5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.3.2 VCAP1/VCAP2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.3.3 Operating conditions at power-up / power-down (regulator ON) . . . . . 100 5.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . 100 5.3.5 Reset and power control block characteristics . . . . . . . . . . . . . . . . . . 100 5.3.6 Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.3.7 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.3.8 Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.3.9 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.3.10 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.3.11 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.3.12 PLL spread spectrum clock generation (SSCG) characteristics . . . . . 130 5.3.13 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.3.14 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 5.3.15 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 136 5.3.16 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.3.17 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.3.18 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.3.19 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.3.20 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.3.21 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.3.22 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 5.3.23 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 5.3.24 Reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 5.3.25 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 5.3.26 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5.3.27 FMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 5.3.28 Quad-SPI interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 DocID027590 Rev 3 STM32F745xx STM32F746xx 6 7 Contents 5.3.29 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 190 5.3.30 LCD-TFT controller (LTDC) characteristics . . . . . . . . . . . . . . . . . . . . . 191 5.3.31 SD/SDIO MMC card host interface (SDMMC) characteristics . . . . . . . 193 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 6.1 LQFP100, 14 x 14 mm low-profile quad flat package information . . . . . 195 6.2 WLCSP143, 4.539x 5.849 mm, 0.4 mm pitch wafer level chip scale package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 6.3 LQFP144, 20 x 20 mm low-profile quad flat package information . . . . . 201 6.4 LQFP176 24 x 24 mm low-profile quad flat package information . . . . . . 204 6.5 LQFP208 28 x 28 mm low-profile quad flat package information . . . . . . 208 6.6 UFBGA 176+25, 10 x 10, 0.65 mm ultra thin-pitch ball grid array package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 6.7 TFBGA216, 13 x 13 x 0.8mm thin fine-pitch ball grid array package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 6.8 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 Appendix A Recommendations when using internal reset OFF . . . . . . . . . . . 220 A.1 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 DocID027590 Rev 3 5/222 5 List of tables STM32F745xx STM32F746xx List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. 6/222 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 STM32F745xx and STM32F746xx features and peripheral counts . . . . . . . . . . . . . . . . . . 13 Voltage regulator configuration mode versus device operating mode . . . . . . . . . . . . . . . . 27 Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 30 Voltage regulator modes in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 STM32F745xx and STM32F746xx pin and ball definition . . . . . . . . . . . . . . . . . . . . . . . . . 52 FMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 STM32F745xx and STM32F746xx alternate function mapping . . . . . . . . . . . . . . . . . . . . . 75 STM32F745xx and STM32F746xx register boundary addresses. . . . . . . . . . . . . . . . . . . . 89 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 99 VCAP1/VCAP2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . 100 Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . 100 reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Typical and maximum current consumption in Run mode, code with data processing running from ITCM RAM, regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART ON except prefetch / L1-cache ON) or SRAM on AXI (L1-cache ON), regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Typical and maximum current consumption in Run mode, code with data processing running from Flash memory or SRAM on AXI (L1-cache disabled), regulator ON . . . . . 105 Typical and maximum current consumption in Run mode, code with data processing running from Flash memory on ITCM interface (ART disabled), regulator ON . . . . . . . . 106 Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART ON except prefetch / L1-cache ON) or SRAM on AXI (L1-cache ON), regulator OFF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Typical and maximum current consumption in Sleep mode, regulator ON. . . . . . . . . . . . 108 Typical and maximum current consumption in Sleep mode, regulator OFF . . . . . . . . . . . 108 Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . 109 Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . 110 Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . 111 Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 HSE 4-26 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 DocID027590 Rev 3 STM32F745xx STM32F746xx Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. Table 91. Table 92. Table 93. List of tables LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 PLLI2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 PLLISAI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 ADC static accuracy at fADC = 18 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 ADC static accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 ADC static accuracy at fADC = 36 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 ADC dynamic accuracy at fADC = 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 147 ADC dynamic accuracy at fADC = 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 147 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Minimum I2CCLK frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 USB OTG full speed startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 USB OTG full speed DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 USB OTG full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 USB HS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Dynamic characteristics: USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Dynamics characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . 166 Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 166 Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 167 Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 170 Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT timings . . . . . . . . . . 170 Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 171 Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings. . . . . . . . . . 172 Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 173 DocID027590 Rev 3 7/222 8 List of tables Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100. Table 101. Table 102. Table 103. Table 104. Table 105. Table 106. Table 107. Table 108. Table 109. Table 110. Table 111. Table 112. Table 113. Table 114. Table 115. Table 116. Table 117. Table 118. Table 119. Table 120. Table 121. Table 122. Table 123. Table 124. Table 125. 8/222 STM32F745xx STM32F746xx Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 175 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 180 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 185 SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 LPSDR SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 LPSDR SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 Quad-SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 Quad-SPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 LTDC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 Dynamic characteristics: SD / MMC characteristics, VDD=2.7V to 3.6V . . . . . . . . . . . . . 194 Dynamic characteristics: eMMC characteristics, VDD=1.71V to 1.9V . . . . . . . . . . . . . . . 194 LQPF100, 14 x 14 mm 100-pin low-profile quad flat package mechanical data. . . . . . . . 196 WLCSP143 - 143-ball, 4.539x 5.849 mm, 0.4 mm pitch wafer level chip scale package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 WLCSP143 recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 UFBGA176+25, 10 x 10 x 0.65 mm ultra thin fine-pitch ball grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA) . . . . . . . . . . . . . 213 TFBGA216, 13 x 13 x 0.8mm thin fine-pitch ball grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 TFBGA216 recommended PCB design rules (0.8 mm pitch BGA). . . . . . . . . . . . . . . . . . 216 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . 220 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 DocID027590 Rev 3 STM32F745xx STM32F746xx List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Compatible board design for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 STM32F745xx and STM32F746xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 STM32F745xx and STM32F746xx AXI-AHB bus matrix architecture . . . . . . . . . . . . . . . . 19 VDDUSB connected to VDD power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 VDDUSB connected to external power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 25 PDR_ON control with internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Startup in regulator OFF: slow VDD slope - power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . 29 Startup in regulator OFF mode: fast VDD slope - power-down reset risen before VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . 29 STM32F74xVx LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 STM32F74xZx WLCSP143 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 STM32F74xZx LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 STM32F74xIx LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 STM32F74xBx LQFP208 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 STM32F74xIx UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 STM32F74xNx TFBGA216 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Typical VBAT current consumption (RTC ON/BKP SRAM OFF and LSE in low drive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Typical VBAT current consumption (RTC ON/BKP SRAM OFF and LSE in medium low drive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Typical VBAT current consumption (RTC ON/BKP SRAM OFF and LSE in medium high drive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Typical VBAT current consumption (RTC ON/BKP SRAM OFF and LSE in high drive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Typical VBAT current consumption (RTC ON/BKP SRAM OFF and LSE in high medium drive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 HSI deviation versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 LSI deviation versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 FT I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 DocID027590 Rev 3 9/222 11 List of figures Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. Figure 71. Figure 72. Figure 73. Figure 74. Figure 75. Figure 76. Figure 77. Figure 78. Figure 79. Figure 80. Figure 81. Figure 82. Figure 83. Figure 84. Figure 85. Figure 86. 10/222 STM32F745xx STM32F746xx Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 149 Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 149 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 USB OTG full speed timings: definition of data signal rise and fall time . . . . . . . . . . . . . . 163 ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 169 Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 171 Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 172 Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 174 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 180 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 184 NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 184 SDRAM read access waveforms (CL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 SDRAM write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Quad-SPI timing diagram - SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 Quad-SPI timing diagram - DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 LCD-TFT horizontal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 LCD-TFT vertical timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 195 LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 WLCSP143 - 143-ball, 4.539x 5.849 mm, 0.4 mm pitch wafer level chip scale package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 WLCSP143 - 143-ball, 4.539x 5.849 mm, 0.4 mm pitch wafer level chip scale package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 WLCSP143, 0.4 mm pitch wafer level chip scale package top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 201 LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 LQFP144, 20 x 20mm, 144-pin low-profile quad flat package top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 DocID027590 Rev 3 STM32F745xx STM32F746xx Figure 87. Figure 88. Figure 89. Figure 90. Figure 91. Figure 92. Figure 93. Figure 94. Figure 95. Figure 96. Figure 97. Figure 98. List of figures LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 204 LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 208 LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 UFBGA 176+25, 10 x 10 x 0.65 mm ultra thin fine-pitch ball grid array package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 UFBGA176+25, 10 x 10 mm x 0.65 mm, ultra fine-pitch ball grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 UFBGA176+25, 10 x 10 x 0.6 mm ultra thin fine-pitch ball grid array package top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 TFBGA216, 13 x 13 x 0.8mm thin fine-pitch ball grid array package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 TFBGA216, 13 x 13 mm, 0.8 mm pitch, thin fine-pitch ball grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 TFBGA216, 13 x 13 x 0.8mm thin fine-pitch ball grid array package top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 DocID027590 Rev 3 11/222 11 Description 1 STM32F745xx STM32F746xx Description The STM32F745xx and STM32F746xx devices are based on the high-performance ARM(R) Cortex(R)-M7 32-bit RISC core operating at up to 216 MHz frequency. The Cortex(R)-M7 core features a single floating point unit (SFPU) precision which supports all ARM(R) singleprecision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances the application security. The STM32F745xx and STM32F746xx devices incorporate high-speed embedded memories with Flash memory up to 1 Mbyte, 320 Kbytes of SRAM (including 64 Kbytes of Data TCM RAM for critical real time data), 16 Kbytes of instruction TCM RAM (for critical real time routines), 4 Kbytes of backup SRAM available in the lowest power modes, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses, a 32-bit multi-AHB bus matrix and a multi layer AXI interconnect supporting internal and external memories access. All the devices offer three 12-bit ADCs, two DACs, a low-power RTC, thirteen generalpurpose 16-bit timers including two PWM timers for motor control and one low-power timer available in Stop mode, two general-purpose 32-bit timers, a true random number generator (RNG). They also feature standard and advanced communication interfaces. * * * * * * * * * * * * Up to four I2Cs Six SPIs, three I2Ss in duplex mode. To achieve the audio class accuracy, the I2S peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization. Four USARTs plus four UARTs An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the ULPI), Two CANs Two SAI serial audio interfaces An SDMMC host interface Ethernet and camera interfaces LCD-TFT display controller Chrom-ART AcceleratorTM SPDIFRX interface HDMI-CEC Advanced peripherals include an SDMMC interface, a flexible memory control (FMC) interface, a Quad-SPI Flash memory interface, a camera interface for CMOS sensors. Refer to Table 2: STM32F745xx and STM32F746xx features and peripheral counts for the list of peripherals available on each part number. The STM32F745xx and STM32F746xx devices operate in the -40 to +105 C temperature range from a 1.7 to 3.6 V power supply. A dedicated supply input for USB (OTG_FS and OTG_HS) is available on all the packages except LQFP100 for a greater power supply choice. The supply voltage can drop to 1.7 V with the use of an external power supply supervisor (refer to Section 2.17.2: Internal reset OFF). A comprehensive set of power-saving mode allows the design of low-power applications. The STM32F745xx and STM32F746xx devices offer devices in 7 packages ranging from 100 pins to 216 pins. The set of included peripherals changes with the device chosen. 12/222 DocID027590 Rev 3 * Motor drive and application control, * Medical equipment, * Industrial applications: PLC, inverters, circuit breakers, * Printers, and scanners, * Alarm systems, video intercom, and HVAC, * Home audio appliances, * Mobile applications, Internet of Things, * Wearable devices: smartwatches. STM32F745xx STM32F746xx These features make the STM32F745xx and STM32F746xx microcontrollers suitable for a wide range of applications: Figure 2 shows the general block diagram of the device family. Table 2. STM32F745xx and STM32F746xx features and peripheral counts DocID027590 Rev 3 Peripherals Flash memory in Kbytes SRAM in Kbytes 512 1024 512 1024 512 1024 512 1024 512 1024 512 System 320(240+16+64) Instruction 16 Backup 4 FMC memory controller Ethernet Timers STM32F745Vx STM32F746Vx STM32F745Zx STM32F746Zx STM32F745Ix STM32F746Ix STM32F745Bx STM32F746Bx STM32F745Nx STM32F746Nx 1024 512 1024 512 1024 512 1024 512 1024 Yes(1) Yes Generalpurpose 10 Advancedcontrol 2 Basic 2 Low-power 1 Random number generator Yes Description 13/222 Peripherals SPI / I2S STM32F745Vx STM32F746Vx STM32F745Zx STM32F746Zx STM32F745Ix STM32F746Ix STM32F745Bx STM32F746Bx STM32F745Nx STM32F746Nx 4/3 (simplex)(2) 6/3 (simplex)(2) I2C 4 USART/ UART 4/4 USB OTG FS Yes Communication interfaces USB OTG HS Yes CAN 2 SAI 2 SPDIFRX 4 inputs SDMMC Yes DocID027590 Rev 3 Camera interface LCD-TFT Yes No Yes No Yes Chrom-ART AcceleratorTM (DMA2D) GPIOs 82 114 Yes No Yes No Yes 140 168 3 16 24 12-bit DAC Number of channels Yes 2 216 MHz(3) Maximum CPU frequency Ambient temperatures: -40 to +85 C /-40 to +105 C Operating temperatures Junction temperature: -40 to + 125 C LQFP100 WLCSP143 LQFP144 UFBGA176 LQFP176 LQFP208 1. For the LQFP100 package, only FMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. 2. The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode. TFBGA216 3. 216 MHz maximum frequency for -40C to + 85C ambient temperature range (200 MHz maximum frequency for -40C to + 105C ambient temperature range). 4. VDD/VDDA minimum value of 1.7 V is obtained when the internal reset is OFF (refer to Section 2.17.2: Internal reset OFF). STM32F745xx STM32F746xx 1.7 to 3.6 V(4) Operating voltage Package No Yes 12-bit ADC Number of channels Description 14/222 Table 2. STM32F745xx and STM32F746xx features and peripheral counts (continued) STM32F745xx STM32F746xx Full compatibility throughout the family The STM32F745xx and STM32F746xx devices are fully pin-to-pin, compatible with the STM32F4xxxx devices, allowing the user to try different peripherals, and reaching higher performances (higher frequency) for a greater degree of freedom during the development cycle. Figure 1 give compatible board designs between the STM32F4xx families. Figure 1. Compatible board design for LQFP100 package 3& 9'' 966$ 95() 9''$ 3$:.83 3$ 3$ 670)[[670)[[ 670)[[670)[[ 670)[[670)[[ 670)[[670)[[ 9'' 3% 9&$3 3% 3( 3( 3( 3( 3( 3( 3( 3( 3( 3% 3% 3& 3% 3& 3$ 3$ 3$ 3$ 9'' 3$ 3& 966$ 95() 9''$ 3$:.83 3$ 3$ 3$ 966 670)[[670)[[ 3LQVWRDUHQRWFRPSDWLEOH 9'' 966 9&$3 3% 3% 3( 3( 3( 3( 3( 3( 3( 3( 3( 3% 3% 3% 3& 3& 3$ 3$ 3$ 3$ 9'' 966 1.1 Description 06Y9 The STM32F745xx and STM32F746xx LQFP144, LQFP176, LQFP208, TFBGA216, UFBGA176, WLCSP143 packages are fully pin to pin compatible with STM32F4xxxx devices. DocID027590 Rev 3 15/222 44 Description STM32F745xx STM32F746xx Figure 2. STM32F745xx and STM32F746xx block diagram :d'^t DWh Es/ dDZD< dD D &/&K D Kd',^ &/&K D 6WUHDPV ),)2 D 6WUHDPV ),)2 /sh^^K& >d&d >,^zE>s^zE> ZE' ,^ h^ >Z>'> Zd &>^,D W,z h>W/^><^E ^EtE> EZ^E^Es Et/d/EdZ Y^W/ ><^ ,D, WZ s ),)2 W 'W/KWKZd W s ^ sWsW t^ / WKZWZ EZ^d Ws s Z Z D E ' d ZZ 'W/KWKZd s 'W/KWKZd' W, 'W/KWKZd, K^/E D, K^Khd ^ sdZs sd K^/E K^Khd yd>, >^ W' yd>K^ /t' W>< 'W/KWKZd& ,>< W& ss^^ KZ 'W/KWKZd W s^^ WKZ W>> 'W/KWKZd sZs Z 'W/KWKZd W sh^Zs sZ Z s s D D /sh^^K& >< W ^ZD< >>< W ,^zEs^zE W,z D, / < y/D ,h^DdZ/y^D ,^D dZ D//ZZD//& /dD ZD ZD ,y/ dZ< &/&K dD &/&K :dZ^d:d/ :d<^t>< :dK^t:dK Zd Zd& Zd& Zd, th W/ 'W/KWKZd/ W: 'W/KWKZd: <^ D D yd/dt<& ^/ d/D /d& Z /& /& Khd & Khd & d^Zd^& Zydy& Zydy& hZd Zydy& Zydy& hZd ^W//^ DK^/^^<< E^^t^D<& ^W//^ DK^/^^<< /^Dh^ E^^t^D<& ^>^^D& ^>^^D& ^>^^D& ^>^^D& dyZy E E d^Zd^& Zydy& /^Dh^ h ^dZ Z d D hZd /^Dh^ s Zydy& hZd /^Dh^ s ZZ d/D ^W/ ^/ Z >Wd/D ^W//^ ^^<&^D><& ZZZ & h^Zd W D, WD, DK^/D/^K ^d&dD h^,^D DW d,ZEdD ,W y/D .% ,'&DFKH 'W D h^Kd' >d&d D ,^ DDD DW/ ZDZD 'W D DDD /dD dD Figure 3. STM32F745xx and STM32F746xx AXI-AHB bus matrix architecture dDZD < /dDZD < y/Z , Zd /dD , &>^, D ^D ^ZD < ^ZD < , W , &D D W W Y^W/ D^ 069 1. The above figure has large wires for 64-bits bus and thin wires for 32-bits bus. 2.7 DMA controller (DMA) The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB). The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code. DocID027590 Rev 3 19/222 44 Functional overview STM32F745xx STM32F746xx Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: 2.8 * SPI and I2S * I2C * USART * General-purpose, basic and advanced-control timers TIMx * DAC * SDMMC * Camera interface (DCMI) * ADC * SAI * SPDIFRX * Quad-SPI * HDMI-CEC Flexible memory controller (FMC) The Flexible memory controller (FMC) includes three memory controllers: * The NOR/PSRAM memory controller * The NAND/memory controller * The Synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) controller The main features of the FMC controller are the following: * Interface with static-memory mapped devices including: - Static random access memory (SRAM) - NOR Flash memory/OneNAND Flash memory - PSRAM (4 memory banks) - NAND Flash memory with ECC hardware to check up to 8 Kbytes of data * Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories * 8-,16-,32-bit data bus width * Independent Chip Select control for each memory bank * Independent configuration for each memory bank * Write FIFO * Read FIFO for SDRAM controller * The Maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is HCLK/2. LCD parallel interface The FMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost- 20/222 DocID027590 Rev 3 STM32F745xx STM32F746xx Functional overview effective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration. 2.9 Quad-SPI memory interface (QUADSPI) All devices embed a Quad-SPI memory interface, which is a specialized communication interface targetting Single, Dual or Quad-SPI Flash memories. It can work in: * Direct mode through registers. * External flash status register polling mode. * Memory mapped mode. Up to 256 Mbytes external flash are memory mapped, supporting 8, 16 and 32-bit access. Code execution is supported. The opcode and the frame format are fully programmable. Communication can be either in Single Data Rate or Dual Data Rate. 2.10 LCD-TFT controller The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue) and delivers all signals to interface directly to a broad range of LCD and TFT panels up to XGA (1024x768) resolution with the following features: 2.11 * 2 displays layers with dedicated FIFO (64x32-bit) * Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer * Up to 8 Input color formats selectable per layer * Flexible blending between two layers using alpha value (per pixel or constant) * Flexible programmable parameters for each layer * Color keying (transparency color) * Up to 4 programmable interrupt events. Chrom-ART AcceleratorTM (DMA2D) The Chrom-Art AcceleratorTM (DMA2D) is a graphic accelerator which offers advanced bit blitting, row data copy and pixel format conversion. It supports the following functions: * Rectangle filling with a fixed color * Rectangle copy * Rectangle copy with pixel format conversion * Rectangle composition with blending and pixel format conversion. Various image format coding are supported, from indirect 4bpp color mode up to 32bpp direct color. It embeds dedicated memory to store color lookup tables. An interrupt can be generated when an operation is complete or at a programmed watermark. All the operations are fully automatized and are running independently from the CPU or the DMAs. DocID027590 Rev 3 21/222 44 Functional overview 2.12 STM32F745xx STM32F746xx Nested vectored interrupt controller (NVIC) The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 97 maskable interrupt channels plus the 16 interrupt lines of the Cortex(R)M7 with FPU core. * Closely coupled NVIC gives low-latency interrupt processing * Interrupt entry vector table address passed directly to the core * Allows early processing of interrupts * Processing of late arriving, higher-priority interrupts * Support tail chaining * Processor state automatically saved * Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimum interrupt latency. 