DS2316 Datasheet 40MX and 42MX FPGA Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com (c) 2017 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice. About Microsemi Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www.microsemi.com. 5172136. 16.0 8/17 Contents 1 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Revision 16.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Revision 15.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Revision 14.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Revision 13.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Revision 12.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Revision 11.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Revision 10.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Revision 9.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Revision 6.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 1 1 1 1 2 2 2 40MX and 42MX FPGA Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.1 High Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.2 High Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.3 HiRel Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.4 Ease of Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Product Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Plastic Device Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ceramic Device Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Grade Offerings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Speed Grade Offerings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 3 3 3 3 5 6 6 7 7 3 40MX and 42MX FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1 3.2 3.3 3.4 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 MX Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2.1 Logic Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2.2 Dual-Port SRAM Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2.3 Routing Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2.4 Clock Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2.5 MultiPlex I/O Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Other Architectural Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.2 User Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.3 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.4 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.5 Power-Up/Down in Mixed-Voltage Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.6 Transient Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.7 Low Power Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4.1 General Power Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4.2 Static Power Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4.3 Active Power Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4.4 Equivalent Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4.5 CEQ Values for Microsemi MX FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4.6 Test Circuitry and Silicon Explorer II Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4.7 Design Consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4.8 IEEE Standard 1149.1 Boundary Scan Test (BST) Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4.9 JTAG Mode Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 DS2316 Datasheet Revision 16.0 iii 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.4.10 TRST Pin and TAP Controller Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4.11 Boundary Scan Description Language (BSDL) File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Development Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.6.1 Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.6.2 User Guides and Manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.6.3 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.0 V Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.7.1 5 V TTL Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 V Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.8.1 3.3 V LVTTL Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Mixed 5.0 V / 3.3 V Operating Conditions (for 42MX Devices Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.9.1 Mixed 5.0V/3.3V Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.9.2 Output Drive Characteristics for 5.0 V PCI Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.9.3 Output Drive Characteristics for 3.3 V PCI Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.9.4 Junction Temperature (TJ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.9.5 Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Timing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.10.1 Parameter Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.10.2 Sequential Module Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.10.3 Sequential Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.10.4 Decode Module Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.10.5 SRAM Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.10.6 Dual-Port SRAM Timing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.10.7 Predictable Performance: Tight Delay Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.11.1 Critical Nets and Typical Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.11.2 Long Tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.11.3 Timing Derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.11.4 Temperature and Voltage Derating Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.11.5 PCI System Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.11.6 PCI Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4 Package Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 DS2316 Datasheet Revision 16.0 iv Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Table 20 Table 21 Table 22 Table 23 Table 24 Table 25 Table 26 Table 27 Table 28 Table 29 Table 30 Table 31 Table 32 Table 33 Table 34 Table 35 Table 36 Table 37 Table 38 Table 39 Table 40 Table 41 Table 42 Table 43 Table 44 Table 45 Product profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Plastic Device Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Ceramic Device Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Temperature Grade Offerings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Speed Grade Offerings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Voltage Support of MX Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Fixed Capacitance Values for MX FPGAs (pF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Device Configuration Options for Probe Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Test Access Port Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Supported BST Public Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Boundary Scan Pin Configuration and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Absolute Maximum Ratings for 40MX Devices* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Absolute Maximum Ratings for 42MX Devices* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5V TTL Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Absolute Maximum Ratings for 40MX Devices* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Absolute Maximum Ratings for 42MX Devices* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3V LVTTL Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Absolute Maximum Ratings* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Mixed 5.0V/3.3V Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 DC Specification (5.0 V PCI Signaling) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 AC Specifications (5.0V PCI Signaling)* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 DC Specification (3.3 V PCI Signaling) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 AC Specifications for (3.3 V PCI Signaling)* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 42MX Temperature and Voltage Derating Factors (Normalized to TJ = 25C, VCCA = 5.0 V) . . . 40 40MX Temperature and Voltage Derating Factors(Normalized to TJ = 25C, VCC = 5.0 V) . . . . . 41 42MX Temperature and Voltage Derating Factors(Normalized to TJ = 25C, VCCA = 3.3 V) . . . . 41 40MX Temperature and Voltage Derating Factors (Normalized to TJ = 25C, VCC = 3.3 V) . . . . 42 Clock Specification for 33 MHz PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Timing Parameters for 33 MHz PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 A40MX02 Timing Characteristics (Nominal 5.0 V Operation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 A40MX02 Timing Characteristics (Nominal 3.3 V Operation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 A40MX04 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70C) . . . . . . . . . . . . . . . . . . . . . . . . . 48 A40MX04 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCC = 3.0 V, TJ = 70C) . . . . . . . . . . . . . . . . . . . . . . . . . . 51 A42MX09 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70C) . . . . . . . . . . . . . . . . . . . . . . . . 54 A42MX09 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCCA = 3.0 V, TJ = 70C) . . . . . . . . . . . . . . . . . . . . . . . . . 58 A42MX16 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70C) . . . . . . . . . . . . . . . . . . . . . . . . 62 A42MX16 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCCA = 3.0 V, TJ = 70C) . . . . . . . . . . . . . . . . . . . . . . . . . 66 A42MX24 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70C) . . . . . . . . . . . . . . . . . . . . . . . . 69 A42MX24 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCCA = 3.0 V, TJ = 70C) . . . . . . . . . . . . . . . . . . . . . . . . . 73 A42MX36 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70C) . . . . . . . . . . . . . . . . . . . . . . . . 77 A42MX36 Timing Characteristics (Nominal 3.3 V Operation) DS2316 Datasheet Revision 15.0 v Table 46 Table 47 Table 48 Table 49 Table 50 Table 51 Table 52 Table 53 Table 54 Table 55 Table 56 Table 57 Table 58 Table 59 Table 60 Table 61 Table 62 (Worst-Case Commercial Conditions, VCCA = 3.0 V, TJ = 70C) . . . . . . . . . . . . . . . . . . . . . . . . . 81 Configuration of Unused I/Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 PL44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 PL68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 PL84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 PQ 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 PQ144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 PQ160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 PQ208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 PQ240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 VQ80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 VQ100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 TQ176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 CQ208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 CQ256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 BG272 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 PG132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 CQ172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 DS2316 Datasheet Revision 15.0 vi Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 27 Figure 28 Figure 29 Figure 30 Figure 31 Figure 32 Figure 33 Figure 34 Figure 35 Figure 36 Figure 37 Figure 38 Figure 39 Figure 40 Figure 41 Figure 42 Figure 43 Figure 44 Figure 45 Figure 46 Figure 47 Figure 48 Figure 49 Figure 50 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 42MX C-Module Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 42MX C-Module Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 42MX S-Module Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 A42MX24 and A42MX36 D-Module Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 A42MX36 Dual-Port SRAM Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 MX Routing Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Clock Networks of 42MX Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Quadrant Clock Network of A42MX36 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 42MX I/O Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 PCI Output Structure of A42MX24 and A42MX36 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Silicon Explorer II Setup with 40MX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Silicon Explorer II Setup with 42MX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 42MX IEEE 1149.1 Boundary Scan Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Device Selection Wizard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Typical Output Drive Characteristics (Based Upon Measured Data) . . . . . . . . . . . . . . . . . . . . . . . 30 40MX Timing Model* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 42MX Timing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 42MX Timing Model (Logic Functions Using Quadrant Clocks) . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 42MX Timing Model (SRAM Functions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Output Buffer Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 AC Test Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Input Buffer Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Module Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Flip-Flops and Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Input Buffer Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Output Buffer Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Decode Module Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 SRAM Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 42MX SRAM Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 42MX SRAM Synchronous Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 42MX SRAM Asynchronous Read Operation--Type 1 (Read Address Controlled) . . . . . . . . . . . . 38 42MX SRAM Asynchronous Read Operation--Type 2 (Write Address Controlled) . . . . . . . . . . . . 39 42MX Junction Temperature and Voltage Derating Curves (Normalized to TJ = 25C, VCCA = 5.0 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 40MX Junction Temperature and Voltage Derating Curves (Normalized to TJ = 25C, VCC = 5.0 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 42MX Junction Temperature and Voltage Derating Curves (Normalized to TJ = 25C, VCCA = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 40MX Junction Temperature and Voltage Derating Curves (Normalized to TJ = 25C, VCC = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 PL44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 PL68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 PL84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 PQ100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 PQ144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 PQ160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 PQ208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 PQ240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 VQ80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 VQ100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 TQ176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 CQ208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 CQ256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 DS2316 Datasheet Revision 16.0 vii Figure 51 Figure 52 Figure 53 BG272 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 PG132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 CQ172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 DS2316 Datasheet Revision 16.0 viii Revision History 1 Revision History The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication. 1.1 Revision 16.0 Table 4, page 7 is edited in this revision to add the temperature grade, "I" for the column A42MX09 and row PQFP144 1.2 Revision 15.0 The following is a summary of the changes in revision 15.0 (Published in December 2016) of this document. * * * 1.3 Table 15, page 23 is edited to add the footnote, VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V Table 22, page 27 is edited to add the footnote, VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V Table 23, page 27 is edited to add the footnote, VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V Revision 14.0 The following is a summary of the changes in revision 14.0 of this document. * * * * 1.4 Added CQFP package information for A42MX16 device in Product Profile, page 3 and Ceramic Device Resources, page 6 (SAR 79522). Added Military (M) and MIL-STD-883 Class B (B) grades for CPGA 132 Package and added Commercial (C), Military (M), and MIL-STD-883 Class B (B) grades for CQFP 172 Package in Temperature Grade Offerings, page 7 (SAR 79519) Changed Silicon Sculptor II to Silicon Sculptor in Programming, page 15 (SAR 38754) Added Figure 53, page 160 CQ172 package (SAR 79522). Revision 13.0 The following is a summary of the changes in revision 13.0 of this document. * * 1.5 Added Figure 42, page 99 PQ144 Package for A42MX09 device (SAR 69776) Added Figure 52, page 155 PQ132 Package for A42MX09 device (SAR 69776) Revision 12.0 The following is a summary of the changes in revision 12.0 of this document. * * 1.6 Added information on power-up behavior for A42MX24 and A42MX36 devices to the Power Supply, page 15 (SAR 42096 Corrected the inadvertent mistake in the naming of the PL68 pin assignment table (SARs 48999, 49793) Revision 11.0 The following is a summary of the changes in revision 11.0 of this document. * * 1.7 The FuseLock logo and accompanying text was removed from the User Security, page 14. This marking is no longer used on Microsemi devices (PCN 0915) The Development Tool Support, page 21 was updated (SAR 38512) Revision 10.0 The following is a summary of the changes in revision 10.0 of this document. DS2316 Datasheet Revision 16.0 1 Revision History * * * * 1.8 Ordering Information, page 5 was updated to include lead-free package ordering codes (SAR 21968) The User Security, page 14 was revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement the best security available in the industry (SAR 34673) The Transient Current, page 15 is new (SAR 36930). Package names were revised according to standards established in Package Mechanical Drawings (SAR 34774) Revision 9.0 The following is a summary of the changes in revision 9.0 of this document * In Table 20, page 25, the limits in VI were changed from -0.5 to VCCI + 0.5 to -0.5 to VCCA + 0.5 In Table 22, page 27, VOH was changed from 3.7 to 2.4 for the min in industrial and military. VIH had VCCI and that was changed to VCCA 1.9 Revision 6.0 The following is a summary of the changes in revision 6.0 of this document. * * * * * * * * * * * * * * The Ease of Integration, page 3 was updated The Temperature Grade Offerings, page 7 is new The Speed Grade Offerings, page 7 is new The General Description, page 8 was updated The MultiPlex I/O Modules, page 13 was updated The User Security, page 14 was updated Table 6, page 15 was updated The Power Dissipation, page 16 was updated. The Static Power Component, page 16 was updated The Equivalent Capacitance, page 17 was updated Figure 13, page 19 was updated Table 10, page 20 was updated. Figure 14, page 20 was updated. Table 11, page 21 was updated. DS2316 Datasheet Revision 16.0 2 40MX and 42MX FPGA Families 2 40MX and 42MX FPGA Families 2.1 Features The following sections list out various features of the 40MX and 42MX FPGA family devices. 2.1.1 High Capacity * * * * * 2.1.2 High Performance * * * * * 2.1.3 Commercial, Industrial, Automotive, and Military Temperature Plastic Packages Commercial, Military Temperature, and MIL-STD-883 Ceramic Packages QML Certification Ceramic Devices Available to DSCC SMD Ease of Integration * * * * * * 2.2 5.6 ns Clock-to-Out 250 MHz Performance 5 ns Dual-Port SRAM Access 100 MHz FIFOs 7.5 ns 35-Bit Address Decode HiRel Features * * * * 2.1.4 Single-Chip ASIC Alternative 3,000 to 54,000 System Gates Up to 2.5 kbits Configurable Dual-Port SRAM Fast Wide-Decode Circuitry Up to 202 User-Programmable I/O Pins Mixed-Voltage Operation (5.0 V or 3.3 V for core and I/Os), with PCI-Compliant I/Os Up to 100% Resource Utilization and 100% Pin Locking Deterministic, User-Controllable Timing Unique In-System Diagnostic and Verification Capability with Silicon Explorer II Low Power Consumption IEEE Standard 1149.1 (JTAG) Boundary Scan Testing Product Profile The following table gives the features of the products. Table 1 * Product profile Device A40MX02 A40MX04 A42MX09 A42MX16 A42MX24 A42MX36 Capacity System Gates SRAM Bits 3,000 6,000 14,000 24,000 36,000 54,000 2,560 295 547 348 336 624 608 954 912 24 1,230 1,184 24 9.5 ns 9.5 ns 5.6 ns 6.1 ns 6.1 ns 6.3 ns Logic Modules Sequential Combinatorial Decode Clock-to-Out SRAM Modules (64x4 or 32x8) Dedicated Flip-Flops 10 348 624 DS2316 Datasheet Revision 16.0 954 1,230 3 40MX and 42MX FPGA Families Table 1 * Product profile (continued) Device A40MX02 A40MX04 A42MX09 A42MX16 A42MX24 A42MX36 Maximum Flip-Flops 147 273 Clocks 1 1 2 2 2 6 User I/O (maximum) 57 69 104 140 176 202 PCI Yes Yes Boundary Scan Test (BST) Yes Yes 84 160, 208 208, 240 Packages (by pin count) PLCC PQFP VQFP TQFP CQFP PBGA CPGA 44, 68 100 80 516 44, 68, 84 84 100 100, 144, 80 160 100 176 928 84 100, 160, 208 100 176 172 1,410 1,822 176 208, 256 272 - 132 DS2316 Datasheet Revision 16.0 4 40MX and 42MX FPGA Families 2.3 Ordering Information The following figure shows ordering information.All the following tables show plastic and ceramic device resources, temperature and speed grade offerings. Figure 1 * Ordering Information A42MX16 _ 1 PQ 100 G ES Application (Temperature Range) Blank = Commercial (0 to +70C) I = Industrial (-40 to +85C) M = Military (-55 to +125C) B = MIL-STD-883 A = Automotive (-40 to +125C) Package Lead Count Lead-Free Packaging Blank = Standard Packaging G = RoHS Compliant Packaging Package Type PL = Plastic Leaded Chip Carrier PQ = Plastic Quad Flat Pack TQ = Thin (1.4 mm) Quad Flat Pack VQ = Very Thin (1.0 mm) Quad Flat Pack BG = Plastic Ball Grid Array CQ =Ceramic Quad Flat Pack PG =Ceramic Pin Grid Array Speed Grade Blank = Standard Speed -1 = Approximately 15% Faster than Standard -2 = Approximately 25% Faster than Standard -3 = Approximately 35% Faster than Standard -F = Approximately 40% Slower than Standard Part Number A40MX02 = 3,000 System Gates A40MX04 = 6,000 System Gates A42MX09 = 14,000 System Gates A42MX16 = 24,000 System Gates A42MX24 = 36,000 System Gates A42MX36 = 54,000 System Gates DS2316 Datasheet Revision 16.0 5 40MX and 42MX FPGA Families 2.4 Plastic Device Resources Table 2 * Plastic Device Resources User I/Os Device PQFP PLCC PLCC PLCC 10044-Pin 68-Pin 84-Pin Pin A40MX02 34 57 A40MX04 34 57 PQFP 144Pin PQFP 160Pin PQFP 208Pin PQFP 240Pin VQFP TQFP PBGA VQFP 10017627280-Pin Pin Pin Pin 57 57 69 69 69 A42MX09 72 83 A42MX16 72 83 A42MX24 72 95 101 125 140 125 176 A42MX36 176 83 104 83 140 150 202 202 Note: Package Definitions: PLCC = Plastic Leaded Chip Carrier, PQFP = Plastic Quad Flat Pack, TQFP = Thin Quad Flat Pack, VQFP = Very Thin Quad Flat Pack, PBGA = Plastic Ball Grid Array 2.5 Ceramic Device Resources Table 3 * Ceramic Device Resources User I/Os Device CPGA 132-Pin CQFP 172-Pin CQFP 208-Pin CQFP 256-Pin A42MX09 95 A42MX16 A42MX36 131 176 202 Note: Package Definitions: CQFP = Ceramic Quad Flat Pack DS2316 Datasheet Revision 16.0 6 40MX and 42MX FPGA Families 2.6 Temperature Grade Offerings Table 4 * Temperature Grade Offerings Package A40MX02 A40MX04 A42MX09 A42MX16 A42MX24 A42MX36 PLCC 44 C, I, M C, I, M PLCC 68 C, I, A, M C, I, M PLCC 84 PQFP 100 C, I, A, M C, I, A, M C, I, A, M C, I, M C, I, A, M C, I, A, M C, I, M PQFP 144 C, I PQFP 160 C, I, A, M C, I, M PQFP 208 C, I, M C, I, A, M C, I, A, M C, I, A, M C, I, A, M PQFP 240 VQFP 80 C, I, A, M C, I, A, M C, I, A, M VQFP 100 C, I, A, M C, I, A, M TQFP 176 C, I, A, M C, I, A, M C, I, A, M PBGA 272 C, I, M CQFP 172 C, M, B CQFP 208 C, M, B CQFP 256 C, M, B CPGA 132 C, M, B Note: C = Commercial I = Industrial A = Automotive M = Military B = MIL-STD-883 Class B 2.7 Speed Grade Offerings Table 5 * Speed Grade Offerings -F Std -1 -2 -3 P P P P P I P P P P A P M P P B P P C Note: See the 40MX and 42MX Automotive Family FPGAs datasheet for details on automotive-grade MX offerings. Contact your local Microsemi Sales representative for device availability. DS2316 Datasheet Revision 16.0 7 40MX and 42MX FPGAs 3 40MX and 42MX FPGAs 3.1 General Description Microsemi's 40MX and 42MX families offer a cost-effective design solution at 5V. The MX devices are single-chip solutions and provide high performance while shortening the system design and development cycle. MX devices can integrate and consolidate logic implemented in multiple programmable array logics (PALs), complex programmable logic devices (CPLDs), and FPGAs. Example applications include high-speed controllers and address decoding, peripheral bus interfaces, digital signal processor (DSP), and co-processor functions. The MX device architecture is based on Microsemi's patented antifuse technology implemented in a 0.45m triple-metal CMOS process. With capacities ranging from 3,000 to 54,000 system gates, the MX devices provide performance up to 250 MHz, are live on power-up and have one-fifth the standby power consumption of comparable FPGAs. MX FPGAs provide up to 202 user I/Os and are available in a wide variety of packages and speed grades. A42MX24 and A42MX36 devices also feature multiPlex I/Os, which support mixed-voltage systems, enable programmable peripheral component interconnect (PCI), deliver high-performance operation at both 5.0V and 3.3V, and provide a low-power mode. The devices are fully compliant with the PCI local bus specification (version 2.1). They deliver 200 MHz on-chip operation and 6.1 ns clock-to-output performance. The 42MX24 and 42MX36 devices include system-level features such as IEEE Standard 1149.1 (JTAG) Boundary Scan Testing and fast wide-decode modules. In addition, the A42MX36 device offers dual-port SRAM for implementing fast first in first out (FIFOs), last in first out (LIFOs), and temporary data storage. The storage elements can efficiently address applications requiring wide data path manipulation and can perform transformation functions such as those required for telecommunications, networking, and DSP. All MX devices are fully tested over automotive and military temperature ranges. In addition, the largest member of the family, the A42MX36, is available in both CQ208 and CQ256 ceramic packages screened to MIL-STD-883 levels. For easy prototyping and conversion from plastic to ceramic, the CQ208 and PQ208 devices are pin-compatible. 3.2 MX Architectural Overview The MX devices are composed of fine-grained building blocks that enable fast, efficient logic designs. All devices within these families are composed of logic modules, I/O modules, routing resources and clock networks, which are the building blocks for fast logic designs. In addition, the A42MX36 device contains embedded dual-port SRAM modules, which are optimized for high-speed data path functions such as FIFOs, LIFOs and scratch pad memory. A42MX24 and A42MX36 also contain wide-decode modules. 3.2.1 Logic Modules The 40MX logic module is an eight-input, one-output logic circuit designed to implement a wide range of logic functions with efficient use of interconnect routing resources.(see the following figures). The logic module can implement the four basic logic functions (NAND, AND, OR and NOR) in gates of two, three, or four inputs. The logic module can also implement a variety of D-latches, exclusivity functions, AND-ORs and OR-ANDs. No dedicated hard-wired latches or flip-flops are required in the array; latches and flip-flops can be constructed from logic modules whenever required in the application. DS2316 Datasheet Revision 16.0 8 40MX and 42MX FPGAs Figure 2 * 42MX C-Module Implementation The 42MX devices contain three types of logic modules: combinatorial (C-modules), sequential (S-modules) and decode (D-modules). The following figure illustrates the combinatorial logic module. The S-module, shown in Figure 4, page 10, implements the same combinatorial logic function as the C-module while adding a sequential element. The sequential element can be configured as either a D-flip-flop or a transparent latch. The S-module register can be bypassed so that it implements purely combinatorial logic. Figure 3 * 42MX C-Module Implementation A0 B0 S0 D00 D01 Y D10 D11 S1 A1 B1 DS2316 Datasheet Revision 16.0 9 40MX and 42MX FPGAs Figure 4 * 42MX S-Module Implementation D00 D01 D00 D01 Y D10 D S0 D11 S1 Q OUT CLR Up to 7-Input Function Plus D-Type Flip-Flop with Clear D10 D11 S1 Y S0 D Q OUT GATE Up to 7-Input Function Plus Latch D00 D0 Y D1 S Q D D01 D10 OUT D11 S1 GATE CLR Up to 4-Input Function Plus Latch with Clear Y OUT S0 Up to 8-Input Function (Same as C-Module) A42MX24 and A42MX36 devices contain D-modules, which are arranged around the periphery of the device. D-modules contain wide-decode circuitry, providing a fast, wide-input AND function similar to that found in CPLD architectures (Figure 5, page 11). The D-module allows A42MX24 and A42MX36 devices to perform wide-decode functions at speeds comparable to CPLDs and PALs. The output of the D-module has a programmable inverter for active HIGH or LOW assertion. The D-module output is hardwired to an output pin, and can also be fed back into the array to be incorporated into other logic. 3.2.2 Dual-Port SRAM Modules The A42MX36 device contains dual-port SRAM modules that have been optimized for synchronous or asynchronous applications. The SRAM modules are arranged in 256-bit blocks that can be configured as 32x8 or 64x4. SRAM modules can be cascaded together to form memory spaces of user-definable width and depth. A block diagram of the A42MX36 dual-port SRAM block is shown in Figure 6, page 11. The A42MX36 SRAM modules are true dual-port structures containing independent read and write ports. Each SRAM module contains six bits of read and write addressing (RDAD[5:0] and WRAD[5:0], respectively) for 64x4-bit blocks. When configured in byte mode, the highest order address bits (RDAD5 and WRAD5) are not used. The read and write ports of the SRAM block contain independent clocks (RCLK and WCLK) with programmable polarities offering active HIGH or LOW implementation. The SRAM block contains eight data inputs (WD[7:0]), and eight outputs (RD[7:0]), which are connected to segmented vertical routing tracks. The A42MX36 dual-port SRAM blocks provide an optimal solution for high-speed buffered applications requiring FIFO and LIFO queues. The ACTgen Macro Builder within Microsemi's designer software provides capability to quickly design memory functions with the SRAM blocks. Unused SRAM blocks can be used to implement registers for other user logic within the design. DS2316 Datasheet Revision 16.0 10 40MX and 42MX FPGAs Figure 5 * A42MX24 and A42MX36 D-Module Implementation 7 Inputs Hard-Wire to I/O Programmable Inverter Feedback to Array Figure 6 * A42MX36 Dual-Port SRAM Block Latches WD[7:0] [7:0] WRAD[5:0] MODE BLKEN WEN Write Port Logic [5:0] [5:0] Read Port Logic Latches Read Logic Latches RD[7:0] Write Logic RDAD[5:0] REN RCLK Routing Tracks WCLK 3.2.3 SRAM Module 32 x 8 or 64 x 4 (256 Bits) Routing Structure The MX architecture uses vertical and horizontal routing tracks to interconnect the various logic and I/O modules. These routing tracks are metal interconnects that may be continuous or split into segments. Varying segment lengths allow the interconnect of over 90% of design tracks to occur with only two antifuse connections. Segments can be joined together at the ends using antifuses to increase their lengths up to the full length of the track. All interconnects can be accomplished with a maximum of four antifuses. 3.2.3.1 Horizontal Routing Horizontal routing tracks span the whole row length or are divided into multiple segments and are located in between the rows of modules. Any segment that spans more than one-third of the row length is considered a long horizontal segment. A typical channel is shown in Figure 7, page 12. Within horizontal routing, dedicated routing tracks are used for global clock networks and for power and ground tie-off tracks. Non-dedicated tracks are used for signal nets. 3.2.3.2 Vertical Routing Another set of routing tracks run vertically through the module. There are three types of vertical tracks: input, output, and long. Long tracks span the column length of the module, and can be divided into multiple segments. Each segment in an input track is dedicated to the input of a particular module; each segment in an output track is dedicated to the output of a particular module. Long segments are uncommitted and can be assigned during routing. Each output segment spans four channels (two above and two below), except near the top and bottom of the array, where edge effects occur. Long vertical tracks contain either one or two segments. An example of vertical routing tracks and segments is shown in Figure 7, page 12. DS2316 Datasheet Revision 16.0 11 40MX and 42MX FPGAs 3.2.3.3 Antifuse Structures An antifuse is a "normally open" structure. The use of antifuses to implement a programmable logic device results in highly testable structures as well as efficient programming algorithms. There are no pre-existing connections; temporary connections can be made using pass transistors. These temporary connections can isolate individual antifuses to be programmed and individual circuit structures to be tested, which can be done before and after programming. For instance, all metal tracks can be tested for continuity and shorts between adjacent tracks, and the functionality of all logic modules can be verified. Figure 7 * MX Routing Structure Segmented Horizontal Routing Logic Modules Antifuses Vertical Routing Tracks 3.2.4 Clock Networks The 40MX devices have one global clock distribution network (CLK). A signal can be put on the CLK network by being routed through the CLKBUF buffer. In 42MX devices, there are two low-skew, high-fanout clock distribution networks, referred to as CLKA and CLKB. Each network has a clock module (CLKMOD) that can select the source of the clock signal from any of the following (Figure 8, page 13): * * * * Externally from the CLKA pad, using CLKBUF buffer Externally from the CLKB pad, using CLKBUF buffer Internally from the CLKINTA input, using CLKINT buffer Internally from the CLKINTB input, using CLKINT buffer The clock modules are located in the top row of I/O modules. Clock drivers and a dedicated horizontal clock track are located in each horizontal routing channel. Clock input pads in both 40MX and 42MX devices can also be used as normal I/Os, bypassing the clock networks. The A42MX36 device has four additional register control resources, called quadrant clock networks (Figure 9, page 13). Each quadrant clock provides a local, high-fanout resource to the contiguous logic modules within its quadrant of the device. Quadrant clock signals can originate from specific I/O pins or from the internal array and can be used as a secondary register clock, register clear, or output enable. DS2316 Datasheet Revision 16.0 12 40MX and 42MX FPGAs Figure 8 * Clock Networks of 42MX Devices CLKB CLKINB CLKA From Pads CLKINA CLKMOD S0 S1 Internal Signal CLKO(17) Clock Drivers CLKO(16) CLKO(15) CLKO(2) CLKO(1) Clock Tracks Figure 9 * Quadrant Clock Network of A42MX36 Devices QCLKA QCLKB QCLKC Quad Clock Modul QCLK1 QCLK3 Quad Clock Modul QCLKD *QCLK3IN *QCLK1IN S1 S0 S0 S1 Quad Clock Modul QCLK2 QCLK4 Quad Clock Modul *QCLK4IN *QCLK2IN S1 S0 S0 S1 Note: *QCLK1IN, QCLK2IN, QCLK3IN, and QCLK4IN are internally-generated signals. 3.2.5 MultiPlex I/O Modules 42MX devices feature Multiplex I/Os and support 5.0 V, 3.3 V, and mixed 3.3 V/5.0 V operations. The MultiPlex I/O modules provide the interface between the device pins and the logic array. Figure 10, page 14 is a block diagram of the 42MX I/O module. A variety of user functions, determined by a library macro selection, can be implemented in the module. (See the Antifuse Macro Library Guide for more information.) All 42MX I/O modules contain tristate buffers, with input and output latches that can be configured for input, output, or bidirectional operation. All 42MX devices contain flexible I/O structures, where each output pin has a dedicated output-enable control (Figure 10, page 14). The I/O module can be used to latch input or output data, or both, providing fast set-up time. In addition, the Designer software tools can build a D-type flip-flop using a C-module combined with an I/O module to register input and output signals. See the Antifuse Macro Library Guide for more details. A42MX24 and A42MX36 devices also offer selectable PCI output drives, enabling 100% compliance with version 2.1 of the PCI specification. For low-power systems, all inputs and outputs are turned off to reduce current consumption to below 500 A. To achieve 5.0 V or 3.3 V PCI-compliant output drives on A42MX24 and A42MX36 devices, a chip-wide PCI fuse is programmed via the Device Selection Wizard in the Designer software (Figure 11, page 14). When the PCI fuse is not programmed, the output drive is standard. DS2316 Datasheet Revision 16.0 13 40MX and 42MX FPGAs Designer software development tools provide a design library of I/O macro functions that can implement all I/O configurations supported by the MX FPGAs. Figure 10 * 42MX I/O Module EN Q D PAD From Array G/CLK* To Array Q D G/CLK* Note: *Can be configured as a Latch or D Flip-Flop (Using C-Module) Figure 11 * PCI Output Structure of A42MX24 and A42MX36 Devices STD Signal Output PCI Drive PCI Enable Fuse 3.3 Other Architectural Features The following sections cover other architectural features of 40MX and 42MX FPGAs. 3.3.1 Performance MX devices can operate with internal clock frequencies of 250 MHz, enabling fast execution of complex logic functions. MX devices are live on power-up and do not require auxiliary configuration devices and thus are an optimal platform to integrate the functionality contained in multiple programmable logic devices. In addition, designs that previously would have required a gate array to meet performance can be integrated into an MX device with improvements in cost and time-to-market. Using timing-driven place-and-route (TDPR) tools, designers can achieve highly deterministic device performance. 3.3.2 User Security Microsemi FuseLock provides robust security against design theft. Special security fuses are hidden in the fabric of the device and protect against unauthorized users attempting to access the programming and/or probe interfaces. It is virtually impossible to identify or bypass these fuses without damaging the device, making Microsemi antifuse FPGAs protected with the highest level of security available from both invasive and noninvasive attacks. Special security fuses in 40MX devices include the Probe Fuse and Program Fuse. The former disables the probing circuitry while the latter prohibits further programming of all fuses, including the Probe Fuse. In 42MX devices, there is the Security Fuse which, when programmed, both disables the probing circuitry and prohibits further programming of the device. DS2316 Datasheet Revision 16.0 14 40MX and 42MX FPGAs 3.3.3 Programming Device programming is supported through the Silicon Sculptor series of programmers. Silicon Sculptor is a compact, robust, single-site and multi-site device programmer for the PC. With standalone software, Silicon Sculptor is designed to allow concurrent programming of multiple units from the same PC. Silicon Sculptor programs devices independently to achieve the fastest programming times possible. After being programmed, each fuse is verified to insure that it has been programmed correctly. Furthermore, at the end of programming, there are integrity tests that are run to ensure no extra fuses have been programmed. Not only does it test fuses (both programmed and non-programmed), Silicon Sculptor also allows self-test to verify its own hardware extensively. The procedure for programming an MX device using Silicon Sculptor is as follows: 1. 2. 3. Load the *.AFM file Select the device to be programmed Begin programming When the design is ready to go to production, Microsemi offers device volume-programming services either through distribution partners or via In-House Programming from the factory. For more details on programming MX devices, see the AC225: Programming Antifuse Devices application note and the Silicon Sculptor 3 Programmers User Guide. 3.3.4 Power Supply MX devices are designed to operate in both 5.0V and 3.3V environments. In particular, 42MX devices can operate in mixed 5.0 V/3.3 V systems. The following table describes the voltage support of MX devices. Table 6 * Voltage Support of MX Devices Device VCC 40MX 42MX VCCA VCCI Maximum Input Tolerance Nominal Output Voltage 5.0 V 5.5 V 5.0 V 3.3 V 3.6 V 3.3 V 5.0 V 5.0 V 5.5 V 5.0 V 3.3 V 3.3 V 3.6 V 3.3 V 5.0 V 3.3 V 5.5 V 3.3 V For A42MX24 and A42MX36 devices the VCCA supply has to be monotonic during power up in order for the POR to issue reset to the JTAG state machine correctly. For more information, see the AC291: 42MX Family Devices Power-Up Behavior. 