2.13 External interrupt/event controller (EXTI) The external interrupt/event controller consists of 24 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 168 GPIOs can be connected to the 16 external interrupt lines. 2.14 Clocks and startup On reset the 16 MHz internal HSI RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 216 MHz. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails). Several prescalers allow the configuration of the two AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB buses is 216 MHz while the maximum frequency of the high-speed APB domains is 108 MHz. The maximum allowed frequency of the low-speed APB domain is 54 MHz. The devices embed two dedicated PLL (PLLI2S and PLLSAI) which allow to achieve audio class performance. In this case, the I2S and SAI master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz. 22/222 DocID027590 Rev 3 STM32F745xx STM32F746xx 2.15 Functional overview Boot modes At startup, the boot memory space is selected by the BOOT pin and BOOT_ADDx option bytes, allowing to program any boot memory address from 0x0000 0000 to 0x3FFF FFFF which includes: * All Flash address space mapped on ITCM or AXIM interface * All RAM address space: ITCM, DTCM RAMs and SRAMs mapped on AXIM interface * The System memory bootloader The boot loader is located in system memory. It is used to reprogram the Flash memory through a serial interface. 2.16 Note: Power supply schemes * VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. * VDD = 1.7 to 3.6 Vexternal power supply for I/Os and the internal regulator (when enabled), provided externally through VDD pins. * VSSA, VDDA = 1.7 to 3.6 V: external analog power supplies for ADC, DAC, reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively. VDD/VDDA minimum value of 1.7 V is obtained when the internal reset is OFF (refer to Section 2.17.2: Internal reset OFF). Refer to Table 3: Voltage regulator configuration mode versus device operating mode to identify the packages supporting this option. * VDDUSB can be connected either to VDD or an external independent power supply (3.0 to 3.6V) for USB transceivers (refer to Figure 4 and Figure 5). For example, when device is powered at 1.8V, an independent power supply 3.3V can be connected to VDDUSB. When the VDDUSB is connected to a separated power supply, it is independent from VDD or VDDA but it must be the last supply to be provided and the first to disappear. The following conditions VDDUSB must be respected: - During power-on phase (VDD < VDD_MIN), VDDUSB should be always lower than VDD - During power-down phase (VDD < VDD_MIN), VDDUSB should be always lower than VDD - VDDSUB rising and falling time rate specifications must be respected (see Table 20 and Table 21) - In operating mode phase, VDDUSB could be lower or higher than VDD: - If USB (USB OTG_HS/OTG_FS) is used, the associated GPIOs powered by VDDUSB are operating between VDDUSB_MIN and VDDUSB_MAX. - The VDDUSB supply both USB transceiver (USB OTG_HS and USB OTG_FS). If only one USB transceiver is used in the application, the GPIOs associated to the other USB transceiver are still supplied by VDDUSB. - If USB (USB OTG_HS/OTG_FS) is not used, the associated GPIOs powered by VDDUSB are operating between VDD_MIN and VDD_MAX. DocID027590 Rev 3 23/222 44 Functional overview STM32F745xx STM32F746xx Figure 4. VDDUSB connected to VDD power supply 9'' 9''B0$; 9'' 9''$ 9''86% 9''B0,1 2SHUDWLQJPRGH 3RZHURQ 3RZHUGRZQ WLPH 069 Figure 5. VDDUSB connected to external power supply 9''86%B0$; 86% IXQFWLRQDODUHD 9''86% 9''86%B0,1 86%QRQ IXQFWLRQDO DUHD 9'' 9''$ 86%QRQ IXQFWLRQDO DUHD 2SHUDWLQJPRGH 3RZHUGRZQ 9''B0,1 3RZHURQ WLPH 069 2.17 Power supply supervisor 2.17.1 Internal reset ON On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On the other packages, the power supply supervisor is always enabled. The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is 24/222 DocID027590 Rev 3 STM32F745xx STM32F746xx Functional overview reached, the option byte loading process starts, either to confirm or modify default BOR thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for an external reset circuit. The device also features an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. 2.17.2 Internal reset OFF This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin. An external power supply supervisor should monitor VDD and should maintain the device in reset mode as long as VDD is below a specified threshold. PDR_ON should be connected to VSS. Refer to Figure 6: Power supply supervisor interconnection with internal reset OFF. Figure 6. Power supply supervisor interconnection with internal reset OFF 9'' $SSOLFDWLRQUHVHW VLJQDO RSWLRQDO 9%$7 3'5B21 966 3'5QRWDFWLYHY9''Y 06Y9 The VDD specified threshold, below which the device must be maintained under reset, is 1.7 V (see Figure 7). A comprehensive set of power-saving mode allows to design low-power applications. When the internal reset is OFF, the following integrated features are no more supported: * The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled * The brownout reset (BOR) circuitry must be disabled * The embedded programmable voltage detector (PVD) is disabled * VBAT functionality is no more available and VBAT pin should be connected to VDD. All the packages, except for the LQFP100, allow to disable the internal reset through the PDR_ON signal when connected to VSS. DocID027590 Rev 3 25/222 44 Functional overview STM32F745xx STM32F746xx Figure 7. PDR_ON control with internal reset OFF 9 '' 3'5 9 WLPH 5HVHWE\RWKHUVRXUFHWKDQ SRZHUVXSSO\VXSHUYLVRU 1567 3'5B21 3'5B21 WLPH 069 2.18 Voltage regulator The regulator has four operating modes: * * 2.18.1 Regulator ON - Main regulator mode (MR) - Low-power regulator (LPR) - Power-down Regulator OFF Regulator ON On packages embedding the BYPASS_REG pin, the regulator is enabled by holding BYPASS_REG low. On all other packages, the regulator is always enabled. There are three power modes configured by software when the regulator is ON: * MR mode used in Run/sleep modes or in Stop modes - In Run/Sleep mode The MR mode is used either in the normal mode (default mode) or the over-drive mode (enabled by software). Different voltages scaling are provided to reach the best compromise between the maximum frequency and dynamic power 26/222 DocID027590 Rev 3 STM32F745xx STM32F746xx Functional overview consumption. The over-drive mode allows operating at a higher frequency than the normal mode for a given voltage scaling. - In Stop modes The MR can be configured in two ways during Stop mode: MR operates in normal mode (default mode of MR in Stop mode) MR operates in under-drive mode (reduced leakage mode). * LPR is used in the Stop modes: The LP regulator mode is configured by software when entering Stop mode. Like the MR mode, the LPR can be configured in two ways during Stop mode: * - LPR operates in normal mode (default mode when LPR is ON) - LPR operates in under-drive mode (reduced leakage mode). Power-down is used in Standby mode. The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost. Refer to Table 3 for a summary of voltage regulator modes versus device operating modes. Two external ceramic capacitors should be connected on VCAP_1 and VCAP_2 pin. All packages have the regulator ON feature. Table 3. Voltage regulator configuration mode versus device operating mode(1) Voltage regulator configuration Run mode Sleep mode Stop mode Standby mode Normal mode MR MR MR or LPR - Over-drive mode(2) MR MR - - Under-drive mode - - MR or LPR - Power-down mode - - - Yes 1. `-' means that the corresponding configuration is not available. 2. The over-drive mode is not available when VDD = 1.7 to 2.1 V. 2.18.2 Regulator OFF This feature is available only on packages featuring the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a V12 voltage source through VCAP_1 and VCAP_2 pins. Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency.The two 2.2 F ceramic capacitors should be replaced by two 100 nF decoupling capacitors. When the regulator is OFF, there is no more internal monitoring on V12. An external power supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V12 power domain. DocID027590 Rev 3 27/222 44 Functional overview STM32F745xx STM32F746xx In regulator OFF mode, the following features are no more supported: * PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power domain which is not reset by the NRST pin. * As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required. * The over-drive and under-drive modes are not available. * The Standby mode is not available. Figure 8. Regulator OFF 9 ([WHUQDO9&$3BSRZHU $SSOLFDWLRQUHVHW VXSSO\VXSHUYLVRU ([WUHVHWFRQWUROOHUDFWLYH VLJQDO RSWLRQDO ZKHQ9&$3B0LQ9 9'' 3$ 9'' 1567 %<3$66B5(* 9 9&$3B 9&$3B DL9 The following conditions must be respected: Note: 28/222 * VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection between power domains. * If the time for VCAP_1 and VCAP_2 to reach V12 minimum value is faster than the time for VDD to reach 1.7 V, then PA0 should be kept low to cover both conditions: until VCAP_1 and VCAP_2 reach V12 minimum value and until VDD reaches 1.7 V (see Figure 9). * Otherwise, if the time for VCAP_1 and VCAP_2 to reach V12 minimum value is slower than the time for VDD to reach 1.7 V, then PA0 could be asserted low externally (see Figure 10). * If VCAP_1 and VCAP_2 go below V12 minimum value and VDD is higher than 1.7 V, then a reset must be asserted on PA0 pin. The minimum value of V12 depends on the maximum frequency targeted in the application. DocID027590 Rev 3 STM32F745xx STM32F746xx Functional overview Figure 9. Startup in regulator OFF: slow VDD slope - power-down reset risen after VCAP_1/VCAP_2 stabilization 9'' 3'5 9RU9 9 0LQ9 9&$3B9&$3B WLPH 1567 WLPH DLI 1. This figure is valid whatever the internal reset mode (ON or OFF). Figure 10. Startup in regulator OFF mode: fast VDD slope - power-down reset risen before VCAP_1/VCAP_2 stabilization 9'' 3'5 9RU9 9&$3B9&$3B 9 0LQ9 1567 WLPH 3$DVVHUWHGH[WHUQDOO\ WLPH DLH 1. This figure is valid whatever the internal reset mode (ON or OFF). DocID027590 Rev 3 29/222 44 Functional overview 2.18.3 STM32F745xx STM32F746xx Regulator ON/OFF and internal reset ON/OFF availability Table 4. Regulator ON/OFF and internal reset ON/OFF availability Package Regulator ON Regulator OFF Internal reset ON Internal reset OFF LQFP100 LQFP144, LQFP208 LQFP176, WLCSP143, UFBGA176, TFBGA216 2.19 Yes Yes No Yes PDR_ON set to VDD Yes PDR_ON set to VSS No Yes Yes BYPASS_REG set BYPASS_REG set to VDD to VSS Real-time clock (RTC), backup SRAM and backup registers The RTC is an independent BCD timer/counter. It supports the following features: * Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format. * Automatic correction for 28, 29 (leap year), 30, and 31 days of the month. * Two programmable alarms. * On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock. * Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. * Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy. * Three anti-tamper detection pins with programmable filter. * Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to VBAT mode. * 17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period. The RTC and the 32 backup registers are supplied through a switch that takes power either from the VDD supply when present or from the VBAT pin. The backup registers are 32-bit registers used to store 128 bytes of user application data when VDD power is not present. They are not reset by a system or power reset, or when the device wakes up from Standby mode. The RTC clock sources can be: 30/222 * A 32.768 kHz external crystal (LSE) * An external resonator or oscillator(LSE) * The internal low-power RC oscillator (LSI, with typical frequency of 32 kHz) * The high-speed external clock (HSE) divided by 32. DocID027590 Rev 3 STM32F745xx STM32F746xx Functional overview The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in all low-power modes. All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt and wakeup the device from the low-power modes. 2.20 Low-power modes The devices support three low-power modes to achieve the best compromise between lowpower consumption, short startup time and available wakeup sources: * Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. * Stop mode The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can be put either in main regulator mode (MR) or in low-power mode (LPR). Both modes can be configured as follows (see Table 5: Voltage regulator modes in Stop mode): - Normal mode (default mode when MR or LPR is enabled) - Under-drive mode. The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup and LPTIM1 asynchronous interrupt). Table 5. Voltage regulator modes in Stop mode * Voltage regulator configuration Main regulator (MR) Low-power regulator (LPR) Normal mode MR ON LPR ON Under-drive mode MR in under-drive mode LPR in under-drive mode Standby mode The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected. The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising or falling edge on one of the 6 WKUP pins (PA0, PA2, PC1, PC13, PI8, PI11), or an RTC alarm / wakeup / tamper /time stamp event occurs. The Standby mode is not supported when the embedded voltage regulator is bypassed and the 1.2 V domain is controlled by an external power. DocID027590 Rev 3 31/222 44 Functional overview 2.21 STM32F745xx STM32F746xx VBAT operation The VBAT pin allows to power the device VBAT domain from an external battery, an external supercapacitor, or from VDD when no external battery and an external supercapacitor are present. VBAT operation is activated when VDD is not present. The VBAT pin supplies the RTC, the backup registers and the backup SRAM. Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events do not exit it from VBAT operation. When PDR_ON pin is connected to VSS (Internal Reset OFF), the VBAT functionality is no more available and VBAT pin should be connected to VDD. 2.22 Timers and watchdogs The devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers. All timer counters can be frozen in debug mode. Table 6 compares the features of the advanced-control, general-purpose and basic timers. 32/222 DocID027590 Rev 3 STM32F745xx STM32F746xx Functional overview Table 6. Timer feature comparison DMA Capture/ request compare generation channels Complem entary output Max Max interfac timer e clock clock (MHz) (MHz)(1) Timer type Timer Counter Counter Prescaler resolution type factor Advance d-control TIM1, TIM8 16-bit Any Up, integer Down, between 1 Up/down and 65536 Yes 4 Yes 108 216 32-bit Any Up, integer Down, between 1 Up/down and 65536 Yes 4 No 54 108/216 16-bit Any Up, integer Down, between 1 Up/down and 65536 Yes 4 No 54 108/216 16-bit Up Any integer between 1 and 65536 No 2 No 108 216 Up Any integer between 1 and 65536 No 1 No 108 216 Up Any integer between 1 and 65536 No 2 No 54 108/216 Up Any integer between 1 and 65536 No 1 No 54 108/216 Up Any integer between 1 and 65536 Yes 0 No 54 108/216 TIM2, TIM5 TIM3, TIM4 TIM9 General purpose TIM10, TIM11 TIM12 TIM13, TIM14 Basic TIM6, TIM7 16-bit 16-bit 16-bit 16-bit 1. The maximum timer clock is either 108 or 216 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register. DocID027590 Rev 3 33/222 44 Functional overview 2.22.1 STM32F745xx STM32F746xx Advanced-control timers (TIM1, TIM8) The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for: * Input capture * Output compare * PWM generation (edge- or center-aligned modes) * One-pulse mode output If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0100%). The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining. TIM1 and TIM8 support independent DMA request generation. 2.22.2 General-purpose timers (TIMx) There are ten synchronizable general-purpose timers embedded in the STM32F74xxx devices (see Table 6 for differences). * TIM2, TIM3, TIM4, TIM5 The STM32F74xxx include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3, and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages. The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining. Any of these general-purpose timers can be used to generate PWM outputs. TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors. * TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14 These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9 and TIM12 have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases. 34/222 DocID027590 Rev 3 STM32F745xx STM32F746xx 2.22.3 Functional overview Basic timers TIM6 and TIM7 These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base. TIM6 and TIM7 support independent DMA request generation. 2.22.4 Low-power timer (LPTIM1) The low-power timer has an independent clock and is running also in Stop mode if it is clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode. This low-power timer supports the following features: 2.22.5 * 16-bit up counter with 16-bit autoreload register * 16-bit compare register * Configurable output: pulse, PWM * Continuous / one-shot mode * Selectable software / hardware input trigger * Selectable clock source: * Internal clock source: LSE, LSI, HSI or APB clock * External clock source over LPTIM input (working even with no internal clock source running, used by the Pulse Counter Application) * Programmable digital glitch filter * Encoder mode Independent watchdog The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. 2.22.6 Window watchdog The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. 2.22.7 SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features: * A 24-bit downcounter * Autoreload capability * Maskable system interrupt generation when the counter reaches 0 * Programmable clock source. DocID027590 Rev 3 35/222 44 Functional overview 2.23 STM32F745xx STM32F746xx Inter-integrated circuit interface (I2C) The device embeds 4 I2C. Refer to Table 7: I2C implementation for the features implementation. The I2C bus interface handles communication between the microcontroller and the serial I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing. The I2C peripheral supports: * * I2C-bus specification and user manual rev. 5 compatibility: - Slave and master modes, multimaster capability - Standard-mode (Sm), with a bitrate up to 100 kbit/s - Fast-mode (Fm), with a bitrate up to 400 kbit/s - 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses - Programmable setup and hold times - Optional clock stretching System Management Bus (SMBus) specification rev 2.0 compatibility: - Hardware PEC (Packet Error Checking) generation and verification with ACK control - Address resolution protocol (ARP) support - SMBus alert * Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility * Independent clock: a choice of independent clock sources allowing the I2C communication speed to be independent from the PCLK reprogramming. * Programmable analog and digital noise filters * 1-byte buffer with DMA capability Table 7. I2C implementation I2C features(1) I2C1 I2C2 I2C3 I2C4 Standard-mode (up to 100 kbit/s) X X X X Fast-mode (up to 400 kbit/s) X X X X Programmable analog and digital noise filters X X X X SMBus/PMBus hardware support X X X X Independent clock X X X X 1. X: supported 36/222 DocID027590 Rev 3 STM32F745xx STM32F746xx 2.24 Functional overview Universal synchronous/asynchronous receiver transmitters (USART) The device embeds USART. Refer to Table 8: USART implementation for the features implementation. The universal synchronous asynchronous receiver transmitter (USART) offers a flexible means of full-duplex data exchange with external equipment requiring an industry standard NRZ asynchronous serial data format. The USART peripheral supports: * Full-duplex asynchronous communications * Configurable oversampling method by 16 or 8 to give flexibility between speed and clock tolerance * Dual clock domain allowing convenient baud rate programming independent from the PCLK reprogramming * A common programmable transmit and receive baud rate of up to 27 Mbit/s when USART clock source is system clock frequency (Max is 216 MHz) and oversampling by 8 is used. * Auto baud rate detection * Programmable data word length (7 or 8 or 9 bits) word length * Programmable data order with MSB-first or LSB-first shifting * Programmable parity (odd, even, no parity) * Configurable stop bits (1 or 1.5 or 2 stop bits) * Synchronous mode and clock output for synchronous communications * Single-wire half-duplex communications * Separate signal polarity control for transmission and reception * Swappable Tx/Rx pin configuration * Hardware flow control for modem and RS-485 transceiver * Multiprocessor communications * LIN master synchronous break send capability and LIN slave break detection capability * IrDA SIR encoder decoder supporting 3/16 bit duration for normal mode * Smartcard mode ( T=0 and T=1 asynchronous protocols for Smartcards as defined in the ISO/IEC 7816-3 standard ) * Support for Modbus communication The table below summarizes the implementation of all U(S)ARTs instances Table 8. USART implementation features(1) USART1/2/3/6 Data Length UART4/5/7/8 7, 8 and 9 bits Hardware flow control for modem X X Continuous communication using DMA X X Multiprocessor communication X X Synchronous mode X - DocID027590 Rev 3 37/222 44 Functional overview STM32F745xx STM32F746xx Table 8. USART implementation (continued) features(1) USART1/2/3/6 UART4/5/7/8 Smartcard mode X - Single-wire half-duplex communication X X IrDA SIR ENDEC block X X LIN mode X X Dual clock domain X X Receiver timeout interrupt X X Modbus communication X X Auto baud rate detection X X Driver Enable X X 1. X: supported. 2.25 Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S) The devices feature up to six SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1, SPI4, SPI5, and SPI6 can communicate at up to 50 Mbits/s, SPI2 and SPI3 can communicate at up to 25 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable from 4 to 16 bits. The SPI interfaces support NSS pulse mode, TI mode and Hardware CRC calculation. All SPIs can be served by the DMA controller. Three standard I2S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available. They can be operated in master or slave mode, in simplex communication modes, and can be configured to operate with a 16-/32-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I2S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency. All I2Sx can be served by the DMA controller. 2.26 Serial audio interface (SAI) The devices embed two serial audio interfaces. The serial audio interface is based on two independent audio subblocks which can operate as transmitter or receiver with their FIFO. Many audio protocols are supported by each block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC'97 and SPDIF output, supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both subblocks can be configured in master or in slave mode. In master mode, the master clock can be output to the external DAC/CODEC at 256 times of the sampling frequency. The two sub-blocks can be configured in synchronous mode when full-duplex mode is required. 