3.3.5 Power-Up/Down in Mixed-Voltage Mode When powering up 42MX in mixed voltage mode (VCCA = 5.0 V and VCCI = 3.3 V), VCCA must be greater than or equal to VCCI throughout the power-up sequence. If VCCI exceeds VCCA during power-up, one of two things will happen: * * The input protection diode on the I/Os will be forward biased The I/Os will be at logical High In either case, ICC rises to high levels. For power-down, any sequence with VCCA and VCCI can be implemented. 3.3.6 Transient Current Due to the simultaneous random logic switching activity during power-up, a transient current may appear on the core supply (VCC). Customers must use a regulator for the VCC supply that can source a minimum of 100 mA for transient current during power-up. Failure to provide enough power can prevent the system from powering up properly and result in functional failure. However, there are no reliability concerns, since transient current is distributed across the die instead of confined to a localized spot. DS2316 Datasheet Revision 16.0 15 40MX and 42MX FPGAs Since the transient current is not due to I/O switching, its value and duration are independent of the VCCI. 3.3.7 Low Power Mode 42MX devices have been designed with a low power mode. This feature, activated with setting the special LP pin to HIGH for a period longer than 800 ns, is particularly useful for battery-operated systems where battery life is a primary concern. In this mode, the core of the device is turned off and the device consumes minimal power with low standby current. In addition, all input buffers are turned off, and all outputs and bidirectional buffers are tristated. Since the core of the device is turned off, the states of the registers are lost. The device must be re-initialized when exiting low power mode. I/Os can be driven during LP mode, and clock pins should be driven HIGH or LOW and should not float to avoid drawing current. To exit LP mode, the LP pin must be pulled LOW for over 200 s to allow for charge pumps to power up, and device initialization will begin. 3.4 Power Dissipation The general power consumption of MX devices is made up of static and dynamic power and can be expressed with the following equation. 3.4.1 General Power Equation P = ICCs tan dby + ICCactive VCCI + IOL VOL N + IOH VCCI - VOH M EQ 1 where: * * * * * * ICCstandby is the current flowing when no inputs or outputs are changing. ICCactive is the current flowing due to CMOS switching. IOL, IOH are TTL sink/source currents. VOL, VOH are TTL level output voltages. N equals the number of outputs driving TTL loads to VOL. M equals the number of outputs driving TTL loads to VOH. Accurate values for N and M are difficult to determine because they depend on the family type, on design details, and on the system I/O. The power can be divided into two components: static and active. 3.4.2 Static Power Component The static power due to standby current is typically a small component of the overall power consumption. Standby power is calculated for commercial, worst-case conditions. The static power dissipation by TTL loads depends on the number of outputs driving, and on the DC load current. For instance, a 32-bit bus sinking 4mA at 0.33V will generate 42mW with all outputs driving LOW, and 140mW with all outputs driving HIGH. The actual dissipation will average somewhere in between, as I/Os switch states with time. 3.4.3 Active Power Component Power dissipation in CMOS devices is usually dominated by the dynamic power dissipation. Dynamic power consumption is frequency-dependent and is a function of the logic and the external I/O. Active power dissipation results from charging internal chip capacitances of the interconnect, unprogrammed antifuses, module inputs, and module outputs, plus external capacitances due to PC board traces and load device inputs. An additional component of the active power dissipation is the totem pole current in the CMOS transistor pairs. The net effect can be associated with an equivalent capacitance that can be combined with frequency and voltage to represent active power dissipation. The power dissipated by a CMOS circuit can be expressed by the equation: Power W = C EQ VCCA2 F 1 EQ 2 DS2316 Datasheet Revision 16.0 16 40MX and 42MX FPGAs where: * * * 3.4.4 CEQ = Equivalent capacitance expressed in picofarads (pF) VCCA = Power supply in volts (V) F = Switching frequency in megahertz (MHz) Equivalent Capacitance Equivalent capacitance is calculated by measuring ICCactive at a specified frequency and voltage for each circuit component of interest. Measurements have been made over a range of frequencies at a fixed value of VCC. Equivalent capacitance is frequency-independent, so the results can be used over a wide range of operating conditions. Equivalent capacitance values are shown below. 3.4.5 CEQ Values for Microsemi MX FPGAs Modules (CEQM)3.5 Input Buffers (CEQI)6.9 Output Buffers (CEQO)18.2 Routed Array Clock Buffer Loads (CEQCR)1.4 To calculate the active power dissipated from the complete design, the switching frequency of each part of the logic must be known. The equation below shows a piece-wise linear summation over all components. Power = VCCA 2 m C EQM f m modules + n C EQI f n inputs + p C EQO + C L f p outputs + 0.5 q 1 C EQCR f q1 routed Clk1 + r 1 f q1 routed Clk1 0.5 q 2 C EQCR f q2 routed Clk2 + r 2 f q2 routed Clk2 + 2 EQ 3 where: m = Number of logic modules switching at frequency fm n = Number of input buffers switching at frequency fn p = Number of output buffers switching at frequency fp q1 = Number of clock loads on the first routed array clock q2 = Number of clock loads on the second routed array clock r1 = Fixed capacitance due to first routed array clock r2 = Fixed capacitance due to second routed array clock CEQM = Equivalent capacitance of logic modules in pF CEQI = Equivalent capacitance of input buffers in pF CEQO = Equivalent capacitance of output buffers in pF CEQCR = Equivalent capacitance of routed array clock in pF CL = Output load capacitance in pF fm = Average logic module switching rate in MHz fn = Average input buffer switching rate in MHz fp = Average output buffer switching rate in MHz fq1 = Average first routed array clock rate in MHz DS2316 Datasheet Revision 16.0 17 40MX and 42MX FPGAs fq2 = Average second routed array clock rate in MHz) Table 7 * Fixed Capacitance Values for MX FPGAs (pF) Device Type r1 routed_Clk1 r2 routed_Clk2 3.4.6 A40MX02 41.4 N/A A40MX04 68.6 N/A A42MX09 118 118 A42MX16 165 165 A42MX24 185 185 A42MX36 220 220 Test Circuitry and Silicon Explorer II Probe MX devices contain probing circuitry that provides built-in access to every node in a design, via the use of Silicon Explorer II. Silicon Explorer II is an integrated hardware and software solution that, in conjunction with the Designer software, allows users to examine any of the internal nets of the device while it is operating in a prototyping or a production system. The user can probe into an MX device without changing the placement and routing of the design and without using any additional resources. Silicon Explorer II's noninvasive method does not alter timing or loading effects, thus shortening the debug cycle and providing a true representation of the device under actual functional situations. Silicon Explorer II samples data at 100 MHz (asynchronous) or 66 MHz (synchronous). Silicon Explorer II attaches to a PC's standard COM port, turning the PC into a fully functional 18-channel logic analyzer. Silicon Explorer II allows designers to complete the design verification process at their desks and reduces verification time from several hours per cycle to a few seconds. Silicon Explorer II is used to control the MODE, DCLK, SDI and SDO pins in MX devices to select the desired nets for debugging. The user simply assigns the selected internal nets in the Silicon Explorer II software to the PRA/PRB output pins for observation. Probing functionality is activated when the MODE pin is held HIGH. Figure 12, page 18 illustrates the interconnection between Silicon Explorer II and 40MX devices, while Figure 13, page 19 illustrates the interconnection between Silicon Explorer II and 42MX devices To allow for probing capabilities, the security fuses must not be programmed. (See User Security, page 14 for the security fuses of 40MX and 42MX devices). Table 8, page 19 summarizes the possible device configurations for probing. PRA and PRB pins are dual-purpose pins. When the "Reserve Probe Pin" is checked in the Designer software, PRA and PRB pins are reserved as dedicated outputs for probing. If PRA and PRB pins are required as user I/Os to achieve successful layout and "Reserve Probe Pin" is checked, the layout tool will override the option and place user I/Os on PRA and PRB pins. Figure 12 * Silicon Explorer II Setup with 40MX 16 Logic Analyzer Channels Serial Connection to Windows PC 40MX MODE SDI DCLK Silicon Explorer II SDO PRB PRA DS2316 Datasheet Revision 16.0 18 40MX and 42MX FPGAs Figure 13 * Silicon Explorer II Setup with 42MX 16 Logic Analyzer Channels Serial Connection to Windows PC 42MX MODE SDI DCLK Silicon Explorer II SDO PRB Table 8 * PRA Device Configuration Options for Probe Capability Security Fuse(s) Programmed Mode PRA, PRB1 User I/Os2 SDI, SDO, DCLK1 User I/Os2 No LOW No HIGH Probe Circuit Outputs Probe Circuit Inputs Yes Probe Circuit Secured Probe Circuit Secured 1. Avoid using SDI, SDO, DCLK, PRA and PRB pins as input or bidirectional ports.Since these pins are active during probing, input signals will not pass through these pins and may cause contention. 2. If no user signal is assigned to these pins, they will behave as unused I/Os in this mode. See the Pin Descriptions, page 85 for information on unused I/O pins 3.4.7 Design Consideration It is recommended to use a series 70 termination resistor on every probe connector (SDI, SDO, MODE, DCLK, PRA and PRB). The 70 series termination is used to prevent data transmission corruption during probing and reading back the checksum. 3.4.8 IEEE Standard 1149.1 Boundary Scan Test (BST) Circuitry 42MX24 and 42MX36 devices are compatible with IEEE Standard 1149.1 (informally known as Joint Testing Action Group Standard or JTAG), which defines a set of hardware architecture and mechanisms for cost-effective board-level testing. The basic MX boundary-scan logic circuit is composed of the TAP (test access port), TAP controller, test data registers and instruction register (Figure 14, page 20). This circuit supports all mandatory IEEE 1149.1 instructions (EXTEST, SAMPLE/PRELOAD and BYPASS) and some optional instructions. Table 9, page 20 describes the ports that control JTAG testing, while Table 10, page 20 describes the test instructions supported by these MX devices. Each test section is accessed through the TAP, which has four associated pins: TCK (test clock input), TDI and TDO (test data input and output), and TMS (test mode selector). The TAP controller is a four-bit state machine. The '1's and '0's represent the values that must be present at TMS at a rising edge of TCK for the given state transition to occur. IR and DR indicate that the instruction register or the data register is operating in that state. The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset state. To guarantee a reset of the controller from any of the possible states, TMS must remain high for five TCK cycles. 42MX24 and 42MX36 devices support three types of test data registers: bypass, device identification, and boundary scan. The bypass register is selected when no other register needs to be accessed in a device. This speeds up test data transfer to other devices in a test data path. The 32-bit device identification register is a shift register with four fields (lowest significant byte (LSB), ID number, part number and version). The boundary-scan register observes and controls the state of each I/O pin. DS2316 Datasheet Revision 16.0 19 40MX and 42MX FPGAs Each I/O cell has three boundary-scan register cells, each with a serial-in, serial-out, parallel-in, and parallel-out pin. The serial pins are used to serially connect all the boundary-scan register cells in a device into a boundary-scan register chain, which starts at the TDI pin and ends at the TDO pin. The parallel ports are connected to the internal core logic tile and the input, output and control ports of an I/O buffer to capture and load data into the register to control or observe the logic state of each I/O. Figure 14 * 42MX IEEE 1149.1 Boundary Scan Circuitry Boundary Scan Register Output MUX TDO Bypass Register Control Logic JTAG TMS Instruction Decode TAP Controller TCK JTAG Instruction Register TDI Table 9 * Test Access Port Descriptions Port Description TMS Serial input for the test logic control bits. Data is captured on the rising edge of the test logic (Test Mode Select) clock (TCK). TCK (Test Clock Input) Dedicated test logic clock used serially to shift test instruction, test data, and control inputs on the rising edge of the clock, and serially to shift the output data on the falling edge of the clock. The maximum clock frequency for TCK is 20 MHz. TDI (Test Data Input) Serial input for instruction and test data. Data is captured on the rising edge of the test logic clock. TDO Serial output for test instruction and data from the test logic. TDO is set to an inactive drive (Test Data Output) state (high impedance) when data scanning is not in progress. Table 10 * Supported BST Public Instructions Instruction IR Code Instruction (IR2.IR0) Type Description EXTEST 000 Mandatory Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins. SAMPLE/PRELOAD 001 Mandatory Allows a snapshot of the signals at the device pins to be captured and examined during operation HIGH Z 101 Optional Tristates all I/Os to allow external signals to drive pins. See the IEEE Standard 1149.1 specification. CLAMP 110 Optional Allows state of signals driven from component pins to be determined from the Boundary-Scan Register. See the IEEE Standard 1149.1 specification for details. BYPASS 111 Mandatory Enables the bypass register between the TDI and TDO pins. The test data passes through the selected device to adjacent devices in the test chain. DS2316 Datasheet Revision 16.0 20 40MX and 42MX FPGAs 3.4.9 JTAG Mode Activation The JTAG test logic circuit is activated in the Designer software by selecting Tools > Device Selection. This brings up the Device Selection dialog box as shown in the following figure. The JTAG test logic circuit can be enabled by clicking the "Reserve JTAG Pins" check box. The following table explains the pins' behavior in either mode. Figure 15 * Device Selection Wizard Table 11 * Boundary Scan Pin Configuration and Functionality Reserve JTAG Checked Unchecked TCK BST input; must be terminated to logical HIGH or LOW to avoid floating User I/O TDI, TMS BST input; may float or be tied to HIGH User I/O TDO BST output; may float or be connected to TDI of another device User I/O 3.4.10 TRST Pin and TAP Controller Reset An active reset (TRST) pin is not supported; however, MX devices contain power-on circuitry that resets the boundary scan circuitry upon power-up. Also, the TMS pin is equipped with an internal pull-up resistor. This allows the TAP controller to remain in or return to the Test-Logic-Reset state when there is no input or when a logical 1 is on the TMS pin. To reset the controller, TMS must be HIGH for at least five TCK cycles. 3.4.11 Boundary Scan Description Language (BSDL) File Conforming to the IEEE Standard 1149.1 requires that the operation of the various JTAG components be documented. The BSDL file provides the standard format to describe the JTAG components that can be used by automatic test equipment software. The file includes the instructions that are supported, instruction bit pattern, and the boundary-scan chain order. For an in-depth discussion on BSDL files, see the BSDL Files Format Description application note. BSDL files are grouped into two categories - generic and device-specific. The generic files assign all user I/Os as inouts. Device-specific files assign user I/Os as inputs, outputs or inouts. Generic files for MX devices are available on the Microsemi SoC Product Group's website: http://www.microsemi.com/soc/techdocs/models/bsdl.html. 3.5 Development Tool Support The MX family of FPGAs is fully supported by Libero(R) integrated design environment (IDE). Libero IDE is a design management environment, seamlessly integrating design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes SynplifyPro from Synopsys, ModelSim(R) HDL Simulator from Mentor Graphics(R) and Viewdraw. Libero IDE includes place-and-route and provides a comprehensive suite of backend support tools for FPGA development, including timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor. DS2316 Datasheet Revision 16.0 21 40MX and 42MX FPGAs Additionally, the back-annotation flow is compatible with all the major simulators and the simulation results can be cross-probed with Silicon Explorer II, Microsemi's integrated verification and logic analysis tool. Another tool included in the Libero software is the SmartGen macro builder, which easily creates popular and commonly used logic functions for implementation into your schematic or HDL design. Microsemi's Libero software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synopsys, and Cadence design systems. See the Libero IDE web content at www.microsemi.com/soc/products/software/libero/default.aspx for further information on licensing and current operating system support. 3.6 Related Documents The following sections give the list of related documents which can be refered for this datasheet. 3.6.1 Application Notes * * * 3.6.2 User Guides and Manuals * * 3.6.3 AC278: BSDL Files Format Description AC225: Programming Antifuse Devices AC168: Implementation of Security in Microsemi Antifuse FPGAs Antifuse Macro Library Guide Silicon Sculptor Programmers User Guide Miscellaneous Libero IDE Flow Diagram 3.7 5.0 V Operating Conditions The following tables show 5.0 V operating conditions. Table 12 * Absolute Maximum Ratings for 40MX Devices* Symbol Parameter Limits Units VCC DC Supply Voltage -0.5 to +7.0 V VI Input Voltage -0.5 to VCC+0.5 V VO Output Voltage -0.5 to VCC+0.5 V tSTG Storage Temperature -65 to +150 C Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the recommended operating conditions. Table 13 * Absolute Maximum Ratings for 42MX Devices* Symbol Parameter Limits Units VCCI DC Supply Voltage for I/Os -0.5 to +7.0 V VCCA DC Supply Voltage for Array -0.5 to +7.0 V VI Input Voltage -0.5 to VCCI+0.5 V VO Output Voltage -0.5 to VCCI+0.5 V tSTG Storage Temperature -65 to +150 DS2316 Datasheet Revision 16.0 C 22 40MX and 42MX FPGAs Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the recommended operating conditions. Table 14 * Recommended Operating Conditions Parameter Commercial Industrial Temperature Range* 0 to +70 Military Units -40 to +85 -55 to +125 C VCC (40MX) 4.75 to 5.25 4.5 to 5.5 4.5 to 5.5 V VCCA (42MX) 4.75 to 5.25 4.5 to 5.5 4.5 to 5.5 V VCCI (42MX) 4.75 to 5.25 4.5 to 5.5 4.5 to 5.5 V Note: * Ambient temperature (TA) is used for commercial and industrial grades; case temperature (TC) is used for military grades. 3.7.1 5 V TTL Electrical Specifications The following tables show 5 V TTL electrical specifications. Table 15 * 5V TTL Electrical Specifications Commercial Commercial -F Industrial Military Min. Max. Min. Max. Min. Max. Min. Symbol Parameter VOH1 IOH = -10 mA 2.4 2.4 3.7 IOL = 10 mA 0.5 VIH (42MX)2 V V 0.4 -0.3 0.8 VIH (40MX) 3.7 0.5 IOL = 6 mA VIL Units V IOH = -4 mA VOL1 Max. -0.3 0.8 -0.3 0.8 -0.3 0.4 V 0.8 V 2.0 VCC + 0.3 2.0 VCC + 0.3 2.0 VCC + 0.3 2.0 VCC + 0.3 V 2.0 VCCI + 0.3 VCCI + 0.3 VCCI + 0.3 VCCI + 0.3 V 2.0 2.0 2.0 IIL VIN = 0.5 V -10 -10 -10 -10 A IIH VIN = 2.7 V -10 -10 -10 -10 A Input Transition Time, TR and TF 500 500 500 500 ns CIO I/O Capacitance 10 10 10 10 pF A40MX02, A40MX04 3 25 10 25 mA A42MX09 5 25 25 25 mA A42MX16 6 25 25 25 mA A42MX24, A42MX36 20 25 25 25 mA Low power mode Standby Current 42MX devices only 0.5 ICC - 5.0 ICC - 5.0 ICC - 5.0 mA IIO, I/O source sink current Can be derived from the IBIS model (http://www.microsemi.com/soc/techdocs/models/ibis.html) Standby Current, ICC3 DS2316 Datasheet Revision 16.0 23 40MX and 42MX FPGAs 1. 2. 3. 