38/222 DocID027590 Rev 3 STM32F745xx STM32F746xx Functional overview SAI1 and SAI2 can be served by the DMA controller 2.27 SPDIFRX Receiver Interface (SPDIFRX) The SPDIFRX peripheral, is designed to receive an S/PDIF flow compliant with IEC-60958 and IEC-61937. These standards support simple stereo streams up to high sample rate, and compressed multi-channel surround sound, such as those defined by Dolby or DTS (up to 5.1). The main features of the SPDIFRX are the following: * Up to 4 inputs available * Automatic symbol rate detection * Maximum symbol rate: 12.288 MHz * Stereo stream from 32 to 192 kHz supported * Supports Audio IEC-60958 and IEC-61937, consumer applications * Parity bit management * Communication using DMA for audio samples * Communication using DMA for control and user channel information * Interrupt capabilities The SPDIFRX receiver provides all the necessary features to detect the symbol rate, and decode the incoming data stream. The user can select the wanted SPDIF input, and when a valid signal will be available, the SPDIFRX will re-sample the incoming signal, decode the manchester stream, recognize frames, sub-frames and blocks elements. It delivers to the CPU decoded data, and associated status flags. The SPDIFRX also offers a signal named spdif_frame_sync, which toggles at the S/PDIF sub-frame rate that will be used to compute the exact sample rate for clock drift algorithms. 2.28 Audio PLL (PLLI2S) The devices feature an additional dedicated PLL for audio I2S and SAI applications. It allows to achieve error-free I2S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals. The PLLI2S configuration can be modified to manage an I2S/SAI sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces. The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 KHz to 192 KHz. In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S/SAI flow with an external PLL (or Codec output). DocID027590 Rev 3 39/222 44 Functional overview 2.29 STM32F745xx STM32F746xx Audio and LCD PLL(PLLSAI) An additional PLL dedicated to audio and LCD-TFT is used for SAI1 peripheral in case the PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or 11.2896 MHz) and the audio application requires both sampling frequencies simultaneously. The PLLSAI is also used to generate the LCD-TFT clock. 2.30 SD/SDIO/MMC card host interface (SDMMC) An SDMMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit. The interface allows data transfer at up to 50 MHz, and is compliant with the SD Memory card specification version 2.0. The SDMMC card specification version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit. The current version supports only one SD/SDMMC/MMC4.2 card at any one time and a stack of MMC4.1 or previous. The SDMMC can be served by the DMA controller 2.31 Ethernet MAC interface with dedicated DMA and IEEE 1588 support The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard medium-independent interface (MII) or a reduced medium-independent interface (RMII). The microcontroller requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller. The devices include the following features: 40/222 * Support of 10 and 100 Mbit/s rates * Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors * Tagged MAC frame support (VLAN support) * Half-duplex (CSMA/CD) and full-duplex operation * MAC control sublayer (control frames) support * 32-bit CRC generation and removal * Several address filtering modes for physical and multicast address (multicast and group addresses) * 32-bit status code for each transmitted or received frame * Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes. * Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input * Triggers interrupt when system time becomes greater than target time DocID027590 Rev 3 STM32F745xx STM32F746xx 2.32 Functional overview Controller area network (bxCAN) The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). 256 bytes of SRAM are allocated for each CAN. 2.33 Universal serial bus on-the-go full-speed (OTG_FS) The device embeds an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 2.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The major features are: * Combined Rx and Tx FIFO size of 1.28 Kbytes with dynamic FIFO sizing * Support of the session request protocol (SRP) and host negotiation protocol (HNP) * 1 bidirectional control endpoint + 5 IN endpoints + 5 OUT endpoints * 12 host channels with periodic OUT support * Software configurable to OTG1.3 and OTG2.0 modes of operation * USB 2.0 LPM (Link Power Management) support * Internal FS OTG PHY support * HNP/SNP/IP inside (no need for any external resistor) For OTG/Host modes, a power switch is needed in case bus-powered devices are connected 2.34 Universal serial bus on-the-go high-speed (OTG_HS) The device embeds a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required. The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG 2.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. DocID027590 Rev 3 41/222 44 Functional overview STM32F745xx STM32F746xx The major features are: 2.35 * Combined Rx and Tx FIFO size of 4 Kbytes with dynamic FIFO sizing * Support of the session request protocol (SRP) and host negotiation protocol (HNP) * 8 bidirectional endpoints * 16 host channels with periodic OUT support * Software configurable to OTG1.3 and OTG2.0 modes of operation * USB 2.0 LPM (Link Power Management) support * Internal FS OTG PHY support * External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output. * Internal USB DMA * HNP/SNP/IP inside (no need for any external resistor) * for OTG/Host modes, a power switch is needed in case bus-powered devices are connected High-definition multimedia interface (HDMI) - consumer electronics control (CEC) The device embeds a HDMI-CEC controller that provides hardware support for the Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard). This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead. It has a clock domain independent from the CPU clock, allowing the HDMI-CEC controller to wakeup the MCU from Stop mode on data reception. 2.36 Digital camera interface (DCMI) The devices embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz. It features: 2.37 * Programmable polarity for the input pixel clock and synchronization signals * Parallel data communication can be 8-, 10-, 12- or 14-bit * Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG) * Supports continuous mode or snapshot (a single frame) mode * Capability to automatically crop the image Random number generator (RNG) All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit. 42/222 DocID027590 Rev 3 STM32F745xx STM32F746xx 2.38 Functional overview General-purpose input/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission. The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers. Fast I/O handling allowing maximum I/O toggling up to 108 MHz. 2.39 Analog-to-digital converters (ADCs) Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs. Additional logic functions embedded in the ADC interface allow: * Simultaneous sample and hold * Interleaved sample and hold The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM5, or TIM8 timer. 2.40 Temperature sensor The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally connected to the same input channel as VBAT, ADC1_IN18, which is used to convert the sensor output voltage into a digital value. When the temperature sensor and VBAT conversion are enabled at the same time, only VBAT conversion is performed. As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used. 2.41 Digital-to-analog converter (DAC) The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. DocID027590 Rev 3 43/222 44 Functional overview STM32F745xx STM32F746xx This dual digital Interface supports the following features: * two DAC converters: one for each output channel * 8-bit or 12-bit monotonic output * left or right data alignment in 12-bit mode * synchronized update capability * noise-wave generation * triangular-wave generation * dual DAC channel independent or simultaneous conversions * DMA capability for each channel * external triggers for conversion * input voltage reference VREF+ Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams. 2.42 Serial wire JTAG debug port (SWJ-DP) The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. 2.43 Embedded Trace MacrocellTM The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F74xxx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors. The Embedded Trace Macrocell operates with third party debugger software tools. 44/222 DocID027590 Rev 3 STM32F745xx STM32F746xx Pinouts and pin description s s^^ W W W W KKd W W W W W W W W W W W W W W W W W W Figure 11. STM32F74xVx LQFP100 pinout /4)3 s s^^ sW W W W W W W W W W W W W W W W W W W W W W W W W W W W sd WEd/dDW WK^/E WK^Khd s^^ s W,K^/E W,K^Khd EZ^d W W W W s^^ sZ& s WtY&W W/ W/ W/ W, W, W, s s^^ sW W W W W W W W W W W sh^ s^^ W' W' W' W' W' W' W' W< W< W< s^^ s W: W: W: W: W: W: W W s s^^ W W W W W W W W W W W W W W W s s^^ W W W W/ W: W: W: W: W: W& W& s^^ s W& W& W& W' W' W W W s^^ s W W W W W W W W sW s^^ s W: W, W, W, W, W, W, W, s W W W W W W sd W/ W W W W/ W/ W/ s^^ s W& W& W& W/ W/ W/ W& W& W& s^^ s W& W& W& W& W& W, W, EZ^d W W W W s s^^ sZ& s W W W W, W, W, W, W s^^ s W/ W/ W/ W/ s WZKE s^^ W W W W KKd W W W W W W' W< W< W< W< W< s s^^ W' W' W' W' W' W' W: W: W: W: W W s s^^ W W W W W W W W W W W s W/ Figure 15. STM32F74xBx LQFP208 pinout 069 1. The above figure shows the package top view. DocID027590 Rev 3 49/222 87 Pinouts and pin description STM32F745xx STM32F746xx Figure 16. STM32F74xIx UFBGA176 ballout $ 3( 3( % 3( & 3( 3( 3% 3% 3* 3* 3% 3( 3( 3% 3% 3% 3* 3* 9%$7 3, 3, 3, 9'' 3'5B21 9'' ' 3& 3, 3, 3, 966 966 ( 3& 3) 3, 3, ) 3& 966 9'' 3+ 966 966 966 966 * 3+ 966 9'' 3+ 966 966 966 + 3+ 3) 3) 3+ 966 966 - 1567 3) 3) 3+ 966 . 3) 3) 3) 9'' 966 / 3) 3) 3) %<3$66B 5(* 0 966$ 3& 3& 3& 3& 3% 3* 966 966 1 95() 3$ 3$ 3$ 3& 3) 3* 9'' 9'' 3 95() 3$ 3$ 3$ 3& 3) 3) 3( 5 9''$ 3$ 3$ 3% 3% 3) 3) 3( %227 3% 3' 3& 3$ 3$ 3$ 3* 3* 3' 3' 3& 3& 3$ 9'' 9'' 3* 3' 3' 3, 3, 3$ 966 966 3' 3' 3' 3+ 3, 3$ 3+ 3+ 3, 3$ 966 966 9&$3 3& 3$ 966 966 966 9'' 3& 3& 966 966 966 966 9''86% 3* 3& 966 966 966 966 9'' 9'' 3* 3* 966 966 966 966 3+ 3* 3* 3* 3+ 3+ 3' 3* 3+ 3+ 3+ 3' 3' 9'' 3( 3+ 3' 3' 3' 3( 3( 3( 3% 3% 3' 3' 3( 3( 3( 3% 3% 3% 3% 9&$3B DLG 1. The above figure shows the package bump view. 50/222 DocID027590 Rev 3 STM32F745xx STM32F746xx Pinouts and pin description Figure 17. STM32F74xNx TFBGA216 ballout $ 3( 3( 3( 3* 3( 3( 3% 3% 3% 3% 3' % 3( 3( 3* 3% 3% 3% 3* 3* 3- 3- & 9%$7 3, 3, 3. 3. 3. 3* 3* 3- ' 3& 3) 3, 3, 3, 3, 3. 3. ( 3& 3) 3, 3, 3'5B 21 %227 9'' ) 3& 966 3, 9'' 9'' 966 966 * 3+ 3) 3, 3, 9'' 966 966 + 3+ 3) 3, 3+ 9'' 966 966 9'' - 1567 3) 3+ 3+ 9'' 966 966 . 3) 3) 3) 3+ 9'' 966 966 966 966 3) 3) 3) 3& %<3$66 966 5(* 9'' 9'' 0 966$ 3& 3& 3& 3% 3) 3* 1 95() 3$ 3$ 3$ 3& 3) 3 95() 3$ 3$ 3$ 3& 5 9''$ 3$ 3$ 3% 3% / 3& 3$ 3$ 3$ 3' 3' 3& 3& 3$ 3' 3' 3' 3, 3, 3$ 3* 3- 3' 3' 3+ 3, 3$ 9'' 9'' 9'' 9&$3 3+ 3+ 3, 3$ 966 966 966 9'' 3. 3. 3& 3$ 9''86% 3- 3. 3& 3& 3- 3- 3* 3& 9'' 3- 3- 3* 966 9'' 3- 3' 3% 9'' 9'' 9&$3 3' 3% 3' 3) 3- 3' 3' 3* 3* 3- 3* 3- 3( 3' 3* 3* 3+ 3+ 3) 3- 3) 3( 3( 3( 3% 3+ 3+ 3- 3- 3( 3( 3( 3( 3( 3% 3% 3* 3' 3' 3+ 3+ 3+ 3% 069 1. The above figure shows the package bump view. DocID027590 Rev 3 51/222 87 Pinouts and pin description STM32F745xx STM32F746xx Table 9. Legend/abbreviations used in the pinout table Name Abbreviation Pin name Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name S Supply pin I Input only pin I/O Input / output pin FT 5 V tolerant I/O TTa 3.3 V tolerant I/O directly connected to ADC B Dedicated BOOT pin RST Bidirectional reset pin with weak pull-up resistor Pin type I/O structure Notes Definition Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset Alternate functions Functions selected through GPIOx_AFR registers Additional functions Functions directly selected/enabled through peripheral registers Table 10. STM32F745xx and STM32F746xx pin and ball definition 1 A2 1 1 A3 PE2 I/O FT - 2 C10 2 A1 2 2 A2 PE3 I/O FT - TRACED0, SAI1_SD_B, FMC_A19, EVENTOUT - - TRACED1, SPI4_NSS, SAI1_FS_A, FMC_A20, DCMI_D4, LCD_B0, EVENTOUT - 3 B11 52/222 3 B1 3 LQFP208 D8 LQFP176 1 TRACECLK, SPI4_SCK, SAI1_MCLK_A, QUADSPI_BK1_IO2, ETH_MII_TXD3, FMC_A23, EVENTOUT LQFP144 Alternate functions LQFP100 Notes I/O structure Pin name (function after reset)(1) Pin type TFBGA216 UFBGA176 WLCSP143 Pin Number 3 A1 PE4 I/O FT DocID027590 Rev 3 Additional functions - STM32F745xx STM32F746xx Pinouts and pin description Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued) D9 B2 4 4 B1 PE5 I/O structure Pin type TFBGA216 LQFP208 LQFP176 UFBGA176 LQFP144 4 Pin name (function after reset)(1) I/O FT I/O FT Notes 4 WLCSP143 LQFP100 Pin Number Alternate functions Additional functions - TRACED2, TIM9_CH1, SPI4_MISO, SAI1_SCK_A, FMC_A21, DCMI_D6, LCD_G0, EVENTOUT - - TRACED3, TIM1_BKIN2, TIM9_CH2, SPI4_MOSI, SAI1_SD_A, SAI2_MCK_B, FMC_A22, DCMI_D7, LCD_G1, EVENTOUT - 5 E8 5 B3 5 5 B2 PE6 - - - - - - G6 VSS S - - - - - - - - - - F5 VDD S - - - - 6 C11 6 C1 6 6 C1 VBAT S - - - - - - - D2 7 7 C2 PI8 I/O FT (3) EVENTOUT RTC_TAMP2/ RTC_TS,WKUP5 7 D10 7 D1 8 8 D1 PC13 I/O FT (3) EVENTOUT RTC_TAMP1/ RTC_TS/RTC_OUT ,WKUP4 8 D11 8 E1 9 9 E1 PC14(2) OSC32_I I/O FT (3) N(PC14) EVENTOUT OSC32_IN PC15(2) OSC32_ I/O FT (3) OUT(PC 15) EVENTOUT OSC32_OUT - - - (2) (2) 9 E11 9 F1 10 10 F1 - - - - - - G5 VDD - - - D3 11 11 E4 PI9 I/O FT - CAN1_RX, FMC_D30, LCD_VSYNC, EVENTOUT - - - - E3 12 12 D5 PI10 I/O FT - ETH_MII_RX_ER, FMC_D31, LCD_HSYNC, EVENTOUT - S - DocID027590 Rev 3 53/222 87 Pinouts and pin description STM32F745xx STM32F746xx Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued) LQFP144 UFBGA176 LQFP176 LQFP208 TFBGA216 - - - E4 13 13 F3 PI11 - E7 - F2 14 14 F2 VSS S - - - - - E10 - F3 15 15 F4 VDD S - - - - - F11 10 E2 16 16 D2 PF0 I/O FT - I2C2_SDA, FMC_A0, EVENTOUT - - E9 11 H3 17 17 E2 PF1 I/O FT - I2C2_SCL, FMC_A1, EVENTOUT - - F10 12 H2 18 18 G2 PF2 I/O FT - I2C2_SMBA, FMC_A2, EVENTOUT - - - - - - 19 E3 PI12 I/O FT - LCD_HSYNC, EVENTOUT - - - - - - 20 G3 PI13 I/O FT - LCD_VSYNC, EVENTOUT - - - - - - 21 H3 PI14 I/O FT - LCD_CLK, EVENTOUT - - G11 13 J2 19 22 H2 PF3 I/O FT - FMC_A3, EVENTOUT ADC3_IN9 - F9 14 J3 20 23 J2 PF4 I/O FT - FMC_A4, EVENTOUT ADC3_IN14 - F8 15 K3 21 24 K3 PF5 I/O FT - FMC_A5, EVENTOUT ADC3_IN15 10 H7 16 G2 22 25 H6 VSS S - - - - 11 - 17 G3 23 26 H5 VDD S - - - - - TIM10_CH1, SPI5_NSS, SAI1_SD_B, UART7_Rx, QUADSPI_BK1_IO3, EVENTOUT ADC3_IN4 - TIM11_CH1, SPI5_SCK, SAI1_MCLK_B, UART7_Tx, QUADSPI_BK1_IO2, EVENTOUT ADC3_IN5 - G10 - 54/222 F7 18 19 K2 K1 24 25 27 28 K2 K1 PF6 PF7 I/O FT I/O FT I/O FT Notes WLCSP143 I/O structure LQFP100 Pin name (function after reset)(1) Pin type Pin Number Alternate functions Additional functions - OTG_HS_ULPI_DIR, EVENTOUT WKUP6 DocID027590 Rev 3 STM32F745xx STM32F746xx Pinouts and pin description Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued) H11 L3 26 29 L3 PF8 I/O structure Pin type TFBGA216 LQFP208 LQFP176 UFBGA176 LQFP144 20 Pin name (function after reset)(1) I/O FT Notes - WLCSP143 LQFP100 Pin Number Alternate functions Additional functions - SPI5_MISO, SAI1_SCK_B, UART7_RTS, TIM13_CH1, QUADSPI_BK1_IO0, EVENTOUT ADC3_IN6 ADC3_IN7 - G8 21 L2 27 30 L2 PF9 I/O FT - SPI5_MOSI, SAI1_FS_B, UART7_CTS, TIM14_CH1, QUADSPI_BK1_IO1, EVENTOUT - G9 22 L1 28 31 L1 PF10 I/O FT - DCMI_D11, LCD_DE, EVENTOUT ADC3_IN8 12 J11 23 G1 29 32 G1 PH0OSC_IN( I/O FT PH0) - EVENTOUT OSC_IN(4) 13 H10 24 H1 30 33 H1 PH1OSC_OU I/O FT T(PH1) - EVENTOUT OSC_OUT(4) 14 H9 25 J1 31 34 J1 RS T - - - I/O FT (4) SAI2_FS_B, OTG_HS_ULPI_STP, FMC_SDNWE, LCD_R5, EVENTOUT ADC123_IN10 I/O FT (4) TRACED0, SPI2_MOSI/I2S2_SD, SAI1_SD_A, ETH_MDC, EVENTOUT ADC123_IN11, RTC_TAMP3, WKUP3 SPI2_MISO, OTG_HS_ULPI_DIR, ETH_MII_TXD2, FMC_SDNE0, EVENTOUT ADC123_IN12 15 16 17 H8 K11 J10 26 27 28 M2 M3 M4 32 33 34 35 36 37 M2 M3 M4 NRST PC0 PC1 PC2 I/O I/O FT (4) DocID027590 Rev 3 55/222 87 Pinouts and pin description STM32F745xx STM32F746xx Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued) Notes I/O structure Pin name (function after reset)(1) Pin type TFBGA216 LQFP208 LQFP176 UFBGA176 LQFP144 LQFP100 WLCSP143 Pin Number I/O FT (4) Alternate functions Additional functions SPI2_MOSI/I2S2_SD, OTG_HS_ULPI_NXT, ETH_MII_TX_CLK, FMC_SDCKE0, EVENTOUT ADC123_IN13 18 J9 29 M5 35 38 L4 PC3 - G7 30 G3 36 39 J5 VDD S - - - - - - - - - - J6 VSS S - - - - 19 K10 31 M1 37 40 M1 VSSA S - - - - - - - N1 - - N1 VREF- S - - - - 20 L11 32 P1 38 41 P1 VREF+ S - - - - 21 L10 33 R1 39 42 R1 VDDA S - - - - 22 23 24 - 56/222 K9 K8 L9 - 34 35 36 - N3 N2 P2 F4 40 41 42 43 43 44 45 46 N3 TIM2_CH1/TIM2_ETR, TIM5_CH1, TIM8_ETR, PA0USART2_CTS, WKUP(P I/O FT (5) UART4_TX, SAI2_SD_B, A0) ETH_MII_CRS, EVENTOUT ADC123_IN0, WKUP1(4) N2 PA1 TIM2_CH2, TIM5_CH2, USART2_RTS, UART4_RX, QUADSPI_BK1_IO3, (4) I/O FT SAI2_MCK_B, ETH_MII_RX_CLK/ETH_ RMII_REF_CLK, LCD_R2, EVENTOUT ADC123_IN1 PA2 TIM2_CH3, TIM5_CH3, TIM9_CH1, USART2_TX, SAI2_SCK_B, I/O FT (4) ETH_MDIO, LCD_R1, EVENTOUT ADC123_IN2, WKUP2 PH2 LPTIM1_IN2, QUADSPI_BK2_IO0, SAI2_SCK_B, ETH_MII_CRS, FMC_SDCKE0, LCD_R0, EVENTOUT P2 K4 I/O FT DocID027590 Rev 3 - STM32F745xx STM32F746xx Pinouts and pin description Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued) - G4 44 47 J4 PH3 I/O FT - - - - H4 45 48 H4 PH4 I/O FT - I2C2_SCL, OTG_HS_ULPI_NXT, EVENTOUT - - - - J4 46 49 J3 PH5 I/O FT - I2C2_SDA, SPI5_NSS, FMC_SDNWE, EVENTOUT - TIM2_CH4, TIM5_CH4, TIM9_CH2, USART2_RX, I/O FT (4) OTG_HS_ULPI_D0, ETH_MII_COL, LCD_B5, EVENTOUT LQFP208 - LQFP176 - QUADSPI_BK2_IO1, SAI2_MCK_B, ETH_MII_COL, FMC_SDNE0, LCD_R1, EVENTOUT LQFP144 Alternate functions LQFP100 Notes I/O structure Pin name (function after reset)(1) Pin type TFBGA216 UFBGA176 WLCSP143 Pin Number Additional functions - 25 M11 37 R2 47 50 R2 PA3 26 - 38 - - 51 K6 VSS S - - - - - N11 - L4 48 - L5 BYPASS _REG I FT - - - 27 J8 39 K4 49 52 K5 VDD S - - - - TT (4) a SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, USART2_CK, OTG_HS_SOF, DCMI_HSYNC, LCD_VSYNC, EVENTOUT ADC12_IN4, DAC_OUT1 TT (4) a TIM2_CH1/TIM2_ETR, TIM8_CH1N, SPI1_SCK/I2S1_CK, OTG_HS_ULPI_CK, LCD_R4, EVENTOUT ADC12_IN5, DAC_OUT2 28 29 30 M10 M9 N10 40 41 42 N4 P4 P3 50 51 52 53 54 55 N4 P4 P3 PA4 I/O PA5 I/O PA6 TIM1_BKIN, TIM3_CH1, TIM8_BKIN, SPI1_MISO, TIM13_CH1, I/O FT (4) DCMI_PIXCLK, LCD_G2, EVENTOUT DocID027590 Rev 3 ADC123_IN3 ADC12_IN6 57/222 87 Pinouts and pin description STM32F745xx STM32F746xx Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued) 31 32 L8 M8 43 44 R3 N5 53 54 56 57 R3 N5 Notes I/O structure Pin name (function after reset)(1) Pin type TFBGA216 LQFP208 LQFP176 UFBGA176 LQFP144 WLCSP143 LQFP100 Pin Number Alternate functions Additional functions PA7 TIM1_CH1N, TIM3_CH2, TIM8_CH1N, SPI1_MOSI/I2S1_SD, TIM14_CH1, I/O FT (4) ETH_MII_RX_DV/ETH_R MII_CRS_DV, FMC_SDNWE, EVENTOUT ADC12_IN7 PC4 I2S1_MCK, SPDIFRX_IN2, I/O FT (4) ETH_MII_RXD0/ETH_RM II_RXD0, FMC_SDNE0, EVENTOUT ADC12_IN14 (4) SPDIFRX_IN3, ETH_MII_RXD1/ETH_RM II_RXD1, FMC_SDCKE0, EVENTOUT ADC12_IN15 33 N9 45 P5 55 58 P5 PC5 - J7 - - - 59 L7 VDD S - - - - - - - - - 60 L6 VSS S - - - - 34 35 N8 K7 46 47 R5 R4 56 57 61 62 R5 R4 I/O FT PB0 TIM1_CH2N, TIM3_CH3, TIM8_CH2N, UART4_CTS, LCD_R3, (4) I/O FT OTG_HS_ULPI_D1, ETH_MII_RXD2, EVENTOUT ADC12_IN8 PB1 TIM1_CH3N, TIM3_CH4, TIM8_CH3N, LCD_R6, I/O FT (4) OTG_HS_ULPI_D2, ETH_MII_RXD3, EVENTOUT ADC12_IN9 36 L7 48 M6 58 63 M5 PB2 I/O FT - SAI1_SD_A, SPI3_MOSI/I2S3_SD, QUADSPI_CLK, EVENTOUT - - - - - 64 G4 PI15 I/O FT - LCD_R0, EVENTOUT - - - - - - 65 R6 PJ0 I/O FT - LCD_R1, EVENTOUT - - - - - - 66 R7 PJ1 I/O FT - LCD_R2, EVENTOUT - 58/222 DocID027590 Rev 3 - STM32F745xx STM32F746xx Pinouts and pin description Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued) WLCSP143 LQFP144 UFBGA176 LQFP176 LQFP208 TFBGA216 Notes I/O structure LQFP100 Pin name (function after reset)(1) Pin type Pin Number Alternate functions - - - - - 67 P7 PJ2 I/O FT - LCD_R3, EVENTOUT - - - - - - 68 N8 PJ3 I/O FT - LCD_R4, EVENTOUT - - - - - - 69 M9 PJ4 I/O FT - LCD_R5, EVENTOUT - - M7 49 R6 59 70 P8 PF11 I/O FT - SPI5_MOSI, SAI2_SD_B, FMC_SDNRAS, DCMI_D12, EVENTOUT - - N7 50 P6 60 71 M6 PF12 I/O FT - FMC_A6, EVENTOUT - - - 51 M8 61 72 K7 VSS S - - - - - - 52 N8 62 73 L8 VDD S - - - - - K6 53 N6 63 74 N6 PF13 I/O FT - I2C4_SMBA, FMC_A7, EVENTOUT - - L6 54 R7 64 75 P6 PF14 I/O FT - I2C4_SCL, FMC_A8, EVENTOUT - - M6 55 P7 65 76 M8 PF15 I/O FT - I2C4_SDA, FMC_A9, EVENTOUT - - N6 56 N7 66 77 N7 PG0 I/O FT - FMC_A10, EVENTOUT - - K5 57 M7 67 78 M7 PG1 I/O FT - FMC_A11, EVENTOUT - 37 L5 58 R8 68 79 R8 PE7 I/O FT - TIM1_ETR, UART7_Rx, QUADSPI_BK2_IO0, FMC_D4, EVENTOUT - 38 M5 59 P8 69 80 N9 PE8 I/O FT - TIM1_CH1N, UART7_Tx, QUADSPI_BK2_IO1, FMC_D5, EVENTOUT - 39 N5 60 P9 70 81 P9 PE9 I/O FT - TIM1_CH1, UART7_RTS, QUADSPI_BK2_IO2, FMC_D6, EVENTOUT - - H3 61 M9 71 82 K8 VSS S - - - - - J5 62 N9 72 83 L9 VDD S - - - - - TIM1_CH2N, UART7_CTS, QUADSPI_BK2_IO3, FMC_D7, EVENTOUT - 40 J4 63 R9 73 84 R9 PE10 I/O FT DocID027590 Rev 3 Additional functions 59/222 87 Pinouts and pin description STM32F745xx STM32F746xx Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued) WLCSP143 LQFP144 UFBGA176 LQFP176 LQFP208 TFBGA216 Notes I/O structure LQFP100 Pin name (function after reset)(1) Pin type Pin Number Alternate functions 41 K4 64 P10 74 85 P10 PE11 I/O FT - TIM1_CH2, SPI4_NSS, SAI2_SD_B, FMC_D8, LCD_G3, EVENTOUT - 42 L4 65 R10 75 86 R10 PE12 I/O FT - TIM1_CH3N, SPI4_SCK, SAI2_SCK_B, FMC_D9, LCD_B4, EVENTOUT - 43 N4 66 N11 76 87 R12 PE13 I/O FT - TIM1_CH3, SPI4_MISO, SAI2_FS_B, FMC_D10, LCD_DE, EVENTOUT - 44 M4 67 P11 77 88 P11 PE14 I/O FT - TIM1_CH4, SPI4_MOSI, SAI2_MCK_B, FMC_D11, LCD_CLK, EVENTOUT - 45 L3 68 R11 78 89 R11 PE15 I/O FT - TIM1_BKIN, FMC_D12, LCD_R7, EVENTOUT - - TIM2_CH3, I2C2_SCL, SPI2_SCK/I2S2_CK, USART3_TX, OTG_HS_ULPI_D3, ETH_MII_RX_ER, LCD_G4, EVENTOUT - - TIM2_CH4, I2C2_SDA, USART3_RX, OTG_HS_ULPI_D4, ETH_MII_TX_EN/ETH_R MII_TX_EN, LCD_G5, EVENTOUT - 46 M3 69 R12 79 90 P12 PB10 I/O FT 47 N3 70 R13 80 91 R13 PB11 48 N2 71 M10 81 92 L11 VCAP_1 S - - - - 49 H2 - - - 93 K9 VSS S - - - - 50 J6 72 N10 82 94 L10 VDD S - - - - - - - - - 95 M14 PJ5 - LCD_R6, EVENTOUT - - I2C2_SMBA, SPI5_SCK, TIM12_CH1, ETH_MII_RXD2, FMC_SDNE1, DCMI_D8, EVENTOUT - - 60/222 - - M11 83 96 P13 PH6 I/O FT Additional functions I/O FT I/O FT DocID027590 Rev 3 STM32F745xx STM32F746xx Pinouts and pin description Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued) - N12 84 97 N13 PH7 I/O FT - - - - M12 85 98 P14 PH8 I/O FT - I2C3_SDA, FMC_D16, DCMI_HSYNC, LCD_R2, EVENTOUT - - LQFP208 - LQFP176 - I2C3_SCL, SPI5_MISO, ETH_MII_RXD3, FMC_SDCKE1, DCMI_D9, EVENTOUT LQFP144 Alternate functions LQFP100 Notes I/O structure Pin name (function after reset)(1) Pin type TFBGA216 UFBGA176 WLCSP143 Pin Number Additional functions - - - - M13 86 99 N14 PH9 I/O FT - I2C3_SMBA, TIM12_CH2, FMC_D17, DCMI_D0, LCD_R3, EVENTOUT - - - L13 87 100 P15 PH10 I/O FT - TIM5_CH1, I2C4_SMBA, FMC_D18, DCMI_D1, LCD_R4, EVENTOUT - - - - L12 88 101 N15 PH11 I/O FT - TIM5_CH2, I2C4_SCL, FMC_D19, DCMI_D2, LCD_R5, EVENTOUT - - - - K12 89 102 M15 PH12 I/O FT - TIM5_CH3, I2C4_SDA, FMC_D20, DCMI_D3, LCD_R6, EVENTOUT - - - - H12 90 - - - J12 91 51 52 M2 N1 73 74 P12 P13 92 93 - K10 VSS S - - - - 103 K11 VDD S - - - - - TIM1_BKIN, I2C2_SMBA, SPI2_NSS/I2S2_WS, USART3_CK, CAN2_RX, OTG_HS_ULPI_D5, ETH_MII_TXD0/ETH_RM II_TXD0, OTG_HS_ID, EVENTOUT - - TIM1_CH1N, SPI2_SCK/I2S2_CK, USART3_CTS, CAN2_TX, OTG_HS_ULPI_D6, ETH_MII_TXD1/ETH_RM II_TXD1, EVENTOUT OTG_HS_VBUS 104 L13 105 K14 PB12 PB13 I/O FT I/O FT DocID027590 Rev 3 61/222 87 Pinouts and pin description STM32F745xx STM32F746xx Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued) K3 R14 94 106 R14 PB14 I/O structure Pin type TFBGA216 LQFP208 LQFP176 UFBGA176 LQFP144 75 Pin name (function after reset)(1) I/O FT Notes 53 WLCSP143 LQFP100 Pin Number Alternate functions Additional functions - TIM1_CH2N, TIM8_CH2N, SPI2_MISO, USART3_RTS, TIM12_CH1, OTG_HS_DM, EVENTOUT - - 54 J3 76 R15 95 107 R15 PB15 I/O FT - RTC_REFIN, TIM1_CH3N, TIM8_CH3N, SPI2_MOSI/I2S2_SD, TIM12_CH2, OTG_HS_DP, EVENTOUT 55 L2 77 P15 96 108 L15 PD8 I/O FT - USART3_TX, SPDIFRX_IN11, FMC_D13, EVENTOUT - 56 M1 78 P14 97 109 L14 PD9 I/O FT - USART3_RX, FMC_D14, EVENTOUT - 57 H4 79 N15 98 110 K15 PD10 I/O FT - USART3_CK, FMC_D15, LCD_B3, EVENTOUT - - I2C4_SMBA, USART3_CTS, QUADSPI_BK1_IO0, SAI2_SD_A, FMC_A16/FMC_CLE, EVENTOUT - - TIM4_CH1, LPTIM1_IN1, I2C4_SCL, USART3_RTS, QUADSPI_BK1_IO1, SAI2_FS_A, FMC_A17/FMC_ALE, EVENTOUT - - TIM4_CH2, LPTIM1_OUT, I2C4_SDA, QUADSPI_BK1_IO3, SAI2_SCK_A, FMC_A18, EVENTOUT - 58 59 60 62/222 K2 H6 H5 80 81 82 N14 99 111 N10 N13 100 112 M10 M15 101 113 M11 PD11 PD12 PD13 I/O FT I/O FT I/O FT DocID027590 Rev 3 STM32F745xx STM32F746xx Pinouts and pin description Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued) Pin Number I/O structure Notes - - - 84 J13 103 115 J11 VDD S - - - - J2 85 M14 104 116 L12 PD14 I/O FT - TIM4_CH3, UART8_CTS, FMC_D0, EVENTOUT - 62 K1 86 L14 105 117 K13 PD15 I/O FT - TIM4_CH4, UART8_RTS, FMC_D1, EVENTOUT - - - - - - 118 K12 PJ6 I/O FT - LCD_R7, EVENTOUT - - - - - - 119 J12 PJ7 I/O FT - LCD_G0, EVENTOUT - - - - - - 120 H12 PJ8 I/O FT - LCD_G1, EVENTOUT - - - - - - 121 J13 PJ9 I/O FT - LCD_G2, EVENTOUT - - - - - - 122 H13 PJ10 I/O FT - LCD_G3, EVENTOUT - - - - - - 123 G12 PJ11 I/O FT - LCD_G4, EVENTOUT - - - - - - 124 H11 VDD S - - - - - - - - - 125 H10 VSS S - - - - - - - - - 126 G13 PK0 I/O FT - LCD_G5, EVENTOUT - - - - - - 127 F12 PK1 I/O FT - LCD_G6, EVENTOUT - - - - - - 128 F13 PK2 I/O FT - LCD_G7, EVENTOUT - - J1 87 L15 106 129 M13 PG2 I/O FT - FMC_A12, EVENTOUT - - G3 88 K15 107 130 M12 PG3 I/O FT - FMC_A13, EVENTOUT - - G5 89 K14 108 131 N12 PG4 I/O FT - FMC_A14/FMC_BA0, EVENTOUT - - G6 90 K13 109 132 N11 PG5 I/O FT - FMC_A15/FMC_BA1, EVENTOUT - - G4 91 J15 110 133 J15 PG6 I/O FT - DCMI_D12, LCD_R7, EVENTOUT - - H1 92 J14 111 PG7 I/O FT - USART6_CK, FMC_INT, DCMI_D13, LCD_CLK, EVENTOUT - 83 - - L1 61 TFBGA216 - - LQFP208 S - LQFP176 VSS UFBGA176 J10 LQFP144 102 114 WLCSP143 Alternate functions LQFP100 Pin type Pin name (function after reset)(1) 134 J14 DocID027590 Rev 3 Additional functions 63/222 87 Pinouts and pin description STM32F745xx STM32F746xx Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued) G2 93 H14 112 135 H14 PG8 - D2 94 G12 113 136 G10 VSS - G1 95 H13 114 137 G11 VDDUSB 63 64 65 66 67 68 64/222 F2 F3 E4 E3 F1 E2 96 97 98 99 H15 115 138 H15 G15 116 139 G15 G14 117 140 G14 F14 118 141 F14 100 F15 119 142 F15 101 E15 120 143 E15 PC6 PC7 PC8 PC9 PA8 PA9 I/O FT Notes - I/O structure Pin name (function after reset)(1) Pin type TFBGA216 LQFP208 LQFP176 UFBGA176 LQFP144 WLCSP143 LQFP100 Pin Number Alternate functions Additional functions - SPI6_NSS, SPDIFRX_IN2, USART6_RTS, ETH_PPS_OUT, FMC_SDCLK, EVENTOUT - S - - - - S - - - - - TIM3_CH1, TIM8_CH1, I2S2_MCK, USART6_TX, SDMMC1_D6, DCMI_D0, LCD_HSYNC, EVENTOUT - - TIM3_CH2, TIM8_CH2, I2S3_MCK, USART6_RX, SDMMC1_D7, DCMI_D1, LCD_G6, EVENTOUT - - TRACED1, TIM3_CH3, TIM8_CH3, UART5_RTS, USART6_CK, SDMMC1_D0, DCMI_D2, EVENTOUT - - MCO2, TIM3_CH4, TIM8_CH4, I2C3_SDA, I2S_CKIN, UART5_CTS, QUADSPI_BK1_IO0, SDMMC1_D1, DCMI_D3, EVENTOUT - - MCO1, TIM1_CH1, TIM8_BKIN2, I2C3_SCL, USART1_CK, OTG_FS_SOF, LCD_R6, EVENTOUT - - TIM1_CH2, I2C3_SMBA, SPI2_SCK/I2S2_CK, USART1_TX, DCMI_D0, EVENTOUT OTG_FS_VBUS I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT DocID027590 Rev 3 STM32F745xx STM32F746xx Pinouts and pin description Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued) D4 103 C15 122 145 C15 PA10 PA11 I/O structure Alternate functions Additional functions - TIM1_CH3, USART1_RX, OTG_FS_ID, DCMI_D1, EVENTOUT - - TIM1_CH4, USART1_CTS, CAN1_RX, OTG_FS_DM, LCD_R4, EVENTOUT - I/O FT - TIM1_ETR, USART1_RTS, SAI2_FS_B, CAN1_TX, OTG_FS_DP, LCD_R5, EVENTOUT - I/O FT I/O FT 71 E1 104 B15 123 146 B15 72 D3 105 A15 124 147 A15 PA13(JT MSI/O FT SWDIO) - JTMS-SWDIO, EVENTOUT - 73 D1 106 F13 125 148 E11 VCAP_2 S - - - - 74 D2 107 F12 126 149 F10 VSS S - - - - 75 C1 108 G13 127 150 F11 VDD S - - - - - - - E12 128 151 E12 PH13 I/O FT - TIM8_CH1N, CAN1_TX, FMC_D21, LCD_G2, EVENTOUT - - - - E13 129 152 E13 PH14 I/O FT - TIM8_CH2N, FMC_D22, DCMI_D4, LCD_G3, EVENTOUT - - - - D13 130 153 D13 PH15 I/O FT - TIM8_CH3N, FMC_D23, DCMI_D11, LCD_G4, EVENTOUT - - TIM5_CH4, SPI2_NSS/I2S2_WS, FMC_D24, DCMI_D13, LCD_G5, EVENTOUT - - TIM8_BKIN2, SPI2_SCK/I2S2_CK, FMC_D25, DCMI_D8, LCD_G6, EVENTOUT - - - - - - - E14 131 154 E14 D14 132 155 D14 PA12 Pin type Pin name (function after reset)(1) Notes 70 TFBGA216 102 D15 121 144 D15 LQFP208 LQFP144 D5 LQFP176 WLCSP143 69 UFBGA176 LQFP100 Pin Number PI0 PI1 I/O FT I/O FT DocID027590 Rev 3 65/222 87 Pinouts and pin description STM32F745xx STM32F746xx Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued) PI2 I/O structure I/O FT Alternate functions Additional functions - TIM8_CH4, SPI2_MISO, FMC_D26, DCMI_D9, LCD_G7, EVENTOUT - - TIM8_ETR, SPI2_MOSI/I2S2_SD, FMC_D27, DCMI_D10, EVENTOUT - - - - C13 134 157 C13 PI3 - F5 - D9 135 VSS S - - - - - A1 - C9 136 158 E10 VDD S - - - - 76 B1 - JTCK-SWCLK, EVENTOUT - - JTDI, TIM2_CH1/TIM2_ETR, HDMI-CEC, SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, UART4_RTS, EVENTOUT - - SPI3_SCK/I2S3_CK, USART3_TX, UART4_TX, QUADSPI_BK1_IO1, SDMMC1_D2, DCMI_D8, LCD_R2, EVENTOUT - - SPI3_MISO, USART3_RX, UART4_RX, QUADSPI_BK2_NCS, SDMMC1_D3, DCMI_D4, EVENTOUT - - TRACED3, SPI3_MOSI/I2S3_SD, USART3_CK, UART5_TX, SDMMC1_CK, DCMI_D9, EVENTOUT - 77 78 79 80 66/222 C2 A2 B2 C3 - F9 109 A14 137 159 A14 110 A13 138 160 A13 111 B14 139 161 B14 112 B13 140 162 B13 113 A12 141 163 A12 I/O FT Notes C14 133 156 C14 Pin name (function after reset)(1) Pin type TFBGA216 - LQFP208 LQFP144 - LQFP176 WLCSP143 - UFBGA176 LQFP100 Pin Number PA14(JT CKI/O FT SWCLK) PA15(JT I/O FT DI) PC10 PC11 PC12 I/O FT I/O FT I/O FT DocID027590 Rev 3 STM32F745xx STM32F746xx Pinouts and pin description Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued) Notes I/O structure 114 B12 142 164 B12 PD0 I/O FT - CAN1_RX, FMC_D2, EVENTOUT - 82 C4 115 C12 143 165 C12 PD1 I/O FT - CAN1_TX, FMC_D3, EVENTOUT - - TRACED2, TIM3_ETR, UART5_RX, SDMMC1_CMD, DCMI_D11, EVENTOUT - - 83 A3 TFBGA216 B3 LQFP208 LQFP144 81 LQFP176 WLCSP143 Alternate functions UFBGA176 LQFP100 Pin name (function after reset)(1) Pin type Pin Number 116 D12 144 166 D12 PD2 I/O FT Additional functions 84 B4 117 D11 145 167 C11 PD3 I/O FT - SPI2_SCK/I2S2_CK, USART2_CTS, FMC_CLK, DCMI_D5, LCD_G7, EVENTOUT 85 B5 118 D10 146 168 D11 PD4 I/O FT - USART2_RTS, FMC_NOE, EVENTOUT - 86 A4 119 C11 147 169 C10 PD5 I/O FT - USART2_TX, FMC_NWE, EVENTOUT - - - 120 D8 148 170 F8 VSS S - - - - - C5 121 C8 149 171 E9 VDD S - - - - - 87 F4 122 B11 150 172 B11 PD6 I/O FT - SPI3_MOSI/I2S3_SD, SAI1_SD_A, USART2_RX, FMC_NWAIT, DCMI_D10, LCD_B2, EVENTOUT 88 A5 123 A11 151 173 A11 PD7 I/O FT - USART2_CK, SPDIFRX_IN0, FMC_NE1, EVENTOUT - - - - - - 174 B10 PJ12 I/O FT - LCD_B0, EVENTOUT - - - - - - 175 B9 PJ13 I/O FT - LCD_B1, EVENTOUT - - - - - - 176 C9 PJ14 I/O FT - LCD_B2, EVENTOUT - - - - - - 177 D10 PJ15 I/O FT - LCD_B3, EVENTOUT - DocID027590 Rev 3 67/222 87 Pinouts and pin description STM32F745xx STM32F746xx Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued) 124 C10 152 178 D9 PG9 I/O FT - - C6 125 B10 153 179 C8 PG10 I/O FT - LCD_G3, SAI2_SD_B, FMC_NE3, DCMI_D2, LCD_B2, EVENTOUT - - SPDIFRX_IN0, ETH_MII_TX_EN/ETH_R MII_TX_EN, DCMI_D3, LCD_B3, EVENTOUT - - LPTIM1_IN1, SPI6_MISO, SPDIFRX_IN1, USART6_RTS, LCD_B4, FMC_NE4, LCD_B1, EVENTOUT - - TRACED0, LPTIM1_OUT, SPI6_SCK, USART6_CTS, ETH_MII_TXD0/ETH_RM II_TXD0, FMC_A24, LCD_R0, EVENTOUT - - TRACED1, LPTIM1_ETR, SPI6_MOSI, USART6_TX, QUADSPI_BK2_IO3, ETH_MII_TXD1/ETH_RM II_TXD1, FMC_A25, LCD_B0, EVENTOUT - - - - B6 A6 D6 126 127 128 B9 B8 A8 LQFP208 E5 LQFP176 - SPDIFRX_IN3, USART6_RX, QUADSPI_BK2_IO2, SAI2_FS_B, FMC_NE2/FMC_NCE, DCMI_VSYNC, EVENTOUT LQFP144 Alternate functions LQFP100 Notes I/O structure Pin name (function after reset)(1) Pin type TFBGA216 UFBGA176 WLCSP143 Pin Number 154 180 155 181 156 182 B8 C7 B3 PG11 PG12 PG13 I/O FT I/O FT I/O FT - - F6 129 A7 157 183 A4 PG14 - - 130 D7 158 184 F7 VSS S - - - - - E6 131 C7 159 185 E8 VDD S - - - - 68/222 I/O FT Additional functions DocID027590 Rev 3 STM32F745xx STM32F746xx Pinouts and pin description Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued) WLCSP143 LQFP144 UFBGA176 LQFP176 LQFP208 TFBGA216 Notes I/O structure LQFP100 Pin name (function after reset)(1) Pin type Pin Number Alternate functions - - - - - 186 D8 PK3 I/O FT - LCD_B4, EVENTOUT - - - - - - 187 D7 PK4 I/O FT - LCD_B5, EVENTOUT - - - - - - 188 C6 PK5 I/O FT - LCD_B6, EVENTOUT - - - - - - 189 C5 PK6 I/O FT - LCD_B7, EVENTOUT - - - - - - 190 C4 PK7 I/O FT - LCD_DE, EVENTOUT - - A7 132 B7 160 191 B7 PG15 I/O FT - USART6_CTS, FMC_SDNCAS, DCMI_D13, EVENTOUT - B7 PB3(JTD 133 A10 161 192 A10 O/TRAC I/O FT ESWO) - JTDO/TRACESWO, TIM2_CH2, SPI1_SCK/I2S1_CK, SPI3_SCK/I2S3_CK, EVENTOUT - C7 PB4(NJT I/O FT RST) - NJTRST, TIM3_CH1, SPI1_MISO, SPI3_MISO, SPI2_NSS/I2S2_WS, EVENTOUT - - TIM3_CH2, I2C1_SMBA, SPI1_MOSI/I2S1_SD, SPI3_MOSI/I2S3_SD, CAN2_RX, OTG_HS_ULPI_D7, ETH_PPS_OUT, FMC_SDCKE1, DCMI_D10, EVENTOUT - - TIM4_CH1, HDMI-CEC, I2C1_SCL, USART1_TX, CAN2_TX, QUADSPI_BK1_NCS, FMC_SDNE1, DCMI_D5, EVENTOUT - - TIM4_CH2, I2C1_SDA, USART1_RX, FMC_NL, DCMI_VSYNC, EVENTOUT - - - VPP 89 90 91 92 C8 A8 134 135 136 A9 A6 B6 162 193 163 194 164 195 A9 A8 B6 PB5 PB6 93 B8 137 B5 165 196 B5 PB7 94 C9 138 D6 166 197 E6 BOOT I/O FT I/O FT I/O FT I B DocID027590 Rev 3 Additional functions 69/222 87 Pinouts and pin description STM32F745xx STM32F746xx Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued) A9 96 B9 139 140 B4 167 198 168 199 A7 B4 PB8 PB9 I/O structure Pin type TFBGA216 LQFP208 LQFP176 UFBGA176 A5 Pin name (function after reset)(1) I/O FT I/O FT Notes 95 LQFP144 LQFP100 WLCSP143 Pin Number Alternate functions Additional functions - TIM4_CH3, TIM10_CH1, I2C1_SCL, CAN1_RX, ETH_MII_TXD3, SDMMC1_D4, DCMI_D6, LCD_B6, EVENTOUT - - TIM4_CH4, TIM11_CH1, I2C1_SDA, SPI2_NSS/I2S2_WS, CAN1_TX, SDMMC1_D5, DCMI_D7, LCD_B7, EVENTOUT - - 97 B10 141 A4 169 200 A6 PE0 I/O FT - TIM4_ETR, LPTIM1_ETR, UART8_Rx, SAI2_MCK_A, FMC_NBL0, DCMI_D2, EVENTOUT 98 A10 142 A3 170 201 A5 PE1 I/O FT - LPTIM1_IN2, UART8_Tx, FMC_NBL1, DCMI_D3, EVENTOUT - 202 F6 VSS S - - - - 99 - - - D5 - A11 143 C6 171 203 E5 PDR_ON S - - - - D7 C5 172 204 E7 VDD S - - - - - TIM8_BKIN, SAI2_MCK_A, FMC_NBL2, DCMI_D5, LCD_B4, EVENTOUT - - TIM8_CH1, SAI2_SCK_A, FMC_NBL3, DCMI_VSYNC, LCD_B5, EVENTOUT - 100 - - 70/222 - - 144 - - D4 C4 173 205 174 206 C3 D3 PI4 PI5 I/O FT I/O FT DocID027590 Rev 3 STM32F745xx STM32F746xx Pinouts and pin description Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued) UFBGA176 LQFP176 Notes I/O structure LQFP144 - - - C3 175 207 D6 PI6 I/O FT - TIM8_CH2, SAI2_SD_A, FMC_D28, DCMI_D6, LCD_B6, EVENTOUT - - - - C2 176 208 D4 PI7 I/O FT - TIM8_CH3, SAI2_FS_A, FMC_D29, DCMI_D7, LCD_B7, EVENTOUT - TFBGA216 WLCSP143 Alternate functions LQFP208 LQFP100 Pin name (function after reset)(1) Pin type Pin Number Additional functions 1. Function availability depends on the chosen device. 2. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF. - These I/Os must not be used as a current source (e.g. to drive an LED). 3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F75xxx and STM32F74xxx reference manual. 4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1). 5. If the device is delivered in an WLCSP143, UFBGA176, LQFP176 or TFBGA216 package, and the BYPASS_REG pin is set to VDD (Regulator OFF/internal reset ON mode), then PA0 is used as an internal Reset (active low). DocID027590 Rev 3 71/222 87 Pinouts and pin description STM32F745xx STM32F746xx Table 11. FMC pin definition 72/222 Pin name NOR/PSRAM/SR AM NOR/PSRAM Mux NAND16 SDRAM PF0 A0 - - A0 PF1 A1 - - A1 PF2 A2 - - A2 PF3 A3 - - A3 PF4 A4 - - A4 PF5 A5 - - A5 PF12 A6 - - A6 PF13 A7 - - A7 PF14 A8 - - A8 PF15 A9 - - A9 PG0 A10 - - A10 PG1 A11 - - A11 PG2 A12 - - A12 PG3 A13 - - - PG4 A14 - - BA0 PG5 A15 - - BA1 PD11 A16 A16 CLE - PD12 A17 A17 ALE - PD13 A18 A18 - - PE3 A19 A19 - - PE4 A20 A20 - - PE5 A21 A21 - - PE6 A22 A22 - - PE2 A23 A23 - - PG13 A24 A24 - - PG14 A25 A25 - - PD14 D0 DA0 D0 D0 PD15 D1 DA1 D1 D1 PD0 D2 DA2 D2 D2 PD1 D3 DA3 D3 D3 PE7 D4 DA4 D4 D4 PE8 D5 DA5 D5 D5 PE9 D6 DA6 D6 D6 PE10 D7 DA7 D7 D7 DocID027590 Rev 3 STM32F745xx STM32F746xx Pinouts and pin description Table 11. FMC pin definition (continued) Pin name NOR/PSRAM/SR AM NOR/PSRAM Mux NAND16 SDRAM PE11 D8 DA8 D8 D8 PE12 D9 DA9 D9 D9 PE13 D10 DA10 D10 D10 PE14 D11 DA11 D11 D11 PE15 D12 DA12 D12 D12 PD8 D13 DA13 D13 D13 PD9 D14 DA14 D14 D14 PD10 D15 DA15 D15 D15 PH8 D16 - - D16 PH9 D17 - - D17 PH10 D18 - - D18 PH11 D19 - - D19 PH12 D20 - - D20 PH13 D21 - - D21 PH14 D22 - - D22 PH15 D23 - - D23 PI0 D24 - - D24 PI1 D25 - - D25 PI2 D26 - - D26 PI3 D27 - - D27 PI6 D28 - - D28 PI7 D29 - - D29 PI9 D30 - - D30 PI10 D31 - - D31 PD7 NE1 NE1 - - PG9 NE2 NE2 NCE - PG10 NE3 NE3 - - PG11 - - - - PG12 NE4 NE4 - - PD3 CLK CLK - - PD4 NOE NOE NOE - PD5 NWE NWE NWE - PD6 NWAIT NWAIT NWAIT - PB7 NADV NADV - - DocID027590 Rev 3 73/222 87 Pinouts and pin description STM32F745xx STM32F746xx Table 11. FMC pin definition (continued) 74/222 Pin name NOR/PSRAM/SR AM NOR/PSRAM Mux NAND16 SDRAM PF6 - - - - PF7 - - - - PF8 - - - - PF9 - - - - PF10 - - - - PG6 - - - - PG7 - - INT - PE0 NBL0 NBL0 - NBL0 PE1 NBL1 NBL1 - NBL1 PI4 NBL2 - - NBL2 PI5 NBL3 - - NBL3 PG8 - - - SDCLK PC0 - - - SDNWE PF11 - - - SDNRAS PG15 - - - SDNCAS PH2 - - - SDCKE0 PH3 - - - SDNE0 PH6 - - - SDNE1 PH7 - - - SDCKE1 PH5 - - - SDNWE PC2 - - - SDNE0 PC3 - - - SDCKE0 PB5 - - - SDCKE1 PB6 - - - SDNE1 DocID027590 Rev 3 AF0 AF1 Port AF3 TIM8/9/10/ TIM3/4/5 11/LPTIM 1/CEC AF4 AF5 AF6 AF7 AF8 AF9 I2C1/2/3/ 4/CEC SPI1/2/3/ 4/5/6 SPI3/ SAI1 - - - USART2 _CTS UART4_ TX - UART4_ RX QUADSP I_BK1_IO 3 AF10 AF12 - TIM2_C H1/TIM2 _ETR TIM5_C H1 PA1 - TIM2_C H2 TIM5_C H2 - - - - USART2 _RTS PA2 - TIM2_C H3 TIM5_C H3 TIM9_CH 1 - - - USART2 _TX SAI2_SC K_B - PA3 - TIM2_C H4 TIM5_C H4 TIM9_CH 2 - - - USART2 _RX - - PA4 - - - - - SPI1_NS SPI3_NS S/I2S1_ S/I2S3_ WS WS USART2 _CK - - - PA5 - TIM2_C H1/TIM2 _ETR - TIM8_CH 1N - SPI1_SC K/I2S1_ CK - - - - PA6 - TIM1_B KIN TIM3_C H1 TIM8_BKI N - SPI1_MI SO - - - PA7 - TIM1_C H1N TIM3_C H2 TIM8_CH 1N - SPI1_M OSI/I2S1 _SD - - PA8 MCO1 TIM1_C H1 - TIM8_BKI N2 I2C3_SC L - - PA9 - TIM1_C H2 - - I2C3_SM BA SPI2_SC K/I2S2_ CK PA10 - TIM1_C H3 - - - PA11 - TIM1_C H4 - - - AF13 AF14 AF15 DCMI LCD SYS DocID027590 Rev 3 75/222 SAI2_SD_ ETH_MII_ B CRS - - - EVEN TOUT SAI2_MC K_B ETH_MII_ RX_CLK/ ETH_RMI I_REF_C LK - - LCD_R2 EVEN TOUT - ETH_MDI O - - LCD_R1 EVEN TOUT OTG_HS_ ETH_MII_ ULPI_D0 COL - - LCD_B5 EVEN TOUT - OTG_HS _SOF DCMI_H SYNC LCD_VS YNC EVEN TOUT OTG_HS_ ULPI_CK - - - LCD_R4 EVEN TOUT TIM13_C H1 - - - DCMI_PI XCLK LCD_G2 EVEN TOUT - TIM14_C H1 - - - EVEN TOUT USART1 _CK - - OTG_FS_ SOF - - - LCD_R6 EVEN TOUT - USART1 _TX - - - - - DCMI_D 0 - EVEN TOUT - - USART1 _RX - - OTG_FS_ ID - - DCMI_D 1 - EVEN TOUT - - USART1 _CTS - CAN1_R X OTG_FS_ DM - - - LCD_R4 EVEN TOUT ETH_MII_ RX_DV/E FMC_SD TH_RMII_ NWE CRS_DV Pinouts and pin description TIM1/2 TIM8_ET R AF11 SAI2/US SPI2/3/U CAN1/2/T SAI2/QU ART6/UA FMC/SD SART1/2/ IM12/13/ ADSPI/O ETH/ RT4/5/7/8 MMC1/O 3/UART5/ 14/QUAD TG2_HS/ OTG1_FS /SPDIFR TG2_FS SPDIFRX SPI/LCD OTG1_FS X SYS PA0 Port A AF2 STM32F745xx STM32F746xx Table 12. STM32F745xx and STM32F746xx alternate function mapping AF0 AF1 Port AF3 TIM8/9/10/ TIM3/4/5 11/LPTIM 1/CEC AF4 AF5 AF6 I2C1/2/3/ 4/CEC SPI1/2/3/ 4/5/6 SPI3/ SAI1 AF7 AF8 AF9 AF10 AF11 AF12 SAI2/US SPI2/3/U CAN1/2/T SAI2/QU ART6/UA FMC/SD SART1/2/ IM12/13/ ADSPI/O ETH/ RT4/5/7/8 MMC1/O 3/UART5/ 14/QUAD TG2_HS/ OTG1_FS /SPDIFR TG2_FS SPDIFRX SPI/LCD OTG1_FS X AF13 AF14 AF15 DCMI LCD SYS TIM1/2 PA12 - TIM1_ET R - - - - - USART1 _RTS SAI2_FS _B CAN1_T X OTG_FS_ DP - - - LCD_R5 EVEN TOUT PA13 JTMSSWDIO - - - - - - - - - - - - - - EVEN TOUT PA14 JTCKSWCLK - - - - - - - - - - - - - - EVEN TOUT PA15 JTDI TIM2_C H1/TIM2 _ETR - - HDMICEC - UART4_ RTS - - - - - - EVEN TOUT PB0 - TIM1_C H2N TIM3_C H3 TIM8_CH 2N - - - - UART4_ CTS LCD_R3 OTG_HS_ ETH_MII_ ULPI_D1 RXD2 - - - EVEN TOUT PB1 - TIM1_C H3N TIM3_C H4 TIM8_CH 3N - - - - - LCD_R6 OTG_HS_ ETH_MII_ ULPI_D2 RXD3 - - - EVEN TOUT PB2 - - - - - - SAI1_SD _A SPI3_MO SI/I2S3_ SD PB3 JTDO/T RACES WO TIM2_C H2 - - - SPI1_SC SPI3_SC K/I2S1_ K/I2S3_ CK CK PB4 NJTRST - TIM3_C H1 - - SPI1_MI SO PB5 - - TIM3_C H2 - I2C1_SM BA PB6 - - TIM4_C H1 HDMICEC I2C1_SC L - PB7 - - TIM4_C H2 - I2C1_SD A PB8 - - TIM4_C H3 TIM10_C H1 I2C1_SC L SPI1_NS SPI3_NS S/I2S1_ S/I2S3_ WS WS DocID027590 Rev 3 QUADSP I_CLK - - - - - EVEN TOUT - - - - - - - - EVEN TOUT SPI2_NS S/I2S2_ WS - - - - - - - EVEN TOUT - - CAN2_R X OTG_HS_ ETH_PPS FMC_SD ULPI_D7 _OUT CKE1 DCMI_D 10 - EVEN TOUT - USART1 _TX - CAN2_T X QUADSPI _BK1_NC S - FMC_SD NE1 DCMI_D 5 - EVEN TOUT - - USART1 _RX - - - - FMC_NL DCMI_V SYNC - EVEN TOUT - - - - CAN1_R X ETH_MII_ TXD3 SDMMC 1_D4 DCMI_D 6 LCD_B6 EVEN TOUT SPI3_MI SO SPI1_M SPI3_M OSI/I2S1 OSI/I2S3 _SD _SD STM32F745xx STM32F746xx SYS Port A Port B AF2 Pinouts and pin description 76/222 Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued) AF0 AF1 Port DocID027590 Rev 3 Port B AF2 AF3 AF4 AF5 AF6 TIM8/9/10/ TIM3/4/5 11/LPTIM 1/CEC I2C1/2/3/ 4/CEC SPI1/2/3/ 4/5/6 SPI3/ SAI1 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 DCMI LCD SYS SDMMC 1_D5 DCMI_D 7 LCD_B7 EVEN TOUT SAI2/US SPI2/3/U CAN1/2/T SAI2/QU ART6/UA FMC/SD SART1/2/ IM12/13/ ADSPI/O ETH/ RT4/5/7/8 MMC1/O 3/UART5/ 14/QUAD TG2_HS/ OTG1_FS /SPDIFR TG2_FS SPDIFRX SPI/LCD OTG1_FS X TIM1/2 PB9 - - TIM4_C H4 TIM11_CH 1 I2C1_SD A SPI2_NS S/I2S2_ WS - - - CAN1_T X PB10 - TIM2_C H3 - - I2C2_SC L SPI2_SC K/I2S2_ CK - USART3 _TX - - OTG_HS_ ETH_MII_ ULPI_D3 RX_ER - - LCD_G4 EVEN TOUT PB11 - TIM2_C H4 - - I2C2_SD A - - USART3 _RX - - ETH_MII_ OTG_HS_ TX_EN/E ULPI_D4 TH_RMII_ TX_EN - - LCD_G5 EVEN TOUT PB12 - TIM1_B KIN - - I2C2_SM BA SPI2_NS S/I2S2_ WS - USART3 _CK - CAN2_R X ETH_MII_ OTG_HS_ TXD0/ET OTG_HS ULPI_D5 H_RMII_T _ID XD0 - - EVEN TOUT PB13 - TIM1_C H1N - - - SPI2_SC K/I2S2_ CK - USART3 _CTS - CAN2_T X ETH_MII_ OTG_HS_ TXD1/ET ULPI_D6 H_RMII_T XD1 - - - EVEN TOUT PB14 - TIM1_C H2N - TIM8_CH 2N - SPI2_MI SO - USART3 _RTS - TIM12_C H1 - - OTG_HS _DM - - EVEN TOUT PB15 RTC_R EFIN TIM1_C H3N - TIM8_CH 3N - SPI2_M OSI/I2S2 _SD - - - TIM12_C H2 - - OTG_HS _DP - - EVEN TOUT PC0 - - - - - - - - SAI2_FS _B - OTG_HS_ ULPI_ST P - FMC_SD NWE - LCD_R5 EVEN TOUT PC1 TRACE D0 - - - - SPI2_M SAI1_SD OSI/I2S2 _A _SD - - - - ETH_MD C - - - EVEN TOUT PC2 - - - - - SPI2_MI SO - - - - OTG_HS_ ETH_MII_ FMC_SD ULPI_DIR TXD2 NE0 - - EVEN TOUT PC3 - - - - - SPI2_M OSI/I2S2 _SD - - - - OTG_HS_ ETH_MII_ FMC_SD ULPI_NX TX_CLK CKE0 T - - EVEN TOUT Port C - - 77/222 Pinouts and pin description SYS STM32F745xx STM32F746xx Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued) AF0 AF1 Port DocID027590 Rev 3 Port C AF2 AF3 TIM8/9/10/ TIM3/4/5 11/LPTIM 1/CEC AF4 AF5 AF6 I2C1/2/3/ 4/CEC SPI1/2/3/ 4/5/6 SPI3/ SAI1 AF7 AF8 AF9 AF10 AF11 AF12 SAI2/US SPI2/3/U CAN1/2/T SAI2/QU ART6/UA FMC/SD SART1/2/ IM12/13/ ADSPI/O ETH/ RT4/5/7/8 MMC1/O 3/UART5/ 14/QUAD TG2_HS/ OTG1_FS /SPDIFR TG2_FS SPDIFRX SPI/LCD OTG1_FS X AF13 AF14 AF15 DCMI LCD SYS TIM1/2 PC4 - - - - - I2S1_M CK - - SPDIFRX _IN2 - - ETH_MII_ RXD0/ET FMC_SD H_RMII_ NE0 RXD0 - - EVEN TOUT PC5 - - - - - - - - SPDIFRX _IN3 - - ETH_MII_ RXD1/ET FMC_SD H_RMII_ CKE0 RXD1 - - EVEN TOUT PC6 - - TIM3_C H1 TIM8_CH 1 - I2S2_M CK - - USART6 _TX - - - SDMMC 1_D6 DCMI_D 0 LCD_HS YNC EVEN TOUT PC7 - - TIM3_C H2 TIM8_ CH2 - - I2S3_M CK - USART6 _RX - - - SDMMC 1_D7 DCMI_D 1 LCD_G6 EVEN TOUT PC8 TRACE D1 - TIM3_C H3 TIM8_ CH3 - - - UART5_ RTS USART6 _CK - - - SDMMC 1_D0 DCMI_D 2 - EVEN TOUT PC9 MCO2 - TIM3_C H4 TIM8_ CH4 I2C3_SD A I2S_CKI N - UART5_ CTS - QUADSP I_BK1_IO 0 - - SDMMC 1_D1 DCMI_D 3 - EVEN TOUT PC10 - - - - - - SPI3_SC K/I2S3_ CK USART3 _TX QUADSP UART4_T I_BK1_IO X 1 - - SDMMC 1_D2 DCMI_D 8 LCD_R2 EVEN TOUT PC11 - - - - - - SPI3_MI SO USART3 _RX UART4_ RX QUADSP I_BK2_N CS - - SDMMC 1_D3 DCMI_D 4 - EVEN TOUT PC12 TRACE D3 - - - - - SPI3_M OSI/I2S3 _SD USART3 _CK UART5_T X - - - SDMMC 1_CK DCMI_D 9 - EVEN TOUT PC13 - - - - - - - - - - - - - - - EVEN TOUT PC14 - - - - - - - - - - - - - - - EVEN TOUT PC15 - - - - - - - - - - - - - - - EVEN TOUT STM32F745xx STM32F746xx SYS Pinouts and pin description 78/222 Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued) AF0 AF1 Port DocID027590 Rev 3 Port D AF2 AF3 TIM8/9/10/ TIM3/4/5 11/LPTIM 1/CEC AF4 AF5 AF6 I2C1/2/3/ 4/CEC SPI1/2/3/ 4/5/6 SPI3/ SAI1 AF7 AF8 AF9 AF10 AF11 AF12 SAI2/US SPI2/3/U CAN1/2/T SAI2/QU ART6/UA FMC/SD SART1/2/ IM12/13/ ADSPI/O ETH/ RT4/5/7/8 MMC1/O 3/UART5/ 14/QUAD TG2_HS/ OTG1_FS /SPDIFR TG2_FS SPDIFRX SPI/LCD OTG1_FS X AF13 AF14 AF15 DCMI LCD SYS TIM1/2 PD0 - - - - - - - - - CAN1_R X - - FMC_D2 - - EVEN TOUT PD1 - - - - - - - - - CAN1_T X - - FMC_D3 - - EVEN TOUT PD2 TRACE D2 - TIM3_ET R - - - - - UART5_ RX - - - SDMMC 1_CMD DCMI_D 11 - EVEN TOUT PD3 - - - - - SPI2_SC K/I2S2_ CK - USART2 _CTS - - - - FMC_CL K DCMI_D 5 LCD_G7 EVEN TOUT PD4 - - - - - - - USART2 _RTS - - - - FMC_N OE - - EVEN TOUT PD5 - - - - - - - USART2 _TX - - - - FMC_N WE - - EVEN TOUT PD6 - - - - - USART2 _RX - - - - FMC_N WAIT DCMI_D 10 LCD_B2 EVEN TOUT PD7 - - - - - - - USART2 _CK SPDIFRX _IN0 - - - FMC_NE 1 - - EVEN TOUT PD8 - - - - - - - USART3 _TX SPDIFRX _IN1 - - - FMC_D1 3 - - EVEN TOUT PD9 - - - - - - - USART3 _RX - - - - FMC_D1 4 - - EVEN TOUT PD10 - - - - - - - USART3 _CK - - - - FMC_D1 5 - LCD_B3 EVEN TOUT PD11 - - - - I2C4_SM BA - - USART3 _CTS - QUADSP SAI2_SD_ I_BK1_IO A 0 - FMC_A1 6/FMC_ CLE - - EVEN TOUT PD12 - - TIM4_C H1 LPTIM1_I N1 I2C4_SC L - - USART3 _RTS - QUADSP SAI2_FS_ I_BK1_IO A 1 - FMC_A1 7/FMC_ ALE - - EVEN TOUT PD13 - - TIM4_C H2 LPTIM1_ OUT I2C4_SD A - - - - QUADSP I_BK1_IO 3 - FMC_A1 8 - - EVEN TOUT SPI3_M SAI1_SD OSI/I2S3 _A _SD SAI2_SC K_A Pinouts and pin description 79/222 SYS STM32F745xx STM32F746xx Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued) AF0 AF1 Port AF3 TIM8/9/10/ TIM3/4/5 11/LPTIM 1/CEC AF4 AF5 AF6 I2C1/2/3/ 4/CEC SPI1/2/3/ 4/5/6 SPI3/ SAI1 AF7 AF8 AF9 AF10 AF11 AF12 SAI2/US SPI2/3/U CAN1/2/T SAI2/QU ART6/UA FMC/SD SART1/2/ IM12/13/ ADSPI/O ETH/ RT4/5/7/8 MMC1/O 3/UART5/ 14/QUAD TG2_HS/ OTG1_FS /SPDIFR TG2_FS SPDIFRX SPI/LCD OTG1_FS X AF13 AF14 AF15 DCMI LCD SYS TIM1/2 PD14 - - TIM4_C H3 - - - - - UART8_ CTS - - - FMC_D0 - - EVEN TOUT PD15 - - TIM4_C H4 - - - - - UART8_ RTS - - - FMC_D1 - - EVEN TOUT PE0 - - TIM4_ET LPTIM1_E R TR - - - - UART8_ Rx - SAI2_MC K_A - FMC_NB L0 DCMI_D 2 - EVEN TOUT PE1 - - - LPTIM1_I N2 - - - - UART8_T x - - - FMC_NB L1 DCMI_D 3 - EVEN TOUT PE2 TRACE CLK - - - - SPI4_SC K SAI1_M CLK_A - - QUADSP I_BK1_IO 2 - ETH_MII_ TXD3 FMC_A2 3 - - EVEN TOUT PE3 TRACE D0 - - - - - SAI1_SD _B - - - - - FMC_A1 9 - - EVEN TOUT PE4 TRACE D1 - - - - SPI4_NS SAI1_FS S _A - - - - - FMC_A2 0 DCMI_D 4 LCD_B0 EVEN TOUT PE5 TRACE D2 - - TIM9_CH 1 - SPI4_MI SO SAI1_SC K_A - - - - - FMC_A2 1 DCMI_D 6 LCD_G0 EVEN TOUT PE6 TRACE D3 TIM1_B KIN2 - TIM9_CH 2 - SPI4_M OSI SAI1_SD _A - - - SAI2_MC K_B - FMC_A2 2 DCMI_D 7 LCD_G1 EVEN TOUT PE7 - TIM1_ET R - - - - - - UART7_ Rx - QUADSPI _BK2_IO0 - FMC_D4 - - EVEN TOUT PE8 - TIM1_C H1N - - - - - - UART7_T x - QUADSPI _BK2_IO1 - FMC_D5 - - EVEN TOUT PE9 - TIM1_C H1 - - - - - - UART7_ RTS - QUADSPI _BK2_IO2 - FMC_D6 - - EVEN TOUT PE10 - TIM1_C H2N - - - - - - UART7_ CTS - QUADSPI _BK2_IO3 - FMC_D7 - - EVEN TOUT PE11 - TIM1_C H2 - - - SPI4_NS S - - - - SAI2_SD_ B - FMC_D8 - LCD_G3 EVEN TOUT PE12 - TIM1_C H3N - - - SPI4_SC K - - - - SAI2_SC K_B - FMC_D9 - LCD_B4 EVEN TOUT PE13 - TIM1_C H3 - - - SPI4_MI SO - - - - SAI2_FS_ B - FMC_D1 0 - LCD_DE EVEN TOUT DocID027590 Rev 3 STM32F745xx STM32F746xx SYS Port D Port E AF2 Pinouts and pin description 80/222 Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued) AF0 AF1 Port AF3 TIM8/9/10/ TIM3/4/5 11/LPTIM 1/CEC AF4 AF5 AF6 I2C1/2/3/ 4/CEC SPI1/2/3/ 4/5/6 SPI3/ SAI1 AF7 AF8 AF9 AF10 AF11 AF12 SAI2/US SPI2/3/U CAN1/2/T SAI2/QU ART6/UA FMC/SD SART1/2/ IM12/13/ ADSPI/O ETH/ RT4/5/7/8 MMC1/O 3/UART5/ 14/QUAD TG2_HS/ OTG1_FS /SPDIFR TG2_FS SPDIFRX SPI/LCD OTG1_FS X AF13 AF14 AF15 DCMI LCD SYS TIM1/2 PE14 - TIM1_C H4 - - - SPI4_M OSI - - - - SAI2_MC K_B - FMC_D1 1 - LCD_CL K EVEN TOUT PE15 - TIM1_B KIN - - - - - - - - - - FMC_D1 2 - LCD_R7 EVEN TOUT PF0 - - - - I2C2_SD A - - - - - - - FMC_A0 - - EVEN TOUT PF1 - - - - I2C2_SC L - - - - - - - FMC_A1 - - EVEN TOUT PF2 - - - - I2C2_SM BA - - - - - - - FMC_A2 - - EVEN TOUT PF3 - - - - - - - - - - - - FMC_A3 - - EVEN TOUT PF4 - - - - - - - - - - - - FMC_A4 - - EVEN TOUT PF5 - - - - - - - - - - - - FMC_A5 - - EVEN TOUT PF6 - - - TIM10_C H1 - SPI5_NS SAI1_SD S _B - UART7_ Rx QUADSP I_BK1_IO 3 - - - - - EVEN TOUT PF7 - - - TIM11_CH 1 - SPI5_SC K SAI1_M CLK_B - QUADSP UART7_T I_BK1_IO x 2 - - - - - EVEN TOUT PF8 - - - - - SPI5_MI SO SAI1_SC K_B - UART7_ RTS TIM13_C H1 QUADSPI _BK1_IO0 - - - - EVEN TOUT PF9 - - - - - SPI5_M OSI SAI1_FS _B - UART7_ CTS TIM14_C H1 QUADSPI _BK1_IO1 - - - - EVEN TOUT PF10 - - - - - - - - - - - - - DCMI_D 11 LCD_DE EVEN TOUT PF11 - - - - - SPI5_M OSI - - - - SAI2_SD_ B - FMC_SD NRAS DCMI_D 12 - EVEN TOUT PF12 - - - - - - - - - - - - FMC_A6 - - EVEN TOUT DocID027590 Rev 3 81/222 Pinouts and pin description SYS Port E Port F AF2 STM32F745xx STM32F746xx Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued) AF0 AF1 Port Port F DocID027590 Rev 3 Port G AF2 AF3 TIM8/9/10/ TIM3/4/5 11/LPTIM 1/CEC AF4 AF5 AF6 I2C1/2/3/ 4/CEC SPI1/2/3/ 4/5/6 SPI3/ SAI1 AF7 AF8 AF9 AF10 AF11 AF12 SAI2/US SPI2/3/U CAN1/2/T SAI2/QU ART6/UA FMC/SD SART1/2/ IM12/13/ ADSPI/O ETH/ RT4/5/7/8 MMC1/O 3/UART5/ 14/QUAD TG2_HS/ OTG1_FS /SPDIFR TG2_FS SPDIFRX SPI/LCD OTG1_FS X AF13 AF14 AF15 DCMI LCD SYS TIM1/2 PF13 - - - - I2C4_SM BA - - - - - - - FMC_A7 - - EVEN TOUT PF14 - - - - I2C4_SC L - - - - - - - FMC_A8 - - EVEN TOUT PF15 - - - - I2C4_SD A - - - - - - - FMC_A9 - - EVEN TOUT PG0 - - - - - - - - - - - - FMC_A1 