3.8 Only one output tested at a time. VCC/VCCI = Min. VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V All outputs unloaded. All inputs = VCC/VCCI or GND 3.3 V Operating Conditions The following table shows 3.3 V operating conditions. Table 16 * Absolute Maximum Ratings for 40MX Devices* Symbol Parameter Limits Units VCC DC Supply Voltage -0.5 to +7.0 V VI Input Voltage -0.5 to VCC + 0.5 V VO Output Voltage -0.5 to VCC + 0.5 V tSTG Storage Temperature -65 to + 150 C Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the recommended operating conditions. Table 17 * Absolute Maximum Ratings for 42MX Devices* Symbol Parameter Limits Units VCCI DC Supply Voltage for I/Os -0.5 to +7.0 V VCCA DC Supply Voltage for Array -0.5 to +7.0 V VI Input Voltage -0.5 to VCCI+0.5 V VO Output Voltage -0.5 to VCCI+0.5 V tSTG Storage Temperature -65 to +150 C Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the recommended operating conditions. Table 18 * Recommended Operating Conditions Parameter Commercial Industrial Military Units Temperature Range* 0 to +70 -40 to +85 -55 to +125 C VCC (40MX) 3.0 to 3.6 3.0 to 3.6 3.0 to 3.6 V VCCA (42MX) 3.0 to 3.6 3.0 to 3.6 3.0 to 3.6 V VCCI (42MX) 3.0 to 3.6 3.0 to 3.6 3.0 to 3.6 V Note: *Ambient temperature (TA) is used for commercial and industrial grades; case temperature (TC) is used for military grades. All the following tables show various specifications and operating conditions of 40MX and 42MX FPGAs. DS2316 Datasheet Revision 16.0 24 40MX and 42MX FPGAs 3.8.1 3.3 V LVTTL Electrical Specifications Table 19 * 3.3V LVTTL Electrical Specifications Symbol Parameter Commercial Commercial -F Industrial Military Min. Min. Min. Min. Max. Units 2.4 V 1 IOH = -4 mA 2.15 1 IOL = 6 mA VOH VOL Max. Max. 2.15 0.4 2.4 0.4 0.48 -0.3 0.8 -0.3 0.8 V -0.3 0.8 VIH (40MX) 2.0 VCC + 0.3 2.0 VCC + 0.3 2.0 VCC + 0.3 2.0 VCC + 0.3 V VIH (42MX) 2.0 VCCI + 0.3 2.0 VCCI + 0.3 2.0 VCCI + 0.3 2.0 VCCI + 0.3 V IIL -10 -10 -10 -10 A IIH -10 -10 -10 -10 A Input Transition Time, TR and TF 500 500 500 500 ns CIO I/O Capacitance 10 10 10 10 pF A40MX02, A40MX04 3 25 10 25 mA A42MX09 5 25 25 25 mA A42MX16 6 25 25 25 mA A42MX24, A42MX36 15 25 25 25 mA Low-Power Mode Standby Current 42MX devices only 0.5 ICC - 5.0 ICC - 5.0 ICC - 5.0 mA IIO, I/O source sink current Can be derived from the IBIS model (http://www.microsemi.com/soc/techdocs/models/ibis.html) 1. 2. 0.8 0.48 VIL Standby Current, ICC2 -0.3 Max. V Only one output tested at a time. VCC/VCCI = Min. All outputs unloaded. All inputs = VCC/VCCI or GND. 3.9 Mixed 5.0 V / 3.3 V Operating Conditions (for 42MX Devices Only) Table 20 * Absolute Maximum Ratings* Symbol Parameter Limits Units VCCI DC Supply Voltage for I/Os -0.5 to +7.0 V VCCA DC Supply Voltage for Array -0.5 to +7.0 V VI Input Voltage -0.5 to VCCA +0.5 V VO Output Voltage -0.5 to VCCI + 0.5 V tSTG Storage Temperature -65 to +150 C Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device DS2316 Datasheet Revision 16.0 25 40MX and 42MX FPGAs reliability. Devices should not be operated outside the recommended operating conditions. Table 21 * Parameter Recommended Operating Conditions Commercial Industrial Military Units Temperature Range* 0 to +70 -40 to +85 -55 to +125 C VCCA 4.75 to 5.25 4.5 to 5.5 4.5 to 5.5 V VCCI 3.14 to 3.47 3.0 to 3.6 3.0 to 3.6 V Note: *Ambient temperature (TA) is used for commercial and industrial grades; case temperature (TC) is used for military grades. DS2316 Datasheet Revision 16.0 26 40MX and 42MX FPGAs 3.9.1 Mixed 5.0V/3.3V Electrical Specifications Table 22 * Mixed 5.0V/3.3V Electrical Specifications Symbol Parameter 1 VOH Commercial Commercial -F Industrial Military Min. Max. Min. Max. Min. Max. Min. Max. IOH = -10 mA 2.4 2.4 V IOH = -4 mA 1 VOL 2.4 IOL = 10 mA Units 0.5 -0.3 0.8 VIH2 2.0 V 0.5 V IOL = 6 mA VIL 2.4 -0.3 0.8 0.4 0.4 V -0.3 0.8 -0.3 0.8 V VCCA + 0.3 2.0 VCCA + 0.3 2.0 VCCA + 0.3 2.0 VCCA + 0.3 V IL VIN = 0.5 V -10 -10 -10 -10 A IH VIN = 2.7 V -10 -10 -10 -10 A Input Transition Time, TR and TF 500 500 500 500 ns C 10 10 10 10 pF A42MX09 5 25 25 25 mA A42MX16 6 25 25 25 mA A42MX24, A42MX36 20 25 25 25 mA 0.5 ICC - 5.0 ICC - 5.0 ICC - 5.0 mA IO I/O Capacitance Standby Current, ICC3 Low Power Mode Standby Current IIO I/O source sink Can be derived from the IBIS model (http://www.microsemi.com/soc/techdocs/models/ibis.html) current 1. 2. 3. Only one output tested at a time. VCCI = min. VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V All outputs unloaded. All inputs = VCCI or GND 3.9.2 Output Drive Characteristics for 5.0 V PCI Signaling MX PCI device I/O drivers were designed specifically for high-performance PCI systems. Figure 16, page 30 shows the typical output drive characteristics of the MX devices. MX output drivers are compliant with the PCI Local Bus Specification. Table 23 * DC Specification (5.0 V PCI Signaling)1 PCI Symbol Parameter Condition Min. MX Max. Min. Max. Units 4.75 5.252 V VCCI Supply Voltage for I/Os 4.75 5.25 VIH3 Input High Voltage 2.0 VCC + 0.5 2.0 VCCI + 0.3 V VIL Input Low Voltage -0.5 0.8 0.8 V IIH Input High Leakage Current VIN = 2.7 V 70 10 A IIL Input Low Leakage Current VIN=0.5 V -70 -10 A VOH Output High Voltage IOUT = -2 mA IOUT = -6 mA VOL Output Low Voltage IOUT = 3 mA, 6 mA -0.3 2.4 V 3.84 0.55 DS2316 Datasheet Revision 16.0 0.33 V 27 40MX and 42MX FPGAs DC Specification (5.0 V PCI Signaling)1 (continued) Table 23 * PCI Symbol Parameter CIN Input Pin Capacitance CCLK CLK Pin Capacitance LPIN Pin Inductance 1. 2. 3. 4. Condition MX Min. Max. 5 20 Min. Max. Units 10 10 pF 12 10 pF < 8 nH4 nH PCI Local Bus Specification, Version 2.1, Section 4.2.1.1. Maximum rating for VCCI is -0.5 V to 7.0 V VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V. Dependent upon the chosen package. PCI recommends QFP and BGA packaging to reduce pin inductance and capacitance. Table 24 * AC Specifications (5.0V PCI Signaling)* PCI Symbol Parameter Condition Min. ICL -5 < VIN -1 -25 + (VIN +1) /0.015 Low Clamp Current MX Max. Min. Max. Units -60 -10 mA Slew (r) Output Rise Slew Rate 0.4 V to 2.4 V load 1 5 1.8 2.8 V/ns Slew (f) Output Fall Slew Rate 1 5 2.8 4.3 V/ns 2.4 V to 0.4 V load Note: *PCI Local Bus Specification, Version 2.1, Section 4.2.1.2. DS2316 Datasheet Revision 16.0 28 40MX and 42MX FPGAs 3.9.3 Output Drive Characteristics for 3.3 V PCI Signaling Table 25 * DC Specification (3.3 V PCI Signaling)1 PCI Symbol Parameter Condition Min. MX Max. Min. Max. VCCI Supply Voltage for I/Os 3.0 3.6 VIH Input High Voltage 0.5 VCC + 0.5 0.5 VIL Input Low Voltage -0.5 0.8 -0.3 0.8 IIH Input High Leakage Current VIN = 2.7 V 70 10 A IIL Input Leakage Current -70 -10 A VOH Output High Voltage IOUT = -2 mA VOL Output Low Voltage IOUT = 3 mA, 6 mA CIN Input Pin Capacitance CCLK CLK Pin Capacitance LPIN 1. 2. 3. 3.0 Units 2 0.9 5 Pin Inductance 3.6 V VCCI + 0.3 V V 3.3 V 0.1 0.1 VCCI V 10 10 pF 12 10 20 <8 pF nH3 nH PCI Local Bus Specification, Version 2.1, Section 4.2.2.1. Maximum rating for VCCI is-0.5 V to 7.0V. Dependent upon the chosen package. PCI recommends QFP and BGA packaging to reduce pin inductance and capacitance. Table 26 * AC Specifications for (3.3 V PCI Signaling)* Symbol Parameter Condition PCI Min. MX Max. Units Min. Max. -60 -10 mA -5 < VIN -1 -25 + (VIN +1) /0.015 Slew (r) Output Rise Slew Rate 0.2 V to 0.6 V load 1 4 1.8 2.8 V/ns Slew (f) Output Fall Slew Rate 0.6 V to 0.2 V load 1 4 2.8 4.0 V/ns ICL Low Clamp Current Note: *PCI Local Bus Specification, Version 2.1, Section 4.2.2.2. DS2316 Datasheet Revision 16.0 29 40MX and 42MX FPGAs Figure 16 * Typical Output Drive Characteristics (Based Upon Measured Data) 0.50 0.45 0.40 PCI IOL Maximum 0.35 0.30 0.25 Current (A) 0.20 MX PCI IOL 0.15 0.10 PCI IOL Minimum 0.05 0.00 0 1 -0.05 2 3 4 PCI IOH Maximum 5 6 MX PCI IOH -0.10 -0.15 PCI IOH Minimum -0.20 Voltage Out (V) 3.9.4 Junction Temperature (TJ) The temperature variable in the Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because the heat generated from dynamic power consumption is usually hotter than the ambient temperature. The following equation can be used to calculate junction temperature. Junction Temperature = T + T a 1 EQ 4 where: * * * * * 3.9.5 Ta = Ambient Temperature T = Temperature gradient between junction (silicon) and ambient T = ja * P (2) P = Power ja = Junction to ambient of package. ja numbers are located in Table 27, page 31. Package Thermal Characteristics The device junction-to-case thermal characteristic is jc, and the junction-to-ambient air characteristic is ja. The thermal characteristics for ja are shown with two different air flow rates. The maximum junction temperature is 150C. Maximum power dissipation for commercial- and industrial-grade devices is a function of ja. DS2316 Datasheet Revision 16.0 30 40MX and 42MX FPGAs A sample calculation of the absolute maximum power dissipation allowed for a TQ176 package at commercial temperature and still air is given in the following equation 150C - 70C Max junction temp C - Max ambient temp C MaximumPowerAllowed = ----------------------------------------------------------------------------------------------------------------------------------------------------- = ----------------------------------- = 2.86W 28C W ja C W EQ 5 The maximum power dissipation for military-grade devices is a function of jc. A sample calculation of the absolute maximum power dissipation allowed for CQFP 208-pin package at military temperature and still air is given in the following equation 150C - 125C Max junction temp C - Max ambient temp C MaximumPowerAllowed = ----------------------------------------------------------------------------------------------------------------------------------------------------- = -------------------------------------- = 3.97W 6.3C W jc C W EQ 6 Table 27 * Package Thermal Characteristics ja Plastic Packages Pin Count jc 1.0 m/s 2.5 m/s Still Air 200 ft/min. 500 ft/min. Units Plastic Quad Flat Pack 100 12.0 27.8 23.4 21.2 C/W Plastic Quad Flat Pack 144 10.0 26.2 22.8 21.1 C/W Plastic Quad Flat Pack 160 10.0 26.2 22.8 21.1 C/W Plastic Quad Flat Pack 208 8.0 26.1 22.5 20.8 C/W Plastic Quad Flat Pack 240 8.5 25.6 22.3 20.8 C/W Plastic Leaded Chip Carrier 44 16.0 20.0 24.5 22.0 C/W Plastic Leaded Chip Carrier 68 13.0 25.0 21.0 19.4 C/W Plastic Leaded Chip Carrier 84 12.0 22.5 18.9 17.6 C/W Thin Plastic Quad Flat Pack 176 11.0 24.7 19.9 18.0 C/W Very Thin Plastic Quad Flat 80 Pack 12.0 38.2 31.9 29.4 C/W Very Thin Plastic Quad Flat 100 Pack 10.0 35.3 29.4 27.1 C/W Plastic Ball Grid Array 272 3.0 18.3 14.9 13.9 C/W Ceramic Pin Grid Array 132 4.8 25.0 20.6 18.7 C/W Ceramic Quad Flat Pack 208 2.0 22.0 19.8 18.0 C/W Ceramic Quad Flat Pack 256 2.0 20.0 16.5 15.0 C/W Ceramic Packages DS2316 Datasheet Revision 16.0 31 40MX and 42MX FPGAs 3.10 Timing Models The following figures show various timing models. Figure 17 * 40MX Timing Model* Input Delay Internal Delays I/O Module tINYL = 0.62 ns Predicted Routing Delays Output Delay I/O Module tIRD2 = 2.59 ns Logic Module tIRD1 = 2.09 ns tIRD4 = 3.64 ns tIRD8 = 5.73 ns Array Clock tCKH = 4.55 ns tPD = 1.24 ns tCO = 1.24 ns tRD1 = 1.28 ns tRD2 = 1.80 ns tRD4 = 2.33 ns tRD8 = 4.93 ns tDLH = 3.32 ns tENHZ = 7.92 ns FO = 128 FMAX = 180 MHz Note: Values are shown for 40MX -3 speed grade devices at 5.0 V worst-case commercial conditions. Figure 18 * 42MX Timing Model Input Delays Internal Delays I/O Module tINYL = 0.8 ns Predicted Routing Delays Output Delays I/O Module tIRD1 = 2.0 ns1 Combinatorial Logic Module D Q tDLH = 2.5 ns tRD1 = 0.7 ns tRD2 = 1.9 ns tRD4 = 1.4 ns tRD8 = 2.3 ns tPD=1.2 ns G D Comb. Logic Include tCKH = 2.70 ns FMAX = 296 MHz tDLH = 2.5 ns Sequential Logic Module tINH = 0.0 ns tINSU = 0.3 ns tINGL = 1.3 ns Array Clocks I/O Module FO = 32 tSUD = 0.3 ns tHD = 0.00 ns D Q Q tRD1 = 0.70 ns tENHZ = 4.9 ns G tCO = 1.3 ns tOUTH = 0.00 ns tOUTSU = 0.3 ns tGLH = 2.6 ns tLCO = 5.2 ns (light loads, pad-to-pad) Note: 1. Input module predicted routing delay Note: 2. Values are shown for A42MX09 -3 speed grade devices at 5.0 V worst-case commercial conditions. DS2316 Datasheet Revision 16.0 32 40MX and 42MX FPGAs Figure 19 * 42MX Timing Model (Logic Functions Using Quadrant Clocks) Input Delays I/O Module tINPY = 1.0 ns D Q Predicted Routing Delays Internal Delays Output Delays I/O Module tIRD1= 2.0 ns Combinatorial Module tDLH = 2.6 ns tRD1 = 0.9 ns tRD2 = 1.3 ns tRD4 = 2.0 ns tPD=1.3 ns G tINH = 0.0 ns tINSU = 0.5 ns tINGO = 1.4 ns Decode Module tRDD = 0.3 ns tPDD = 1.6 ns I/O Module tDLH = 2.6 ns Sequential Logic Module Comb. Logic Include tSUD = 3.0 ns tHD = 0.0 ns Quadrant Clocks D Q tRD1 = 0.9 ns D Q tENHZ = 5.3 ns G tCO = 1.3 ns tLH = 0.00 ns tLSU = 0.5 ns tGHL = 2.9 ns tCKH=3.03 ns1 FMAX=180 MHz Note: 1. Load-dependent Note: 2. Values are shown for A42MX36 -3 speed grade devices at 5.0 V worst-case commercial conditions DS2316 Datasheet Revision 16.0 33 40MX and 42MX FPGAs Figure 20 * 42MX Timing Model (SRAM Functions) Input Delays I/O Module tINPY = 1 .0 ns D tIRD1 = 2.0 ns Q G Predicted Routing Delays tINSU = 0.5 ns tINH = 0.0 ns tINGO = 1.4 ns RD [7:0] WD [7:0] RDAD [5:0] WRAD [5:0] t RD1 = 0.9 ns BLKEN REN D WEN WCLK RCLK G tADSU = 1.6 ns tADH = 0.0 ns tWENSU = 2.7 ns tBENS = 2.8 ns Array Clocks I/O Module tDLH = 2.6 ns tADSU = 1.6 ns tADH = 0.0 ns tRENSU = 0.6 ns tRCO = 3.4 ns Q tGHL = 2.9 ns tLSU = 0.5 ns tLH = 0.0 ns FMAX = 167 MHz Note: Values are shown for A42MX36 -3 speed grade devices at 5.0 V worst-case commercial conditions. 3.10.1 Parameter Measurement The following figures show parameter measurement details. Figure 21 * Output Buffer Delays E D In PAD To AC test loads (shown below) E 50% 50% VOH PAD 1.5 V VOL tDLH TRIBUFF 1.5 V tDHL E 50% 50% VCCI 1.5 V PAD VOL tENZL 10% tENLZ DS2316 Datasheet Revision 16.0 PAD GND 50% 50% VOH 1.5 V tENZH 90% tENHZ 34 40MX and 42MX FPGAs Figure 22 * AC Test Loads Load 1 (Used to measure propagation delay) Load 2 (Used to measure rising/falling edges) VCCI GND To the output under test R to VCCI for tPLZ / tPZL R to GND for tPHZ / tPZH R =1 k 35 pF To the output under test 35 pF Figure 23 * Input Buffer Delays Y INBUF PAD 3V PAD 1.5 V 1.5 V VCCI Y 50% GND tINYH 0V 50% tINYL Figure 24 * Module Delays S A B Y S, A or B 50% 50% Y Y 50% 50% tPLH 50% tPHL PHL 50% tPLH DS2316 Datasheet Revision 16.0 35 40MX and 42MX FPGAs 3.10.2 Sequential Module Timing Characteristics The following figure shows sequential module timing characteristics. Figure 25 * Flip-Flops and Latches D E CLK Y PRE CLR (Positive Edge-Triggered) tHD D* tSUD tA tWCLKA G, CLK tSUENA tHENA E tWCLK1 tCO Q tRS PRE, CLR tWASYN Note: *D represents all data functions involving A, B, and S for multiplexed flip-flops. 3.10.3 Sequential Timing Characteristics The following figures show sequential timing characteristics. Figure 26 * Input Buffer Latches DATA PAD IBDL G CLK PAD DATA tINH G INSU tINSU tHEXT CLK tSU EXT DS2316 Datasheet Revision 16.0 36 40MX and 42MX FPGAs Figure 27 * Output Buffer Latches D PAD OBDLHS G D tOUTSU G tOUTH 3.10.4 Decode Module Timing The following figure shows decode module timing. Figure 28 * Decode Module Timing A B C D E F G Y H A-G, H 50% Y tPHL tPLH 3.10.5 SRAM Timing Characteristics The following figure shows SRAM timing characteristics. Figure 29 * SRAM Timing Characteristics Read Port Write Port WRAD [5:0] BLKEN WEN RDAD [5:0] RAM Array 3 2x8 or 64x4 (2 56 Bits) LEW REN WCLK WD [7:0] RCLK RD [7:0] DS2316 Datasheet Revision 16.0 37 40MX and 42MX FPGAs 3.10.6 Dual-Port SRAM Timing Waveforms The following figures show dual-port SRAM timing waveforms. Figure 30 * 42MX SRAM Write Operation tRCKHL tRCKHL WCLK tADH tADSU WD[7:0] WRAD[5:0] Valid tWENSU tWENH tBENSU tBENH WEN Valid BLKEN Note: Identical timing for falling edge clock Figure 31 * 42MX SRAM Synchronous Read Operation tRCKHL tCKHL RCLK tRENSU tRENH tADSU tADH REN Valid RDAD[5:0] tRCO tDOH Old Data RD[7:0] New Data Note: Identical timing for falling edge clock Figure 32 * 42MX SRAM Asynchronous Read Operation--Type 1 (Read Address Controlled) tRDADV RDAD[5:0] ADDR1 ADDR2 tRPD tDOH RD[7:0] Data 1 DS2316 Datasheet Revision 16.0 Data 2 38 40MX and 42MX FPGAs Figure 33 * 42MX SRAM Asynchronous Read Operation--Type 2 (Write Address Controlled) WEN WD[7:0] WRAD[5:0] tWENSU tWENH Valid BLKEN tADSU WCLK tADH tRPD tDOH RD[7:0] 3.10.7 Old Data New Data Predictable Performance: Tight Delay Distributions Propagation delay between logic modules depends on the resistive and capacitive loading of the routing tracks, the interconnect elements, and the module inputs being driven. Propagation delay increases as the length of routing tracks, the number of interconnect elements, or the number of inputs increases. From a design perspective, the propagation delay can be statistically correlated or modeled by the fanout (number of loads) driven by a module. Higher fanout usually requires some paths to have longer routing tracks. The MX FPGAs deliver a tight fanout delay distribution, which is achieved in two ways: by decreasing the delay of the interconnect elements and by decreasing the number of interconnect elements per path. Microsemi's patented antifuse offers a very low resistive/capacitive interconnect. The antifuses, fabricated in 0.45 m lithography, offer nominal levels of 100 resistance and 7.0 fF capacitance per antifuse. MX fanout distribution is also tight due to the low number of antifuses required for each interconnect path. The proprietary architecture limits the number of antifuses per path to a maximum of four, with 90 percent of interconnects using only two antifuses. 3.11 Timing Characteristics Device timing characteristics fall into three categories: family-dependent, device-dependent, and designdependent. The input and output buffer characteristics are common to all MX devices. Internal routing delays are device-dependent; actual delays are not determined until after place-and-route of the user's design is complete. Delay values may then be determined by using the Designer software utility or by performing simulation with post-layout delays. 3.11.1 Critical Nets and Typical Nets Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most timing critical paths. Critical nets are determined by net property assignment in Microsemi's Designer software prior to placement and routing. Up to 6% of the nets in a design may be designated as critical. DS2316 Datasheet Revision 16.0 39 40MX and 42MX FPGAs 3.11.2 Long Tracks Some nets in the design use long tracks, which are special routing resources that span multiple rows, columns, or modules. Long tracks employ three and sometimes four antifuse connections, which increase capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically, up to 6 percent of nets in a fully utilized device require long tracks. Long tracks add approximately a 3 ns to a 6 ns delay, which is represented statistically in higher fanout (FO=8) routing delays in the data sheet specifications section, shown in Table 34, page 43. 3.11.3 Timing Derating MX devices are manufactured with a CMOS process. Therefore, device performance varies according to temperature, voltage, and process changes. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature and worst-case processing. 3.11.4 Temperature and Voltage Derating Factors The following tables and figures show temperature and voltage derating factors for 40MX and 42MX FPGAs. Table 28 * 42MX Temperature and Voltage Derating Factors (Normalized to TJ = 25C, VCCA = 5.0 V) Temperature 42MX Voltage -55C -40C 0C 25C 70C 85C 125C 4.50 0.93 0.95 1.05 1.09 1.25 1.29 1.41 4.75 0.88 0.90 1.00 1.03 1.18 1.22 1.34 5.00 0.85 0.87 0.96 1.00 1.15 1.18 1.29 5.25 0.84 0.86 0.95 0.97 1.12 1.14 1.28 5.50 0.83 0.85 0.94 0.96 1.10 1.13 1.26 Figure 34 * 42MX Junction Temperature and Voltage Derating Curves (Normalized to TJ = 25C, VCCA = 5.0 V) 1.50 1.40 Factor 1.30 -55C 1.20 -40C 1.10 Derating 0C 1.00 25C 0.90 70C 0.80 85C 0.70 125C 0.60 4.50 4.75 5.00 Voltage 5.25 5.50 (V) DS2316 Datasheet Revision 16.0 40 40MX and 42MX FPGAs Note: This derating factor applies to all routing and propagation delays Table 29 * 40MX Temperature and Voltage Derating Factors(Normalized to TJ = 25C, VCC = 5.0 V) Temperature 40MX Voltage -55C -40C 0C 25C 70C 85C 125C 4.50 0.89 0.93 1.02 1.09 1.25 1.31 1.45 4.75 0.84 0.88 0.97 1.03 1.18 1.24 1.37 5.00 0.82 0.85 0.94 1.00 1.15 1.20 1.33 5.25 0.80 0.82 0.91 0.97 1.12 1.16 1.29 5.50 0.79 0.82 0.90 0.96 1.10 1.15 1.28 Figure 35 * 40MX Junction Temperature and Voltage Derating Curves (Normalized to TJ = 25C, VCC = 5.0 V) 1.50 1.40 Factor 1.30 -55C 1.20 -40C 1.10 Derating 0C 1.00 25C 0.90 70C 0.80 85C 0.70 125C 0.60 4.50 4.75 5.00 Voltage 5.25 5.50 (V) Note: This derating factor applies to all routing and propagation delays Table 30 * 42MX Temperature and Voltage Derating Factors(Normalized to TJ = 25C, VCCA = 3.3 V) Temperature 42MX Voltage -55C -40C 0C 25C 70C 85C 125C 3.00 0.97 1.00 1.10 1.15 1.32 1.36 1.45 3.30 0.84 0.87 0.96 1.00 1.15 1.18 1.26 3.60 0.81 0.84 0.92 0.96 1.10 1.13 1.21 DS2316 Datasheet Revision 16.0 41 40MX and 42MX FPGAs Figure 36 * 42MX Junction Temperature and Voltage Derating Curves (Normalized to TJ = 25C, VCCA = 3.3 V) 1.60 1.50 Derating Factor 1.40 1.30 55C 1.20 40C 1.10 0C 1.00 25C 0.90 70C 0.80 85C 0.70 125C 0.60 0.50 0.40 3.00 3.30 3.60 Voltage (V) Note: This derating factor applies to all routing and propagation delays Table 31 * 40MX Temperature and Voltage Derating Factors (Normalized to TJ = 25C, VCC = 3.3 V) Temperature 40MX Voltage -55C -40C 0C 25C 70C 85C 125C 3.00 1.08 1.12 1.21 1.26 1.50 1.64 2.00 3.30 0.86 0.89 0.96 1.00 1.19 1.30 1.59 3.60 0.83 0.85 0.92 0.96 1.14 1.25 1.53 Figure 37 * 40MX Junction Temperature and Voltage Derating Curves (Normalized to TJ = 25C, VCC = 3.3 V) 2.20 2.00 55C Derating Factor 1.80 40C 0C 1.60 25C 1.40 70C 1.20 85C 1.00 125C 0.80 0.60 3.00 3.30 3.60 Voltage (V) Note: This derating factor applies to all routing and propagation delays DS2316 Datasheet Revision 16.0 42 40MX and 42MX FPGAs 3.11.5 PCI System Timing Specification The following tables list the critical PCI timing parameters and the corresponding timing parameters for the MX PCI-compliant devices. 3.11.6 PCI Models Microsemi provides synthesizable VHDL(VHSIC Hardware Description Language) and Verilog-HDL models for a PCI Target interface, a PCI Target and Target+DMA Master interface. Contact the Microsemi sales representative for more details. Table 32 * Clock Specification for 33 MHz PCI PCI Symbol Parameter Table 33 * A42MX24 A42MX36 Min. Max. Min. Max. Min. Max. Units tCYC CLK Cycle Time 30 4.0 4.0 ns tHIGH CLK High Time 11 1.9 1.9 ns tLOW CLK Low Time 11 1.9 1.9 ns Timing Parameters for 33 MHz PCI PCI Symbol Parameter CLK to Signal Valid--Bused Signals tVAL Max. Min. Max. Min. Max. Units 2 11 2.0 9.0 2.0 9.0 ns 12 2.0 9.0 2.0 9.0 ns 2.0 4.0 2.0 4.0 ns 8.31 ns 2 tON 2 tOFF Active to Float tSU Input Set-Up Time to CLK--Bused Signals 7 2 8.31 28 tSU(PTP) Input Set-Up Time to CLK--Point-to-Point 10, tH Input Hold to CLK 0 1. 2. A42MX36 Min. tVAL(PTP) CLK to Signal Valid--Point-to-Point Float to Active A42MX24 122 1.5 1.5 ns 1.5 1.5 ns 0 0 ns TOFF is system dependent. MX PCI devices have 7.4 ns turn-off time, reflection is typically an additional 10 ns. REQ# and GNT# are point-to-point signals and have different output valid delay and input setup times than do bussed signals. GNT# has a setup of 10; REW# has a setup of 12. 3.11.6.1 Timing Characteristics The following tables list the timing characteristics. Table 34 * A40MX02 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70C) -3 Speed Parameter / Description -2 Speed Min. Max. Min. -1 Speed Std Speed -F Speed Max. Min. Max. Min. Max. Min. Max. Units Logic Module Propagation Delays tPD1 Single Module 1.2 1.4 1.6 1.9 2.7 ns tPD2 Dual-Module Macros 2.7 3.1 3.5 4.1 5.7 ns tCO Sequential Clock-to-Q 1.2 1.4 1.6 1.9 2.7 ns tGO Latch G-to-Q 1.2 1.4 1.6 1.9 2.7 ns tRS Flip-Flop (Latch) Reset-to-Q 1.2 1.4 1.6 1.9 2.7 ns Logic Module Predicted Routing Delays1 DS2316 Datasheet Revision 16.0 43 40MX and 42MX FPGAs Table 34 * A40MX02 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70C) (continued) -3 Speed Parameter / Description -2 Speed Min. Max. Min. -1 Speed Std Speed -F Speed Max. Min. Max. Min. Max. Min. Max. Units tRD1 FO = 1 Routing Delay 1.3 1.5 1.7 2.0 2.8 ns tRD2 FO = 2 Routing Delay 1.8 2.1 2.4 2.8 3.9 ns tRD3 FO = 3 Routing Delay 2.3 2.7 3.0 3.6 5.0 ns tRD4 FO = 4 Routing Delay 2.9 3.3 3.7 4.4 6.1 ns tRD8 FO = 8 Routing Delay 4.9 5.7 6.5 7.6 10.6 ns Logic Module Sequential Timing 2 tSUD Flip-Flop (Latch) Data Input Set-Up 3.1 3.5 4.0 4.7 6.6 ns tHD3 Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns tSUEN Flip-Flop (Latch) Enable Set-Up 3.1 3.5 4.0 4.7 6.6 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCL Flip-Flop (Latch) Clock Active Pulse Width KA 3.3 3.8 4.3 5.0 7.0 ns tWAS Flip-Flop (Latch) Asynchronous Pulse Width 3.3 3.8 4.3 5.0 7.0 ns Flip-Flop Clock Input Period 4.8 5.6 6.3 7.5 10.4 ns A YN tA fMAX Flip-Flop (Latch) Clock Frequency (FO = 128) 181 168 154 134 80 MHz tINYH Pad-to-Y HIGH 0.7 0.8 0.9 1.1 1.5 ns tINYL Pad-to-Y LOW 0.6 0.7 0.8 1.0 1.3 ns tIRD1 FO = 1 Routing Delay 2.1 2.4 2.2 3.2 4.5 ns tIRD2 FO = 2 Routing Delay 2.6 3.0 3.4 4.0 5.6 ns tIRD3 FO = 3 Routing Delay 3.1 3.6 4.1 4.8 6.7 ns Input Module Propagation Delays Input Module Predicted Routing Delays1 tIRD4 FO = 4 Routing Delay 3.6 4.2 4.8 5.6 7.8 ns tIRD8 FO = 8 Routing Delay 5.7 6.6 7.5 8.8 12.4 ns Global Clock Network tCKH Input Low to HIGH FO = 16 FO = 128 4.6 4.6 5.3 5.3 6.0 6.0 7.0 7.0 9.8 9.8 ns tCKL Input High to LOW FO = 16 FO = 128 4.8 4.8 5.6 5.6 6.3 6.3 7.4 7.4 10.4 10.4 ns tPWH Minimum Pulse Width HIGH FO = 16 2.2 FO = 128 2.4 2.6 2.7 2.9 3.1 3.4 3.6 4.8 5.1 ns tPWL FO = 16 2.2 FO = 128 2.4 2.6 2.7 2.9 3.01 3.4 3.6 4.8 5.1 ns Minimum Pulse Width LOW DS2316 Datasheet Revision 16.0 44 40MX and 42MX FPGAs Table 34 * A40MX02 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70C) (continued) -3 Speed Parameter / Description tCKS tP Min. Max. Min. Maximum Skew FO = 16 FO = 128 Minimum Period FO = 16 4.7 FO = 128 4.8 W fMAX Maximum Frequency -2 Speed FO = 16 FO = 128 0.4 0.5 -1 Speed Std Speed -F Speed Max. Min. Max. Min. Max. Min. Max. Units 0.5 0.6 0.5 0.7 0.6 0.8 0.8 1.2 5.4 5.6 6.1 6.3 7.2 7.5 10.0 10.4 ns ns 188 181 175 168 160 154 139 134 83 80 MHz 3.3 3.8 4.3 5.1 7.2 ns TTL Output Module Timing4 tDLH Data-to-Pad HIGH tDHL Data-to-Pad LOW 4.0 4.6 5.2 6.1 8.6 ns tENZH Enable Pad Z to HIGH 3.7 4.3 4.9 5.8 8.0 ns tENZL Enable Pad Z to LOW 4.7 5.4 6.1 7.2 10.1 ns tENHZ Enable Pad HIGH to Z 7.9 9.1 10.4 12.2 17.1 ns tENLZ Enable Pad LOW to Z 5.9 6.8 7.7 9.0 12.6 ns dTLH Delta LOW to HIGH 0.02 0.02 0.03 0.03 0.04 ns/pF dTHL Delta HIGH to LOW 0.03 0.03 0.03 0.04 0.06 ns/pF CMOS Output Module Timing4 tDLH Data-to-Pad HIGH 3.9 4.5 5.1 6.05 8.5 ns tDHL Data-to-Pad LOW 3.4 3.9 4.4 5.2 7.3 ns tENZH Enable Pad Z to HIGH 3.4 3.9 4.4 5.2 7.3 ns tENZL Enable Pad Z to LOW 4.9 5.6 6.4 7.5 10.5 ns tENHZ Enable Pad HIGH to Z 7.9 9.1 10.4 12.2 17.0 ns tENLZ Enable Pad LOW to Z 5.9 6.8 7.7 9.0 12.6 ns dTLH Delta LOW to HIGH 0.03 0.04 0.04 0.05 0.07 ns/pF dTHL Delta HIGH to LOW 0.02 0.02 0.03 0.03 0.04 ns/pF 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance 2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility 3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check the hold time for this macro. 4. Delays based on 35pF loading Table 35 * A40MX02 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCC = 3.0 V, TJ = 70C) Parameter / Description -3 Speed -2 Speed -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Logic Module Propagation Delays tPD1 Single Module 1.7 2.0 2.3 DS2316 Datasheet Revision 16.0 2.7 3.7 ns 45 40MX and 42MX FPGAs Table 35 * A40MX02 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCC = 3.0 V, TJ = 70C) (continued) Parameter / Description -3 Speed -2 Speed -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units tPD2 Dual-Module Macros 3.7 4.3 4.9 5.7 8.0 ns tCO Sequential Clock-to-Q 1.7 2.0 2.3 2.7 3.7 ns tGO Latch G-to-Q 1.7 2.0 2.3 2.7 3.7 ns tRS Flip-Flop (Latch) Reset-to-Q 1.7 2.0 2.3 2.7 3.7 ns 1 Logic Module Predicted Routing Delays tRD1 FO = 1 Routing Delay 2.0 2.2 2.5 3.0 4.2 ns tRD2 FO = 2 Routing Delay 2.7 3.1 3.5 4.1 5.7 ns tRD3 FO = 3 Routing Delay 3.4 3.9 4.4 5.2 7.3 ns tRD4 FO = 4 Routing Delay 4.2 4.8 5.4 6.3 8.9 ns tRD8 FO = 8 Routing Delay 7.1 8.2 9.2 10.9 15.2 ns Logic Module Sequential Timing2 tSUD Flip-Flop (Latch) Data Input Set-Up 4.3 4.9 5.6 6.6 9.2 ns tHD3 Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns tSUENA Flip-Flop (Latch) Enable Set-Up 4.3 4.9 5.6 6.6 9.2 ns tHENA 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 4.6 5.3 6.0 7.0 9.8 ns tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 4.6 5.3 6.0 7.0 9.8 ns tA Flip-Flop Clock Input Period 6.8 7.8 8.9 10.4 14.6 ns fMAX Flip-Flop (Latch) Clock Frequency (FO = 128) Flip-Flop (Latch) Enable Hold 109 101 92 80 48 MHz Input Module Propagation Delays tINYH Pad-to-Y HIGH 1.0 1.1 1.3 1.5 2.1 ns tINYL Pad-to-Y LOW 0.9 1.0 1.1 1.3 1.9 ns Input Module Predicted Routing Delays1 tIRD1 FO = 1 Routing Delay 2.9 3.4 3.8 4.5 6.3 ns tIRD2 FO = 2 Routing Delay 3.6 4.2 4.8 5.6 7.8 ns tIRD3 FO = 3 Routing Delay 4.4 5.0 5.7 6.7 9.4 ns tIRD4 FO = 4 Routing Delay 5.1 5.9 6.7 7.8 11.0 ns tIRD8 FO = 8 Routing Delay 8.0 9.26 10.5 12.6 17.3 ns 6.4 6.4 7.4 7.4 8.3 8.3 9.8 9.8 13.7 ns 13.7 Global Clock Network tCKH Input LOW to HIGH FO = 16 FO = 128 DS2316 Datasheet Revision 16.0 46 40MX and 42MX FPGAs Table 35 * A40MX02 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCC = 3.0 V, TJ = 70C) (continued) Parameter / Description -3 Speed -2 Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units 6.7 6.7 -1 Speed 7.8 7.8 Std Speed tCKL Input HIGH to LOW FO = 16 FO = 128 tPWH Minimum Pulse Width HIGH FO = 16 3.1 FO = 3.3 128 3.6 3.8 4.1 4.3 4.8 5.1 6.7 7.1 ns tPWL Minimum Pulse Width LOW FO = 16 3.1 FO = 3.3 128 3.6 3.8 4.1 4.3 4.8 5.1 6.7 7.1 ns tCKSW Maximum Skew FO = 16 FO = 128 tP Minimum Period FO = 16 6.5 FO = 6.8 128 fMAX Maximum Frequency FO = 16 FO = 128 0.6 0.8 8.8 8.8 -F Speed 0.6 0.9 7.5 7.8 10.4 10.4 0.7 1.0 8.5 8.9 14.5 ns 14.5 0.8 1.2 10.1 10.4 1.2 1.6 14.1 14.6 ns ns 113 109 105 101 96 92 83 80 50 48 MHz TTL Output Module Timing4 tDLH Data-to-Pad HIGH 4.7 5.4 6.1 7.2 10.0 ns tDHL Data-to-Pad LOW 5.6 6.4 7.3 8.6 12.0 ns tENZH Enable Pad Z to HIGH 5.2 6.0 6.8 8.1 11.3 ns tENZL Enable Pad Z to LOW 6.6 7.6 8.6 10.1 14.1 ns tENHZ Enable Pad HIGH to Z 11.1 12.8 14.5 17.1 23.9 ns tENLZ Enable Pad LOW to Z 8.2 9.5 10.7 12.6 17.7 ns dTLH Delta LOW to HIGH 0.03 0.03 0.04 0.04 0.06 ns/pF dTHL Delta HIGH to LOW 0.04 0.04 0.05 0.06 0.08 ns/pF DS2316 Datasheet Revision 16.0 47 40MX and 42MX FPGAs Table 35 * A40MX02 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCC = 3.0 V, TJ = 70C) (continued) Parameter / Description -3 Speed -2 Speed -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units 4 CMOS Output Module Timing tDLH Data-to-Pad HIGH 5.5 6.4 7.2 8.5 11.9 ns tDHL Data-to-Pad LOW 4.8 5.5 6.2 7.3 10.2 ns tENZH Enable Pad Z to HIGH 4.7 5.5 6.2 7.3 10.2 ns tENZL Enable Pad Z to LOW 6.8 7.9 8.9 10.5 14.7 ns tENHZ Enable Pad HIGH to Z 11.1 12.8 14.5 17.1 23.9 ns tENLZ Enable Pad LOW to Z 8.2 9.5 10.7 12.6 17.7 ns dTLH Delta LOW to HIGH 0.05 0.05 0.06 0.07 0.10 ns/pF dTHL Delta HIGH to LOW 0.03 0.03 0.04 0.04 0.06 ns/pF 1. 2. 3. 4. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check the hold time for this macro Delays based on 35 pF loading Table 36 * A40MX04 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70C) -3 Speed Parameter / Description -2 Speed -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Logic Module Propagation Delays tPD1 Single Module 1.2 1.4 1.6 1.9 2.7 ns tPD2 Dual-Module Macros 2.3 3.1 3.5 4.1 5.7 ns tCO Sequential Clock-to-Q 1.2 1.4 1.6 1.9 2.7 ns tGO Latch G-to-Q 1.2 1.4 1.6 1.9 2.7 ns tRS Flip-Flop (Latch) Reset-to-Q 1.2 1.4 1.6 1.9 2.7 ns Logic Module Predicted Routing Delays1 tRD1 FO = 1 Routing Delay 1.2 1.6 1.8 2.1 3.0 ns tRD2 FO = 2 Routing Delay 1.9 2.2 2.5 2.9 4.1 ns tRD3 FO = 3 Routing Delay 2.4 2.8 3.2 3.7 5.2 ns tRD4 FO = 4 Routing Delay 2.9 3.4 3.9 4.5 6.3 ns tRD8 FO = 8 Routing Delay 5.0 5.8 6.6 7.8 10.9 ns Logic Module Sequential Timing2 tSUD Flip-Flop (Latch) Data Input Set-Up 3.1 3.5 4.0 4.7 6.6 ns tHD3 Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns DS2316 Datasheet Revision 16.0 48 40MX and 42MX FPGAs Table 36 * A40MX04 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70C) (continued) -3 Speed -2 Speed -1 Speed Std Speed -F Speed Parameter / Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units tSUENA Flip-Flop (Latch) Enable Set-Up 3.1 3.5 4.0 4.7 6.6 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 3.3 3.8 4.3 5.0 7.0 ns tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 3.3 3.8 4.3 5.0 7.0 ns tA Flip-Flop Clock Input Period 4.8 5.6 6.3 7.5 10.4 ns fMAX Flip-Flop (Latch) Clock Frequency (FO = 128) 181 167 154 134 80 MHz 0.7 0.8 0.9 1.1 1.5 ns 0.6 0.7 0.8 1.0 1.3 ns Input Module Propagation Delays tINYH Pad-to-Y HIGH tINYL Pad-to-Y LOW Input Module Predicted Routing Delays1 tIRD1 FO = 1 Routing Delay 2.1 2.4 2.2 3.2 4.5 ns tIRD2 FO = 2 Routing Delay 2.6 3.0 3.4 4.0 5.6 ns tIRD3 FO = 3 Routing Delay 3.1 3.6 4.1 4.8 6.7 ns tIRD4 FO = 4 Routing Delay 3.6 4.2 4.8 5.6 7.8 ns tIRD8 FO = 8 Routing Delay 5.7 6.6 7.5 8.8 12.4 ns Global Clock Network tCKH Input Low to HIGH FO = 16 FO = 128 4.6 4.6 5.3 5.3 6.0 6.0 7.0 7.0 9.8 9.8 tCKL Input High to LOW FO = 16 FO = 128 4.8 4.8 5.6 5.6 6.3 6.3 7.4 7.4 10.4 ns 10.4 tPWH Minimum Pulse Width HIGH FO = 16 2.2 FO = 128 2.4 2.6 2.7 2.9 3.1 3.4 3.6 4.8 5.1 ns tPWL Minimum Pulse Width LOW FO = 16 2.2 FO = 128 2.4 2.6 2.7 2.9 3.01 3.4 3.6 4.8 5.1 ns tCKSW Maximum Skew FO = 16 FO = 128 tP Minimum Period FO = 16 4.7 FO = 128 4.8 fMAX Maximum Frequency FO = 16 FO = 128 0.4 0.5 0.5 0.6 5.4 5.6 0.5 0.7 6.1 6.3 0.6 0.8 7.2 7.5 0.8 1.2 10.0 10.4 ns ns ns 188 181 175 168 160 154 139 134 83 80 MHz TTL Output Module Timing4 tDLH Data-to-Pad HIGH 3.3 3.8 4.3 5.1 7.2 ns tDHL Data-to-Pad LOW 4.0 4.6 5.2 6.1 8.6 ns tENZH Enable Pad Z to HIGH 3.7 4.3 4.9 5.8 8.0 ns DS2316 Datasheet Revision 16.0 49 40MX and 42MX FPGAs Table 36 * A40MX04 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70C) (continued) -3 Speed Parameter / Description -2 Speed -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units tENZL Enable Pad Z to LOW 4.7 5.4 6.1 7.2 10.1 ns tENHZ Enable Pad HIGH to Z 7.9 9.1 10.4 12.2 17.1 ns tENLZ Enable Pad LOW to Z 5.9 6.8 7.7 9.0 12.6 ns dTLH Delta LOW to HIGH 0.02 0.02 0.03 0.03 0.04 ns/pF dTHL Delta HIGH to LOW 0.03 0.03 0.03 0.04 0.06 ns/pF DS2316 Datasheet Revision 16.0 50 40MX and 42MX FPGAs Table 36 * A40MX04 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70C) (continued) -3 Speed Parameter / Description -2 Speed -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units CMOS Output Module Timing 1 tDLH Data-to-Pad HIGH 3.9 4.5 5.1 6.05 8.5 ns tDHL Data-to-Pad LOW 3.4 3.9 4.4 5.2 7.3 ns tENZH Enable Pad Z to HIGH 3.4 3.9 4.4 5.2 7.3 ns tENZL Enable Pad Z to LOW 4.9 5.6 6.4 7.5 10.5 ns tENHZ Enable Pad HIGH to Z 7.9 9.1 10.4 12.2 17.0 ns tENLZ Enable Pad LOW to Z 5.9 6.8 7.7 9.0 12.6 ns dTLH Delta LOW to HIGH 0.03 0.04 0.04 0.05 0.07 ns/pF dTHL Delta HIGH to LOW 0.02 0.02 0.03 0.03 0.04 ns/pF 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 2. 3. 4. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer utility from the Designer software to check the hold time for this macro. Delays based on 35 pF loading Table 37 * A40MX04 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCC = 3.0 V, TJ = 70C) -3 Speed Parameter / Description -2 Speed -1 Speed Min. Max. Min. Max. Min. Std Speed -F Speed Max. Min. Max. Min. Max. Units Logic Module Propagation Delays tPD1 Single Module 1.7 2.0 2.3 2.7 3.7 ns tPD2 Dual-Module Macros 3.7 4.3 4.9 5.7 8.0 ns tCO Sequential Clock-to-Q 1.7 2.0 2.3 2.7 3.7 ns tGO Latch G-to-Q 1.7 2.0 2.3 2.7 3.7 ns tRS Flip-Flop (Latch) Reset-to-Q 1.7 2.0 2.3 2.7 3.7 ns Logic Module Predicted Routing Delays1 tRD1 FO = 1 Routing Delay 1.9 2.2 2.5 3.0 4.2 ns tRD2 FO = 2 Routing Delay 2.7 3.1 3.5 4.1 5.7 ns tRD3 FO = 3 Routing Delay 3.4 3.9 4.4 5.2 7.3 ns tRD4 FO = 4 Routing Delay 4.1 4.8 5.4 6.3 8.9 ns tRD8 FO = 8 Routing Delay 7.1 8.1 9.2 10.9 15.2 ns Logic Module Sequential Timing2 tSUD Flip-Flop (Latch) Data Input Set-Up 4.3 5.0 5.6 6.6 9.2 ns tHD3 Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns tSUENA Flip-Flop (Latch) Enable Set-Up 4.3 5.0 5.6 6.6 9.2 ns DS2316 Datasheet Revision 16.0 51 40MX and 42MX FPGAs Table 37 * A40MX04 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCC = 3.0 V, TJ = 70C) (continued) -3 Speed -2 Speed -1 Speed Std Speed -F Speed Parameter / Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 4.6 5.3 5.6 7.0 9.8 ns tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 4.6 5.3 5.6 7.0 9.8 ns tA Flip-Flop Clock Input Period 6.8 7.8 8.9 10.4 14.6 ns fMAX Flip-Flop (Latch) Clock Frequency (FO = 128) 109 101 92 80 48 MHz Input Module Propagation Delays tINYH Pad-to-Y HIGH 1.0 1.1 1.3 1.5 2.1 ns tINYL Pad-to-Y LOW 0.9 1.0 1.1 1.3 1.9 ns DS2316 Datasheet Revision 16.0 52 40MX and 42MX FPGAs Table 37 * A40MX04 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCC = 3.0 V, TJ = 70C) (continued) -3 Speed Parameter / Description -2 Speed -1 Speed Min. Max. Min. Max. Min. Std Speed -F Speed Max. Min. Max. Min. Max. Units Input Module Predicted Routing Delays1 tIRD1 FO = 1 Routing Delay 2.9 3.3 3.8 4.5 6.3 ns tIRD2 FO = 2 Routing Delay 3.6 4.2 4.8 5.6 7.8 ns tIRD3 FO = 3 Routing Delay 4.4 5.0 5.7 6.7 9.4 ns tIRD4 FO = 4 Routing Delay 5.1 5.9 6.7 7.8 11.0 ns tIRD8 FO = 8 Routing Delay 8.0 9.3 10.5 12.4 17.2 ns Global Clock Network tCKH Input LOW to HIGH FO = 16 FO = 128 6.4 6.4 7.4 7.4 8.4 8.4 9.9 9.9 13.8 13.8 ns tCKL Input HIGH to LOW FO = 16 FO = 128 6.8 6.8 7.8 7.8 8.9 8.9 10.4 10.4 14.6 14.6 ns tPWH Minimum Pulse Width HIGH FO = 16 FO = 128 3.1 3.3 3.6 3.8 4.1 4.3 4.8 5.1 6.7 7.1 ns tPWL Minimum Pulse Width LOW FO = 16 FO = 128 3.1 3.3 3.6 3.8 4.1 4.3 4.8 5.1 6.7 7.1 ns tCKSW Maximum Skew FO = 16 FO = 128 tP Minimum Period FO = 16 FO = 128 fMAX Maximum Frequency FO = 16 FO = 128 0.6 0.8 6.5 6.8 0.6 0.9 7.5 7.8 0.7 1.0 8.5 8.9 0.8 1.2 10.1 10.4 1.2 1.6 14.1 14.6 ns ns 113 109 105 101 96 92 83 80 50 48 MHz TTL Output Module Timing4 tDLH Data-to-Pad HIGH 4.7 5.4 6.1 7.2 10.0 ns tDHL Data-to-Pad LOW 5.6 6.4 7.3 8.6 12.0 ns tENZH Enable Pad Z to HIGH 5.2 6.0 6.9 8.1 11.3 ns tENZL Enable Pad Z to LOW 6.6 7.6 8.6 10.1 14.1 ns tENHZ Enable Pad HIGH to Z 11.1 12.8 14.5 17.1 23.9 ns tENLZ Enable Pad LOW to Z 8.2 9.5 10.7 12.6 17.7 ns dTLH Delta LOW to HIGH 0.03 0.03 0.04 0.04 0.06 ns/pF dTHL Delta HIGH to LOW 0.04 0.04 0.05 0.06 0.08 ns/pF DS2316 Datasheet Revision 16.0 53 40MX and 42MX FPGAs Table 37 * A40MX04 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCC = 3.0 V, TJ = 70C) (continued) -3 Speed Parameter / Description -2 Speed -1 Speed Min. Max. Min. Max. Min. CMOS Output Module Timing Std Speed -F Speed Max. Min. Max. Min. Max. Units 4 tDLH Data-to-Pad HIGH 5.5 6.4 7.2 8.5 11.9 ns tDHL Data-to-Pad LOW 4.8 5.5 6.2 7.3 10.2 ns tENZH Enable Pad Z to HIGH 4.7 5.5 6.2 7.3 10.2 ns tENZL Enable Pad Z to LOW 6.8 7.9 8.9 10.5 14.7 ns tENHZ Enable Pad HIGH to Z 11.1 12.8 14.5 17.1 23.9 ns tENLZ Enable Pad LOW to Z 8.2 9.5 10.7 12.6 17.7 ns dTLH Delta LOW to HIGH 0.05 0.05 0.06 0.07 0.10 ns/pF dTHL Delta HIGH to LOW 0.03 0.03 0.04 0.04 0.06 ns/pF 1. 2. 3. 4. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check the hold time for this macro. Delays based on 35 pF loading. Table 38 * A42MX09 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70C) -3 Speed Parameter / Description Min. Logic Module Propagation -2 Speed -1 Speed Std Speed -F Speed Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Delays1 tPD1 Single Module 1.2 1.3 1.5 1.8 2.5 ns tCO Sequential Clock-to-Q 1.3 1.4 1.6 1.9 2.7 ns tGO Latch G-to-Q 1.2 1.4 1.6 1.8 2.6 ns tRS Flip-Flop (Latch) Reset-to-Q 1.2 1.6 1.8 2.1 2.9 ns Logic Module Predicted Routing Delays2 tRD1 FO = 1 Routing Delay 0.7 0.8 0.9 1.0 1.4 ns tRD2 FO = 2 Routing Delay 0.9 1.0 1.2 1.4 1.9 ns tRD3 FO = 3 Routing Delay 1.2 1.3 1.5 1.7 2.4 ns tRD4 FO = 4 Routing Delay 1.4 1.5 1.7 2.0 2.9 ns tRD8 FO = 8 Routing Delay 2.3 2.6 2.9 3.4 4.8 ns Logic Module Sequential Timing3, 4 tSUD Flip-Flop (Latch) Data Input Set-Up 0.3 0.4 0.4 0.5 0.7 ns tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns tSUENA Flip-Flop (Latch) Enable Set-Up 0.4 0.5 0.5 0.6 0.8 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 3.4 3.8 4.3 5.0 7.0 ns DS2316 Datasheet Revision 16.0 54 40MX and 42MX FPGAs Table 38 * A42MX09 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70C) (continued) -3 Speed -2 Speed -1 Speed Max. Min. Max. Min. Std Speed -F Speed Parameter / Description Min. tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 4.5 4.9 5.6 6.6 9.2 ns tA Flip-Flop Clock Input Period 3.5 3.8 4.3 5.1 7.1 ns tINH Input Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tINSU Input Buffer Latch Set-Up 0.3 0.3 0.4 0.4 0.6 ns tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tOUTSU Output Buffer Latch Set-Up 0.3 0.3 0.4 0.4 0.6 ns fMAX Flip-Flop (Latch) Clock Frequency 268 244 DS2316 Datasheet Revision 16.0 Max. Min. Max. Min. Max. Units 224 195 117 MHz 55 40MX and 42MX FPGAs Table 38 * A42MX09 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70C) (continued) -3 Speed Parameter / Description Min. -2 Speed -1 Speed Std Speed -F Speed Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Input Module Propagation Delays tINYH Pad-to-Y HIGH 1.0 1.2 1.3 1.6 2.2 ns tINYL Pad-to-Y LOW 0.8 0.9 1.0 1.2 1.7 ns tINGH G to Y HIGH 1.3 1.4 1.6 1.9 2.7 ns tINGL G to Y LOW 1.3 1.4 1.6 1.9 2.7 ns 2 Input Module Predicted Routing Delays tIRD1 FO = 1 Routing Delay 2.0 2.2 2.5 3.0 4.2 ns tIRD2 FO = 2 Routing Delay 2.3 2.5 2.9 3.4 4.7 ns tIRD3 FO = 3 Routing Delay 2.5 2.8 3.2 3.7 5.2 ns tIRD4 FO = 4 Routing Delay 2.8 3.1 3.5 4.1 5.7 ns tIRD8 FO = 8 Routing Delay 3.7 4.1 4.7 5.5 7.7 ns Global Clock Network tCKH Input LOW to HIGH FO = 32 FO = 256 2.4 2.7 2.7 3.0 3.0 3.4 3.6 4.0 5.0 5.5 ns ns tCKL Input HIGH to LOW FO = 32 FO = 256 3.5 3.9 3.9 4.3 4.4 4.9 5.2 5.7 7.3 8.0 ns ns tPWH Minimum Pulse Width HIGH FO = 32 FO = 256 1.2 1.3 1.4 1.5 1.5 1.7 1.8 2.0 2.5 2.7 ns ns tPWL Minimum Pulse Width LOW FO = 32 FO = 256 1.2 1.3 1.4 1.5 1.5 1.7 1.8 2.0 2.5 2.7 ns ns tCKSW Maximum Skew FO = 32 FO = 256 tSUEXT Input Latch External Set-Up FO = 32 FO = 256 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns ns tHEXT Input Latch External Hold FO = 32 FO = 256 2.3 2.2 2.6 2.4 3.0 3.3 3.5 3.9 4.9 5.5 ns ns tP Minimum Period FO = 32 FO = 256 3.4 3.7 3.7 4.1 4.0 4.5 4.7 5.2 7.8 8.6 ns ns fMAX Maximum Frequency FO = 32 FO = 256 0.3 0.3 296 268 0.3 0.3 0.4 0.4 269 244 DS2316 Datasheet Revision 16.0 247 224 0.5 0.5 215 195 0.6 0.6 129 117 ns ns MHz MHz 56 40MX and 42MX FPGAs Table 38 * A42MX09 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70C) (continued) -3 Speed Parameter / Description Min. -2 Speed -1 Speed Std Speed -F Speed Max. Min. Max. Min. Max. Min. Max. Min. Max. Units 5 TTL Output Module Timing tDLH Data-to-Pad HIGH 2.5 2.7 3.1 3.6 5.1 ns tDHL Data-to-Pad LOW 2.9 3.2 3.6 4.3 6.0 ns tENZH Enable Pad Z to HIGH 2.6 2.9 3.3 3.9 5.5 ns tENZL Enable Pad Z to LOW 2.9 3.2 3.7 4.3 6.1 ns tENHZ Enable Pad HIGH to Z 4.9 5.4 6.2 7.3 10.2 ns tENLZ Enable Pad LOW to Z 5.3 5.9 6.7 7.9 11.1 ns tGLH G-to-Pad HIGH 2.6 2.9 3.3 3.8 5.3 ns tGHL G-to-Pad LOW 2.6 2.9 3.3 3.8 5.3 ns tLSU I/O Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading 5.2 5.8 6.6 7.7 10.8 ns tACO Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading 7.4 8.2 9.3 10.9 15.3 ns dTLH Capacity Loading, LOW to HIGH 0.03 0.03 0.03 0.04 0.06 ns/pF dTHL Capacity Loading, HIGH to LOW 0.04 0.04 0.04 0.05 0.07 ns/pF DS2316 Datasheet Revision 16.0 57 40MX and 42MX FPGAs Table 38 * A42MX09 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75 V, TJ = 70C) (continued) -3 Speed Parameter / Description Min. -2 Speed -1 Speed Std Speed -F Speed Max. Min. Max. Min. Max. Min. Max. Min. Max. Units 5 CMOS Output Module Timing tDLH Data-to-Pad HIGH 2.4 2.7 3.1 3.6 5.1 ns tDHL Data-to-Pad LOW 2.9 3.2 3.6 4.3 6.0 ns tENZH Enable Pad Z to HIGH 2.7 2.9 3.3 3.9 5.5 ns tENZL Enable Pad Z to LOW 2.9 3.2 3.7 4.3 6.1 ns tENHZ Enable Pad HIGH to Z 4.9 5.4 6.2 7.3 10.2 ns tENLZ Enable Pad LOW to Z 5.3 5.9 6.7 7.9 11.1 ns tGLH G-to-Pad HIGH 4.2 4.6 5.2 6.1 8.6 ns tGHL G-to-Pad LOW 4.2 4.6 5.2 6.1 8.6 ns tLSU I/O Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading 5.2 5.8 6.6 7.7 10.8 ns tACO Array Clock-to-Out ( Pad-to-Pad), 64 Clock Loading 7.4 8.2 9.3 10.9 15.3 ns dTLH Capacity Loading, LOW to HIGH 0.03 0.03 0.03 0.04 0.06 ns/pF dTHL Capacity Loading, HIGH to LOW 0.04 0.04 0.04 0.05 0.07 ns/pF 1. 2. 3. 4. 5. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. Delays based on 35 pF loading Table 39 * A42MX09 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCCA = 3.0 V, TJ = 70C) -3 Speed -2 Speed Parameter / Description Logic Module Propagation -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Delays1 tPD1 Single Module 1.6 1.8 2.1 2.5 3.5 ns tCO Sequential Clock-to-Q 1.8 2.0 2.3 2.7 3.8 ns tGO Latch G-to-Q 1.7 1.9 2.1 2.5 3.5 ns tRS Flip-Flop (Latch) Reset-to-Q 2.0 2.2 2.5 2.9 4.1 ns Logic Module Predicted Routing Delays2 tRD1 FO = 1 Routing Delay 1.0 1.1 1.2 1.4 2.0 ns tRD2 FO = 2 Routing Delay 1.3 1.4 1.6 1.9 2.7 ns tRD3 FO = 3 Routing Delay 1.6 1.8 2.0 2.4 3.3 ns DS2316 Datasheet Revision 16.0 58 40MX and 42MX FPGAs Table 39 * A42MX09 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCCA = 3.0 V, TJ = 70C) (continued) -3 Speed -2 Speed Parameter / Description tRD4 FO = 4 Routing Delay tRD8 FO = 8 Routing Delay Logic Module Sequential Timing -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units 1.9 2.1 2.4 2.9 4.0 ns 3.2 3.6 4.1 4.8 6.7 ns 3, 4 tSUD Flip-Flop (Latch) Data Input Set-Up 0.5 0.5 0.6 0.7 0.9 ns tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns tSUENA Flip-Flop (Latch) Enable Set-Up 0.6 0.6 0.7 0.8 1.2 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 4.7 5.3 6.0 7.0 9.8 ns tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 6.2 6.9 7.8 9.2 12.9 ns tA Flip-Flop Clock Input Period 5.0 5.6 6.2 7.1 9.9 ns tINH Input Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tINSU Input Buffer Latch Set-Up 0.3 0.3 0.3 0.4 0.6 ns tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tOUTSU Output Buffer Latch Set-Up 0.3 0.3 0.3 0.4 0.6 ns fMAX Flip-Flop (Latch) Clock Frequency 161 146 DS2316 Datasheet Revision 16.0 135 117 70 MHz 59 40MX and 42MX FPGAs Table 39 * A42MX09 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCCA = 3.0 V, TJ = 70C) (continued) -3 Speed -2 Speed Parameter / Description -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Input Module Propagation Delays tINYH Pad-to-Y HIGH 1.5 1.6 1.8 2.17 3.0 ns tINYL Pad-to-Y LOW 1.2 1.3 1.4 1.7 2.4 ns tINGH G to Y HIGH 1.8 2.0 2.3 2.7 3.7 ns tINGL G to Y LOW 1.8 2.0 2.3 2.7 3.7 ns 2 Input Module Predicted Routing Delays tIRD1 FO = 1 Routing Delay 2.8 3.2 3.6 4.2 5.9 ns tIRD2 FO = 2 Routing Delay 3.2 3.5 4.0 4.7 6.6 ns tIRD3 FO = 3 Routing Delay 3.5 3.9 4.4 5.2 7.3 ns tIRD4 FO = 4 Routing Delay 3.9 4.3 4.9 5.7 8.0 ns tIRD8 FO = 8 Routing Delay 5.2 5.8 6.6 7.7 10.8 ns Global Clock Network tCKH Input LOW to HIGH FO = 32 FO = 256 4.1 4.5 4.5 5.0 5.1 5.6 6.0 6.7 8.4 9.3 ns ns tCKL Input HIGH to LOW FO = 32 FO = 256 5.0 5.4 5.5 6.0 6.2 6.8 7.3 8.0 10.2 11.2 ns ns tPWH Minimum Pulse Width FO = 32 HIGH FO = 256 1.7 1.9 1.9 2.1 2.1 2.3 2.5 2.7 3.5 3.8 ns ns tPWL Minimum Pulse Width FO = 32 LOW FO = 256 1.7 1.9 1.9 2.1 2.1 2.3 2.5 2.7 3.5 3.8 ns ns tCKSW Maximum Skew FO = 32 FO = 256 tSUEXT Input Latch External Set-Up FO = 32 FO = 256 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns ns tHEXT Input Latch External Hold FO = 32 FO = 256 3.3 3.7 3.7 4.1 4.2 4.6 4.9 5.5 6.9 7.6 ns ns tP Minimum Period FO = 32 FO = 256 5.6 6.1 6.2 6.8 6.7 7.4 7.8 8.5 12.9 14.2 ns ns fMAX Maximum Frequency FO = 32 FO = 256 0.4 0.4 177 161 0.5 0.5 0.5 0.5 161 146 DS2316 Datasheet Revision 16.0 148 135 0.6 0.6 129 117 0.9 0.9 77 70 ns ns MHz MHz 60 40MX and 42MX FPGAs Table 39 * A42MX09 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCCA = 3.0 V, TJ = 70C) (continued) -3 Speed -2 Speed Parameter / Description -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units 5 TTL Output Module Timing tDLH Data-to-Pad HIGH 3.4 3.8 4.3 5.1 7.1 ns tDHL Data-to-Pad LOW 4.0 4.5 5.1 6.1 8.3 ns tENZH Enable Pad Z to HIGH 3.7 4.1 4.6 5.5 7.6 ns tENZL Enable Pad Z to LOW 4.1 4.5 5.1 6.1 8.5 ns tENHZ Enable Pad HIGH to Z 6.9 7.6 8.6 10.2 14.2 ns tENLZ Enable Pad LOW to Z 7.5 8.3 9.4 11.1 15.5 ns tGLH G-to-Pad HIGH 5.8 6.5 7.3 8.6 12.0 ns tGHL G-to-Pad LOW 5.8 6.5 7.3 8.6 12.0 ns tLSU I/O Latch Set-Up 0.7 0.8 0.9 1.0 1.4 ns tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading 8.7 9.7 10.9 12.9 18.0 ns tACO Array Clock-to-Out (Pad-to-Pad),64 Clock Loading 12.2 13.5 15.4 18.1 25.3 ns dTLH Capacity Loading, LOW to HIGH 0.00 0.00 0.00 0.10 0.01 ns/pF dTHL Capacity Loading, HIGH to LOW 0.09 0.10 0.10 0.10 0.10 ns/pF DS2316 Datasheet Revision 16.0 61 40MX and 42MX FPGAs Table 39 * A42MX09 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCCA = 3.0 V, TJ = 70C) (continued) -3 Speed -2 Speed Parameter / Description -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units CMOS Output Module Timing 5 tDLH Data-to-Pad HIGH 3.4 3.8 5.5 6.4 9.0 ns tDHL Data-to-Pad LOW 4.1 4.5 4.2 5.0 7.0 ns tENZH Enable Pad Z to HIGH 3.7 4.1 4.6 5.5 7.6 ns tENZL Enable Pad Z to LOW 4.1 4.5 5.1 6.1 8.5 ns tENHZ Enable Pad HIGH to Z 6.9 7.6 8.6 10.2 14.2 ns tENLZ Enable Pad LOW to Z 7.5 8.3 9.4 11.1 15.5 ns tGLH G-to-Pad HIGH 5.8 6.5 7.3 8.6 12.0 ns tGHL G-to-Pad LOW 5.8 6.5 7.3 8.6 12.0 ns tLSU I/O Latch Set-Up 0.7 0.8 0.9 1.0 1.4 ns tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading 8.7 9.7 10.9 12.9 18.0 ns tACO Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading 12.2 13.5 15.4 18.1 25.3 ns dTLH Capacity Loading, LOW to HIGH 0.04 0.04 0.05 0.06 0.08 ns/pF dTHL Capacity Loading, HIGH to LOW 0.05 0.05 0.06 0.07 0.10 ns/pF 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. Table 40 * A42MX16 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75 V, T J = 70C) -3 Speed Parameter / Description Logic Module Propagation -2 Speed Min. Max. Min. Max. -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Units Delays1 tPD1 Single Module 1.4 1.5 1.7 2.0 2.8 ns tCO Sequential Clock-to-Q 1.4 1.6 1.8 2.1 3.0 ns tGO Latch G-to-Q 1.4 1.5 1.7 2.0 2.8 ns tRS Flip-Flop (Latch) Reset-to-Q 1.6 1.7 2.0 2.3 3.3 ns Logic Module Predicted Routing Delays2 tRD1 FO = 1 Routing Delay 0.8 0.9 1.0 1.2 1.6 ns tRD2 FO = 2 Routing Delay 1.0 1.2 1.3 1.5 2.1 ns DS2316 Datasheet Revision 16.0 62 40MX and 42MX FPGAs Table 40 * A42MX16 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75 V, T J = 70C) (continued) -3 Speed Parameter / Description -2 Speed Min. Max. Min. Max. -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Units tRD3 FO = 3 Routing Delay 1.3 1.4 1.6 1.9 2.7 ns tRD4 FO = 4 Routing Delay 1.6 1.7 2.0 2.3 3.2 ns tRD8 FO = 8 Routing Delay 2.6 2.9 3.2 3.8 5.3 ns Logic Module Sequential Timing3,4 tSUD Flip-Flop (Latch) Data Input Set-Up 0.3 0.4 0.4 0.5 0.7 ns tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns tSUENA Flip-Flop (Latch) Enable Set-Up 0.7 0.8 0.9 1.0 1.4 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 3.4 3.8 4.3 5.0 7.1 ns tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 4.5 5.0 5.6 6.6 9.2 ns tA Flip-Flop Clock Input Period 6.8 7.6 8.6 10.1 14.1 ns tINH Input Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tINSU Input Buffer Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tOUTSU Output Buffer Latch Set-Up 0.5 fMAX Flip-Flop (Latch) Clock Frequency 0.5 0.6 0.7 1.0 ns 215 195 179 156 94 MHz Input Module Propagation Delays tINYH Pad-to-Y HIGH 1.1 1.2 1.3 1.6 2.2 ns tINYL Pad-to-Y LOW 0.8 0.9 1.0 1.2 1.7 ns tINGH G to Y HIGH 1.4 1.6 1.8 2.1 2.9 ns tINGL G to Y LOW 1.4 1.6 1.8 2.1 2.9 ns Input Module Predicted Routing Delays2 tIRD1 FO = 1 Routing Delay 1.8 2.0 2.3 2.7 4.0 ns tIRD2 FO = 2 Routing Delay 2.1 2.3 2.6 3.1 4.3 ns tIRD3 FO = 3 Routing Delay 2.3 2.6 3.0 3.5 4.9 ns tIRD4 FO = 4 Routing Delay 2.6 3.0 3.3 3.9 5.4 ns tIRD8 FO = 8 Routing Delay 3.6 4.0 4.6 5.4 7.5 ns Global Clock Network tCKH Input LOW to HIGH FO = 32 FO = 384 2.6 2.9 2.9 3.2 3.3 3.6 3.9 4.3 5.4 6.0 ns ns tCKL Input HIGH to LOW FO = 32 FO = 384 3.8 4.5 4.2 5.0 4.8 5.6 5.6 6.6 7.8 9.2 ns ns tPWH Minimum Pulse Width HIGH FO = 32 FO = 384 3.2 3.7 3.5 4.1 4.0 4.6 DS2316 Datasheet Revision 16.0 4.7 5.4 6.6 7.6 ns ns 63 40MX and 42MX FPGAs Table 40 * A42MX16 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75 V, T J = 70C) (continued) -3 Speed Parameter / Description -2 Speed Min. Max. Min. Max. 3.2 3.7 3.5 4.1 -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Units tPWL Minimum Pulse Width LOW FO = 32 FO = 384 tCKSW Maximum Skew FO = 32 FO = 384 tSUEXT Input Latch External Set-Up FO = 32 FO = 384 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns ns tHEXT Input Latch External Hold FO = 32 FO = 384 2.8 3.2 3.1 3.5 5.5 4.0 4.1 4.7 5.7 6.6 ns ns tP Minimum Period FO = 32 FO = 384 4.2 4.6 4.67 5.1 5.1 5.6 5.8 6.4 9.7 10.7 ns ns fMAX Maximum Frequency FO = 32 FO = 384 0.3 0.3 237 215 4.0 4.6 0.4 0.4 4.7 5.4 0.4 0.4 215 195 DS2316 Datasheet Revision 16.0 198 179 6.6 7.6 0.5 0.5 172 156 ns ns 0.7 0.7 103 94 ns ns MHz MHz 64 40MX and 42MX FPGAs Table 40 * A42MX16 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75 V, T J = 70C) (continued) -3 Speed Parameter / Description TTL Output Module Timing -2 Speed Min. Max. Min. Max. -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Units 4 tDLH Data-to-Pad HIGH 2.5 2.8 3.2 3.7 5.2 ns tDHL Data-to-Pad LOW 3.0 3.3 3.7 4.4 6.1 ns tENZH Enable Pad Z to HIGH 2.7 3.0 3.4 4.0 5.6 ns tENZL Enable Pad Z to LOW 3.0 3.3 3.8 4.4 6.2 ns tENHZ Enable Pad HIGH to Z 5.4 6.0 6.8 8.0 11.2 ns tENLZ Enable Pad LOW to Z 5.0 5.6 6.3 7.4 10.4 ns tGLH G-to-Pad HIGH 2.9 3.2 3.6 4.3 6.0 ns tGHL G-to-Pad LOW 2.9 3.2 3.6 4.3 6.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading 5.7 6.3 7.1 8.4 11.9 ns tACO Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading 8.0 8.9 10.1 11.9 16.7 ns dTLH Capacitive Loading, LOW to HIGH 0.03 0.03 0.03 0.04 0.06 ns/pF dTHL Capacitive Loading, HIGH to LOW 0.04 0.04 0.04 0.05 0.07 ns/pF DS2316 Datasheet Revision 16.0 65 40MX and 42MX FPGAs Table 40 * A42MX16 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75 V, T J = 70C) (continued) -3 Speed Parameter / Description -2 Speed Min. Max. Min. Max. -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Units 5 CMOS Output Module Timing tDLH Data-to-Pad HIGH 3.2 3.6 4.0 4.7 6.6 ns tDHL Data-to-Pad LOW 2.5 2.7 3.1 3.6 5.1 ns tENZH Enable Pad Z to HIGH 2.7 3.0 3.4 4.0 5.6 ns tENZL Enable Pad Z to LOW 3.0 3.3 3.8 4.4 6.2 ns tENHZ Enable Pad HIGH to Z 5.4 6.0 6.8 8.0 11.2 ns tENLZ Enable Pad LOW to Z 5.0 5.6 6.3 7.4 10.4 ns tGLH G-to-Pad HIGH 5.1 5.6 6.4 7.5 10.5 ns tGHL G-to-Pad LOW 5.1 5.6 6.4 7.5 10.5 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading 5.7 6.3 7.1 8.4 11.9 ns tACO Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading 8.0 8.9 10.1 11.9 16.7 ns dTLH Capacitive Loading, LOW to HIGH 0.03 1. 2. 0.03 0.03 0.04 0.06 ns/pF For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, point and position whichever is appropriate. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. Delays based on 35 pF loading 5. Table 41 * A42MX16 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCCA = 3.0 V, T J = 70C) -3 Speed Parameter / Description -2 Speed -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Logic Module Propagation Delays 1 tPD1 Single Module 1.9 2.1 2.4 2.8 4.0 ns tCO Sequential Clock-to-Q 2.0 2.2 2.5 3.0 4.2 ns tGO Latch G-to-Q 1.9 2.1 2.4 2.8 4.0 ns tRS Flip-Flop (Latch) Reset-to-Q 2.2 2.4 2.8 3.3 4.6 ns Logic Module Predicted Routing Delays2 tRD1 FO = 1 Routing Delay 1.1 1.2 1.4 1.6 2.3 ns tRD2 FO = 2 Routing Delay 1.5 1.6 1.8 2.1 3.0 ns tRD3 FO = 3 Routing Delay 1.8 2.0 2.3 2.7 3.8 ns tRD4 FO = 4 Routing Delay 2.2 2.4 2.7 3.2 4.5 ns tRD8 FO = 8 Routing Delay 3.6 4.0 4.5 5.3 7.5 ns DS2316 Datasheet Revision 16.0 66 40MX and 42MX FPGAs Table 41 * A42MX16 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCCA = 3.0 V, T J = 70C) (continued) -3 Speed Parameter / Description -2 Speed -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units 3, 4 Logic Module Sequential Timing tSUD Flip-Flop (Latch) Data Input Set-Up 0.5 0.5 0.6 0.7 0.9 ns tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns tSUENA Flip-Flop (Latch) Enable Set-Up 1.0 1.1 1.2 1.4 2.0 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 4.8 5.3 6.0 7.1 9.9 ns tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 6.2 6.9 7.9 9.2 12.9 ns tA Flip-Flop Clock Input Period 9.5 10.6 12.0 14.1 19.8 ns tINH Input Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tINSU Input Buffer Latch Set-Up 0.7 0.8 0.9 1.01 1.4 ns tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tOUTSU Output Buffer Latch Set-Up 0.7 fMAX Flip-Flop (Latch) Clock Frequency 0.8 0.89 1.01 1.4 ns 129 117 108 94 56 MHz Input Module Propagation Delays tINYH Pad-to-Y HIGH 1.5 1.6 1.9 2.2 3.1 ns tINYL Pad-to-Y LOW 1.1 1.3 1.4 1.7 2.4 ns tINGH G to Y HIGH 2.0 2.2 2.5 2.9 4.1 ns tINGL G to Y LOW 2.0 2.2 2.5 2.9 4.1 ns Input Module Predicted Routing Delays2 tIRD1 FO = 1 Routing Delay 2.6 2.9 3.2 3.8 5.3 ns tIRD2 FO = 2 Routing Delay 2.9 3.2 3.7 4.3 6.1 ns tIRD3 FO = 3 Routing Delay 3.3 3.6 4.1 4.9 6.8 ns tIRD4 FO = 4 Routing Delay 3.6 4.0 4.6 5.4 7.6 ns tIRD8 FO = 8 Routing Delay 5.1 5.6 6.4 7.5 10.5 ns Global Clock Network tCKH Input LOW to HIGH FO = 32 FO = 384 4.4 4.8 4.8 5.3 5.5 6.0 6.5 7.1 9.0 9.9 ns ns tCKL Input HIGH to LOW FO = 32 FO = 384 5.3 6.2 5.9 6.9 6.7 7.9 7.8 9.2 11.0 12.9 ns ns tPWH Minimum Pulse Width HIGH FO = 32 FO = 384 5.7 6.6 6.3 7.4 7.1 8.3 DS2316 Datasheet Revision 16.0 8.4 9.8 11.8 13.7 ns ns 67 40MX and 42MX FPGAs Table 41 * A42MX16 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCCA = 3.0 V, T J = 70C) (continued) -3 Speed Parameter / Description -2 Speed -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units tPWL Minimum Pulse Width LOW FO = 32 FO = 384 5.3 6.2 5.9 6.9 tCKSW Maximum Skew FO = 32 FO = 384 tSUEXT Input Latch External FO = 32 Set-Up FO = 384 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns ns tHEXT Input Latch External FO = 32 Hold FO = 384 3.9 4.5 4.3 4.9 4.9 5.6 5.7 6.6 8.0 9.2 ns ns tP Minimum Period FO = 32 FO = 384 7.0 7.7 7.8 8.6 8.4 9.3 9.7 10.7 16.2 17.8 ns ns fMAX Maximum Frequency FO = 32 FO = 384 0.5 2.2 6.7 7.9 0.5 2.4 7.8 9.2 0.6 2.7 11.0 12.9 0.7 3.2 ns ns 1.0 4.5 ns ns 142 129 129 117 119 108 103 94 62 56 MHz MHz TTL Output Module Timing5 tDLH Data-to-Pad HIGH 3.5 3.9 4.4 5.2 7.3 ns tDHL Data-to-Pad LOW 4.1 4.6 5.2 6.1 8.6 ns tENZH Enable Pad Z to HIGH 3.8 4.2 4.8 5.6 7.8 ns tENZL Enable Pad Z to LOW 4.2 4.6 5.3 6.2 8.7 ns tENHZ Enable Pad HIGH to Z 7.6 8.4 9.5 11.2 15.7 ns tENLZ Enable Pad LOW to Z 7.0 7.8 8.8 10.4 14.5 ns tGLH G-to-Pad HIGH 4.8 5.3 6.0 7.2 10.0 ns tGHL G-to-Pad LOW 4.8 5.3 6.0 7.2 10.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading 8.0 8.9 10.1 11.9 16.7 ns tACO Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading 11.3 12.5 14.2 16.7 23.3 ns dTLH Capacitive Loading, LOW to HIGH 0.04 0.04 0.05 0.06 0.08 ns/pF dTHL Capacitive Loading, HIGH to LOW 0.05 0.05 0.06 0.07 0.10 ns/pF CMOS Output Module Timing5 tDLH Data-to-Pad HIGH 4.5 5.0 5.6 6.6 9.3 ns tDHL Data-to-Pad LOW 3.4 3.8 4.3 5.1 7.1 ns tENZH Enable Pad Z to HIGH 3.8 4.2 4.8 5.6 7.8 ns tENZL Enable Pad Z to LOW 4.2 4.6 5.3 6.2 8.7 ns tENHZ Enable Pad HIGH to Z 7.6 8.4 9.5 11.2 15.7 ns tENLZ Enable Pad LOW to Z 7.0 7.8 8.8 10.4 14.5 ns tGLH G-to-Pad HIGH 7.1 7.9 8.9 10.5 14.7 ns tGHL G-to-Pad LOW 7.1 7.9 8.9 10.5 14.7 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading 8.0 8.9 10.1 11.9 16.7 ns DS2316 Datasheet Revision 16.0 68 40MX and 42MX FPGAs Table 41 * A42MX16 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCCA = 3.0 V, T J = 70C) (continued) -3 Speed Parameter / Description -2 Speed -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units tACO Array Clock-to-Out (Pad-to-Pad),64 Clock Loading 11.3 12.5 14.2 16.7 23.3 ns dTLH Capacitive Loading, LOW to HIGH 0.04 0.04 0.05 0.06 0.08 ns/pF dTHL Capacitive Loading, HIGH to LOW 0.05 0.05 0.06 0.07 0.10 ns/pF 1. 2. 3. 4. 5. For dual-module macros use tPD1 + tRD1 + taped, to + tRD1 + taped, or tPD1 + tRD1 + tusk, whichever is appropriate. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing ansalysis or simulation is required to determine actual performance. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. Delays based on 35 pF loading. Table 42 * A42MX24 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75 V, T J = 70C) -3 Speed Parameter / Description -2 Speed -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Logic Module Combinatorial Functions1 tPD Internal Array Module Delay 1.2 1.3 1.5 1.8 2.5 ns tPDD Internal Decode Module Delay 1.4 1.6 1.8 2.1 3.0 ns Logic Module Predicted Routing Delays2 tRD1 FO = 1 Routing Delay 0.8 0.9 1.0 1.2 1.7 ns tRD2 FO = 2 Routing Delay 1.0 1.2 1.3 1.5 2.1 ns tRD3 FO = 3 Routing Delay 1.3 1.4 1.6 1.9 2.6 ns tRD4 FO = 4 Routing Delay 1.5 1.7 1.9 2.2 3.1 ns tRD5 FO = 8 Routing Delay 2.4 2.7 3.0 3.6 5.0 ns Logic Module Sequential Timing3, 4 tCO Flip-Flop Clock-to-Output 1.3 1.4 1.6 1.9 2.7 ns tGO Latch Gate-to-Output 1.2 1.3 1.5 1.8 2.5 ns tSUD Flip-Flop (Latch) Set-Up Time 0.3 0.4 0.4 0.5 0.7 ns tHD Flip-Flop (Latch) Hold Time 0.0 0.0 0.0 0.0 0.0 ns tRO Flip-Flop (Latch) Reset-to-Output tSUENA Flip-Flop (Latch) Enable Set-Up 0.4 0.5 0.5 0.6 0.8 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 3.3 3.7 4.2 4.9 6.9 ns tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 4.4 4.8 5.3 6.5 9.0 1.4 1.6 1.8 2.1 2.9 ns ns DS2316 Datasheet Revision 16.0 69 40MX and 42MX FPGAs Table 42 * A42MX24 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75 V, T J = 70C) (continued) -3 Speed Parameter / Description -2 Speed -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Input Module Propagation Delays tINPY Input Data Pad-to-Y 1.0 1.1 1.3 1.5 2.1 ns tINGO Input Latch Gate-to-Output 1.3 1.4 1.6 1.9 2.6 ns tINH Input Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tINSU Input Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns tILA Latch Active Pulse Width 4.7 5.2 5.9 6.9 9.7 ns DS2316 Datasheet Revision 16.0 70 40MX and 42MX FPGAs Table 42 * A42MX24 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75 V, T J = 70C) (continued) -3 Speed Parameter / Description -2 Speed -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units 2 Input Module Predicted Routing Delays tIRD1 FO = 1 Routing Delay 1.8 2.0 2.3 2.7 3.8 ns tIRD2 FO = 2 Routing Delay 2.1 2.3 2.6 3.1 4.3 ns tIRD3 FO = 3 Routing Delay 2.3 2.5 2.9 3.4 4.8 ns tIRD4 FO = 4 Routing Delay 2.5 2.8 3.2 3.7 5.2 ns tIRD8 FO = 8 Routing Delay 3.4 3.8 4.3 5.1 7.1 ns Global Clock Network tCKH Input LOW to HIGH FO = 32 FO = 486 2.6 2.9 2.9 3.2 3.3 3.6 3.9 4.3 5.4 5.9 ns ns tCKL Input HIGH to LOW FO = 32 FO = 486 3.7 4.3 4.1 4.7 4.6 5.4 5.4 6.3 7.6 8.8 ns ns tPWH Minimum Pulse Width HIGH FO = 32 2.2 FO = 486 2.4 2.4 2.6 2.7 3.0 3.2 3.5 4.5 4.9 ns ns tPWL Minimum Pulse Width LOW FO = 32 2.2 FO = 486 2.4 2.4 2.6 2.7 3.0 3.2 3.5 4.5 4.9 ns ns tCKSW Maximum Skew FO = 32 FO = 486 tSUEXT Input Latch External Set-Up FO = 32 0.0 FO = 486 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns ns tHEXT Input Latch External Hold FO = 32 2.8 FO = 486 3.3 3.1 3.7 3.5 4.2 4.1 4.9 5.7 6.9 ns ns tP Minimum Period (1/fMAX) FO = 32 4.7 FO = 486 5.1 5.2 5.7 5.7 6.2 6.5 7.1 10.9 11.9 ns ns 0.5 0.5 0.6 0.6 0.7 0.7 DS2316 Datasheet Revision 16.0 0.8 0.8 1.1 1.1 ns ns 71 40MX and 42MX FPGAs Table 42 * A42MX24 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75 V, T J = 70C) (continued) -3 Speed Parameter / Description TTL Output Module Timing -2 Speed -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units 5 tDLH Data-to-Pad HIGH 2.4 2.7 3.1 3.6 5.1 ns tDHL Data-to-Pad LOW 2.8 3.2 3.6 4.2 5.9 ns tENZH Enable Pad Z to HIGH 2.5 2.8 3.2 3.8 5.3 ns tENZL Enable Pad Z to LOW 2.8 3.1 3.5 4.2 5.9 ns tENHZ Enable Pad HIGH to Z 5.2 5.7 6.5 7.6 10.7 ns tENLZ Enable Pad LOW to Z 4.8 5.3 6.0 7.1 9.9 ns tGLH G-to-Pad HIGH 2.9 3.2 3.6 4.3 6.0 ns tGHL G-to-Pad LOW 2.9 3.2 3.6 4.3 6.0 ns tLSU I/O Latch Output Set-Up 0.5 0.5 0.6 0.7 1.0 ns tLH I/O Latch Output Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O 5.6 6.1 6.9 8.1 11.4 ns tACO Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O 10.6 11.8 13.4 15.7 22.0 ns dTLH Capacitive Loading, LOW to HIGH 0.04 0.04 0.04 0.05 0.07 ns/pF dTHL Capacitive Loading, HIGH to LOW 0.03 0.03 0.03 0.04 0.06 ns/pF DS2316 Datasheet Revision 16.0 72 40MX and 42MX FPGAs Table 42 * A42MX24 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75 V, T J = 70C) (continued) -3 Speed Parameter / Description -2 Speed -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units 5 CMOS Output Module Timing tDLH Data-to-Pad HIGH 3.1 3.5 3.9 4.6 6.4 ns tDHL Data-to-Pad LOW 2.4 2.6 3.0 3.5 4.9 ns tENZH Enable Pad Z to HIGH 2.5 2.8 3.2 3.8 5.3 ns tENZL Enable Pad Z to LOW 2.8 3.1 3.5 4.2 5.8 ns tENHZ Enable Pad HIGH to Z 5.2 5.7 6.5 7.6 10.7 ns tENLZ Enable Pad LOW to Z 4.8 5.3 6.0 7.1 9.9 ns tGLH G-to-Pad HIGH 4.9 5.4 6.2 7.2 10.1 ns tGHL G-to-Pad LOW 4.9 5.4 6.2 7.2 10.1 ns tLSU I/O Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O 5.5 6.1 6.9 8.1 11.3 ns tACO Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O 10.6 11.8 13.4 15.7 22.0 ns dTLH Capacitive Loading, LOW to HIGH 0.04 0.04 0.04 0.05 0.07 ns/pF dTHL Capacitive Loading, HIGH to LOW 0.03 0.03 0.03 0.04 0.06 ns/pF 1. 2. 3. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. 5. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. Delays based on 35 pF loading Table 43 * A42MX24 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCCA = 3.0 V, T J = 70C) -3 Speed Parameter / Description Logic Module Combinatorial -2 Speed -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Functions1 tPD Internal Array Module Delay 2.0 1.8 2.1 2.5 3.4 ns tPDD Internal Decode Module Delay 1.1 2.2 2.5 3.0 4.2 ns Logic Module Predicted Routing Delays2 tRD1 FO = 1 Routing Delay 1.7 1.3 1.4 1.7 2.3 ns tRD2 FO = 2 Routing Delay 2.0 1.6 1.8 2.1 3.0 ns tRD3 FO = 3 Routing Delay 1.1 2.0 2.2 2.6 3.7 ns tRD4 FO = 4 Routing Delay 1.5 2.3 2.6 3.1 4.3 ns tRD5 FO = 8 Routing Delay 1.8 3.7 4.2 5.0 7.0 ns DS2316 Datasheet Revision 16.0 73 40MX and 42MX FPGAs Table 43 * A42MX24 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCCA = 3.0 V, T J = 70C) (continued) -3 Speed Parameter / Description -2 Speed -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units 3, 4 Logic Module Sequential Timing tCO Flip-Flop Clock-to-Output 2.1 2.0 2.3 2.7 3.7 ns tGO Latch Gate-to-Output 3.4 1.9 2.1 2.5 3.4 ns tSUD Flip-Flop (Latch) Set-Up Time 0.4 0.5 0.6 0.7 0.9 ns tHD Flip-Flop (Latch) Hold Time 0.0 0.0 0.0 0.0 0.0 ns tRO Flip-Flop (Latch) Reset-to-Output tSUENA Flip-Flop (Latch) Enable Set-Up 0.6 0.6 0.7 0.8 1.2 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 4.6 5.2 5.8 6.9 9.6 ns tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 6.1 6.8 7.7 9.0 12.6 2.0 2.2 2.5 2.9 4.1 ns ns Input Module Propagation Delays tINPY Input Data Pad-to-Y 1.4 1.6 1.8 2.2 3.0 ns tINGO Input Latch Gate-to-Output 1.8 1.9 2.2 2.6 3.6 ns tINH Input Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tINSU Input Latch Set-Up 0.7 0.7 0.8 1.0 1.4 ns tILA Latch Active Pulse Width 6.5 7.3 8.2 9.7 13.5 ns DS2316 Datasheet Revision 16.0 74 40MX and 42MX FPGAs Table 43 * A42MX24 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCCA = 3.0 V, T J = 70C) (continued) -3 Speed Parameter / Description -2 Speed -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units 2 Input Module Predicted Routing Delays tIRD1 FO = 1 Routing Delay 2.6 2.9 3.2 3.8 5.3 ns tIRD2 FO = 2 Routing Delay 2.9 3.2 3.6 4.3 6.0 ns tIRD3 FO = 3 Routing Delay 3.2 3.6 4.0 4.8 6.6 ns tIRD4 FO = 4 Routing Delay 3.5 3.9 4.4 5.2 7.3 ns tIRD8 FO = 8 Routing Delay 4.8 5.3 6.1 7.1 10.0 ns Global Clock Network tCKH Input LOW to HIGH FO = 32 FO = 486 4.4 4.8 4.8 5.3 5.5 6.0 6.5 7.1 9.1 ns 10.0 ns tCKL Input HIGH to LOW FO = 32 FO = 486 5.1 6.0 5.7 6.6 6.4 7.5 7.6 8.8 10.6 ns 12.4 ns tPWH Minimum Pulse Width HIGH FO = 32 3.0 FO = 486 3.3 3.3 3.7 3.8 4.2 4.5 4.9 6.3 6.9 ns ns tPWL Minimum Pulse Width LOW FO = 32 3.0 FO = 486 3.3 3.4 3.7 3.8 4.2 4.5 4.9 6.3 6.9 ns ns tCKSW Maximum Skew FO = 32 FO = 486 tSUEXT Input Latch External Set-Up FO = 32 0.0 FO = 486 0.0 0.8 0.8 0.8 0.8 0.0 0.0 1.0 1.0 0.0 0.0 1.1 1.1 0.0 0.0 1.6 1.6 0.0 0.0 ns ns ns ns TTL Output Module Timing5 tDLH Data-to-Pad HIGH 3.4 3.8 4.3 5.0 7.1 ns tDHL Data-to-Pad LOW 4.0 4.4 5.0 5.9 8.3 ns tENZH Enable Pad Z to HIGH 3.6 4.0 4.5 5.3 7.4 ns tENZL Enable Pad Z to LOW 3.9 4.4 5.0 5.8 8.2 ns tENHZ Enable Pad HIGH to Z 7.2 8.0 9.1 10.7 14.9 ns tENLZ Enable Pad LOW to Z 6.7 7.5 8.5 9.9 13.9 ns tGLH G-to-Pad HIGH 4.8 5.3 6.0 7.2 10.0 ns tGHL G-to-Pad LOW 4.8 5.3 6.0 7.2 10.0 ns tLSU I/O Latch Output Set-Up 0.7 0.7 0.8 DS2316 Datasheet Revision 16.0 1.0 1.4 ns 75 40MX and 42MX FPGAs Table 43 * A42MX24 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCCA = 3.0 V, T J = 70C) (continued) -3 Speed Parameter / Description -2 Speed -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units 5 TTL Output Module Timing tLH I/O Latch Output Hold tLCO I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O 7.7 8.5 9.6 11.3 15.9 ns tACO Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O 14.8 16.5 18.7 22.0 30.8 ns dTLH Capacitive Loading, LOW to HIGH 0.05 0.05 0.06 0.07 0.10 ns/pF dTHL Capacitive Loading, HIGH to LOW 0.04 0.04 0.05 0.06 0.08 ns/pF CMOS Output Module 0.0 0.0 0.0 0.0 0.0 ns Timing5 tDLH Data-to-Pad HIGH 4.8 5.3 5.5 6.4 9.0 ns tDHL Data-to-Pad LOW 3.5 3.9 4.1 4.9 6.8 ns tENZH Enable Pad Z to HIGH 3.6 4.0 4.5 5.3 7.4 ns tENZL Enable Pad Z to LOW 3.4 4.0 5.0 5.8 8.2 ns tENHZ Enable Pad HIGH to Z 7.2 8.0 9.0 10.7 14.9 ns tENLZ Enable Pad LOW to Z 6.7 7.5 8.5 9.9 13.9 ns tGLH G-to-Pad HIGH 6.8 7.6 8.6 10.1 14.2 ns tGHL G-to-Pad LOW 6.8 7.6 8.6 10.1 14.2 ns tLSU I/O Latch Set-Up 0.7 0.7 0.8 1.0 1.4 ns tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O 7.7 8.5 9.6 11.3 15.9 ns tACO Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O 14.8 16.5 18.7 22.0 30.8 ns dTLH Capacitive Loading, LOW to HIGH 0.05 0.05 0.06 0.07 0.10 ns/pF dTHL Capacitive Loading, HIGH to LOW 0.04 0.04 0.05 0.06 0.08 ns/pF tHEXT Input Latch External Hold FO = 32 3.9 FO = 486 4.6 4.3 5.2 4.9 5.8 5.7 6.9 8.1 9.6 ns ns tP Minimum Period (1/fMAX) FO = 32 7.8 FO = 486 8.6 8.7 9.5 9.5 10.4 10.8 11.9 18.2 19.9 ns ns 1. 2. 3. 4. 5. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. Delays based on 35 pF loading. DS2316 Datasheet Revision 16.0 76 40MX and 42MX FPGAs Table 44 * A42MX36 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75 V, T J = 70C) -3 Speed Parameter / Description -2 Speed -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units 1 Logic Module Combinatorial Functions tPD Internal Array Module Delay 1.3 1.5 1.7 2.0 2.7 ns tPDD Internal Decode Module Delay 1.6 1.8 2.0 2.4 3.3 ns Logic Module Predicted Routing Delays2 tRD1 FO = 1 Routing Delay 0.9 1.0 1.2 1.4 2.0 ns tRD2 FO = 2 Routing Delay 1.3 1.4 1.6 1.9 2.7 ns tRD3 FO =3 Routing Delay 1.6 1.8 2.0 2.4 3.4 ns tRD4 FO = 4 Routing Delay 2.0 2.2 2.5 2.9 4.1 ns tRD5 FO = 8 Routing Delay 3.3 3.7 4.2 4.9 6.9 ns tRDD Decode-to-Output Routing Delay 0.3 0.4 0.4 0.5 0.7 ns Logic Module Sequential Timing3, 4 tCO Flip-Flop Clock-to-Output 1.3 1.4 1.6 1.9 2.7 ns tGO Latch Gate-to-Output 1.3 1.4 1.6 1.9 2.7 ns tSUD Flip-Flop (Latch) Set-Up Time 0.3 0.3 0.4 0.5 0.7 ns tHD Flip-Flop (Latch) Hold Time 0.0 0.0 0.0 0.0 0.0 ns tRO Flip-Flop (Latch) Reset-to-Output tSUENA Flip-Flop (Latch) Enable Set-Up 0.7 0.8 0.9 1.0 1.4 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 3.3 3.7 4.2 4.9 6.9 ns tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 4.4 4.8 5.5 6.4 9.0 ns 1.6 1.7 2.0 2.3 3.2 ns Synchronous SRAM Operations tRC Read Cycle Time 6.8 7.5 8.5 10.0 14.0 ns tWC Write Cycle Time 6.8 7.5 8.5 10.0 14.0 ns tRCKHL Clock HIGH/LOW Time 3.4 3.8 4.3 5.0 7.0 ns tRCO Data Valid After Clock HIGH/LOW tADSU Address/Data Set-Up Time 3.4 3.8 4.3 5.0 7.0 ns 1.6 1.8 2.0 2.4 3.4 ns Synchronous SRAM Operations tADH Address/Data Hold Time 0.0 0.0 0.0 0.0 0.0 ns tRENSU Read Enable Set-Up 0.6 0.7 0.8 0.9 1.3 ns tRENH Read Enable Hold 3.4 3.8 4.3 5.0 7.0 ns tWENSU Write Enable Set-Up 2.7 3.0 3.4 4.0 5.6 ns tWENH Write Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tBENS Block Enable Set-Up 2.8 3.1 3.5 4.1 5.7 ns tBENH Block Enable Hold 0.0 0.0 0.0 0.0 0.0 ns DS2316 Datasheet Revision 16.0 77 40MX and 42MX FPGAs Table 44 * A42MX36 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75 V, T J = 70C) (continued) -3 Speed Parameter / Description -2 Speed -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Asynchronous SRAM Operations tRPD Asynchronous Access Time 8.1 9.0 10.2 12.0 16.8 ns tRDADV Read Address Valid 8.8 9.8 11.1 13.0 18.2 ns tADSU Address/Data Set-Up Time 1.6 1.8 2.0 2.4 3.4 ns tADH Address/Data Hold Time 0.0 0.0 0.0 0.0 0.0 ns tRENSUA Read Enable Set-Up to Address 0.6 Valid 0.7 0.8 0.9 1.3 ns tRENHA Read Enable Hold 3.4 3.8 4.3 5.0 7.0 ns tWENSU Write Enable Set-Up 2.7 3.0 3.4 4.0 5.6 ns tWENH Write Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tDOH Data Out Hold Time 1.2 1.3 1.5 1.8 2.5 ns Input Module Propagation Delays tINPY Input Data Pad-to-Y 1.0 1.1 1.3 1.5 2.1 ns tINGO Input Latch Gate-to-Output 1.4 1.6 1.8 2.1 2.9 ns tINH Input Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tINSU Input Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns tILA Latch Active Pulse Width 4.7 5.2 5.9 6.9 9.7 ns Input Module Predicted Routing Delays2 tIRD1 FO = 1 Routing Delay 2.0 2.2 2.5 2.9 4.1 ns tIRD2 FO = 2 Routing Delay 2.3 2.6 2.9 3.4 4.8 ns tIRD3 FO = 3 Routing Delay 2.6 2.9 3.3 3.9 5.5 ns tIRD4 FO = 4 Routing Delay 3.0 3.3 3.8 4.4 6.2 ns tIRD8 FO = 8 Routing Delay 4.3 4.8 5.5 6.4 9.0 ns Global Clock Network tCKH Input LOW to HIGH FO = 32 FO = 635 2.7 3.0 3.0 3.3 3.4 3.8 4.0 4.4 5.6 6.2 ns ns tCKL Input HIGH to LOW FO = 32 FO = 635 3.8 4.9 4.2 5.4 4.8 6.1 5.6 7.2 7.8 10.1 ns ns tPWH Minimum Pulse Width HIGH FO = 32 FO = 635 1.8 2.0 2.0 2.2 2.2 2.5 2.6 2.9 3.6 4.1 ns ns tPWL Minimum Pulse Width LOW FO = 32 FO = 635 1.8 2.0 2.0 2.2 2.2 2.5 2.6 2.9 3.6 4.1 ns ns tCKSW Maximum Skew FO = 32 FO = 635 0.8 0.8 0.8 0.8 DS2316 Datasheet Revision 16.0 0.9 0.9 1.0 1.0 1.4 1.4 ns ns 78 40MX and 42MX FPGAs Table 44 * A42MX36 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75 V, T J = 70C) (continued) -3 Speed -2 Speed -1 Speed Std Speed -F Speed Parameter / Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units tSUEXT Input Latch External FO = 32 Set-Up FO = 635 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns ns tHEXT Input Latch External FO = 32 Hold FO = 635 2.8 3.3 3.2 3.7 3.6 4.2 4.2 4.9 5.9 6.9 ns ns tP Minimum Period (1/fMAX) FO = 32 FO = 635 5.5 6.0 6.1 6.6 6.6 7.2 7.6 8.3 12.7 13.8 ns ns fMAX Maximum Datapath Frequency FO = 32 FO = 635 180 166 164 151 151 139 131 121 79 73 MHz MHz TTL Output Module Timing5 tDLH Data-to-Pad HIGH 2.6 2.8 3.2 3.8 5.3 ns tDHL Data-to-Pad LOW 3.0 3.3 3.7 4.4 6.2 ns tENZH Enable Pad Z to HIGH 2.7 3.0 3.3 3.9 5.5 ns tENZL Enable Pad Z to LOW 3.0 3.3 3.7 4.3 6.1 ns tENHZ Enable Pad HIGH to Z 5.3 5.8 6.6 7.8 10.9 ns DS2316 Datasheet Revision 16.0 79 40MX and 42MX FPGAs Table 44 * A42MX36 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75 V, T J = 70C) (continued) -3 Speed Parameter / Description -2 Speed -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units 5 TTL Output Module Timing tENLZ Enable Pad LOW to Z 4.9 5.5 6.2 7.3 10.2 ns tGLH G-to-Pad HIGH 2.9 3.3 3.7 4.4 6.1 ns tGHL G-to-Pad LOW 2.9 3.3 3.7 4.4 6.1 ns tLSU I/O Latch Output Set-Up 0.5 0.5 0.6 0.7 1.0 ns tLH I/O Latch Output Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O 5.7 6.3 7.1 8.4 11.8 ns tACO Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O 7.8 8.6 9.8 11.5 16.1 ns dTLH Capacitive Loading, LOW to HIGH 0.07 0.08 0.09 0.10 0.14 ns/pF dTHL Capacitive Loading, HIGH to LOW 0.07 0.08 0.09 0.10 0.14 ns/pF DS2316 Datasheet Revision 16.0 80 40MX and 42MX FPGAs Table 44 * A42MX36 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75 V, T J = 70C) (continued) -3 Speed Parameter / Description -2 Speed -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. CMOS Output Module Timing Max. Units 5 tDLH Data-to-Pad HIGH 3.5 3.9 4.5 5.2 7.3 ns tDHL Data-to-Pad LOW 2.5 2.7 3.1 3.6 5.1 ns tENZH Enable Pad Z to HIGH 2.7 3.0 3.3 3.9 5.5 ns tENZL Enable Pad Z to LOW 2.9 3.3 3.7 4.3 6.1 ns tENHZ Enable Pad HIGH to Z 5.3 5.8 6.6 7.8 10.9 ns tENLZ Enable Pad LOW to Z 4.9 5.5 6.2 7.3 10.2 ns tGLH G-to-Pad HIGH 5.0 5.6 6.3 7.5 10.4 ns tGHL G-to-Pad LOW 5.0 5.6 6.3 7.5 10.4 ns tLSU I/O Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O 5.7 6.3 7.1 8.4 11.8 ns tACO Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O 7.8 8.6 9.8 11.5 16.1 ns dTLH Capacitive Loading, LOW to HIGH 0.07 0.08 0.09 0.10 0.14 ns/pF dTHL Capacitive Loading, HIGH to LOW 0.07 0.08 0.09 0.10 0.14 ns/pF 1. 2. 3. 4. 5. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. Delays based on 35 pF loading. Table 45 * A42MX36 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCCA = 3.0 V, T J = 70C) -3 Speed Parameter / Description Logic Module Combinatorial -2 Speed -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Functions1 tPD Internal Array Module Delay 1.9 2.1 2.3 2.7 3.8 ns tPDD Internal Decode Module Delay 2.2 2.5 2.8 3.3 4.7 ns Logic Module Predicted Routing Delays2 tRD1 FO = 1 Routing Delay 1.3 1.5 1.7 2.0 2.7 ns tRD2 FO = 2 Routing Delay 1.8 2.0 2.3 2.7 3.7 ns tRD3 FO = 3 Routing Delay 2.3 2.5 2.8 3.4 4.7 ns tRD4 FO = 4 Routing Delay 2.8 3.1 3.5 4.1 5.7 ns DS2316 Datasheet Revision 16.0 81 40MX and 42MX FPGAs Table 45 * A42MX36 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCCA = 3.0 V, T J = 70C) (continued) -3 Speed Parameter / Description -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units tRD5 FO = 8 Routing Delay tRDD Decode-to-Output Routing Delay Logic Module Sequential Timing -2 Speed 4.6 5.2 5.8 6.9 9.6 ns 0.5 0.5 0.6 0.7 1.0 ns 3, 4 tCO Flip-Flop Clock-to-Output 1.8 2.0 2.3 2.7 3.7 ns tGO Latch Gate-to-Output 1.8 2.0 2.3 2.7 3.7 ns tSUD Flip-Flop (Latch) Set-Up Time 0.4 0.5 0.6 0.7 0.9 ns tHD Flip-Flop (Latch) Hold Time 0.0 0.0 0.0 0.0 0.0 ns tRO Flip-Flop (Latch) Reset-to-Output tSUENA Flip-Flop (Latch) Enable Set-Up 1.0 1.1 1.2 1.4 2.0 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 4.6 5.2 5.8 6.9 9.6 ns tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 6.1 6.8 7.7 9.0 12.6 ns 2.2 2.4 2.7 3.2 4.5 ns Synchronous SRAM Operations tRC Read Cycle Time 9.5 10.5 11.9 14.0 19.6 ns tWC Write Cycle Time 9.5 10.5 11.9 14.0 19.6 ns tRCKHL Clock HIGH/LOW Time 4.8 5.3 6.0 7.0 9.8 ns tRCO Data Valid After Clock HIGH/LOW tADSU Address/Data Set-Up Time 4.8 2.3 5.3 2.5 6.0 2.8 DS2316 Datasheet Revision 16.0 7.0 3.4 9.8 4.8 ns ns 82 40MX and 42MX FPGAs Table 45 * A42MX36 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCCA = 3.0 V, T J = 70C) (continued) -3 Speed Parameter / Description -2 Speed -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Synchronous SRAM Operations tADH Address/Data Hold Time 0.0 0.0 0.0 0.0 0.0 ns tRENSU Read Enable Set-Up 0.9 1.0 1.1 1.3 1.8 ns tRENH Read Enable Hold 4.8 5.3 6.0 7.0 9.8 ns tWENSU Write Enable Set-Up 3.8 4.2 4.8 5.6 7.8 ns tWENH Write Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tBENS Block Enable Set-Up 3.9 4.3 4.9 5.7 8.0 ns tBENH Block Enable Hold 0.0 0.0 0.0 0.0 0.0 ns Asynchronous SRAM Operations tRPD Asynchronous Access Time tRDADV Read Address Valid 12.3 13.7 15.5 18.2 25.5 ns tADSU Address/Data Set-Up Time 2.3 2.5 2.8 3.4 4.8 ns tADH Address/Data Hold Time 0.0 0.0 0.0 0.0 0.0 ns tRENSUA Read Enable Set-Up to Address Valid 0.9 1.0 1.1 1.3 1.8 ns tRENHA Read Enable Hold 4.8 5.3 6.0 7.0 9.8 ns tWENSU Write Enable Set-Up 3.8 4.2 4.8 5.6 7.8 ns tWENH Write Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tDOH Data Out Hold Time 11.3 12.6 14.3 16.8 23.5 ns 1.8 2.0 2.1 2.5 3.5 ns Input Module Propagation Delays tINPY Input Data Pad-to-Y 1.4 1.6 1.8 2.1 3.0 ns tINGO Input Latch Gate-to-Output 2.0 2.2 2.5 2.9 4.1 ns tINH Input Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tINSU Input Latch Set-Up 0.7 0.7 0.8 1.0 1.4 ns tILA Latch Active Pulse Width 6.5 7.3 8.2 9.7 13.5 ns DS2316 Datasheet Revision 16.0 83 40MX and 42MX FPGAs Table 45 * A42MX36 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCCA = 3.0 V, T J = 70C) (continued) -3 Speed Parameter / Description -2 Speed -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units 2 Input Module Predicted Routing Delays tIRD1 FO = 1 Routing Delay 2.8 3.1 3.5 4.1 5.7 ns tIRD2 FO = 2 Routing Delay 3.2 3.5 4.1 4.8 6.7 ns tIRD3 FO = 3 Routing Delay 3.7 4.1 4.7 5.5 7.7 ns tIRD4 FO = 4 Routing Delay 4.2 4.6 5.3 6.2 8.7 ns tIRD8 FO = 8 Routing Delay 6.1 6.8 7.7 9.0 12.6 ns Global Clock Network tCKH Input LOW to HIGH FO = 32 FO = 635 4.6 5.0 5.1 5.6 5.7 6.3 6.7 7.4 9.3 ns 10.3 ns tCKL Input HIGH to LOW FO = 32 FO = 635 5.3 6.8 5.9 7.6 6.7 8.6 7.8 10.1 11.0 ns 14.1 ns tPWH Minimum Pulse Width HIGH FO = 32 FO = 635 2.5 2.8 2.7 3.1 3.1 3.5 3.6 4.1 5.1 5.7 ns ns tPWL Minimum Pulse Width LOW FO = 32 FO = 635 2.5 2.8 2.7 3.1 3.1 3.5 3.6 4.1 5.1 5.7 ns ns tCKSW Maximum Skew FO = 32 FO = 635 tSUEXT Input Latch External Set-Up FO = 32 FO = 635 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns ns tHEXT Input Latch External Hold FO = 32 FO = 635 4.0 4.6 4.4 5.2 5.0 5.9 5.9 6.9 8.2 9.6 ns ns tP Minimum Period (1/fMAX) FO = 32 FO = 635 9.2 9.9 10.2 11.0 11.1 12.0 12.7 13.8 21.2 23.0 ns ns fMAX Maximum Datapath Frequency FO = 32 FO = 635 1.0 1.0 1.2 1.2 1.3 1.3 1.5 1.5 2.2 2.2 ns ns 108 100 98 91 90 83 79 73 47 44 MHz MHz TTL Output Module Timing5 tDLH Data-to-Pad HIGH 3.6 4.0 4.5 5.3 7.4 ns tDHL Data-to-Pad LOW 4.2 4.6 5.2 6.2 8.6 ns tENZH Enable Pad Z to HIGH 3.7 4.2 4.7 5.5 7.7 ns tENZL Enable Pad Z to LOW 4.1 4.6 5.2 6.1 8.5 ns tENHZ Enable Pad HIGH to Z 7.34 8.2 9.3 10.9 15.3 ns TTL Output Module Timing5 tENLZ Enable Pad LOW to Z 6.9 7.6 8.7 10.2 14.3 ns tGLH G-to-Pad HIGH 4.9 5.5 6.2 7.3 10.2 ns tGHL G-to-Pad LOW 4.9 5.5 6.2 7.3 10.2 ns tLSU I/O Latch Output Set-Up 0.7 0.7 0.8 1.0 1.4 ns tLH I/O Latch Output Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O 7.9 8.8 DS2316 Datasheet Revision 16.0 10.0 11.8 16.5 ns 84 40MX and 42MX FPGAs Table 45 * A42MX36 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, VCCA = 3.0 V, T J = 70C) (continued) -3 Speed Parameter / Description -2 Speed -1 Speed Std Speed -F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units tACO Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O 10.9 12.1 13.7 16.1 22.5 ns dTLH Capacitive Loading, LOW to HIGH 0.10 0.11 0.12 0.14 0.20 ns/pF dTHL Capacitive Loading, HIGH to LOW 0.10 0.11 0.12 0.14 0.20 ns/pF 5 CMOS Output Module Timing tDLH Data-to-Pad HIGH 4.9 5.5 6.2 7.3 10.3 ns tDHL Data-to-Pad LOW 3.4 3.8 4.3 5.1 7.1 ns tENZH Enable Pad Z to HIGH 3.7 4.1 4.7 5.5 7.7 ns tENZL Enable Pad Z to LOW 4.1 4.6 5.2 6.1 8.5 ns tENHZ Enable Pad HIGH to Z 7.4 8.2 9.3 10.9 15.3 ns tENLZ Enable Pad LOW to Z 6.9 7.6 8.7 10.2 14.3 ns tGLH G-to-Pad HIGH 7.0 7.8 8.9 10.4 14.6 ns tGHL G-to-Pad LOW 7.0 7.8 8.9 10.4 14.6 ns tLSU I/O Latch Set-Up 0.7 0.7 0.8 1.0 1.4 ns tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O 1. 