0 - - EVEN TOUT PG1 - - - - - - - - - - - - FMC_A1 1 - - EVEN TOUT PG2 - - - - - - - - - - - - FMC_A1 2 - - EVEN TOUT PG3 - - - - - - - - - - - - FMC_A1 3 - - EVEN TOUT PG4 - - - - - - - - - - - - FMC_A1 4/FMC_ BA0 - - EVEN TOUT PG5 - - - - - - - - - - - - FMC_A1 5/FMC_ BA1 - - EVEN TOUT PG6 - - - - - - - - - - - - - DCMI_D 12 LCD_R7 EVEN TOUT PG7 - - - - - - - - USART6 _CK - - - FMC_IN T DCMI_D 13 LCD_CL K EVEN TOUT PG8 - - - - - SPI6_NS S - SPDIFRX _IN2 USART6 _RTS - - - - EVEN TOUT PG9 - - - - - - - SPDIFRX _IN3 USART6 _RX PG10 - - - - - - - - - ETH_PPS FMC_SD _OUT CLK QUADSP SAI2_FS_ I_BK2_IO B 2 - FMC_NE 2/FMC_ NCE DCMI_V SYNC - EVEN TOUT SAI2_SD_ B - FMC_NE 3 DCMI_D 2 LCD_B2 EVEN TOUT LCD_G3 STM32F745xx STM32F746xx SYS Pinouts and pin description 82/222 Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued) AF0 AF1 Port Port G AF2 AF3 TIM8/9/10/ TIM3/4/5 11/LPTIM 1/CEC AF4 AF5 AF6 I2C1/2/3/ 4/CEC SPI1/2/3/ 4/5/6 SPI3/ SAI1 AF7 AF8 AF9 AF10 AF11 AF12 SAI2/US SPI2/3/U CAN1/2/T SAI2/QU ART6/UA FMC/SD SART1/2/ IM12/13/ ADSPI/O ETH/ RT4/5/7/8 MMC1/O 3/UART5/ 14/QUAD TG2_HS/ OTG1_FS /SPDIFR TG2_FS SPDIFRX SPI/LCD OTG1_FS X AF13 AF14 AF15 DCMI LCD SYS DocID027590 Rev 3 TIM1/2 PG11 - - - - - - - SPDIFRX _IN0 - - - ETH_MII_ TX_EN/E TH_RMII_ TX_EN - DCMI_D 3 LCD_B3 EVEN TOUT PG12 - - - LPTIM1_I N1 - SPI6_MI SO - SPDIFRX _IN1 USART6 _RTS LCD_B4 - - FMC_NE 4 - LCD_B1 EVEN TOUT PG13 TRACE D0 - - LPTIM1_ OUT - SPI6_SC K - - USART6 _CTS - - ETH_MII_ TXD0/ET FMC_A2 H_RMII_T 4 XD0 - LCD_R0 EVEN TOUT PG14 TRACE D1 - - LPTIM1_E TR - SPI6_M OSI - - USART6 _TX QUADSP I_BK2_IO 3 - ETH_MII_ TXD1/ET FMC_A2 H_RMII_T 5 XD1 - LCD_B0 EVEN TOUT PG15 - - - - - - - - USART6 _CTS - - - FMC_SD NCAS DCMI_D 13 - EVEN TOUT PH0 - - - - - - - - - - - - - - - EVEN TOUT PH1 - - - - - - - - - - - - - - - EVEN TOUT PH2 - - - LPTIM1_I N2 - - - - - QUADSP I_BK2_IO 0 SAI2_SC K_B ETH_MII_ FMC_SD CRS CKE0 - LCD_R0 EVEN TOUT PH3 - - - - - - - - - QUADSP I_BK2_IO 1 SAI2_MC K_B ETH_MII_ FMC_SD COL NE0 - LCD_R1 EVEN TOUT PH4 - - - - I2C2_SC L - - - - - OTG_HS_ ULPI_NX T - - - - EVEN TOUT PH5 - - - - I2C2_SD A SPI5_NS S - - - - - - FMC_SD NWE - - EVEN TOUT PH6 - - - - I2C2_SM BA SPI5_SC K - - - TIM12_C H1 - ETH_MII_ FMC_SD RXD2 NE1 DCMI_D 8 - EVEN TOUT PH7 - - - - I2C3_SC L SPI5_MI SO - - - - - ETH_MII_ FMC_SD RXD3 CKE1 DCMI_D 9 - EVEN TOUT Port H 83/222 Pinouts and pin description SYS STM32F745xx STM32F746xx Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued) AF0 AF1 Port AF2 AF3 TIM8/9/10/ TIM3/4/5 11/LPTIM 1/CEC AF4 AF5 AF6 I2C1/2/3/ 4/CEC SPI1/2/3/ 4/5/6 SPI3/ SAI1 AF7 AF8 AF9 AF10 AF11 AF12 SAI2/US SPI2/3/U CAN1/2/T SAI2/QU ART6/UA FMC/SD SART1/2/ IM12/13/ ADSPI/O ETH/ RT4/5/7/8 MMC1/O 3/UART5/ 14/QUAD TG2_HS/ OTG1_FS /SPDIFR TG2_FS SPDIFRX SPI/LCD OTG1_FS X AF13 AF14 AF15 DCMI LCD SYS TIM1/2 PH8 - - - - I2C3_SD A - - - - - - - FMC_D1 6 DCMI_H SYNC LCD_R2 EVEN TOUT PH9 - - - - I2C3_SM BA - - - - TIM12_C H2 - - FMC_D1 7 DCMI_D 0 LCD_R3 EVEN TOUT PH10 - - TIM5_C H1 - I2C4_SM BA - - - - - - - FMC_D1 8 DCMI_D 1 LCD_R4 EVEN TOUT PH11 - - TIM5_C H2 - I2C4_SC L - - - - - - - FMC_D1 9 DCMI_D 2 LCD_R5 EVEN TOUT PH12 - - TIM5_C H3 - I2C4_SD A - - - - - - - FMC_D2 0 DCMI_D 3 LCD_R6 EVEN TOUT PH13 - - - TIM8_CH 1N - - - - - CAN1_T X - - FMC_D2 1 - LCD_G2 EVEN TOUT PH14 - - - TIM8_CH 2N - - - - - - - - FMC_D2 2 DCMI_D 4 LCD_G3 EVEN TOUT PH15 - - - TIM8_CH 3N - - - - - - - - FMC_D2 3 DCMI_D 11 LCD_G4 EVEN TOUT PI0 - - TIM5_C H4 - - SPI2_NS S/I2S2_ WS - - - - - - FMC_D2 4 DCMI_D 13 LCD_G5 EVEN TOUT PI1 - - - TIM8_BKI N2 - SPI2_SC K/I2S2_ CK - - - - - - FMC_D2 5 DCMI_D 8 LCD_G6 EVEN TOUT PI2 - - - TIM8_CH 4 - SPI2_MI SO - - - - - - FMC_D2 6 DCMI_D 9 LCD_G7 EVEN TOUT PI3 - - - TIM8_ET R - SPI2_M OSI/I2S2 _SD - - - - - - FMC_D2 7 DCMI_D 10 - EVEN TOUT PI4 - - - TIM8_BKI N - - - - - - SAI2_MC K_A - FMC_NB L2 DCMI_D 5 LCD_B4 EVEN TOUT PI5 - - - TIM8_CH 1 - - - - - - SAI2_SC K_A - FMC_NB L3 DCMI_V SYNC LCD_B5 EVEN TOUT PI6 - - - TIM8_CH 2 - - - - - - SAI2_SD_ A - FMC_D2 8 DCMI_D 6 LCD_B6 EVEN TOUT Port H DocID027590 Rev 3 Port I STM32F745xx STM32F746xx SYS Pinouts and pin description 84/222 Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued) AF0 AF1 Port Port I DocID027590 Rev 3 AF3 TIM8/9/10/ TIM3/4/5 11/LPTIM 1/CEC AF4 AF5 AF6 I2C1/2/3/ 4/CEC SPI1/2/3/ 4/5/6 SPI3/ SAI1 AF7 AF8 AF9 AF10 AF11 AF12 SAI2/US SPI2/3/U CAN1/2/T SAI2/QU ART6/UA FMC/SD SART1/2/ IM12/13/ ADSPI/O ETH/ RT4/5/7/8 MMC1/O 3/UART5/ 14/QUAD TG2_HS/ OTG1_FS /SPDIFR TG2_FS SPDIFRX SPI/LCD OTG1_FS X AF13 AF14 AF15 DCMI LCD SYS 85/222 SYS TIM1/2 PI7 - - - TIM8_CH 3 - - - - - - SAI2_FS_ A - FMC_D2 9 DCMI_D 7 LCD_B7 EVEN TOUT PI8 - - - - - - - - - - - - - - - EVEN TOUT PI9 - - - - - - - - - CAN1_R X - - FMC_D3 0 - LCD_VS YNC EVEN TOUT PI10 - - - - - - - - - - - ETH_MII_ FMC_D3 RX_ER 1 - LCD_HS YNC EVEN TOUT PI11 - - - - - - - - - - OTG_HS_ ULPI_DIR - - - - EVEN TOUT PI12 - - - - - - - - - - - - - - LCD_HS YNC EVEN TOUT PI13 - - - - - - - - - - - - - - LCD_VS YNC EVEN TOUT PI14 - - - - - - - - - - - - - - LCD_CL K EVEN TOUT PI15 - - - - - - - - - - - - - - LCD_R0 EVEN TOUT PJ0 - - - - - - - - - - - - - - LCD_R1 EVEN TOUT PJ1 - - - - - - - - - - - - - - LCD_R2 EVEN TOUT PJ2 - - - - - - - - - - - - - - LCD_R3 EVEN TOUT PJ3 - - - - - - - - - - - - - - LCD_R4 EVEN TOUT PJ4 - - - - - - - - - - - - - - LCD_R5 EVEN TOUT PJ5 - - - - - - - - - - - - - - LCD_R6 EVEN TOUT PJ6 - - - - - - - - - - - - - - LCD_R7 EVEN TOUT Pinouts and pin description Port J AF2 STM32F745xx STM32F746xx Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued) AF0 AF1 Port Port J AF2 AF3 TIM8/9/10/ TIM3/4/5 11/LPTIM 1/CEC AF4 AF5 AF6 I2C1/2/3/ 4/CEC SPI1/2/3/ 4/5/6 SPI3/ SAI1 AF7 AF8 AF9 AF10 AF11 AF12 SAI2/US SPI2/3/U CAN1/2/T SAI2/QU ART6/UA FMC/SD SART1/2/ IM12/13/ ADSPI/O ETH/ RT4/5/7/8 MMC1/O 3/UART5/ 14/QUAD TG2_HS/ OTG1_FS /SPDIFR TG2_FS SPDIFRX SPI/LCD OTG1_FS X AF13 AF14 AF15 DCMI LCD SYS DocID027590 Rev 3 SYS TIM1/2 PJ7 - - - - - - - - - - - - - - LCD_G0 EVEN TOUT PJ8 - - - - - - - - - - - - - - LCD_G1 EVEN TOUT PJ9 - - - - - - - - - - - - - - LCD_G2 EVEN TOUT PJ10 - - - - - - - - - - - - - - LCD_G3 EVEN TOUT PJ11 - - - - - - - - - - - - - - LCD_G4 EVEN TOUT PJ12 - - - - - - - - - - - - - - LCD_B0 EVEN TOUT PJ13 - - - - - - - - - - - - - - LCD_B1 EVEN TOUT PJ14 - - - - - - - - - - - - - - LCD_B2 EVEN TOUT PJ15 - - - - - - - - - - - - - - LCD_B3 EVEN TOUT Pinouts and pin description 86/222 Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued) STM32F745xx STM32F746xx AF0 AF1 Port AF2 AF3 TIM8/9/10/ TIM3/4/5 11/LPTIM 1/CEC AF4 AF5 AF6 I2C1/2/3/ 4/CEC SPI1/2/3/ 4/5/6 SPI3/ SAI1 AF7 AF8 AF9 AF10 AF11 AF12 SAI2/US SPI2/3/U CAN1/2/T SAI2/QU ART6/UA FMC/SD SART1/2/ IM12/13/ ADSPI/O ETH/ RT4/5/7/8 MMC1/O 3/UART5/ 14/QUAD TG2_HS/ OTG1_FS /SPDIFR TG2_FS SPDIFRX SPI/LCD OTG1_FS X AF13 AF14 AF15 DCMI LCD SYS SYS TIM1/2 PK0 - - - - - - - - - - - - - - LCD_G5 EVEN TOUT PK1 - - - - - - - - - - - - - - LCD_G6 EVEN TOUT PK2 - - - - - - - - - - - - - - LCD_G7 EVEN TOUT PK3 - - - - - - - - - - - - - - LCD_B4 EVEN TOUT PK4 - - - - - - - - - - - - - - LCD_B5 EVEN TOUT PK5 - - - - - - - - - - - - - - LCD_B6 EVEN TOUT PK6 - - - - - - - - - - - - - - LCD_B7 EVEN TOUT PK7 - - - - - - - - - - - - - - LCD_DE EVEN TOUT Port K STM32F745xx STM32F746xx Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued) DocID027590 Rev 3 Pinouts and pin description 87/222 Memory mapping 4 STM32F745xx STM32F746xx Memory mapping The memory map is shown in Figure 18. Figure 18. Memory map [)))))))) 5HVHUYHG [([)))))))) &RUWH[0LQWHUQDO SHULSKHUDOV [([())))) $+% [['))))))) 5HVHUYHG [&[))))))) [%)) $+% 0E\WH %ORFN &RUWH[0 ,QWHUQDO SHULSKHUDOV 5HVHUYHG [ [[))))))) [)))) [( ['))))))) 0E\WH %ORFN )0& [' [&))))))) $+% 0E\WH %ORFN )0& [& [))))))) [ [))))))) 0E\WH %ORFN 4XDG63,DQG )0&EDQN [ 5HVHUYHG [&[)))) [%)) 0E\WH %ORFN )0&EDQNWR EDQN [ [))))))) $3% 0E\WH %ORFN 3HULSKHUDOV [ [))))))) 0E\WH %ORFN 65$0 [ [))))))) 0E\WH %ORFN [ 5HVHUYHG [[))))))) 65$0 .% [&[)))) 65$0 .% [[%))) '7&0 .% [[)))) 5HVHUYHG [)))[))))))) 2SWLRQ%\WHV [)))[)))) 5HVHUYHG [[))()))) 5HVHUYHG [ [[)))) [))) $3% )ODVKPHPRU\RQ$;,0LQWHUIDFH [[))))) 5HVHUYHG [[)))))) )ODVKPHPRU\RQ,7&0LQWHUIDFH [[))))) 5HVHUYHG 88/222 [[))))) 6\VWHPPHPRU\ [[('%) 5HVHUYHG [[))))) ,7&05$0 [[))) DocID027590 Rev 3 [ 069 STM32F745xx STM32F746xx Memory mapping Table 13. STM32F745xx and STM32F746xx register boundary addresses Bus Cortex-M7 AHB3 AHB2 Boundary address Peripheral 0xE00F FFFF - 0xFFFF FFFF Reserved 0xE000 0000 - 0xE00F FFFF Cortex-M7 internal peripherals 0xD000 0000 - 0xDFFF FFFF FMC bank 6 0xC000 0000 - 0xCFFF FFFF FMC bank 5 0xA000 2000 - 0xBFFF FFFF Reserved 0xA000 1000 - 0xA000 1FFF Quad-SPI control register 0xA000 0000- 0xA000 0FFF FMC control register 0x9000 0000 - 0x9FFF FFFF Quad-SPI 0x8000 0000 - 0x8FFF FFFF FMC bank 3 0x7000 0000 - 0x7FFF FFFF FMC bank 2 0x6000 0000 - 0x6FFF FFFF FMC bank 1 0x5006 0C00- 0x5FFF FFFF Reserved 0x5006 0800 - 0x5006 0BFF RNG 0x5005 0400 - 0x5006 07FF Reserved 0x5005 0000 - 0x5005 03FF DCMI 0x5004 0000- 0x5004 FFFF Reserved 0x5000 0000 - 0x5003 FFFF USB OTG FS DocID027590 Rev 3 89/222 92 Memory mapping STM32F745xx STM32F746xx Table 13. STM32F745xx and STM32F746xx register boundary addresses (continued) Bus Boundary address Peripheral 0x4008 0000- 0x4FFF FFFF Reserved 0x4004 0000 - 0x4007 FFFF USB OTG HS 0x4002 BC00- 0x4003 FFFF Reserved 0x4002 B000 - 0x4002 BBFF Chrom-ART (DMA2D) 0x4002 9400 - 0x4002 AFFF Reserved 0x4002 9000 - 0x4002 93FF 0x4002 8C00 - 0x4002 8FFF 0x4002 8800 - 0x4002 8BFF ETHERNET MAC 0x4002 8400 - 0x4002 87FF 0x4002 8000 - 0x4002 83FF AHB1 90/222 0x4002 6800 - 0x4002 7FFF Reserved 0x4002 6400 - 0x4002 67FF DMA2 0x4002 6000 - 0x4002 63FF DMA1 0x4002 5000 - 0X4002 5FFF Reserved 0x4002 4000 - 0x4002 4FFF BKPSRAM 0x4002 3C00 - 0x4002 3FFF Flash interface register 0x4002 3800 - 0x4002 3BFF RCC 0X4002 3400 - 0X4002 37FF Reserved 0x4002 3000 - 0x4002 33FF CRC 0x4002 2C00 - 0x4002 2FFF Reserved 0x4002 2800 - 0x4002 2BFF GPIOK 0x4002 2400 - 0x4002 27FF GPIOJ 0x4002 2000 - 0x4002 23FF GPIOI 0x4002 1C00 - 0x4002 1FFF GPIOH 0x4002 1800 - 0x4002 1BFF GPIOG 0x4002 1400 - 0x4002 17FF GPIOF 0x4002 1000 - 0x4002 13FF GPIOE 0X4002 0C00 - 0x4002 0FFF GPIOD 0x4002 0800 - 0x4002 0BFF GPIOC 0x4002 0400 - 0x4002 07FF GPIOB 0x4002 0000 - 0x4002 03FF GPIOA DocID027590 Rev 3 STM32F745xx STM32F746xx Memory mapping Table 13. STM32F745xx and STM32F746xx register boundary addresses (continued) Bus APB2 Boundary address Peripheral 0x4001 6C00- 0x4001 FFFF Reserved 0x4001 6800 - 0x4001 6BFF LCD-TFT 0x4001 6000 - 0x4001 67FF Reserved 0x4001 5C00 - 0x4001 5FFF SAI2 0x4001 5800 - 0x4001 5BFF SAI1 0x4001 5400 - 0x4001 57FF SPI6 0x4001 5000 - 0x4001 53FF SPI5 0x4001 4C00 - 0x4001 4FFF Reserved 0x4001 4800 - 0x4001 4BFF TIM11 0x4001 4400 - 0x4001 47FF TIM10 0x4001 4000 - 0x4001 43FF TIM9 0x4001 3C00 - 0x4001 3FFF EXTI 0x4001 3800 - 0x4001 3BFF SYSCFG 0x4001 3400 - 0x4001 37FF SPI4 0x4001 3000 - 0x4001 33FF SPI1/I2S1 0x4001 2C00 - 0x4001 2FFF SDMMC 0x4001 2400 - 0x4001 2BFF Reserved 0x4001 2000 - 0x4001 23FF ADC1 - ADC2 - ADC3 0x4001 1800 - 0x4001 1FFF Reserved 0x4001 1400 - 0x4001 17FF USART6 0x4001 1000 - 0x4001 13FF USART1 0x4001 0800 - 0x4001 0FFF Reserved 0x4001 0400 - 0x4001 07FF TIM8 0x4001 0000 - 0x4001 03FF TIM1 DocID027590 Rev 3 91/222 92 Memory mapping STM32F745xx STM32F746xx Table 13. STM32F745xx and STM32F746xx register boundary addresses (continued) Bus APB1 92/222 Boundary address Peripheral 0x4000 8000- 0x4000 FFFF Reserved 0x4000 7C00 - 0x4000 7FFF UART8 0x4000 7800 - 0x4000 7BFF UART7 0x4000 7400 - 0x4000 77FF DAC 0x4000 7000 - 0x4000 73FF PWR 0x4000 6C00 - 0x4000 6FFF HDMI-CEC 0x4000 6800 - 0x4000 6BFF CAN2 0x4000 6400 - 0x4000 67FF CAN1 0x4000 6000 - 0x4000 63FF I2C4 0x4000 5C00 - 0x4000 5FFF I2C3 0x4000 5800 - 0x4000 5BFF I2C2 0x4000 5400 - 0x4000 57FF I2C1 0x4000 5000 - 0x4000 53FF UART5 0x4000 4C00 - 0x4000 4FFF UART4 0x4000 4800 - 0x4000 4BFF USART3 0x4000 4400 - 0x4000 47FF USART2 0x4000 4000 - 0x4000 43FF SPDIFRX 0x4000 3C00 - 0x4000 3FFF SPI3 / I2S3 0x4000 3800 - 0x4000 3BFF SPI2 / I2S2 0x4000 3400 - 0x4000 37FF Reserved 0x4000 3000 - 0x4000 33FF IWDG 0x4000 2C00 - 0x4000 2FFF WWDG 0x4000 2800 - 0x4000 2BFF RTC & BKP Registers 0x4000 2400 - 0x4000 27FF LPTIM1 0x4000 2000 - 0x4000 23FF TIM14 0x4000 1C00 - 0x4000 1FFF TIM13 0x4000 1800 - 0x4000 1BFF TIM12 0x4000 1400 - 0x4000 17FF TIM7 0x4000 1000 - 0x4000 13FF TIM6 0x4000 0C00 - 0x4000 0FFF TIM5 0x4000 0800 - 0x4000 0BFF TIM4 0x4000 0400 - 0x4000 07FF TIM3 0x4000 0000 - 0x4000 03FF TIM2 DocID027590 Rev 3 STM32F745xx STM32F746xx 5 5.1 Electrical characteristics Electrical characteristics Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 5.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean3). 5.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 C, VDD = 3.3 V (for the 1.7 V VDD 3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean2). 5.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 5.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 19. 5.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 20. Figure 19. Pin loading conditions Figure 20. Pin input voltage 0&8SLQ 0&8SLQ & S) 9,1 069 DocID027590 Rev 3 069 93/222 194 Electrical characteristics 5.1.6 STM32F745xx STM32F746xx Power supply scheme Figure 21. Power supply scheme s d ' W /K /E & Z s W s W s & & > K hd s K^> s ^^ 06Y9 1. To connect BYPASS_REG and PDR_ON pins, refer to Section 2.17: Power supply supervisor and Section 2.18: Voltage regulator 2. The two 2.2 F ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the voltage regulator is OFF. 3. The 4.7 F ceramic capacitor must be connected to one of the VDD pin. 4. VDDA=VDD and VSSA=VSS. Caution: 94/222 Each power supply pair (VDD/VSS, VDDA/VSSA ...) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure good operation of the device. It is not recommended to remove filtering capacitors to reduce PCB size or cost. This might cause incorrect operation of the device. DocID027590 Rev 3 STM32F745xx STM32F746xx 5.1.7 Electrical characteristics Current consumption measurement Figure 22. Current consumption measurement scheme ,''B9%$7 9%$7 ,'' 9'' 9''$ DL 5.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 14: Voltage characteristics, Table 15: Current characteristics, and Table 16: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 14. Voltage characteristics Symbol VDD-VSS VIN Ratings Min Max - 0.3 4.0 Input voltage on FT pins(2) VSS - 0.3 VDD+4.0 Input voltage on TTa pins VSS - 0.3 4.0 Input voltage on any other pin VSS - 0.3 4.0 VSS 9.0 - 50 - 50 External main supply voltage (including VDDA, VDD, VBAT and VDDUSB) (1) Input voltage on BOOT pin |VDDx| |VSSX -VSS| VESD(HBM) Variations between different VDD power pins Variations between all the different ground pins(3) Electrostatic discharge voltage (human body model) Unit V mV see Section 5.3.15: Absolute maximum ratings (electrical sensitivity) - 1. All main power (VDD, VDDA, VDDUSB) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum value must always be respected. Refer to Table 15 for the values of the maximum allowed injected current. 3. Include VREF- pin. DocID027590 Rev 3 95/222 194 Electrical characteristics STM32F745xx STM32F746xx Table 15. Current characteristics Symbol Ratings Max. IVDD Total current into sum of all VDD_x power lines (source)(1) IVSS (1) IVDDUSB Total current out of sum of all VSS_x ground lines (sink) IVSS (1) - 100 Output current sunk by any I/O and control pin 25 - 25 Output current sourced by any I/Os and control pin (2) Injected current on FT, FTf, RST and B pins mA 120 Total output current sunk by sum of all USB I/Os Total output current sourced by sum of all I/Os and control IINJ(PIN)(4) 100 Maximum current out of each VSS_x ground line (sink) Total output current sunk by sum of all I/O and control pins IINJ(PIN) - 320 25 Maximum current into each VDD_x power line (source)(1) IIO 320 Total current into VDDUSB power line (source) IVDD IIO Unit 25 pins(2) - 120 (3) - 5/+0 Injected current on TTa pins(4) 5 Total injected current (sum of all I/O and control pins)(5) 25 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages. 3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 4. A positive injection is induced by VIN>VDDA while a negative injection is induced by VIN5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of - 5 A/+0 A range), or other functional failure (for example reset, oscillator frequency deviation). Negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection. The test results are given in Table 55. Table 55. I/O current injection susceptibility(1) Functional susceptibility Symbol IINJ Description Negative injection Positive injection Injected current on BOOT pin -0 NA Injected current on NRST pin -0 NA Injected current on PA0, PC0 pins -0 NA Injected current on any other FT pin -5 NA Injected current on any other pins -5 +5 Unit mA 1. NA = not applicable. Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. 5.3.17 I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 56: I/O static characteristics are derived from tests performed under the conditions summarized in Table 17. All I/Os are CMOS and TTL compliant. Table 56. I/O static characteristics Symbol Parameter FT, TTa and NRST I/O input low level voltage VIL BOOT I/O input low level voltage Conditions Min Typ 1.7 V VDD 3.6 V - - Max Unit 0.35VDD - 0.04 (1) 0.3VDD(2) 1.75 V VDD 3.6 V, -40 C TA 105 C - 1.7 V VDD 3.6 V, 0 C TA 105 C - DocID027590 Rev 3 V 0.1VDD+0.1(1) - 137/222 194 Electrical characteristics STM32F745xx STM32F746xx Table 56. I/O static characteristics (continued) Symbol Parameter FT, TTa and NRST I/O input high level voltage(5) VIH BOOT I/O input high level voltage FT, TTa and NRST I/O input hysteresis VHYS BOOT I/O input hysteresis RPU RPD CIO(8) Max 1.7 V VDD 3.6 V 1.75 V VDD 3.6 V, -40 C TA 105 C 1.7 V VDD 3.6 V, 0 C TA 105 C 0.45VDD+0.3 0.7VDD(2) - - 0.17VDD+0.7(1) - - 10%VDD(3) - - 1.7 V VDD 3.6 V 1.75 V VDD 3.6 V, -40 C TA 105 C V VSS VIN VDD - - 1 VIN = 5 V - - 3 30 40 50 PA10/PB12 (OTG_FS_ID ,OTG_HS_ID ) 7 10 14 All pins except for PA10/PB12 (OTG_FS_ID ,OTG_HS_ID ) 30 40 50 7 10 14 - 5 - All pins except for PA10/PB12 (OTG_FS_ID ,OTG_HS_ID ) 1.7 V VDD 3.6 V, 0 C TA 105 C A VIN = VSS k VIN = VDD PA10/PB12 (OTG_FS_ID ,OTG_HS_ID ) I/O pin capacitance Unit V - I/O FT input leakage current Weak pulldown equivalent resistor(7) Typ (1) - (5) Weak pull-up equivalent resistor(6) Min 0.1 I/O input leakage current (4) Ilkg Conditions - pF 1. Guaranteed by design. 2. Tested in production. 3. With a minimum of 200 mV. 4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 55: I/O current injection susceptibility 5. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 55: I/O current injection susceptibility 6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimum (~10% order). 138/222 DocID027590 Rev 3 STM32F745xx STM32F746xx Electrical characteristics 7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the series resistance is minimum (~10% order). 8. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results. All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT I/Os is shown in Figure 37. Figure 37. FT I/O input characteristics 9,/9,+ 9 ' 9' L P ,+ Q 9 QW H P LUH 77/UHTXLUHPHQW U 9,+PLQ 9 26 0 & ' 9' Q R WL XF Q PL RG ,+ SU 9 V LQ LRQ HG ODW VW PX L 7H V LJQ HV $UHDQRW Q' R G VH GHWHUPLQHG '' %D 9 D[ ,/P QV9 XODWLR LP V VLJQ Q'H HGR 77/UHTXLUHPHQW9,/PD[ %DV 9 7HVWHGLQSURGXFWLRQ&026UHTXLUHPHQW9,/PD[ 9'' X HT 9'' 9 069 Output driving current The GPIOs (general purpose input/outputs) can sink or source up to 8 mA, and sink or source up to 20 mA (with a relaxed VOL/VOH) except PC13, PC14, PC15 and PI8 which can sink or source up to 3mA. When using the PC13 to PC15 and PI8 GPIOs in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF. In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2. In particular: * The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD (see Table 15). * The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS (see Table 15). DocID027590 Rev 3 139/222 194 Electrical characteristics STM32F745xx STM32F746xx Output voltage levels Unless otherwise specified, the parameters given in Table 57 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 17. All I/Os are CMOS and TTL compliant. Table 57. Output voltage characteristics Symbol Parameter Conditions Min Max - 0.4 VDD - 0.4 - VDD - 0.4 - Output low level voltage for an I/O pin TTL port(2) IIO =+8mA 2.7 V VDD 3.6 V - 0.4 VOH (3) Output high level voltage for an I/O pin except PC14 TTL port(2) IIO =-8mA 2.7 V VDD 3.6 V 2.4 - VOL(1) Output low level voltage for an I/O pin IIO = +20 mA 2.7 V VDD 3.6 V - 1.3(4) VOH(3) Output high level voltage for an I/O pin except PC14 IIO = -20 mA V -1.3(4) 2.7 V VDD 3.6 V DD VOL(1) Output low level voltage for an I/O pin IIO = +6 mA 1.8 V VDD 3.6 V VOH(3) Output high level voltage for an I/O pin except PC14 IIO = -6 mA V -0.4(4) 1.8 V VDD 3.6 V DD VOL(1) Output low level voltage for an I/O pin IIO = +4 mA 1.7 V VDD 3.6V VOH(3) Output high level voltage for an I/O pin except PC14 IIO = -4 mA V -0.4(5) 1.7 V VDD 3.6V DD - VOH(3) Output high level voltage for PC14 IIO = -1 mA V -0.4(5) 1.7 V VDD 3.6V DD - Unit port(2) VOL(1) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin except PC14 CMOS IIO = +8 mA 2.7 V VDD 3.6 V CMOS port(2) IIO = -8 mA 2.7 V VDD 3.6 V V CMOS port(2) VOH(3) VOL (1) Output high level voltage for PC14 IIO = -2 mA 2.7 V VDD 3.6 V V - - V 0.4(4) V 0.4(5) V 1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 15. and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. 3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 15 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. 4. Based on characterization data. 5. Guaranteed by design. 140/222 DocID027590 Rev 3 STM32F745xx STM32F746xx Electrical characteristics Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 38 and Table 58, respectively. Unless otherwise specified, the parameters given in Table 58 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 17. Table 58. I/O AC characteristics(1)(2) OSPEEDRy [1:0] bit value(1) Symbol fmax(IO)out Parameter Maximum frequency(3) 00 tf(IO)out/ tr(IO)out fmax(IO)out Output high to low level fall time and output low to high level rise time Maximum frequency(3) 01 tf(IO)out/ tr(IO)out fmax(IO)out Output high to low level fall time and output low to high level rise time Maximum frequency(3) 10 tf(IO)out/ tr(IO)out Output high to low level fall time and output low to high level rise time Conditions Min Typ Max CL = 50 pF, VDD 2.7 V - - 4 CL = 50 pF, VDD 1.7 V - - 2 CL = 10 pF, VDD 2.7 V - - 8 CL = 10 pF, VDD 1.8 V - - 4 CL = 10 pF, VDD 1.7 V - - 3 CL = 50 pF, VDD = 1.7 V to 3.6 V - - 100 CL = 50 pF, VDD 2.7 V - - 25 CL = 50 pF, VDD 1.8 V - - 12.5 CL = 50 pF, VDD 1.7 V - - 10 CL = 10 pF, VDD 2.7 V - - 50 CL = 10 pF, VDD 1.8 V - - 20 CL = 10 pF, VDD 1.7 V - - 12.5 CL = 50 pF, VDD 2.7 V - - 10 CL = 10 pF, VDD 2.7 V - - 6 CL = 50 pF, VDD 1.7 V - - 20 CL = 10 pF, VDD 1.7 V - - 10 CL = 40 pF, VDD 2.7 V - - 50(4) CL = 10 pF, VDD 2.7 V - - 100(4) CL = 40 pF, VDD 1.7 V - - 25 CL = 10 pF, VDD 1.8 V - - 50 CL = 10 pF, VDD 1.7 V - - 42.5 CL = 40 pF, VDD 2.7 V - - 6 CL = 10 pF, VDD 2.7 V - - 4 CL = 40 pF, VDD 1.7 V - - 10 CL = 10 pF, VDD 1.7 V - - 6 DocID027590 Rev 3 Unit MHz ns MHz ns MHz ns 141/222 194 Electrical characteristics STM32F745xx STM32F746xx Table 58. I/O AC characteristics(1)(2) (continued) OSPEEDRy [1:0] bit value(1) Symbol fmax(IO)out Parameter Conditions Maximum frequency(3) 11 tf(IO)out/ tr(IO)out - tEXTIpw Output high to low level fall time and output low to high level rise time Min Typ Max CL = 30 pF, VDD 2.7 V - - 100(4) CL = 30 pF, VDD 1.8 V - - 50 CL = 30 pF, VDD 1.7 V - - 42.5 CL = 10 pF, VDD 2.7 V - - 180(4) CL = 10 pF, VDD 1.8 V - - 100 CL = 10 pF, VDD 1.7 V - - 72.5 CL = 30 pF, VDD 2.7 V - - 4 CL = 30 pF, VDD 1.8 V - - 6 CL = 30 pF, VDD 1.7 V - - 7 CL = 10 pF, VDD 2.7 V - - 2.5 CL = 10 pF, VDD 1.8 V - - 3.5 CL = 10 pF, VDD 1.7 V - - 4 10 - - Pulse width of external signals detected by the EXTI controller - Unit MHz ns ns 1. Guaranteed by design. 2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F75xxx and STM32F74xxx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register. 3. The maximum frequency is defined in Figure 38. 4. For maximum frequencies above 50 MHz and VDD > 2.4 V, the compensation cell should be used. Figure 38. I/O AC characteristics definition (;7(51$/ 287387 21&/ WU ,2 RXW WI ,2 RXW 7 0D[LPXPIUHTXHQF\LVDFKLHYHGLI WUWI 7DQGLIWKHGXW\F\FOHLV ZKHQORDGHGE\&/VSHFLILHGLQWKHWDEOH,2$&FKDUDFWHULVWLFV 142/222 DocID027590 Rev 3 DLG STM32F745xx STM32F746xx 5.3.18 Electrical characteristics NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 56: I/O static characteristics). Unless otherwise specified, the parameters given in Table 59 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 17. Table 59. NRST pin characteristics Symbol Parameter Conditions Min Typ Max Unit RPU Weak pull-up equivalent resistor(1) VIN = VSS 30 40 50 k - - - 100 ns VDD > 2.7 V 300 - - ns Internal Reset source 20 - - s VF(NRST) (2) NRST Input filtered pulse VNF(NRST)(2) NRST Input not filtered pulse TNRST_OUT Generated reset pulse duration 1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). 2. Guaranteed by design. Figure 39. Recommended NRST pin protection 9'' ([WHUQDO UHVHWFLUFXLW 1567 538 ,QWHUQDO5HVHW )LOWHU ) 670) DLF 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 59. Otherwise the reset is not taken into account by the device. DocID027590 Rev 3 143/222 194 Electrical characteristics 5.3.19 STM32F745xx STM32F746xx TIM timer characteristics The parameters given in Table 60 are guaranteed by design. Refer to Section 5.3.17: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 60. TIMx characteristics(1)(2) Conditions(3) Min Max Unit AHB/APBx prescaler=1 or 2 or 4, fTIMxCLK = 216 MHz 1 - tTIMxCLK AHB/APBx prescaler>4, fTIMxCLK = 108 MHz 1 - tTIMxCLK Timer external clock frequency on CH1 to CH4 f TIMxCLK = 216 MHz 0 fTIMxCLK/2 MHz Timer resolution - 16/32 bit - 65536 x 65536 tTIMxCLK Symbol tres(TIM) fEXT ResTIM tMAX_COUNT Parameter Timer resolution time Maximum possible count with 32-bit counter - 1. TIMx is used as a general term to refer to the TIM1 to TIM12 timers. 2. Guaranteed by design. 3. The maximum timer frequency on APB1 or APB2 is up to 216 MHz, by setting the TIMPRE bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCLK, otherwise TIMxCLK = 4x PCLKx. 5.3.20 RTC characteristics Table 61. RTC characteristics 5.3.21 Symbol Parameter Conditions - fPCLK1/RTCCLK frequency ratio Any read/write operation from/to an RTC register Min Max 4 - 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 62 are derived from tests performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage conditions summarized in Table 17. Table 62. ADC characteristics Symbol VDDA Parameter Power supply VREF+ Positive reference voltage VREF- Negative reference voltage 144/222 Conditions VDDA - VREF+ < 1.2 V - DocID027590 Rev 3 Min Typ Max Unit 1.7(1) - 3.6 V 1.7(1) - VDDA V - 0 - V STM32F745xx STM32F746xx Electrical characteristics Table 62. ADC characteristics (continued) Symbol fADC fTRIG(2) VAIN RAIN(2) Parameter ADC clock frequency External trigger frequency Conversion voltage range(3) External input impedance RADC(2)(4) Sampling switch resistance CADC(2) Internal sample and hold capacitor Conditions Min Typ Max Unit VDDA = 1.7(1) to 2.4 V 0.6 15 18 MHz VDDA = 2.4 to 3.6 V 0.6 30 36 MHz fADC = 30 MHz, 12-bit resolution - - 1764 kHz - - - 17 1/fADC - 0 (VSSA or VREFtied to ground) - VREF+ V See Equation 1 for details - - 50 k - - - 6 k - - 4 7 pF - - 0.100 s - - 3(5) 1/fADC - - 0.067 s - - 2(5) 1/fADC fADC = 30 MHz 0.100 - 16 s - 3 - 480 1/fADC - 2 3 s fADC = 30 MHz 12-bit resolution 0.50 - 16.40 s fADC = 30 MHz 10-bit resolution 0.43 - 16.34 s fADC = 30 MHz 8-bit resolution 0.37 - 16.27 s fADC = 30 MHz 6-bit resolution 0.30 - 16.20 s tlat(2) Injection trigger conversion latency fADC = 30 MHz tlatr(2) Regular trigger conversion latency fADC = 30 MHz tS(2) Sampling time tSTAB(2) Power-up time tCONV(2) Total conversion time (including sampling time) - 9 to 492 (tS for sampling +n-bit resolution for successive approximation) Sampling rate fS(2) (fADC = 30 MHz, and tS = 3 ADC cycles) 1/fADC 12-bit resolution Single ADC - - 2 Msps 12-bit resolution Interleave Dual ADC mode - - 3.75 Msps 12-bit resolution Interleave Triple ADC mode - - 6 Msps DocID027590 Rev 3 145/222 194 Electrical characteristics STM32F745xx STM32F746xx Table 62. ADC characteristics (continued) Symbol Parameter Conditions Min Typ Max Unit IVREF+(2) ADC VREF DC current consumption in conversion mode - - 300 500 A IVDDA(2) ADC VDDA DC current consumption in conversion mode - - 1.6 1.8 mA 1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.17.2: Internal reset OFF). 2. Guaranteed by characterization results. 3. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA. 4. RADC maximum value is given for VDD=1.7 V, and minimum value for VDD=3.3 V. 5. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 62. Equation 1: RAIN max formula R AIN ( k - 0.5 ) - - R ADC = ------------------------------------------------------------N+2 f ADC x C ADC x ln ( 2 ) The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of sampling periods defined in the ADC_SMPR1 register. Table 63. ADC static accuracy at fADC = 18 MHz Symbol ET Parameter Test conditions Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error fADC =18 MHz VDDA = 1.7 to 3.6 V VREF = 1.7 to 3.6 V VDDA - VREF < 1.2 V Typ Max(1) 3 4 2 3 1 3 1 2 2 3 Unit LSB 1. Guaranteed by characterization results. Table 64. ADC static accuracy at fADC = 30 MHz Symbol ET Parameter Test conditions Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error fADC = 30 MHz, RAIN < 10 k, VDDA = 2.4 to 3.6 V, VREF = 1.7 to 3.6 V, VDDA - VREF < 1.2 V 1. Guaranteed by characterization results. 146/222 DocID027590 Rev 3 Typ Max(1) 2 5 1.5 2.5 1.5 4 1 2 1.5 3 Unit LSB STM32F745xx STM32F746xx Electrical characteristics Table 65. ADC static accuracy at fADC = 36 MHz Symbol Parameter Test conditions ET Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error Typ Max(1) 4 7 2 3 3 6 2 3 3 6 fADC =36 MHz, VDDA = 2.4 to 3.6 V, VREF = 1.7 to 3.6 V VDDA - VREF < 1.2 V Unit LSB 1. Guaranteed by characterization results. Table 66. ADC dynamic accuracy at fADC = 18 MHz - limited test conditions(1) Symbol Parameter Test conditions ENOB Effective number of bits SINAD Signal-to-noise and distortion ratio SNR Signal-to-noise ratio THD Total harmonic distortion fADC =18 MHz VDDA = VREF+= 1.7 V Input Frequency = 20 KHz Temperature = 25 C Min Typ Max Unit 10.3 10.4 - bits 64 64.2 - 64 65 - - 67 - 72 - dB 1. Guaranteed by characterization results. Table 67. ADC dynamic accuracy at fADC = 36 MHz - limited test conditions(1) Symbol Parameter Test conditions ENOB Effective number of bits SINAD Signal-to noise and distortion ratio SNR Signal-to noise ratio THD Total harmonic distortion fADC =36 MHz VDDA = VREF+ = 3.3 V Input Frequency = 20 KHz Temperature = 25 C Min Typ Max Unit 10.6 10.8 - bits 66 67 - 64 68 - - 70 - 72 - dB 1. Guaranteed by characterization results. Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 5.3.17 does not affect the ADC accuracy. DocID027590 Rev 3 147/222 194 Electrical characteristics STM32F745xx STM32F746xx Figure 40. ADC accuracy characteristics 9 ''$ 9 5() >/6% ,'($/ RUGHSHQGLQJRQSDFNDJH @ (* (7 (2 (/ (' / 6%,'($/ 9 66$ 9''$ DLF 1. See also Table 64. 2. Example of an actual transfer curve. 3. Ideal transfer curve. 4. End point correlation line. 5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO = Offset Error: deviation between the first actual transition and the first ideal one. EG = Gain Error: deviation between the last ideal transition and the last actual one. ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line. Figure 41. Typical connection diagram using the ADC 670) 9'' 5$,1 9$,1 6DPSOHDQGKROG$'& FRQYHUWHU 97 9 5$'& $,1[ &SDUDVLWLF 97 9 ,/$ ELW FRQYHUWHU & $'& DL 1. Refer to Table 62 for the values of RAIN, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this, fADC should be reduced. 148/222 DocID027590 Rev 3 STM32F745xx STM32F746xx Electrical characteristics General PCB design guidelines Power supply decoupling should be performed as shown in Figure 42 or Figure 43, depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip. Figure 42. Power supply and reference decoupling (VREF+ not connected to VDDA) 670) 95() )Q) 9''$ )Q) 966$95() DLE 1. VREF+ input is available on all package whereas the VREF- s available only on UFBGA176 and TFBGA216. When VREF- is not available, it is internally connected to VDDA and VSSA. Figure 43. Power supply and reference decoupling (VREF+ connected to VDDA) 670) 95()9''$ )Q) 95()966$ DLF 1. VREF+ input is available on all package whereas the VREF- s available only on UFBGA176 and TFBGA216. DocID027590 Rev 3 149/222 194 Electrical characteristics STM32F745xx STM32F746xx When VREF- is not available, it is internally connected to VDDA and VSSA. 5.3.22 Temperature sensor characteristics Table 68. Temperature sensor characteristics Symbol Parameter TL(1) Min Typ Max Unit - 1 2 C - 2.5 - mV/C Voltage at 25 C - 0.76 - V Startup time - 6 10 s 10 - - s VSENSE linearity with temperature Avg_Slope(1) Average slope V25(1) tSTART (2) TS_temp(2) ADC sampling time when reading the temperature (1 C accuracy) 1. Guaranteed by characterization results. 2. Guaranteed by design. Table 69. Temperature sensor calibration values Symbol Parameter Memory address TS_CAL1 TS ADC raw data acquired at temperature of 30 C, VDDA= 3.3 V 0x1FF0 F44C - 0x1FF0 F44D TS_CAL2 TS ADC raw data acquired at temperature of 110 C, VDDA= 3.3 V 0x1FF0 F44E - 0x1FF0 F44F 5.3.23 VBAT monitoring characteristics Table 70. VBAT monitoring characteristics Symbol Parameter Min Typ Max Unit R Resistor bridge for VBAT - 50 - K Q Ratio on VBAT measurement - 4 - - Error on Q -1 - +1 % ADC sampling time when reading the VBAT 1 mV accuracy 5 - - s Er (1) TS_vbat(2)(2) 1. Guaranteed by design. 2. Shortest sampling time can be determined in the application by multiple iterations. 5.3.24 Reference voltage The parameters given in Table 71 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 17. Table 71. internal reference voltage Symbol VREFINT TS_vrefint(1) 150/222 Parameter Internal reference voltage Conditions Min Typ Max Unit -40 C < TA < +105 C 1.18 1.21 1.24 V - 10 - - s ADC sampling time when reading the internal reference voltage DocID027590 Rev 3 STM32F745xx STM32F746xx Electrical characteristics Table 71. internal reference voltage (continued) Symbol Parameter Conditions Min Typ Max Unit VRERINT_s(2) Internal reference voltage spread over the temperature range VDD = 3V 10mV - 3 5 mV Temperature coefficient - - 30 50 ppm/C Startup time - - 6 10 s TCoeff(2) tSTART (2) 1. Shortest sampling time can be determined in the application by multiple iterations. 2. Guaranteed by design. Table 72. Internal reference voltage calibration values Symbol Parameter VREFIN_CAL 5.3.25 Memory address Raw data acquired at temperature of 30 C VDDA = 3.3 V 0x1FF0 F44A - 0x1FF0 F44B DAC electrical characteristics Table 73. DAC characteristics Symbol Parameter Min Typ Max Unit Comments - VDDA Analog supply voltage 1.7(1) - 3.6 V VREF+ Reference supply voltage 1.7(1) - 3.6 V VSSA Ground 0 - 0 V - RLOAD(2) Resistive load with buffer ON 5 - - k - RO(2) Impedance output with buffer OFF - - 15 k When the buffer is OFF, the Minimum resistive load between DAC_OUT and VSS to have a 1% accuracy is 1.5 M Capacitive load - - 50 pF Maximum capacitive load at DAC_OUT pin (when the buffer is ON). DAC_OUT Lower DAC_OUT voltage with buffer ON min(2) 0.2 - - V DAC_OUT Higher DAC_OUT voltage max(2) with buffer ON - - VDDA - 0.2 V DAC_OUT Lower DAC_OUT voltage min(2) with buffer OFF - 0.5 - mV DAC_OUT Higher DAC_OUT voltage with buffer OFF max(2) - - VREF+ - 1LSB V - 170 240 CLOAD(2) IVREF+(4) DAC DC VREF current consumption in quiescent mode (Standby mode) A - 50 75 DocID027590 Rev 3 VREF+ VDDA It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xF1C) at VREF+ = 3.6 V and (0x1C7) to (0xE38) at VREF+ = 1.7 V It gives the maximum output excursion of the DAC. With no load, worst code (0x800) at VREF+ = 3.6 V in terms of DC consumption on the inputs With no load, worst code (0xF1C) at VREF+ = 3.6 V in terms of DC consumption on the inputs 151/222 194 Electrical characteristics STM32F745xx STM32F746xx Table 73. DAC characteristics (continued) Symbol Min Typ Max Unit Comments - 280 380 A With no load, middle code (0x800) on the inputs - 475 625 A With no load, worst code (0xF1C) at VREF+ = 3.6 V in terms of DC consumption on the inputs Differential non linearity Difference between two consecutive code-1LSB) - - 0.5 LSB Given for the DAC in 10-bit configuration. - - 2 LSB Given for the DAC in 12-bit configuration. - - 1 LSB Given for the DAC in 10-bit configuration. INL(4) Integral non linearity (difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023) - - 4 LSB Given for the DAC in 12-bit configuration. - - 10 mV Given for the DAC in 12-bit configuration Offset(4) Offset error (difference between measured value at Code (0x800) and the ideal value = VREF+/2) - - 3 LSB Given for the DAC in 10-bit at VREF+ = 3.6 V - - 12 LSB Given for the DAC in 12-bit at VREF+ = 3.6 V Gain error - - 0.5 % Given for the DAC in 12-bit configuration - 3 6 s CLOAD 50 pF, RLOAD 5 k IDDA(4) DNL(4) Gain error(4) Parameter DAC DC VDDA current consumption in quiescent mode(3) Settling time (full scale: for a 10-bit input code transition between the lowest and the (4) tSETTLING highest input codes when DAC_OUT reaches final value 4LSB THD(4) Total Harmonic Distortion Buffer ON - - - dB CLOAD 50 pF, RLOAD 5 k Update rate(2) Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB) - - 1 MS/s CLOAD 50 pF, RLOAD 5 k Wakeup time from off state tWAKEUP(4) (Setting the ENx bit in the DAC Control register) - 6.5 10 s CLOAD 50 pF, RLOAD 5 k input code between lowest and highest possible ones. Power supply rejection ratio PSRR+ (2) (to VDDA) (static DC measurement) - -67 -40 dB No RLOAD, CLOAD = 50 pF 1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.17.2: Internal reset OFF). 2. Guaranteed by design. 3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic consumption occurs. 4. Guaranteed by characterization results. 152/222 DocID027590 Rev 3 STM32F745xx STM32F746xx Electrical characteristics Figure 44. 12-bit buffered /non-buffered DAC %XIIHUHG1RQEXIIHUHG'$& %XIIHU 5 / '$&B287[ ELW GLJLWDOWR DQDORJ FRQYHUWHU & / DL9 1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register. 5.3.26 Communications interfaces I2C interface characteristics The I2C interface meets the timings requirements of the I2C-bus specification and user manual rev. 03 for: * Standard-mode (Sm): with a bit rate up to 100 kbit/s * Fast-mode (Fm): with a bit rate up to 400 kbit/s. * Fast-mode Plus (Fm+): with a bit rate up to 1Mbit/s. The I2C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to RM0385 reference manual) and when the I2CCLK frequency is greater than the minimum shown in the table below: Table 74. Minimum I2CCLK frequency in all I2C modes Symbol Parameter Condition Standard-mode Fast-mode f(I2CCLK) I2CCLK frequency Fast-mode Plus Min Unit 2 Analog Filtre ON DNF=0 10 Analog Filtre OFF DNF=1 9 Analog Filtre ON DNF=0 22.5 Analog Filtre OFF DNF=1 16 MHz The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. DocID027590 Rev 3 153/222 194 Electrical characteristics STM32F745xx STM32F746xx The 20mA output drive requirement in Fast-mode Plus is not supported. This limits the maximum load Cload supported in Fm+, which is given by these formulas: * Tr(SDA/SCL)=0.8473xRpxCload * Rp(min)= (VDD-VOL(max))/IOL(max) Where Rp is the I2C lines pull-up. Refer to Section 5.3.17: I/O port characteristics for the I2C I/Os characteristics. All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics: Table 75. I2C analog filter characteristics(1) Symbol Parameter Min Max Unit tAF Maximum pulse width of spikes that are suppressed by the analog filter 50(2) 150(3) ns 1. Guaranteed by characterization results. 2. Spikes with widths below tAF(min) are filtered. 3. Spikes with widths above tAF(max) are not filtered 154/222 DocID027590 Rev 3 STM32F745xx STM32F746xx Electrical characteristics SPI interface characteristics Unless otherwise specified, the parameters given in Table 76 for the SPI interface are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 17, with the following configuration: * Output speed is set to OSPEEDRy[1:0] = 11 * Capacitive load C = 30 pF * Measurement points are done at CMOS levels: 0.5VDD Refer to Section 5.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI). Table 76. SPI dynamic characteristics(1) Symbol fSCK 1/tc(SCK) Parameter SPI clock frequency Conditions Min Typ Max Master mode SPI1,4,5,6 2.7VDD3.6 54(2) Master mode SPI1,4,5,6 1.71VDD3.6 27 Master transmitter mode SPI1,4,5,6 1.71VDD3.6 54 Slave receiver mode SPI1,4,5,6 1.71VDD3.6 - - 54 Slave mode transmitter/full duplex SPI1,4,5,6 2.7VDD3.6 50(3) Slave mode transmitter/full duplex SPI1,4,5,6 1.71VDD3.6 38(3) Master & Slave mode SPI2,3 1.71VDD3.6 27 tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4*Tpclk - - th(NSS) NSS hold time Slave mode, SPI presc = 2 2*Tpclk - - tw(SCKH) tw(SCKL) SCK high and low time Master mode Tpclk-2 Tpclk Tpclk+2 DocID027590 Rev 3 Unit MHz ns 155/222 194 Electrical characteristics STM32F745xx STM32F746xx Table 76. SPI dynamic characteristics(1) (continued) Symbol tsu(MI) Parameter Data input setup time tsu(SI) th(MI) Data input hold time th(SI) Conditions Min Typ Max Master mode 5.5 - - Slave mode 4 - - Master mode 4 - - Slave mode 2 - - ta(SO) Data output access time Slave mode 7 - 21 tdis(SO) Data output disable time Slave mode 5 - 12 Slave mode 2.7VDD3.6V - 6.5 10 Slave mode 1.71VDD3.6V - 6.5 13 Master mode - 2 4 Slave mode 1.71VDD3.6V 5.5 - - Master mode 0 - - tv(SO) Data output valid time tv(MO) th(SO) Data output hold time th(MO) Unit ns 1. Guaranteed by characterization results. 2. Excepting SPI1 with SCK IO pin mapped on PA5. In this configuration, Maximum achievable frequency is 40MHz. 3. Maximum Frequency of Slave Transmitter is determined by sum of Tv(SO) and Tsu(MI) intervals which has to fit into SCK level phase preceding the SCK sampling edge.This value can be achieved when it communicates with a Master having Tsu(MI)=0 while signal Duty(SCK)=50%. Figure 45. SPI timing diagram - slave mode and CPHA = 0 166LQSXW 6&.,QSXW W68 166 &3+$ &32/ &3+$ &32/ WK 166 WF 6&. WZ 6&.+ WZ 6&./ W9 62 WD 62 0,62 287387 WK 62 06%287 %,7287 06%,1 %,7,1 WU 6&. WI 6&. WGLV 62 /6%287 WVX 6, 026, ,1387 /6%,1 WK 6, DLF 156/222 DocID027590 Rev 3 STM32F745xx STM32F746xx Electrical characteristics Figure 46. SPI timing diagram - slave mode and CPHA = 1 166LQSXW &3+$ &32/ WF 6&. WK 166 WZ 6&.+ WZ 6&./ &3+$ &32/ WY 62 WD 62 0,62 287 3 87 06 % 2 87 WVX 6, 026, , 1387 WK 62 WU 6&. WI 6&. %, 7 287 WGLV 62 /6% 287 WK 6, % , 7 ,1 0 6% ,1 /6% ,1 DL Figure 47. SPI timing diagram - master mode +LJK 166LQSXW 6&.2XWSXW WF 6&. &3+$ &32/ 6&.2XWSXW 6&.,QSXW W68 166 &3+$ &32/ &3+$ &32/ &3+$ &32/ WVX 0, 0,62 ,13 87 WZ 6&.+ WZ 6&./ WU 6&. WI 6&. %,7,1 06%,1 /6%,1 WK 0, 026, 287387 % , 7287 06%287 WY 02 /6%287 WK 02 DLF I2S interface characteristics Unless otherwise specified, the parameters given in Table 77 for the I2S interface are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 17, with the following configuration: * Output speed is set to OSPEEDRy[1:0] = 10 * Capacitive load C = 30 pF * Measurement points are done at CMOS levels: 0.5VDD DocID027590 Rev 3 157/222 194 Electrical characteristics STM32F745xx STM32F746xx Refer to Section 5.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (CK, SD, WS). Table 77. I2S dynamic characteristics(1) Symbol Parameter fMCK I2S Main clock output fCK I2S clock frequency DCK Conditions - Min 256x8K Max 256xFs Master data: 32 bits - 64xFs Slave data: 32 bits - 64xFs 30 70 I2S clock frequency duty cycle Slave receiver tv(WS) WS valid time Master mode - 5 th(WS) WS hold time Master mode 0 - Slave mode 5 - Slave mode PCM short pulse mode(3) 3 - Slave mode 0 - Slave mode PCM short pulse mode(3) 2 - Master receiver 5 - Slave receiver 1 - Master receiver 5 - Slave receiver 1.5 - Slave transmitter (after enable edge) - 16 Master transmitter (after enable edge) - 3.5 Slave transmitter (after enable edge) 5 - Master transmitter (after enable edge) 0 - tsu(WS) WS setup time th(WS) WS hold time tsu(SD_MR) tsu(SD_SR) th(SD_MR) th(SD_SR) tv(SD_ST) tv(SD_MT) th(SD_ST) th(SD_MT) Data input setup time Data input hold time Data output valid time Data output hold time Unit (2) MHz MHz % ns ns 1. Guaranteed by characterization results. 2. The maximum value of 256xFs is 45 MHz (APB1 maximum frequency). 3. Measurement done with respect to I2S_CK rising edge. Note: Refer to RM0385 reference manual I2S section for more details on the sampling frequency (FS). fMCK, fCK, and DCK values reflect only the digital peripheral behavior. The values of these parameters might be slightly impacted by the source clock precision. DCK depends mainly on the value of ODD bit. The digital contribution leads to a minimum value of (I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). FS maximum value is supported for each mode/condition. 158/222 DocID027590 Rev 3 STM32F745xx STM32F746xx Electrical characteristics Figure 48. I2S slave timing diagram (Philips protocol)(1) WF &. &.,QSXW &32/ &32/ WZ &.+ WK :6 WZ &./ :6LQSXW WY 6'B67 WVX :6 6'WUDQVPLW /6%WUDQVPLW 06%WUDQVPLW WVX 6'B65 /6%UHFHLYH 6'UHFHLYH %LWQWUDQVPLW WK 6'B67 /6%WUDQVPLW WK 6'B65 06%UHFHLYH %LWQUHFHLYH /6%UHFHLYH DLE 1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. Figure 49. I2S master timing diagram (Philips protocol)(1) WI &. WU &. &.RXWSXW WF &. &32/ WZ &.+ &32/ WY :6 WK :6 WZ &./ :6RXWSXW WY 6'B07 6'WUDQVPLW /6%WUDQVPLW 06%WUDQVPLW /6%UHFHLYH /6%WUDQVPLW WK 6'B05 WVX 6'B05 6'UHFHLYH %LWQWUDQVPLW WK 6'B07 06%UHFHLYH %LWQUHFHLYH /6%UHFHLYH DLE 1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. DocID027590 Rev 3 159/222 194 Electrical characteristics STM32F745xx STM32F746xx SAI characteristics Unless otherwise specified, the parameters given in Table 78 for SAI are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 17, with the following configuration: * Output speed is set to OSPEEDRy[1:0] = 10 * Capacitive load C=30 pF * Measurement points are performed at CMOS levels: 0.5VDD Refer to Section 5.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (SCK,SD,WS). Table 78. SAI characteristics(1) Symbol Parameter Conditions Min Max Unit fMCKL SAI Main clock output - 256 x 8K 256xFs(2) MHz FSCK SAI clock frequency Master data: 32 bits - 128xFs Slave data: 32 bits - 128xFs DSCK SAI clock frequency duty cycle Slave receiver 30 70 tv(FS) FS valid time Master mode 8 22 tsu(FS) FS setup time Slave mode 2 - th(FS) FS hold time Master mode 8 - Slave mode 0 - Master receiver 5 - Slave receiver 3 - Master receiver 0 - Slave receiver 6 - Slave transmitter (after enable edge) - 15 Master transmitter (after enable edge) - 20 Master transmitter (after enable edge) 7 - tsu(SD_MR) tsu(SD_SR) th(SD_MR) th(SD_SR) tv(SD_ST) th(SD_ST) Data input setup time Data input hold time Data output valid time tv(SD_MT) th(SD_MT) Data output hold time 1. Guaranteed by characterization results. 2. 256xFs maximum corresponds to 45 MHz (APB2 xaximum frequency) 160/222 DocID027590 Rev 3 MHz % ns STM32F745xx STM32F746xx Electrical characteristics Figure 50. SAI master timing waveforms I6&. 6$,B6&.B; WK )6 6$,B)6B; RXWSXW WY )6 WK 6'B07 WY 6'B07 6$,B6'B; WUDQVPLW 6ORWQ 6ORWQ WVX 6'B05 WK 6'B05 6$,B6'B; UHFHLYH 6ORWQ 069 Figure 51. SAI slave timing waveforms I6&. 6$,B6&.B; WZ &.+B; 6$,B)6B; LQSXW WZ &./B; WK )6 WVX )6 WK 6'B67 WY 6'B67 6$,B6'B; WUDQVPLW 6ORWQ WVX 6'B65 6$,B6'B; UHFHLYH 6ORWQ WK 6'B65 6ORWQ 069 DocID027590 Rev 3 161/222 194 Electrical characteristics STM32F745xx STM32F746xx USB OTG full speed (FS) characteristics This interface is present in both the USB OTG HS and USB OTG FS controllers. Table 79. USB OTG full speed startup time Symbol tSTARTUP(1) Parameter Max Unit USB OTG full speed transceiver startup time 1 s 1. Guaranteed by design. Table 80. USB OTG full speed DC electrical characteristics Symbol Parameter Conditions USB OTG full speed VDDUSB transceiver operating voltage Input levels Min. (1) Typ. - 3.0(2) Max. (1) Unit - 3.6 V VDI(3) Differential input sensitivity I(USB_FS_DP/DM, USB_HS_DP/DM) 0.2 - - VCM(3) Differential common mode range Includes VDI range 0.8 - 2.5 VSE(3) Single ended receiver threshold - 1.3 - 2.0 VOL Static output level low RL of 1.5 k to 3.6 V(4) - - 0.3 2.8 - 3.6 17 21 24 0.65 1.1 2.0 Output levels RPD RPU VOH Static output level high RL of 15 k to PA11, PA12, PB14, PB15 (USB_FS_DP/DM, USB_HS_DP/DM) PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS) VSS(4) V V VIN = VDD k PA12, PB15 (USB_FS_DP, USB_HS_DP) VIN = VSS 1.5 1.8 PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS) VIN = VSS 0.25 0.37 0.55 2.1 1. All the voltages are measured from the local ground potential. 2. The USB OTG full speed transceiver functionality is ensured down to 2.7 V but not the full USB full speed electrical characteristics which are degraded in the 2.7-to-3.0 V VDDUSB voltage range. 3. Guaranteed by design. 4. RL is the load connected on the USB OTG full speed drivers. Note: 162/222 When VBUS sensing feature is enabled, PA9 and PB13 should be left at their default state (floating input), not as alternate function. A typical 200 A current consumption of the sensing block (current to voltage conversion to determine the different sessions) can be observed on PA9 and PB13 when the feature is enabled. DocID027590 Rev 3 STM32F745xx STM32F746xx Electrical characteristics Figure 52. USB OTG full speed timings: definition of data signal rise and fall time &URVVRYHU SRLQWV 'LIIHUHQWLDO GDWDOLQHV 9&56 966 WU WI DL Table 81. USB OTG full speed electrical characteristics(1) Driver characteristics Symbol Parameter Conditions Min Max Unit tr Rise time(2) CL = 50 pF 4 20 ns tf Fall time(2) CL = 50 pF 4 20 ns tr/tf 90 110 % - 1.3 2.0 V Driving high or low 28 44 trfm Rise/ fall time matching VCRS Output signal crossover voltage ZDRV Output driver impedance(3) 1. Guaranteed by design. 2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0). 3. No external termination series resistors are required on DP (D+) and DM (D-) pins since the matching impedance is included in the embedded driver. USB high speed (HS) characteristics Unless otherwise specified, the parameters given in Table 84 for ULPI are derived from tests performed under the ambient temperature, fHCLK frequency summarized in Table 83 and VDD supply voltage conditions summarized in Table 82, with the following configuration: * Output speed is set to OSPEEDRy[1:0] = 11, unless otherwise specified * Capacitive load C = 20 pF, unless otherwise specified * Measurement points are done at CMOS levels: 0.5VDD. Refer to Section 5.3.17: I/O port characteristics for more details on the input/output characteristics. Table 82. USB HS DC electrical characteristics Symbol Input level Parameter VDD USB OTG HS operating voltage Min.(1) Max.(1) Unit 1.7 3.6 V 1. All the voltages are measured from the local ground potential. DocID027590 Rev 3 163/222 194 Electrical characteristics STM32F745xx STM32F746xx Table 83. USB HS clock timing parameters(1) Symbol Parameter Min Typ Max Unit - fHCLK value to guarantee proper operation of USB HS interface 30 - - MHz FSTART_8BIT Frequency (first transition) 54 60 66 MHz FSTEADY Frequency (steady state) 500 ppm 59.97 60 60.03 MHz DSTART_8BIT Duty cycle (first transition) 40 50 60 % DSTEADY Duty cycle (steady state) 500 ppm 49.975 50 50.025 % tSTEADY Time to reach the steady state frequency and duty cycle after the first transition - - 1.4 ms Peripheral - - 5.6 Host - - - - - - tSTART_DEV tSTART_HOST Clock startup time after the de-assertion of SuspendM 8-bit 10% 8-bit 10% PHY preparation time after the first transition of the input clock tPREP ms s 1. Guaranteed by design. Figure 53. ULPI timing diagram &ORFN &RQWURO,Q 8/3,B',5 8/3,B1;7 W6& W+& W6' W+' GDWD,Q ELW W'& &RQWURORXW 8/3,B673 GDWDRXW ELW W'& W'' DLF 164/222 DocID027590 Rev 3 STM32F745xx STM32F746xx Electrical characteristics Table 84. Dynamic characteristics: USB ULPI(1) Symbol Parameter Conditions Min. Typ. Max. tSC Control in (ULPI_DIR, ULPI_NXT) setup time - 3 - - tHC Control in (ULPI_DIR, ULPI_NXT) hold time - 1 - - tSD Data in setup time - 1.5 - - tHD Data in hold time - 0.5 - - 2.7 V < VDD < 3.6 V, CL = 20 pF and OSPEEDRy[1:0] = 11 - 5.5 9 - 5.5 11.5 tDC/tDD Data/control output delay 1.7 V < VDD < 3.6 V, CL = 15 pF and OSPEEDRy[1:0] = 11 - Unit ns 1. Guaranteed by characterization results. Ethernet characteristics Unless otherwise specified, the parameters given in Table 85, Table 86 and Table 87 for SMI, RMII and MII are derived from tests performed under the ambient temperature, fHCLK frequency summarized in Table 17 and VDD supply voltage conditions summarized in Table 85, with the following configuration: * Output speed is set to OSPEEDRy[1:0] = 10 * Capacitive load C = 20 pF * Measurement points are done at CMOS levels: 0.5VDD. Refer to Section 5.3.17: I/O port characteristics for more details on the input/output characteristics. Table 85 gives the list of Ethernet MAC signals for the SMI (station management interface) and Figure 54 shows the corresponding timing diagram. Figure 54. Ethernet SMI timing diagram W0'& (7+B0'& WG 0',2 (7+B0',2 2 WVX 0',2 WK 0',2 (7+B0',2 , 069 DocID027590 Rev 3 165/222 194 Electrical characteristics STM32F745xx STM32F746xx Table 85. Dynamics characteristics: Ethernet MAC signals for SMI(1) Symbol Min Typ Max MDC cycle time(2.38 MHz) 400 400 403 Td(MDIO) Write data valid time 10 10.5 12.5 tsu(MDIO) Read data setup time 12.5 - - th(MDIO) Read data hold time 0 - - tMDC Parameter Unit ns 1. Guaranteed by characterization results. Table 86 gives the list of Ethernet MAC signals for the RMII and Figure 55 shows the corresponding timing diagram. Figure 55. Ethernet RMII timing diagram 50,,B5()B&/. WG 7;(1 WG 7;' 50,,B7;B(1 50,,B7;'>@ WVX 5;' WVX &56 WLK 5;' WLK &56 50,,B5;'>@ 9 50,,B&56B' DL Table 86. Dynamics characteristics: Ethernet MAC signals for RMII(1) Symbol Parameter Typ Max tsu(RXD) Receive data setup time 1 - - tih(RXD) Receive data hold time 1.5 - - tsu(CRS) Carrier sense setup time 1 - - tih(CRS) Carrier sense hold time 1 - - td(TXEN) Transmit enable valid delay time 5 6 10.5 td(TXD) Transmit data valid delay time 5 6 12 1. Guaranteed by characterization results. 166/222 Min DocID027590 Rev 3 Unit ns STM32F745xx STM32F746xx Electrical characteristics Table 87 gives the list of Ethernet MAC signals for MII and Figure 55 shows the corresponding timing diagram. Figure 56. Ethernet MII timing diagram 0,,B5;B&/. 0,,B5;'>@ 0,,B5;B'9 0,,B5;B(5 WVX 5;' WVX (5 WVX '9 WLK 5;' WLK (5 WLK '9 0,,B7;B&/. WG 7;(1 WG 7;' 0,,B7;B(1 0,,B7;'>@ DL Table 87. Dynamics characteristics: Ethernet MAC signals for MII(1) Symbol Parameter Min Typ Max tsu(RXD) Receive data setup time 3 - - tih(RXD) Receive data hold time 1.5 - - tsu(DV) Data valid setup time 0 - - tih(DV) Data valid hold time 1.5 - - tsu(ER) Error setup time 1.5 - - tih(ER) Error hold time 0.5 - - td(TXEN) Transmit enable valid delay time 6.5 7 13.5 td(TXD) Transmit data valid delay time 6.5 7 13.5 Unit ns 1. Guaranteed by characterization results. CAN (controller area network) interface Refer to Section 5.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (CANx_TX and CANx_RX). DocID027590 Rev 3 167/222 194 Electrical characteristics 5.3.27 STM32F745xx STM32F746xx FMC characteristics Unless otherwise specified, the parameters given in Table 88 to Table 101 for the FMC interface are derived from tests performed under the ambient temperature, fHCLK frequency and VDD supply voltage conditions summarized in Table 17, with the following configuration: * Output speed is set to OSPEEDRy[1:0] = 11 * Measurement points are done at CMOS levels: 0.5VDD Refer to Section 5.3.17: I/O port characteristics for more details on the input/output characteristics. Asynchronous waveforms and timings Figure 57 through Figure 60 represent asynchronous waveforms and Table 88 through Table 95 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration: * AddressSetupTime = 0x1 * AddressHoldTime = 0x1 * DataSetupTime = 0x1 (except for asynchronous NWAIT mode , DataSetupTime = 0x5) * BusTurnAroundDuration = 0x0 * Capcitive load CL = 30 pF In all timing tables, the THCLK is the HCLK clock period 168/222 DocID027590 Rev 3 STM32F745xx STM32F746xx Electrical characteristics Figure 57. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms WZ 1( )0&B1( WY 12(B1( W Z 12( W K 1(B12( )0&B12( )0&B1:( WY $B1( )0&B$>@ W K $B12( $GGUHVV WY %/B1( W K %/B12( )0&B1%/>@ W K 'DWDB1( W VX 'DWDB12( WK 'DWDB12( W VX 'DWDB1( 'DWD )0&B'>@ W Y 1$'9B1( WZ 1$'9 )0&B1$'9 )0&B1:$,7 WK 1(B1:$,7 WVX 1:$,7B1( 069 1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used. DocID027590 Rev 3 169/222 194 Electrical characteristics STM32F745xx STM32F746xx Table 88. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1) Symbol Min Max 2THCLK- 0.5 2 THCLK+1.5 0 1 2THCLK- 1 2THCLK+ 1 FMC_NOE high to FMC_NE high hold time 0 - FMC_NEx low to FMC_A valid - 0.5 th(A_NOE) Address hold time after FMC_NOE high 0 - tv(BL_NE) FMC_NEx low to FMC_BL valid - 0.5 th(BL_NOE) FMC_BL hold time after FMC_NOE high 0 - tsu(Data_NE) Data to FMC_NEx high setup time THCLK - 2 - tsu(Data_NOE) Data to FMC_NOEx high setup time THCLK -2 - th(Data_NOE) Data hold time after FMC_NOE high 0 - th(Data_NE) Data hold time after FMC_NEx high 0 - tv(NADV_NE) FMC_NEx low to FMC_NADV low - 0 FMC_NADV low time - THCLK +1 tw(NE) tv(NOE_NE) tw(NOE) th(NE_NOE) tv(A_NE) tw(NADV) Parameter FMC_NE low time FMC_NEx low to FMC_NOE low FMC_NOE low time Unit ns 1. CL = 30 pF. Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT timings(1) Symbol Min Max FMC_NE low time 7THCLK -1 7THCLK FMC_NWE low time 5THCLK -1 5THCLK +1 FMC_NWAIT low time THCLK -0.5 tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 5THCLK +1.5 - th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid 4THCLK+1 - tw(NE) tw(NOE) tw(NWAIT) Parameter 1. Guaranteed by characterization results. 170/222 DocID027590 Rev 3 Unit ns STM32F745xx STM32F746xx Electrical characteristics Figure 58. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms WZ 1( )0&B1([ )0&B12( WY 1:(B1( WZ 1:( W K 1(B1:( )0&B1:( WY $B1( )0&B$>@ WK $B1:( $GGUHVV WY %/B1( )0&B1%/>@ WK %/B1:( 1%/ WY 'DWDB1( WK 'DWDB1:( 'DWD )0&B'>@ W Y 1$'9B1( )0&B1$'9 WZ 1$'9 )0&B1:$,7 WK 1(B1:$,7 WVX 1:$,7B1( 069 1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used. Table 90. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1) Symbol tw(NE) tv(NWE_NE) tw(NWE) th(NE_NWE) tv(A_NE) Parameter Min Max FMC_NE low time 3THCLK-0.5 3THCLK+1.5 FMC_NEx low to FMC_NWE low THCLK-0.5 THCLK+ 1 FMC_NWE low time THCLK-0.5 THCLK+ 1 FMC_NWE high to FMC_NE high hold time THCLK -0.5 - - 0 THCLK-0.5 - - 0 THCLK-0.5 - FMC_NEx low to FMC_A valid th(A_NWE) Address hold time after FMC_NWE high tv(BL_NE) FMC_NEx low to FMC_BL valid th(BL_NWE) FMC_BL hold time after FMC_NWE high tv(Data_NE) Data to FMC_NEx low to Data valid - THCLK+ 3 th(Data_NWE) Data hold time after FMC_NWE high THCLK+0.5 - tv(NADV_NE) FMC_NEx low to FMC_NADV low - 0 FMC_NADV low time - THCLK+ 0.5 tw(NADV) Unit ns 1. Guaranteed by characterization results. DocID027590 Rev 3 171/222 194 Electrical characteristics STM32F745xx STM32F746xx Table 91. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings(1) Symbol Parameter tw(NE) tw(NWE) Min Max FMC_NE low time 8THCLK-0.5 8THCLK+1.5 FMC_NWE low time 6THCLK-0.5 6THCLK+1 tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 6THCLK-1 - th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid 4THCLK+2 - Unit ns 1. Guaranteed by characterization results. Figure 59. Asynchronous multiplexed PSRAM/NOR read waveforms WZ 1( )0&B 1( WY 12(B1( W K 1(B12( )0&B12( W Z 12( )0&B1:( WK $B12( WY $B1( )0&B $>@ $GGUHVV WY %/B1( WK %/B12( )0&B 1%/>@ 1%/ WK 'DWDB1( WVX 'DWDB1( W Y $B1( )0&B $'>@ WVX 'DWDB12( WK 'DWDB12( 'DWD $GGUHVV WK $'B1$'9 W Y 1$'9B1( WZ 1$'9 )0&B1$'9 )0&B1:$,7 WK 1(B1:$,7 WVX 1:$,7B1( 069 172/222 DocID027590 Rev 3 STM32F745xx STM32F746xx Electrical characteristics Table 92. Asynchronous multiplexed PSRAM/NOR read timings(1) Symbol tw(NE) tv(NOE_NE) ttw(NOE) th(NE_NOE) tv(A_NE) tv(NADV_NE) tw(NADV) Parameter Min Max 3THCLK-0.5 3THCLK+1.5 FMC_NEx low to FMC_NOE low 2THCLK-1 2THCLK+0.5 FMC_NOE low time THCLK-0.5 THCLK+0.5 FMC_NOE high to FMC_NE high hold time 0 - FMC_NEx low to FMC_A valid - 0.5 FMC_NEx low to FMC_NADV low 0 0.5 THCLK-0.5 THCLK+1.5 FMC_NE low time FMC_NADV low time th(AD_NADV) FMC_AD(address) valid hold time after FMC_NADV high) 0 - th(A_NOE) Address hold time after FMC_NOE high THCLK-0.5 - th(BL_NOE) FMC_BL time after FMC_NOE high 0 - FMC_NEx low to FMC_BL valid - 0.5 tv(BL_NE) tsu(Data_NE) Data to FMC_NEx high setup time THCLK-2 - tsu(Data_NOE) Data to FMC_NOE high setup time THCLK-2 - th(Data_NE) Data hold time after FMC_NEx high 0 - th(Data_NOE) Data hold time after FMC_NOE high 0 - Unit ns 1. Guaranteed by characterization results. Table 93. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings(1) Symbol tw(NE) tw(NOE) Parameter Min Max FMC_NE low time 8THCLK-1 8THCLK+2 FMC_NWE low time 5THCLK-1 5THCLK +1 5THCLK +1.5 - 4THCLK+1 - tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid Unit ns 1. Guaranteed by characterization results. DocID027590 Rev 3 173/222 194 Electrical characteristics STM32F745xx STM32F746xx Figure 60. Asynchronous multiplexed PSRAM/NOR write waveforms WZ 1( )0&B 1([ )0&B12( WY 1:(B1( WZ 1:( W K 1(B1:( )0&B1:( WK $B1:( WY $B1( )0&B $>@ $GGUHVV WY %/B1( WK %/B1:( )0&B 1%/>@ 1%/ W Y $B1( )0&B $'>@ W Y 'DWDB1$'9 $GGUHVV WK 'DWDB1:( 'DWD WK $'B1$'9 W Y 1$'9B1( WZ 1$'9 )0&B1$'9 )0&B1:$,7 WK 1(B1:$,7 WVX 1:$,7B1( 069 Table 94. Asynchronous multiplexed PSRAM/NOR write timings(1) Symbol tw(NE) tv(NWE_NE) tw(NWE) th(NE_NWE) tv(A_NE) tv(NADV_NE) tw(NADV) th(AD_NADV) 174/222 Parameter Min Max 4THCLK-0.5 4THCLK+1.5 THCLK-1 THCLK+0.5 2THCLK-0.5 2THCLK+0.5 THCLK - FMC_NEx low to FMC_A valid - 0 FMC_NEx low to FMC_NADV low 0 0.5 THCLK-0.5 THCLK+ 1.5 THCLK-2 - FMC_NE low time FMC_NEx low to FMC_NWE low FMC_NWE low time FMC_NWE high to FMC_NE high hold time FMC_NADV low time FMC_AD(adress) valid hold time after FMC_NADV high) th(A_NWE) Address hold time after FMC_NWE high THCLK - th(BL_NWE) FMC_BL hold time after FMC_NWE high THCLK-2 - tv(BL_NE) FMC_NEx low to FMC_BL valid - 0 tv(Data_NADV) FMC_NADV high to Data valid - THCLK +2 th(Data_NWE) Data hold time after FMC_NWE high THCLK +0.5 - DocID027590 Rev 3 Unit ns STM32F745xx STM32F746xx Electrical characteristics 1. Guaranteed by characterization results. Table 95. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings(1) Symbol tw(NE) tw(NWE) Parameter FMC_NE low time FMC_NWE low time Min Max 9THCLK 9THCLK+1.5 7THCLK-0.5 7THCLK+0.5 tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 6THCLK+2 - th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid 4THCLK-1 - Unit ns 1. Guaranteed by characterization results. Synchronous waveforms and timings Figure 61 through Figure 64 represent synchronous waveforms and Table 96 through Table 99 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration: * BurstAccessMode = FMC_BurstAccessMode_Enable; * MemoryType = FMC_MemoryType_CRAM; * WriteBurst = FMC_WriteBurst_Enable; * CLKDivision = 1; * DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM * CL = 30 pF on data and address lines. CL = 10 pF on FMC_CLK unless otherwise specified. In all timing tables, the THCLK is the HCLK clock period. - For 2.7 V VDD 3.6 V, maximum FMC_CLK = 108 MHz at CL=20 pF or 90 MHz at CL=30 pF (on FMC_CLK). - For 1.71 V VDD<2.7 V, maximum FMC_CLK = 70 MHz at CL=10 pF (on FMC_CLK). DocID027590 Rev 3 175/222 194 Electrical characteristics STM32F745xx STM32F746xx Figure 61. Synchronous multiplexed NOR/PSRAM read timings %867851 WZ &/. WZ &/. )0&B&/. 'DWDODWHQF\ WG &/./1([/ )0&B1([ W G &/./1$'9/ WG &/.+1([+ WG &/./1$'9+ )0&B1$'9 WG &/./$9 WG &/.+$,9 )0&B$>@ WG &/./12(/ WG &/.+12(+ )0&B12( W G &/./$'9 )0&B$'>@ WG &/./$',9 WVX $'9&/.+ $'>@ WK &/.+$'9 WVX $'9&/.+ ' WVX 1:$,79&/.+ )0&B1:$,7 :$,7&)* E :$,732/E )0&B1:$,7 :$,7&)* E :$,732/E WVX 1:$,79&/.+ WVX 1:$,79&/.+ WK &/.+$'9 ' WK &/.+1:$,79 WK &/.+1:$,79 WK &/.+1:$,79 069 176/222 DocID027590 Rev 3 STM32F745xx STM32F746xx Electrical characteristics Table 96. Synchronous multiplexed NOR/PSRAM read timings(1) Symbol tw(CLK) Parameter FMC_CLK period Min Max 2THCLK-0.5 - - 2 THCLK+0.5 - td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) td(CLKH_NExH) FMC_CLK high to FMC_NEx high (x= 0...2) td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 1.5 td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 - td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16...25) - 2 td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16...25) THCLK - - 2 THCLK-0.5 - td(CLKL-NOEL) FMC_CLK low to FMC_NOE low td(CLKH-NOEH) FMC_CLK high to FMC_NOE high td(CLKL-ADV) FMC_CLK low to FMC_AD[15:0] valid - 3 td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid 0 - tsu(ADV-CLKH) FMC_A/D[15:0] valid data before FMC_CLK high 1.5 - th(CLKH-ADV) FMC_A/D[15:0] valid data after FMC_CLK high 1 - tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 2 - th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 3.5 - Unit ns 1. Guaranteed by characterization results. DocID027590 Rev 3 177/222 194 Electrical characteristics STM32F745xx STM32F746xx Figure 62. Synchronous multiplexed PSRAM write timings %867851 WZ &/. WZ &/. )0&B&/. 'DWDODWHQF\ WG &/./1([/ WG &/.+1([+ )0&B1([ WG &/./1$'9/ WG &/./1$'9+ )0&B1$'9 WG &/.+$,9 WG &/./$9 )0&B$>@ WG &/.+1:(+ WG &/./1:(/ )0&B1:( WG &/./$',9 WG &/./$'9 )0&B$'>@ WG &/./'DWD WG &/./'DWD $'>@ ' ' )0&B1:$,7 :$,7&)* E :$,732/E WVX 1:$,79&/.+ WK &/.+1:$,79 WG &/.+1%/+ )0&B1%/ 069 178/222 DocID027590 Rev 3 STM32F745xx STM32F746xx Electrical characteristics Table 97. Synchronous multiplexed PSRAM write timings(1) Symbol Min Max 2THCLK-0.5 - - 1.5 THCLK+0.5 - td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 1.5 td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 - - 2 THCLK - - 1.5 THCLK-0.5 - tw(CLK) Parameter FMC_CLK period td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0...2) td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16...25) td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16...25) td(CLKL-NWEL) FMC_CLK low to FMC_NWE low t(CLKH-NWEH) FMC_CLK high to FMC_NWE high td(CLKL-ADV) FMC_CLK low to FMC_AD[15:0] valid - 3 td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid 0 - td(CLKL-DATA) FMC_A/D[15:0] valid data after FMC_CLK low - 3.5 td(CLKL-NBLL) FMC_CLK low to FMC_NBL low 1 - td(CLKH-NBLH) FMC_CLK high to FMC_NBL high THCLK+0.5 - 2 - 3.5 - tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high Unit ns 1. Guaranteed by characterization results. DocID027590 Rev 3 179/222 194 Electrical characteristics STM32F745xx STM32F746xx Figure 63. Synchronous non-multiplexed NOR/PSRAM read timings WZ &/. WZ &/. )0&B&/. WG &/./1([/ WG &/.+1([+ 'DWDODWHQF\ )0&B1([ WG &/./1$'9/ WG &/./1$'9+ )0&B1$'9 WG &/.+$,9 WG &/./$9 )0&B$>@ WG &/./12(/ WG &/.+12(+ )0&B12( WVX '9&/.+ WK &/.+'9 WVX '9&/.+ )0&B'>@ WK &/.+'9 ' WVX 1:$,79&/.+ )0&B1:$,7 :$,7&)* E :$,732/E ' WK &/.+1:$,79 WVX 1:$,79&/.+ )0&B1:$,7 :$,7&)* E :$,732/E WVX 1:$,79&/.+ W K &/.+1:$,79 WK &/.+1:$,79 069 Table 98. Synchronous non-multiplexed NOR/PSRAM read timings(1) Symbol Min Max 2THCLK-1 - - 2.5 THCLK+0.5 - td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 0 td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 - - 2.5 THCLK - - 2 THCLK+0.5 - 1.5 - tw(CLK) t(CLKL-NExL) td(CLKH-NExH) Parameter FMC_CLK period FMC_CLK low to FMC_NEx low (x=0..2) FMC_CLK high to FMC_NEx high (x= 0...2) td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16...25) td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16...25) td(CLKL-NOEL) FMC_CLK low to FMC_NOE low td(CLKH-NOEH) FMC_CLK high to FMC_NOE high tsu(DV-CLKH) FMC_D[15:0] valid data before FMC_CLK high th(CLKH-DV) FMC_D[15:0] valid data after FMC_CLK high 1 - FMC_NWAIT valid before FMC_CLK high 2 - 3.5 - t(NWAIT-CLKH) th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 180/222 DocID027590 Rev 3 Unit ns STM32F745xx STM32F746xx Electrical characteristics 1. Guaranteed by characterization results. Figure 64. Synchronous non-multiplexed PSRAM write timings WZ &/. WZ &/. )0&B&/. WG &/./1([/ WG &/.+1([+ 'DWDODWHQF\ )0&B1([ WG &/./1$'9/ WG &/./1$'9+ )0&B1$'9 WG &/.+$,9 WG &/./$9 )0&B$>@ WG &/./1:(/ WG &/.+1:(+ )0&B1:( WG &/./'DWD WG &/./'DWD ' )0&B'>@ ' )0&B1:$,7 :$,7&)* E:$,732/E WVX 1:$,79&/.+ WG &/.+1%/+ WK &/.+1:$,79 )0&B1%/ 069 DocID027590 Rev 3 181/222 194 Electrical characteristics STM32F745xx STM32F746xx Table 99. Synchronous non-multiplexed PSRAM write timings(1) Symbol Min Max 2THCLK-1 - - 2.5 THCLK+0.5 - td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 1.5 td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 - t(CLK) Parameter FMC_CLK period td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) t(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0...2) td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16...25) - 2.5 td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16...25) 0 - FMC_CLK low to FMC_NWE low - 1.5 THCLK+1 - - 3 1.5 - THCLK+0.5 - 2 - 3.5 - td(CLKL-NWEL) td(CLKH-NWEH) FMC_CLK high to FMC_NWE high td(CLKL-Data) FMC_D[15:0] valid data after FMC_CLK low td(CLKL-NBLL) FMC_CLK low to FMC_NBL low td(CLKH-NBLH) FMC_CLK high to FMC_NBL high tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high Unit ns 1. Guaranteed by characterization results. NAND controller waveforms and timings Figure 65 through Figure 68 represent synchronous waveforms, and Table 100 and Table 101 provide the corresponding timings. The results shown in this table are obtained with the following FMC configuration: * COM.FMC_SetupTime = 0x01; * COM.FMC_WaitSetupTime = 0x03; * COM.FMC_HoldSetupTime = 0x02; * COM.FMC_HiZSetupTime = 0x01; * ATT.FMC_SetupTime = 0x01; * ATT.FMC_WaitSetupTime = 0x03; * ATT.FMC_HoldSetupTime = 0x02; * ATT.FMC_HiZSetupTime = 0x01; * Bank = FMC_Bank_NAND; * MemoryDataWidth = FMC_MemoryDataWidth_16b; * ECC = FMC_ECC_Enable; * ECCPageSize = FMC_ECCPageSize_512Bytes; * TCLRSetupTime = 0; * TARSetupTime = 0. In all timing tables, the THCLK is the HCLK clock period. 182/222 DocID027590 Rev 3 STM32F745xx STM32F746xx Electrical characteristics Figure 65. NAND controller waveforms for read access )0&B1&([ $/( )0&B$ &/( )0&B$ )0&B1:( WG $/(12( WK 12($/( )0&B12( 15( WVX '12( WK 12(' )0&B'>@ 069 Figure 66. NAND controller waveforms for write access )0&B1&([ $/( )0&B$ &/( )0&B$ WK 1:($/( WG $/(1:( )0&B1:( )0&B12( 15( WY 1:(' WK 1:(' )0&B'>@ 069 DocID027590 Rev 3 183/222 194 Electrical characteristics STM32F745xx STM32F746xx Figure 67. NAND controller waveforms for common memory read access )0&B1&([ $/( )0&B$ &/( )0&B$ WK 12($/( WG $/(12( )0&B1:( WZ 12( )0&B12( WVX '12( WK 12(' )0&B'>@ 069 Figure 68. NAND controller waveforms for common memory write access )0&B1&([ $/( )0&B$ &/( )0&B$ WG $/(12( WZ 1:( WK 12($/( )0&B1:( )0&B1 2( WG '1:( WY 1:(' WK 1:(' )0&B'>@ 069 Table 100. Switching characteristics for NAND Flash read cycles(1) Symbol tw(N0E) Parameter FMC_NOE low width Max 4THCLK-0.5 4THCLK tsu(D-NOE) FMC_D[15-0] valid data before FMC_NOE high 13 - th(NOE-D) FMC_D[15-0] valid data after FMC_NOE high 3 - td(ALE-NOE) FMC_ALE valid before FMC_NOE low - 3THCLK-0.5 th(NOE-ALE) FMC_NWE high to FMC_ALE invalid 3THCLK-2 - 1. Guaranteed by characterization results. 184/222 Min DocID027590 Rev 3 Unit ns STM32F745xx STM32F746xx Electrical characteristics Table 101. Switching characteristics for NAND Flash write cycles(1) Symbol tw(NWE) Parameter FMC_NWE low width Min Max 4THCLK-0.5 4THCLK 0 - Unit tv(NWE-D) FMC_NWE low to FMC_D[15-0] valid th(NWE-D) FMC_NWE high to FMC_D[15-0] invalid 3THCLK-1 - td(D-NWE) FMC_D[15-0] valid before FMC_NWE high 5THCLK-3 - - 3THCLK-0.5 3THCLK-2 - td(ALE-NWE) FMC_ALE valid before FMC_NWE low th(NWE-ALE) FMC_NWE high to FMC_ALE invalid ns 1. Guaranteed by characterization results. SDRAM waveforms and timings * CL = 30 pF on data and address lines. CL = 10 pF on FMC_SDCLK unless otherwise specified. In all timing tables, the THCLK is the HCLK clock period. - For 3.0 V VDD 3.6 V, maximum FMC_SDCLK = 100 MHz at CL=20 pF (on FMC_SDCLK). - For 2.7 V VDD 3.6 V, maximum FMC_SDCLK = 90 MHz at CL=30 pF (on FMC_SDCLK). - For 1.71 V VDD<1.9 V, maximum FMC_SDCLK = 70 MHz at CL=10 pF (on FMC_SDCLK). Figure 69. SDRAM read access waveforms (CL = 1) )0&B6'&/. WG 6'&/./B$GG& WK 6'&/./B$GG5 WG 6'&/./B$GG5 )0&B$>@ 5RZQ &RO &RO &ROL &ROQ WK 6'&/./B$GG& WK 6'&/./B61'( WG 6'&/./B61'( )0&B6'1(>@ WG 6'&/./B15$6 WK 6'&/./B15$6 )0&B6'15$6 WK 6'&/./B1&$6 WG 6'&/./B1&$6 )0&B6'1&$6 )0&B6'1:( WVX 6'&/.+B'DWD )0&B'>@ WK 6'&/.+B'DWD 'DWD 'DWD 'DWDL 'DWDQ 069 DocID027590 Rev 3 185/222 194 Electrical characteristics STM32F745xx STM32F746xx Table 102. SDRAM read timings(1) Symbol Parameter Min Max tw(SDCLK) FMC_SDCLK period 2THCLK-0.5 2THCLK+0.5 tsu(SDCLKH _Data) Data input setup time 3.5 - th(SDCLKH_Data) Data input hold time 1.5 - td(SDCLKL_Add) Address valid time - 4 td(SDCLKL- SDNE) Chip select valid time - 0.5 th(SDCLKL_SDNE) Chip select hold time 0 - td(SDCLKL_SDNRAS) SDNRAS valid time - 0.5 th(SDCLKL_SDNRAS) SDNRAS hold time 0 - td(SDCLKL_SDNCAS) SDNCAS valid time - 0.5 th(SDCLKL_SDNCAS) SDNCAS hold time 0 - Unit ns 1. Guaranteed by characterization results. Table 103. LPSDR SDRAM read timings(1) Symbol Parameter Min Max tW(SDCLK) FMC_SDCLK period 2THCLK-0.5 2THCLK+0.5 tsu(SDCLKH_Data) Data input setup time 3 - th(SDCLKH_Data) Data input hold time 1.5 - td(SDCLKL_Add) Address valid time - 3.5 td(SDCLKL_SDNE) Chip select valid time - 0.5 th(SDCLKL_SDNE) Chip select hold time 0 - td(SDCLKL_SDNRAS SDNRAS valid time - 0.5 th(SDCLKL_SDNRAS) SDNRAS hold time 0 - td(SDCLKL_SDNCAS) SDNCAS valid time - 0.5 th(SDCLKL_SDNCAS) SDNCAS hold time 0 - 1. Guaranteed by characterization results. 186/222 DocID027590 Rev 3 Unit ns STM32F745xx STM32F746xx Electrical characteristics Figure 70. SDRAM write access waveforms )0&B6'&/. WG 6'&/./B$GG& WK 6'&/./B$GG5 WG 6'&/./B$GG5 )0&B$>@ 5RZQ &RO &RO &ROL &ROQ WK 6'&/./B$GG& WK 6'&/./B61'( WG 6'&/./B61'( )0&B6'1(>@ WK 6'&/./B15$6 WG 6'&/./B15$6 )0&B6'15$6 WG 6'&/./B1&$6 WK 6'&/./B1&$6 WG 6'&/./B1:( WK 6'&/./B1:( )0&B6'1&$6 )0&B6'1:( WG 6'&/./B'DWD 'DWD )0&B'>@ 'DWD 'DWDL 'DWDQ WK 6'&/./B'DWD WG 6'&/./B1%/ )0&B1%/>@ 069 Table 104. SDRAM write timings(1) Symbol Parameter Min Max tw(SDCLK) FMC_SDCLK period 2THCLK-0.5 2THCLK+0.5 td(SDCLKL _Data) Data output valid time - 2 th(SDCLKL _Data) Data output hold time 0.5 - td(SDCLKL_Add) Address valid time - 4 td(SDCLKL_SDNWE) SDNWE valid time - 0.5 th(SDCLKL_SDNWE) SDNWE hold time 0 - td(SDCLKL_ SDNE) Chip select valid time - 0.5 th(SDCLKL-_SDNE) Chip select hold time 0 - td(SDCLKL_SDNRAS) SDNRAS valid time - 0.5 th(SDCLKL_SDNRAS) SDNRAS hold time 0 - td(SDCLKL_SDNCAS) SDNCAS valid time - 0.5 td(SDCLKL_SDNCAS) SDNCAS hold time 0 - Unit ns 1. Guaranteed by characterization results. DocID027590 Rev 3 187/222 194 Electrical characteristics STM32F745xx STM32F746xx Table 105. LPSDR SDRAM write timings(1) Symbol Parameter Min Max Unit tw(SDCLK) FMC_SDCLK period 2THCLK-0.5 2THCLK+0.5 td(SDCLKL _Data) Data output valid time - 4 th(SDCLKL _Data) Data output hold time 0 - td(SDCLKL_Add) Address valid time - 3.5 td(SDCLKL-SDNWE) SDNWE valid time - 0.5 th(SDCLKL-SDNWE) SDNWE hold time 0 - td(SDCLKL- SDNE) Chip select valid time - 0.5 th(SDCLKL- SDNE) Chip select hold time 0 - td(SDCLKL-SDNRAS) SDNRAS valid time - 0.5 th(SDCLKL-SDNRAS) SDNRAS hold time 0 - td(SDCLKL-SDNCAS) SDNCAS valid time - 0.5 td(SDCLKL-SDNCAS) SDNCAS hold time 0 - ns 1. Guaranteed by characterization results. 5.3.28 Quad-SPI interface characteristics Unless otherwise specified, the parameters given in Table 106 and Table 107 for Quad-SPI are derived from tests performed under the ambient temperature, fAHB frequency and VDD supply voltage conditions summarized in Table 17: General operating conditions, with the following configuration: * Output speed is set to OSPEEDRy[1:0] = 11 * Capacitive load C = 20 pF * Measurement points are done at CMOS levels: 0.5 VDD Refer to Section 5.3.17: I/O port characteristics for more details on the input/output alternate function characteristics. Table 106. Quad-SPI characteristics in SDR mode(1) Symbol Fck1/t(CK) 188/222 Parameter Quad-SPI clock frequency Conditions Min Typ Max 2.7 V VDD<3.6 V CL=20 pF - - 108 1.71 V@ 069 5.3.30 LCD-TFT controller (LTDC) characteristics Unless otherwise specified, the parameters given in Table 109 for LCD-TFT are derived from tests performed under the ambient temperature, fHCLK frequency and VDD supply voltage summarized in Table 17, with the following configuration: * LCD_CLK polarity: high * LCD_DE polarity : low * LCD_VSYNC and LCD_HSYNC polarity: high * Pixel formats: 24 bits Table 109. LTDC characteristics (1) Symbol Parameter Min Max Unit fCLK LTDC clock output frequency - 45 MHz DCLK LTDC clock output duty cycle 45 55 % tw(CLKH) tw(CLKL) Clock High time, low time tv(DATA) Data output valid time - 6 th(DATA) Data output hold time 2 - HSYNC/VSYNC/DE output valid time - 3 HSYNC/VSYNC/DE output hold time 0.5 - tv(HSYNC) tv(VSYNC) tw(CLK)/2 - 0.5 tw(CLK)/2+0.5 ns tv(DE) th(HSYNC) th(VSYNC) th(DE) 1. Guaranteed by characterization results. DocID027590 Rev 3 191/222 194 Electrical characteristics STM32F745xx STM32F746xx Figure 74. LCD-TFT horizontal timing diagram W&/. /&'B&/. /&'B96<1& WY +6<1& WY +6<1& /&'B+6<1& WK '( WY '( /&'B'( WY '$7$ /&'B5>@ /&'B*>@ /&'B%>@ 1JYFM 1JYFM 1JYFM / WK '$7$ +6<1& +RUL]RQWDO ZLGWK EDFNSRUFK $FWLYHZLGWK +RUL]RQWDO EDFNSRUFK 2QHOLQH 069 Figure 75. LCD-TFT vertical timing diagram W&/. /&'B&/. WY 96<1& WY 96<1& /&'B96<1& /&'B5>@ /&'B*>@ /&'B%>@ 0OLQHVGDWD 96<1& 9HUWLFDO ZLGWK EDFNSRUFK $FWLYHZLGWK 9HUWLFDO EDFNSRUFK 2QHIUDPH 069 192/222 DocID027590 Rev 3 STM32F745xx STM32F746xx 5.3.31 Electrical characteristics SD/SDIO MMC card host interface (SDMMC) characteristics Unless otherwise specified, the parameters given in Table 110 for the SDIO/MMC interface are derived from tests performed under the ambient temperature, fPCLK2 frequency and VDD supply voltage conditions summarized in Table 17, with the following configuration: * Output speed is set to OSPEEDRy[1:0] = 11 * Capacitive load C = 30 pF * Measurement points are done at CMOS levels: 0.5VDD Refer to Section 5.3.17: I/O port characteristics for more details on the input/output characteristics. Figure 76. SDIO high-speed mode WI WU W& W: &.+ W: &./ &. W29 W2+ '&0' RXWSXW W,68 W,+ '&0' LQSXW DL Figure 77. SD default mode &. W29' W2+' '&0' RXWSXW DL DocID027590 Rev 3 193/222 194 Electrical characteristics STM32F745xx STM32F746xx Table 110. Dynamic characteristics: SD / MMC characteristics, VDD=2.7V to 3.6V(1) Symbol Parameter Conditions Min Typ Max Unit fPP Clock frequency in data transfer mode - 0 - 50 MHz - SDMMC_CK/fPCLK2 frequency ratio - - - 8/3 - tW(CKL) Clock low time fpp =50 MHz 9.5 10.5 - tW(CKH) Clock high time fpp =50 MHz 8.5 9.5 - ns CMD, D inputs (referenced to CK) in MMC and SD HS mode tISU Input setup time HS fpp =50 MHz 2.5 - - tIH Input hold time HS fpp =50 MHz 3 - - ns CMD, D outputs (referenced to CK) in MMC and SD HS mode tOV Output valid time HS fpp =50 MHz - 11.5 12 tOH Output hold time HS fpp =50 MHz 10.5 - - ns CMD, D inputs (referenced to CK) in SD default mode tISUD Input setup time SD fpp =25 MHz 2 - - tIHD Input hold time SD fpp =25 MHz 4 - - ns CMD, D outputs (referenced to CK) in SD default mode tOVD Output valid default time SD fpp =25 MHz - 1.5 2 tOHD Output hold default time SD fpp =25 MHz 0.5 - - ns 1. Guaranteed by characterization results,. Table 111. Dynamic characteristics: eMMC characteristics, VDD=1.71V to 1.9V(1)(2) Symbol Parameter Conditions Min Typ Max Unit fPP Clock frequency in data transfer mode - 0 - 50 MHz - SDMMC_CK/fPCLK2 frequency ratio - - - 8/3 - tW(CKL) Clock low time fpp =50 MHz 9.5 10.5 - tW(CKH) Clock high time fpp =50 MHz 8.5 9.5 - ns CMD, D inputs (referenced to CK) in eMMC mode tISU Input setup time HS fpp =50 MHz 0.5 - - tIH Input hold time HS fpp =50 MHz 3.5 - - ns CMD, D outputs (referenced to CK) in eMMC mode tOV Output valid time HS fpp =50 MHz - 12 12.5 tOH Output hold time HS fpp =50 MHz 11 - - 1. Guaranteed by characterization results. 2. Cload = 20 pF. 194/222 DocID027590 Rev 3 ns STM32F745xx STM32F746xx 6 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK(R) packages, depending on their level of environmental compliance. ECOPACK(R) specifications, grade definitions and product status are available at: www.st.com. ECOPACK(R) is an ST trademark. LQFP100, 14 x 14 mm low-profile quad flat package information Figure 78. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline PP F $ $ 6($7,1*3/$1( & $ *$8*(3/$1( ' / ' $ . FFF & / ' 3,1 ,'(17,),&$7,21 ( ( ( E 6.1 H /B0(B9 1. Drawing is not to scale. DocID027590 Rev 3 195/222 221 Package information STM32F745xx STM32F746xx Table 112. LQPF100, 14 x 14 mm 100-pin low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 15.800 16.000 16.200 0.6220 0.6299 0.6378 D1 13.800 14.000 14.200 0.5433 0.5512 0.5591 D3 - 12.000 - - 0.4724 - E 15.800 16.000 16.200 0.6220 0.6299 0.6378 E1 13.800 14.000 14.200 0.5433 0.5512 0.5591 E3 - 12.000 - - 0.4724 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0 3.5 7 0 3.5 7 ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. 196/222 DocID027590 Rev 3 STM32F745xx STM32F746xx Package information Figure 79. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package recommended footprint DLF 1. Dimensions are expressed in millimeters. Marking of engineering samples The following figure gives an example of topside marking orientation versus pin 1 identifier location. Figure 80. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package top view example 3URGXFWLGHQWLILFDWLRQ 670) 5HYLVLRQFRGH 9*7 5 'DWHFRGH < :: 3LQLGHQWLILHU 069 1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. DocID027590 Rev 3 197/222 221 Package information 6.2 STM32F745xx STM32F746xx WLCSP143, 4.539x 5.849 mm, 0.4 mm pitch wafer level chip scale package information Figure 81. WLCSP143 - 143-ball, 4.539x 5.849 mm, 0.4 mm pitch wafer level chip scale package outline $EDOOORFDWLRQ H EEE ) * 'HWDLO$ H H H $ $ $ %RWWRPYLHZ %XPSVLGH 6LGHYLHZ ' %XPS $ HHH $ ( E FFF GGG $RULHQWDWLRQ UHIHUHQFH 7RSYLHZ :DIHUEDFNVLGH = ;< = 6HDWLQJ SODQH 'HWDLO$ 5RWDWHG DDD $B0(B9 1. Drawing is not to scale. Table 113. WLCSP143 - 143-ball, 4.539x 5.849 mm, 0.4 mm pitch wafer level chip scale package mechanical data 198/222 inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.525 0.555 0.585 0.0207 0.0219 0.0230 A1 - 0.175 - - 0.0069 - DocID027590 Rev 3 STM32F745xx STM32F746xx Package information Table 113. WLCSP143 - 143-ball, 4.539x 5.849 mm, 0.4 mm pitch wafer level chip scale package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max - 0.380 - - 0.0150 - - 0.025 - - 0.0010 - b(3) 0.220 0.250 0.280 0.0087 0.0098 0.0110 D 4.504 4.539 4.574 0.1773 0.1787 0.1801 E 5.814 5.849 5.884 0.2289 0.2303 0.2317 e - 0.400 - - 0.0157 - e1 - 4.000 - - 0.1575 - e2 - 4.800 - - 0.1890 - F - 0.2695 - - 0.0106 - G - 0.5245 - - 0.0206 - aaa - - 0.100 - - 0.0039 bbb - - 0.100 - - 0.0039 ccc - - 0.100 - - 0.0039 ddd - - 0.050 - - 0.0020 eee - - 0.050 - - 0.0020 A2 A3 (2) 1. Values in inches are converted from mm and rounded to 4 decimal digits. 2. Back side coating. 3. Dimension is measured at the maximum bump diameter parallel to primary datum Z. Figure 82. WLCSP143 - 143-ball, 4.539x 5.849 mm, 0.4 mm pitch wafer level chip scale package recommended footprint 'SDG 'VP $B)3B9 DocID027590 Rev 3 199/222 221 Package information STM32F745xx STM32F746xx Table 114. WLCSP143 recommended PCB design rules Dimension Recommended values Pitch 0.4 Dpad 0.225 mm Dsm 0.290 mm typ. (depends on the soldermask registration tolerance) Stencil opening 0.250 mm Stencil thickness 0.100 mm Marking of engineering samples The following figure gives an example of topside marking orientation versus ball A1 identifier location. Figure 83. WLCSP143, 0.4 mm pitch wafer level chip scale package top view example %DOO$ LGHQWLILHU 3URGXFWLGHQWLILFDWLRQ (6)=*< 5HYLVLRQFRGH 'DWHFRGH < :: 5 069 1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. 200/222 DocID027590 Rev 3 STM32F745xx STM32F746xx LQFP144, 20 x 20 mm low-profile quad flat package information Figure 84. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline F $ $ 6($7,1* 3/$1( & $ PP FFF & $ *$8*(3/$1( ' . / ' / ' ( ( ( E 6.3 Package information 3,1 ,'(17,),&$7,21 H $B0(B9 1. Drawing is not to scale. Table 115. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 21.800 22.000 22.200 0.8583 0.8661 0.874 DocID027590 Rev 3 201/222 221 Package information STM32F745xx STM32F746xx Table 115. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max D1 19.800 20.000 20.200 0.7795 0.7874 0.7953 D3 - 17.500 - - 0.689 - E 21.800 22.000 22.200 0.8583 0.8661 0.8740 E1 19.800 20.000 20.200 0.7795 0.7874 0.7953 E3 - 17.500 - - 0.6890 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0 3.5 7 0 3.5 7 ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 85. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package recommended footprint DLH 1. Dimensions are expressed in millimeters. 202/222 DocID027590 Rev 3 STM32F745xx STM32F746xx Package information Marking of engineering samples The following figure gives an example of topside marking orientation versus pin 1 identifier location. Figure 86. LQFP144, 20 x 20mm, 144-pin low-profile quad flat package top view example 5HYLVLRQFRGH 3URGXFWLGHQWLILFDWLRQ 5 )=*7 < :: 3LQ LGHQWLILHU 'DWHFRGH 069 1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. DocID027590 Rev 3 203/222 221 Package information 6.4 STM32F745xx STM32F746xx LQFP176 24 x 24 mm low-profile quad flat package information Figure 87. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package outline F $ $ $ & 6HDWLQJSODQH PP JDXJHSODQH N $ / +' 3,1 ,'(17,),&$7,21 / ' =( ( +( H =' E 7B0(B9 1. Drawing is not to scale. Table 116. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package mechanical data inches(1) millimeters Symbol 204/222 Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 - 1.450 0.0531 - 0.0060 b 0.170 - 0.270 0.0067 - 0.0106 C 0.090 - 0.200 0.0035 - 0.0079 D 23.900 - 24.100 0.9409 - 0.9488 DocID027590 Rev 3 STM32F745xx STM32F746xx Package information Table 116. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max E 23.900 - 24.100 0.9409 - 0.9488 e - 0.500 - - 0.0197 - HD 25.900 - 26.100 1.0200 - 1.0276 HE 25.900 - 26.100 1.0200 - 1.0276 L 0.450 - 0.750 0.0177 - 0.0295 L1 - 1.000 - - 0.0394 - ZD - 1.250 - - 0.0492 - ZE - 1.250 - - 0.0492 - ccc - - 0.080 - - 0.0031 k 0 - 7 0 - 7 1. Values in inches are converted from mm and rounded to 4 decimal digits. DocID027590 Rev 3 205/222 221 Package information STM32F745xx STM32F746xx Figure 88. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package recommended footprint 7B)3B9 1. Dimensions are expressed in millimeters. 206/222 DocID027590 Rev 3 STM32F745xx STM32F746xx Package information Marking of engineering samples The following figure gives an example of topside marking orientation versus pin 1 identifier location. Figure 89. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package top view example 3URGXFWLGHQWLILFDWLRQ 670),*7 5HYLVLRQFRGH < :: 'DWHFRGH 5 3LQ LGHQWLILHU 069 1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. DocID027590 Rev 3 207/222 221 Package information 6.5 STM32F745xx STM32F746xx LQFP208 28 x 28 mm low-profile quad flat package information Figure 90. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package outline 6($7,1* 3/$1( F $ $ $ & FFF & PP $ *$8*(3/$1( . / ' / ' ' 3,1 ,'(17,),&$7,21 ( ( ( E H 6)@.&@7 1. Drawing is not to scale. Table 117. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package mechanical data inches(1) millimeters Symbol 208/222 Min Typ Max Min Typ Max A - - 1.600 -- - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 DocID027590 Rev 3 STM32F745xx STM32F746xx Package information Table 117. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 29.800 30.000 30.200 1.1732 1.1811 1.1890 D1 27.800 28.000 28.200 1.0945 1.1024 1.1102 D3 - 25.500 - - 1.0039 - E 29.800 30.000 30.200 1.1732 1.1811 1.1890 E1 27.800 28.000 28.200 1.0945 1.1024 1.1102 E3 - 25.500 - - 1.0039 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0 3.5 7.0 0 3.5 7.0 ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. DocID027590 Rev 3 209/222 221 Package information STM32F745xx STM32F746xx Figure 91. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package recommended footprint 069 1. Dimensions are expressed in millimeters. 210/222 DocID027590 Rev 3 STM32F745xx STM32F746xx Package information Marking of engineering samples The following figure gives an example of topside marking orientation versus pin 1 identifier location. Figure 92. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package top view example 5HYLVLRQFRGH 3URGXFWLGHQWLILFDWLRQ 5 670)%*7 3LQ LGHQWLILHU 'DWHFRGH \HDUZHHN <:: 069 1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. DocID027590 Rev 3 211/222 221 Package information 6.6 STM32F745xx STM32F746xx UFBGA 176+25, 10 x 10, 0.65 mm ultra thin-pitch ball grid array package information Figure 93. UFBGA 176+25, 10 x 10 x 0.65 mm ultra thin fine-pitch ball grid array package outline & ^ $EDOO LGHQWLILHU $EDOO LQGH[ DUHD $ & & Z KddKDs/t E EDOOV dKWs/t HHH 0 & $ III 0 & Ds 1. Drawing is not to scale. Table 118. UFBGA176+25, 10 x 10 x 0.65 mm ultra thin fine-pitch ball grid array package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.460 0.530 0.600 0.0181 0.0209 0.0236 A1 0.050 0.080 0.110 0.002 0.0031 0.0043 A2 0.400 0.450 0.500 0.0157 0.0177 0.0197 b 0.230 0.280 0.330 0.0091 0.0110 0.0130 D 9.950 10.000 10.050 0.3917 0.3937 0.3957 E 9.950 10.000 10.050 0.3917 0.3937 0.3957 e - 0.650 - - 0.0256 - F 0.400 0.450 0.500 0.0157 0.0177 0.0197 ddd - - 0.080 - - 0.0031 eee - - 0.150 - - 0.0059 fff - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. 212/222 DocID027590 Rev 3 STM32F745xx STM32F746xx Package information Figure 94. UFBGA176+25, 10 x 10 mm x 0.65 mm, ultra fine-pitch ball grid array package recommended footprint 'SDG 'VP &Ws Table 119. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA) Dimension Recommended values Pitch 0.65 mm Dpad 0.300 mm Dsm 0.400 mm typ. (depends on the soldermask registration tolerance) Stencil opening 0.300 mm Stencil thickness Between 0.100 mm and 0.125 mm Pad trace width 0.100 mm DocID027590 Rev 3 213/222 221 Package information STM32F745xx STM32F746xx Marking of engineering samples The following figure gives an example of topside marking orientation versus ball A1 identifier location. Figure 95. UFBGA176+25, 10 x 10 x 0.6 mm ultra thin fine-pitch ball grid array package top view example 5HYLVLRQFRGH 3URGXFWLGHQWLILFDWLRQ 5 670) ,*. 'DWHFRGH %DOO$ LQGHQWLILHU < :: 069 1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. 214/222 DocID027590 Rev 3 STM32F745xx STM32F746xx 6.7 Package information TFBGA216, 13 x 13 x 0.8mm thin fine-pitch ball grid array package information Figure 96. TFBGA216, 13 x 13 x 0.8mm thin fine-pitch ball grid array package outline = 6HDWLQJSODQH GGG = $ $ $ ' H ; $EDOO $EDOO LGHQWLILHU LQGH[DUHD ) ' $ * ( ( H < 5 E EDOOV HHH 0 = < ; III 0 = %277209,(: 7239,(: $/B0(B9 1. Drawing is not to scale. Table 120. TFBGA216, 13 x 13 x 0.8mm thin fine-pitch ball grid array package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.100 - - 0.0433 A1 0.150 - - 0.0059 - - A2 - 0.760 - - 0.0299 - b 0.350 0.400 0.450 0.0138 0.0157 0.0177 D 12.850 13.000 13.150 0.5118 0.5118 0.5177 D1 - 11.200 - - 0.4409 - E 12.850 13.000 13.150 0.5118 0.5118 0.5177 E1 - 11.200 - - 0.4409 - e - 0.800 - - 0.0315 - F - 0.900 - - 0.0354 - DocID027590 Rev 3 215/222 221 Package information STM32F745xx STM32F746xx Table 120. TFBGA216, 13 x 13 x 0.8mm thin fine-pitch ball grid array package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max G - 0.900 - - 0.0354 - ddd - - 0.100 - - 0.0039 eee - - 0.150 - - 0.0059 fff - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 97. TFBGA216, 13 x 13 mm, 0.8 mm pitch, thin fine-pitch ball grid array package recommended footprint 'SDG 'VP $/B)3B9 Table 121. TFBGA216 recommended PCB design rules (0.8 mm pitch BGA) Dimension 216/222 Recommended values Pitch 0.8 Dpad 0.400 mm Dsm 0.470 mm typ. (depends on the soldermask registration tolerance) Stencil opening 0.400 mm Stencil thickness Between 0.100 mm and 0.125 mm Pad trace width 0.120 mm DocID027590 Rev 3 STM32F745xx STM32F746xx Package information Marking of engineering samples The following figure gives an example of topside marking orientation versus ball A1 identifier location. Figure 98. TFBGA216, 13 x 13 x 0.8mm thin fine-pitch ball grid array package top view example 3URGXFWLGHQWLILFDWLRQ 670) 5HYLVLRQFRGH 1*+ 5 %DOO$ LGHQWLILHU 'DWHFRGH < :: 069 1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. DocID027590 Rev 3 217/222 221 Package information 6.8 STM32F745xx STM32F746xx Thermal characteristics The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max x JA) Where: * TA max is the maximum ambient temperature in C, * JA is the package junction-to-ambient thermal resistance, in C/W, * PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), * PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = (VOL x IOL) + ((VDD - VOH) x IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Table 122. Package thermal characteristics Symbol JA Parameter Value Thermal resistance junction-ambient LQFP100 - 14 x 14 mm / 0.5 mm pitch 43 Thermal resistance junction-ambient WLCSP143 31.2 Thermal resistance junction-ambient LQFP144 - 20 x 20 mm / 0.5 mm pitch 40 Thermal resistance junction-ambient LQFP176 - 24 x 24 mm / 0.5 mm pitch 38 Thermal resistance junction-ambient LQFP208 - 28 x 28 mm / 0.5 mm pitch 19 Thermal resistance junction-ambient UFBGA176 - 10x 10 mm / 0.5 mm pitch 39 Thermal resistance junction-ambient TFBGA216 - 13 x 13 mm / 0.8 mm pitch 29 Unit C/W Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org. 218/222 DocID027590 Rev 3 STM32F745xx STM32F746xx 7 Part numbering Part numbering Table 123. Ordering information scheme Example: STM32 F 746 V G T 6 xxx Device family STM32 = ARM-based 32-bit microcontroller Product type F = general-purpose Device subfamily 745= STM32F745xx, USB OTG FS/HS, camera interface Ethernet 746= STM32F746xx, USB OTG FS/HS, camera interface, Ethernet, LCD-TFT Pin count V = 100 pins Z = 143 and 144 pins I = 176 pins B = 208 pins N = 216 pins Flash memory size E = 512 Kbytes of Flash memory G = 1024 Kbytes of Flash memory Package T = LQFP K = UFBGA H = TFBGA Y = WLCSP Temperature range 6 = Industrial temperature range, -40 to 85 C. 7 = Industrial temperature range, -40 to 105 C. Options xxx = programmed parts TR = tape and reel For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office. DocID027590 Rev 3 219/222 221 Recommendations when using internal reset OFF Appendix A STM32F745xx STM32F746xx Recommendations when using internal reset OFF When the internal reset is OFF, the following integrated features are no longer supported: A.1 * The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled. * The brownout reset (BOR) circuitry must be disabled. * The embedded programmable voltage detector (PVD) is disabled. * VBAT functionality is no more available and VBAT pin should be connected to VDD. * The over-drive mode is not supported. Operating conditions Table 124. Limitations depending on the operating power supply range Operating power supply range ADC operation Maximum Flash memory access frequency with no wait states (fFlashmax) VDD =1.7 to 2.1 V(3) Conversion time up to 1.2 Msps 20 MHz Maximum Flash memory access frequency with wait states (1)(2) 180 MHz with 8 wait states and over-drive OFF I/O operation Possible Flash memory operations 8-bit erase and - No I/O program compensation operations only 1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is required. 2. Thanks to the ART accelerator on ITCM interface and L1-cache on AXI interface, the number of wait states given here does not impact the execution speed from the Flash memory since the ART accelerator or L1cache allows to achieve a performance equivalent to 0-wait state program execution. 3. VDD/VDDA minimum value of 1.7 V, with the use of an external power supply supervisor (refer to Section 2.17.1: Internal reset ON). 220/222 DocID027590 Rev 3 STM32F745xx STM32F746xx Revision history Revision history Table 125. Document revision history Date Revision 26-May-2015 1 Initial release. 2 Updated Table 53: ESD absolute maximum ratings adding packages. Updated note of Table 32: Typical and maximum current consumptions in Standby mode. Updated Figure 11: STM32F74xVx LQFP100 pinout replacing PB13 and PB14 by PE13 and PE14. Updated Table 51: EMS characteristics replacing 168 MHz by 216 MHz. Updated Section 2.9: Quad-SPI memory interface (QUADSPI) removing `STM32F75xx'. Updated Section 2.22.2: General-purpose timers (TIMx) and Section 2.43: Embedded Trace MacrocellTM modifying STM32F756xx by STM32F74xxx. Updated Section 2.1: ARM(R) Cortex(R)-M7 with FPU modifying STM32F756xx family by STM32F745xx and STM32F746xx devices. Removed Table 86. Ethernet DC electrical characteristics. Updated all the notes removing `not tested in production'. Updated Table 43: Main PLL characteristics, Table 44: PLLI2S characteristics and Table 45: PLLISAI characteristics fVCO_OUT output at min value `100' and VCO freq at 100 MHz. Updated Table 13: STM32F745xx and STM32F746xx register boundary addresses replacing cortex-M4 by Cortex-M7. Updated Table 87: Dynamics characteristics: Ethernet MAC signals for MII td (TXEN) and td (TXD) min value at 6.5 ns. 3 Updated Table 10: STM32F745xx and STM32F746xx pin and ball definition additional functions column: WKUP1, 2, 3, 4, 5, 6 must be respectively PA0, PA2, PC1, PC13, PI8, PI11. Updated Table 62: ADC characteristics adding VREF- negative voltage reference. Update Table 14: Voltage characteristics adding table note 3. Updated Table 69: Temperature sensor calibration values memory addresses. Updated Table 72: Internal reference voltage calibration values memory addresses. 20-Oct-2015 10-Dec-2015 Changes DocID027590 Rev 3 221/222 221 STM32F745xx STM32F746xx IMPORTANT NOTICE - PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. (c) 2015 STMicroelectronics - All rights reserved 222/222 DocID027590 Rev 3