2. 3. 4. 5. 7.9 8.8 10.0 11.8 16.5 ns For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. Delays based on 35 pF loading. 3.12 Pin Descriptions This section lists the pin descriptions for 40MX and 42MX series FPGAs. CLK/A/B, I/O Global Clock Clock inputs for clock distribution networks. CLK is for 40MX while CLKA and CLKB are for 42MX devices. The clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O. DCLK, I/ODiagnostic Clock Clock input for diagnostic probe and device programming. DCLK is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW. GND, Ground Input LOW supply voltage. I/O, Input/Output DS2316 Datasheet Revision 16.0 85 40MX and 42MX FPGAs Input, output, tristate or bidirectional buffer. Input and output levels are compatible with standard TTL and CMOS specifications. Unused I/Os pins are configured by the Designer software as shown in Table 46, page 86. Table 46 * Device Configuration of Unused I/Os Configuration A40MX02, A40MX04 Pulled LOW A42MX09, A42MX16 Pulled LOW A42MX24, A42MX36 Tristated In all cases, it is recommended to tie all unused MX I/O pins to LOW on the board. This applies to all dual-purpose pins when configured as I/Os as well. LP, Low Power Mode Controls the low power mode of all 42MX devices. The device is placed in the low power mode by connecting the LP pin to logic HIGH. In low power mode, all I/Os are tristated, all input buffers are turned OFF, and the core of the device is turned OFF. To exit the low power mode, the LP pin must be set to LOW. The device enters the low power mode 800 ns after the LP pin is driven to a logic HIGH. It will resume normal operation in 200 s after the LP pin is driven to a logic LOW. MODE, Mode Controls the use of multifunction pins (DCLK, PRA, PRB, SDI, TDO). The MODE pin is held HIGH to provide verification capability. The MODE pin should be terminated to GND through a 10k resistor so that the MODE pin can be pulled HIGH when required. NC, No Connection This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device. PRA, I/O PRB, I/OProbe A/B The probe pin is used to output data from any user-defined design node within the device. Each diagnostic pin can be used in conjunction with the other probe pin to allow real-time diagnostic output of any signal path within the device. The probe pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. The probe pin is accessible when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW. QCLKA/B/C/D, I/O Quadrant Clock Quadrant clock inputs for A42MX36 devices. When not used as a register control signal, these pins can function as user I/Os. SDI, I/OSerial Data Input Serial data input for diagnostic probe and device programming. SDI is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW. SDO, I/OSerial Data Output Serial data output for diagnostic probe and device programming. SDO is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW. SDO is available for 42MX devices only. When Silicon Explorer II is being used, SDO will act as an output while the "checksum" command is run. It will return to user I/O when "checksum" is complete. DS2316 Datasheet Revision 16.0 86 40MX and 42MX FPGAs TCK, I/O Test Clock Clock signal to shift the boundary scan test (BST) data into the device. This pin functions as an I/O when "Reserve JTAG" is not checked in the Designer Software. BST pins are only available in A42MX24 and A42MX36 devices. TDI, I/OTest Data In Serial data input for BST instructions and test data. Data is shifted in on the rising edge of TCK. This pin functions as an I/O when "Reserve JTAG" is not checked in the Designer Software. BST pins are only available in A42MX24 and A42MX36 devices. TDO, I/OTest Data Out Serial data output for BST instructions and test data. This pin functions as an I/O when "Reserve JTAG" is not checked in the Designer Software. BST pins are only available in A42MX24 and A42MX36 devices. TMS, I/OTest Mode Select The TMS pin controls the use of the IEEE 1149.1 boundary scan pins (TCK, TDI, TDO). In flexible mode when the TMS pin is set to LOW, the TCK, TDI and TDO pins act as boundary scan pins. Once the boundary scan pins are in test mode, they will remain in that mode until the internal boundary scan state machine reaches the "logic reset" state. At this point, the boundary scan pins will be released and will function as regular I/O pins. The "logic reset" state is reached 5 TCK cycles after the TMS pin is set to HIGH. In dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications. IEEE JTAG specification recommends a 10k pull-up resistor on the pin. BST pins are only available in A42MX24 and A42MX36 devices. VCC, Supply Voltage Input supply voltage for 40MX devices VCCA, Supply Voltage Supply voltage for an array in 42MX devices VCCI, Supply Voltage Supply voltage for I/Os in 42MX devices WD, I/OWide Decode Output When a wide decode module is used in a 42MX device; this pin can be used as a dedicated output from the wide decode module. This direct connection eliminates additional interconnect delays associated with regular logic modules. To implement the direct I/O connection, connect an output buffer of any type to the output of the wide decode macro and place this output on one of the reserved WD pins. DS2316 Datasheet Revision 16.0 87 Package Pin Assignments 4 Package Pin Assignments The following figures and tables give the details of the package pin assignments. Figure 38 * PL44 1 44 44-Pin PLCC Table 47 * PL44 PL44 Pin Number A40MX02 Function A40MX04 Function 1 I/O I/O 2 I/O I/O 3 VCC VCC 4 I/O I/O 5 I/O I/O 6 I/O I/O 7 I/O I/O 8 I/O I/O 9 I/O I/O 10 GND GND 11 I/O I/O 12 I/O I/O 13 I/O I/O 14 VCC VCC 15 I/O I/O 16 VCC VCC 17 I/O I/O 18 I/O I/O 19 I/O I/O 20 I/O I/O DS2316 Datasheet Revision 16.0 88 Package Pin Assignments Table 47 * PL44 (continued) PL44 Pin Number A40MX02 Function A40MX04 Function 21 GND GND 22 I/O I/O 23 I/O I/O 24 I/O I/O 25 VCC VCC 26 I/O I/O 27 I/O I/O 28 I/O I/O 29 I/O I/O 30 I/O I/O 31 I/O I/O 32 GND GND 33 CLK, I/O CLK, I/O 34 MODE MODE 35 VCC VCC 36 SDI, I/O SDI, I/O 37 DCLK, I/O DCLK, I/O 38 PRA, I/O PRA, I/O 39 PRB, I/O PRB, I/O 40 I/O I/O 41 I/O I/O 42 I/O I/O 43 GND GND 44 I/O I/O DS2316 Datasheet Revision 16.0 89 Package Pin Assignments Figure 39 * PL68 1 68 68-Pin PLCC Table 48 * PL68 PL68 Pin Number A40MX02 Function A40MX04 Function 1 I/O I/O 2 I/O I/O 3 I/O I/O 4 VCC VCC 5 I/O I/O 6 I/O I/O 7 I/O I/O 8 I/O I/O 9 I/O I/O 10 I/O I/O 11 I/O I/O 12 I/O I/O 13 I/O I/O 14 GND GND 15 GND GND 16 I/O I/O 17 I/O I/O 18 I/O I/O 19 I/O I/O 20 I/O I/O 21 VCC VCC 22 I/O I/O 23 I/O I/O DS2316 Datasheet Revision 16.0 90 Package Pin Assignments Table 48 * PL68 (continued) PL68 Pin Number A40MX02 Function A40MX04 Function 24 I/O I/O 25 VCC VCC 26 I/O I/O 27 I/O I/O 28 I/O I/O 29 I/O I/O 30 I/O I/O 31 I/O I/O 32 GND GND 33 I/O I/O 34 I/O I/O 35 I/O I/O 36 I/O I/O 37 I/O I/O 38 VCC VCC 39 I/O I/O 40 I/O I/O 41 I/O I/O 42 I/O I/O 43 I/O I/O 44 I/O I/O 45 I/O I/O 46 I/O I/O 47 I/O I/O 48 I/O I/O 49 GND GND 50 I/O I/O 51 I/O I/O 52 CLK, I/O CLK, I/O 53 I/O I/O 54 MODE MODE 55 VCC VCC 56 SDI, I/O SDI, I/O 57 DCLK, I/O DCLK, I/O 58 PRA, I/O PRA, I/O 59 PRB, I/O PRB, I/O 60 I/O I/O DS2316 Datasheet Revision 16.0 91 Package Pin Assignments Table 48 * PL68 (continued) PL68 Pin Number A40MX02 Function A40MX04 Function 61 I/O I/O 62 I/O I/O 63 I/O I/O 64 I/O I/O 65 I/O I/O 66 GND GND 67 I/O I/O 68 I/O I/O Figure 40 * PL84 1 84 84-Pin PLCC Table 49 * PL84 PL84 Pin Number A40MX04 Function A42MX09 Function A42MX16 Function A42MX24 Function 1 I/O I/O I/O I/O 2 I/O CLKB, I/O CLKB, I/O CLKB, I/O 3 I/O I/O I/O I/O 4 VCC PRB, I/O PRB, I/O PRB, I/O 5 I/O I/O I/O WD, I/O 6 I/O GND GND GND 7 I/O I/O I/O I/O 8 I/O I/O I/O WD, I/O 9 I/O I/O I/O WD, I/O DS2316 Datasheet Revision 16.0 92 Package Pin Assignments Table 49 * PL84 (continued) PL84 Pin Number A40MX04 Function A42MX09 Function A42MX16 Function A42MX24 Function 10 I/O DCLK, I/O DCLK, I/O DCLK, I/O 11 I/O I/O I/O I/O 12 NC MODE MODE MODE 13 I/O I/O I/O I/O 14 I/O I/O I/O I/O 15 I/O I/O I/O I/O 16 I/O I/O I/O I/O 17 I/O I/O I/O I/O 18 GND I/O I/O I/O 19 GND I/O I/O I/O 20 I/O I/O I/O I/O 21 I/O I/O I/O I/O 22 I/O VCCA VCCI VCCI 23 I/O VCCI VCCA VCCA 24 I/O I/O I/O I/O 25 VCC I/O I/O I/O 26 VCC I/O I/O I/O 27 I/O I/O I/O I/O 28 I/O GND GND GND 29 I/O I/O I/O I/O 30 I/O I/O I/O I/O 31 I/O I/O I/O I/O 32 I/O I/O I/O I/O 33 VCC I/O I/O I/O 34 I/O I/O I/O TMS, I/O 35 I/O I/O I/O TDI, I/O 36 I/O I/O I/O WD, I/O 37 I/O I/O I/O I/O 38 I/O I/O I/O WD, I/O 39 I/O I/O I/O WD, I/O 40 GND I/O I/O I/O 41 I/O I/O I/O I/O 42 I/O I/O I/O I/O 43 I/O VCCA VCCA VCCA 44 I/O I/O I/O WD, I/O 45 I/O I/O I/O WD, I/O 46 VCC I/O I/O WD, I/O DS2316 Datasheet Revision 16.0 93 Package Pin Assignments Table 49 * PL84 (continued) PL84 Pin Number A40MX04 Function A42MX09 Function A42MX16 Function A42MX24 Function 47 I/O I/O I/O WD, I/O 48 I/O I/O I/O I/O 49 I/O GND GND GND 50 I/O I/O I/O WD, I/O 51 I/O I/O I/O WD, I/O 52 I/O SDO, I/O SDO, I/O SDO, TDO, I/O 53 I/O I/O I/O I/O 54 I/O I/O I/O I/O 55 I/O I/O I/O I/O 56 I/O I/O I/O I/O 57 I/O I/O I/O I/O 58 I/O I/O I/O I/O 59 I/O I/O I/O I/O 60 GND I/O I/O I/O 61 GND I/O I/O I/O 62 I/O I/O I/O TCK, I/O 63 I/O LP LP LP 64 CLK, I/O VCCA VCCA VCCA 65 I/O VCCI VCCI VCCI 66 MODE I/O I/O I/O 67 VCC I/O I/O I/O 68 VCC I/O I/O I/O 69 I/O I/O I/O I/O 70 I/O GND GND GND 71 I/O I/O I/O I/O 72 SDI, I/O I/O I/O I/O 73 DCLK, I/O I/O I/O I/O 74 PRA, I/O I/O I/O I/O 75 PRB, I/O I/O I/O I/O 76 I/O SDI, I/O SDI, I/O SDI, I/O 77 I/O I/O I/O I/O 78 I/O I/O I/O WD, I/O 79 I/O I/O I/O WD, I/O 80 I/O I/O I/O WD, I/O 81 I/O PRA, I/O PRA, I/O PRA, I/O 82 GND I/O I/O I/O 83 I/O CLKA, I/O CLKA, I/O CLKA, I/O DS2316 Datasheet Revision 16.0 94 Package Pin Assignments Table 49 * PL84 (continued) PL84 Pin Number A40MX04 Function A42MX09 Function A42MX16 Function A42MX24 Function 84 I/O VCCA VCCA VCCA Figure 41 * PQ100 100-Pin PQFP 100 1 Table 50 * PQ 100 PQ100 Pin Number A40MX02 Function A40MX04 Function A42MX09 Function A42MX16 Function 1 NC NC I/O I/O 2 NC NC DCLK, I/O DCLK, I/O 3 NC NC I/O I/O 4 NC NC MODE MODE 5 NC NC I/O I/O 6 PRB, I/O PRB, I/O I/O I/O 7 I/O I/O I/O I/O 8 I/O I/O I/O I/O 9 I/O I/O GND GND 10 I/O I/O I/O I/O 11 I/O I/O I/O I/O 12 I/O I/O I/O I/O 13 GND GND I/O I/O 14 I/O I/O I/O I/O 15 I/O I/O I/O I/O 16 I/O I/O VCCA VCCA 17 I/O I/O VCCI VCCA 18 I/O I/O I/O I/O DS2316 Datasheet Revision 16.0 95 Package Pin Assignments Table 50 * PQ 100 (continued) PQ100 Pin Number A40MX02 Function A40MX04 Function A42MX09 Function A42MX16 Function 19 VCC VCC I/O I/O 20 I/O I/O I/O I/O 21 I/O I/O I/O I/O 22 I/O I/O GND GND 23 I/O I/O I/O I/O 24 I/O I/O I/O I/O 25 I/O I/O I/O I/O 26 I/O I/O I/O I/O 27 NC NC I/O I/O 28 NC NC I/O I/O 29 NC NC I/O I/O 30 NC NC I/O I/O 31 NC I/O I/O I/O 32 NC I/O I/O I/O 33 NC I/O I/O I/O 34 I/O I/O GND GND 35 I/O I/O I/O I/O 36 GND GND I/O I/O 37 GND GND I/O I/O 38 I/O I/O I/O I/O 39 I/O I/O I/O I/O 40 I/O I/O VCCA VCCA 41 I/O I/O I/O I/O 42 I/O I/O I/O I/O 43 VCC VCC I/O I/O 44 VCC VCC I/O I/O 45 I/O I/O I/O I/O 46 I/O I/O GND GND 47 I/O I/O I/O I/O 48 NC I/O I/O I/O 49 NC I/O I/O I/O 50 NC I/O I/O I/O 51 NC NC I/O I/O 52 NC NC SDO, I/O SDO, I/O 53 NC NC I/O I/O 54 NC NC I/O I/O 55 NC NC I/O I/O DS2316 Datasheet Revision 16.0 96 Package Pin Assignments Table 50 * PQ 100 (continued) PQ100 Pin Number A40MX02 Function A40MX04 Function A42MX09 Function A42MX16 Function 56 VCC VCC I/O I/O 57 I/O I/O GND GND 58 I/O I/O I/O I/O 59 I/O I/O I/O I/O 60 I/O I/O I/O I/O 61 I/O I/O I/O I/O 62 I/O I/O I/O I/O 63 GND GND I/O I/O 64 I/O I/O LP LP 65 I/O I/O VCCA VCCA 66 I/O I/O VCCI VCCI 67 I/O I/O VCCA VCCA 68 I/O I/O I/O I/O 69 VCC VCC I/O I/O 70 I/O I/O I/O I/O 71 I/O I/O I/O I/O 72 I/O I/O GND GND 73 I/O I/O I/O I/O 74 I/O I/O I/O I/O 75 I/O I/O I/O I/O 76 I/O I/O I/O I/O 77 NC NC I/O I/O 78 NC NC I/O I/O 79 NC NC SDI, I/O SDI, I/O 80 NC I/O I/O I/O 81 NC I/O I/O I/O 82 NC I/O I/O I/O 83 I/O I/O I/O I/O 84 I/O I/O GND GND 85 I/O I/O I/O I/O 86 GND GND I/O I/O 87 GND GND PRA, I/O PRA, I/O 88 I/O I/O I/O I/O 89 I/O I/O CLKA, I/O CLKA, I/O 90 CLK, I/O CLK, I/O VCCA VCCA 91 I/O I/O I/O I/O 92 MODE MODE CLKB, I/O CLKB, I/O DS2316 Datasheet Revision 16.0 97 Package Pin Assignments Table 50 * PQ 100 (continued) PQ100 Pin Number A40MX02 Function A40MX04 Function A42MX09 Function A42MX16 Function 93 VCC VCC I/O I/O 94 VCC VCC PRB, I/O PRB, I/O 95 NC I/O I/O I/O 96 NC I/O GND GND 97 NC I/O I/O I/O 98 SDI, I/O SDI, I/O I/O I/O 99 DCLK, I/O DCLK, I/O I/O I/O 100 PRA, I/O PRA, I/O I/O I/O DS2316 Datasheet Revision 16.0 98 Package Pin Assignments Figure 42 * PQ144 144 1 144-Pin PQFP Table 51 * PQ144 PQ144 Pin Number A42MX09 Function 1 I/O 2 MODE 3 I/O 4 I/O 5 I/O DS2316 Datasheet Revision 16.0 99 Package Pin Assignments Table 51 * PQ144 (continued) PQ144 Pin Number A42MX09 Function 6 I/O 7 I/O 8 I/O 9 GNDQ 10 GNDI 11 NC 12 I/O 13 I/O 14 I/O 15 I/O 16 I/O 17 I/O 18 VSV 19 VCC 20 VCCI 21 NC 22 I/O 23 I/O 24 I/O 25 I/O 26 I/O 27 I/O 28 GND 29 GNDI 30 NC 31 I/O 32 I/O 33 I/O 34 I/O 35 I/O 36 I/O 37 BININ 38 BINOUT 39 I/O 40 I/O 41 I/O 42 I/O DS2316 Datasheet Revision 16.0 100 Package Pin Assignments Table 51 * PQ144 (continued) PQ144 Pin Number A42MX09 Function 43 I/O 44 GNDQ 45 GNDI 46 NC 47 I/O 48 I/O 49 I/O 50 I/O 51 I/O 52 I/O 53 I/O 54 VCC 55 VCCI 56 NC 57 I/O 58 I/O 59 I/O 60 I/O 61 I/O 62 I/O 63 I/O 64 GND 65 GNDI 66 I/O 67 I/O 68 I/O 69 I/O 70 I/O 71 SDO 72 I/O 73 I/O 74 I/O 75 I/O 76 I/O 77 I/O 78 I/O 79 GNDQ DS2316 Datasheet Revision 16.0 101 Package Pin Assignments Table 51 * PQ144 (continued) PQ144 Pin Number A42MX09 Function 80 GNDI 81 NC 82 I/O 83 I/O 84 I/O 85 I/O 86 I/O 87 I/O 88 VKS 89 VPP 90 VCC 91 VCCI 92 NC 93 VSV 94 I/O 95 I/O 96 I/O 97 I/O 98 I/O 99 I/O 100 GND 101 GNDI 102 NC 103 I/O 104 I/O 105 I/O 106 I/O 107 I/O 108 I/O 109 I/O 110 SDI 111 I/O 112 I/O 113 I/O 114 I/O 115 I/O 116 GNDQ DS2316 Datasheet Revision 16.0 102 Package Pin Assignments Table 51 * PQ144 (continued) PQ144 Pin Number A42MX09 Function 117 GNDI 118 NC 119 I/O 120 I/O 121 I/O 122 I/O 123 PROBA 124 I/O 125 CLKA 126 VCC 127 VCCI 128 NC 129 I/O 130 CLKB 131 I/O 132 PROBB 133 I/O 134 I/O 135 I/O 136 GND 137 GNDI 138 NC 139 I/O 140 I/O 141 I/O 142 I/O 143 I/O 144 DCLK DS2316 Datasheet Revision 16.0 103 Package Pin Assignments Figure 43 * PQ160 160 1 160-Pin PQFP Table 52 * PQ160 PQ160 Pin Number A42MX09 Function A42MX16 Function A42MX24 Function 1 I/O I/O I/O 2 DCLK, I/O DCLK, I/O DCLK, I/O 3 NC I/O I/O 4 I/O I/O WD, I/O 5 I/O I/O WD, I/O 6 NC VCCI VCCI 7 I/O I/O I/O 8 I/O I/O I/O 9 I/O I/O I/O 10 NC I/O I/O 11 GND GND GND 12 NC I/O I/O 13 I/O I/O WD, I/O 14 I/O I/O WD, I/O 15 I/O I/O I/O 16 PRB, I/O PRB, I/O PRB, I/O 17 I/O I/O I/O 18 CLKB, I/O CLKB, I/O CLKB, I/O 19 I/O I/O I/O 20 VCCA VCCA VCCA DS2316 Datasheet Revision 16.0 104 Package Pin Assignments Table 52 * PQ160 (continued) PQ160 Pin Number A42MX09 Function A42MX16 Function A42MX24 Function 21 CLKA, I/O CLKA, I/O CLKA, I/O 22 I/O I/O I/O 23 PRA, I/O PRA, I/O PRA, I/O 24 NC I/O WD, I/O 25 I/O I/O WD, I/O 26 I/O I/O I/O 27 I/O I/O I/O 28 NC I/O I/O 29 I/O I/O WD, I/O 30 GND GND GND 31 NC I/O WD, I/O 32 I/O I/O I/O 33 I/O I/O I/O 34 I/O I/O I/O 35 NC VCCI VCCI 36 I/O I/O WD, I/O 37 I/O I/O WD, I/O 38 SDI, I/O SDI, I/O SDI, I/O 39 I/O I/O I/O 40 GND GND GND 41 I/O I/O I/O 42 I/O I/O I/O 43 I/O I/O I/O 44 GND GND GND 45 I/O I/O I/O 46 I/O I/O I/O 47 I/O I/O I/O 48 I/O I/O I/O 49 GND GND GND 50 I/O I/O I/O 51 I/O I/O I/O 52 NC I/O I/O 53 I/O I/O I/O 54 NC VCCA VCCA 55 I/O I/O I/O 56 I/O I/O I/O 57 VCCA VCCA VCCA DS2316 Datasheet Revision 16.0 105 Package Pin Assignments Table 52 * PQ160 (continued) PQ160 Pin Number A42MX09 Function A42MX16 Function A42MX24 Function 58 VCCI VCCI VCCI 59 GND GND GND 60 VCCA VCCA VCCA 61 LP LP LP 62 I/O I/O TCK, I/O 63 I/O I/O I/O 64 GND GND GND 65 I/O I/O I/O 66 I/O I/O I/O 67 I/O I/O I/O 68 I/O I/O I/O 69 GND GND GND 70 NC I/O I/O 71 I/O I/O I/O 72 I/O I/O I/O 73 I/O I/O I/O 74 I/O I/O I/O 75 NC I/O I/O 76 I/O I/O I/O 77 NC I/O I/O 78 I/O I/O I/O 79 NC I/O I/O 80 GND GND GND 81 I/O I/O I/O 82 SDO, I/O SDO, I/O SDO, TDO, I/O 83 I/O I/O WD, I/O 84 I/O I/O WD, I/O 85 I/O I/O I/O 86 NC VCCI VCCI 87 I/O I/O I/O 88 I/O I/O WD, I/O 89 GND GND GND 90 NC I/O I/O 91 I/O I/O I/O 92 I/O I/O I/O 93 I/O I/O I/O 94 I/O I/O I/O DS2316 Datasheet Revision 16.0 106 Package Pin Assignments Table 52 * PQ160 (continued) PQ160 Pin Number A42MX09 Function A42MX16 Function A42MX24 Function 95 I/O I/O I/O 96 I/O I/O WD, I/O 97 I/O I/O I/O 98 VCCA VCCA VCCA 99 GND GND GND 100 NC I/O I/O 101 I/O I/O I/O 102 I/O I/O I/O 103 NC I/O I/O 104 I/O I/O I/O 105 I/O I/O I/O 106 I/O I/O WD, I/O 107 I/O I/O WD, I/O 108 I/O I/O I/O 109 GND GND GND 110 NC I/O I/O 111 I/O I/O WD, I/O 112 I/O I/O WD, I/O 113 I/O I/O I/O 114 NC VCCI VCCI 115 I/O I/O WD, I/O 116 NC I/O WD, I/O 117 I/O I/O I/O 118 I/O I/O TDI, I/O 119 I/O I/O TMS, I/O 120 GND GND GND 121 I/O I/O I/O 122 I/O I/O I/O 123 I/O I/O I/O 124 NC I/O I/O 125 GND GND GND 126 I/O I/O I/O 127 I/O I/O I/O 128 I/O I/O I/O 129 NC I/O I/O 130 GND GND GND 131 I/O I/O I/O DS2316 Datasheet Revision 16.0 107 Package Pin Assignments Table 52 * PQ160 (continued) PQ160 Pin Number A42MX09 Function A42MX16 Function A42MX24 Function 132 I/O I/O I/O 133 I/O I/O I/O 134 I/O I/O I/O 135 NC VCCA VCCA 136 I/O I/O I/O 137 I/O I/O I/O 138 NC VCCA VCCA 139 VCCI VCCI VCCI 140 GND GND GND 141 NC I/O I/O 142 I/O I/O I/O 143 I/O I/O I/O 144 I/O I/O I/O 145 GND GND GND 146 NC I/O I/O 147 I/O I/O I/O 148 I/O I/O I/O 149 I/O I/O I/O 150 NC VCCA VCCA 151 NC I/O I/O 152 NC I/O I/O 153 NC I/O I/O 154 NC I/O I/O 155 GND GND GND 156 I/O I/O I/O 157 I/O I/O I/O 158 I/O I/O I/O 159 MODE MODE MODE 160 GND GND GND DS2316 Datasheet Revision 16.0 108 Package Pin Assignments Figure 44 * PQ208 208 1 208-Pin PQFP Table 53 * PQ208 PQ208 Pin Number A42MX16 Function A42MX24 Function A42MX36 Function 1 GND GND GND 2 NC VCCA VCCA 3 MODE MODE MODE 4 I/O I/O I/O 5 I/O I/O I/O 6 I/O I/O I/O 7 I/O I/O I/O 8 I/O I/O I/O 9 NC I/O I/O 10 NC I/O I/O 11 NC I/O I/O 12 I/O I/O I/O 13 I/O I/O I/O 14 I/O I/O I/O 15 I/O I/O I/O 16 NC I/O I/O 17 VCCA VCCA VCCA 18 I/O I/O I/O 19 I/O I/O I/O 20 I/O I/O I/O DS2316 Datasheet Revision 16.0 109 Package Pin Assignments Table 53 * PQ208 (continued) PQ208 Pin Number A42MX16 Function A42MX24 Function A42MX36 Function 21 I/O I/O I/O 22 GND GND GND 23 I/O I/O I/O 24 I/O I/O I/O 25 I/O I/O I/O 26 I/O I/O I/O 27 GND GND GND 28 VCCI VCCI VCCI 29 VCCA VCCA VCCA 30 I/O I/O I/O 31 I/O I/O I/O 32 VCCA VCCA VCCA 33 I/O I/O I/O 34 I/O I/O I/O 35 I/O I/O I/O 36 I/O I/O I/O 37 I/O I/O I/O 38 I/O I/O I/O 39 I/O I/O I/O 40 I/O I/O I/O 41 NC I/O I/O 42 NC I/O I/O 43 NC I/O I/O 44 I/O I/O I/O 45 I/O I/O I/O 46 I/O I/O I/O 47 I/O I/O I/O 48 I/O I/O I/O 49 I/O I/O I/O 50 NC I/O I/O 51 NC I/O I/O 52 GND GND GND 53 GND GND GND 54 I/O TMS, I/O TMS, I/O 55 I/O TDI, I/O TDI, I/O 56 I/O I/O I/O 57 I/O WD, I/O WD, I/O DS2316 Datasheet Revision 16.0 110 Package Pin Assignments Table 53 * PQ208 (continued) PQ208 Pin Number A42MX16 Function A42MX24 Function A42MX36 Function 58 I/O WD, I/O WD, I/O 59 I/O I/O I/O 60 VCCI VCCI VCCI 61 NC I/O I/O 62 NC I/O I/O 63 I/O I/O I/O 64 I/O I/O I/O 65 I/O I/O QCLKA, I/O 66 I/O WD, I/O WD, I/O 67 NC WD, I/O WD, I/O 68 NC I/O I/O 69 I/O I/O I/O 70 I/O WD, I/O WD, I/O 71 I/O WD, I/O WD, I/O 72 I/O I/O I/O 73 I/O I/O I/O 74 I/O I/O I/O 75 I/O I/O I/O 76 I/O I/O I/O 77 I/O I/O I/O 78 GND GND GND 79 VCCA VCCA VCCA 80 NC VCCI VCCI 81 I/O I/O I/O 82 I/O I/O I/O 83 I/O I/O I/O 84 I/O I/O I/O 85 I/O WD, I/O WD, I/O 86 I/O WD, I/O WD, I/O 87 I/O I/O I/O 88 I/O I/O I/O 89 NC I/O I/O 90 NC I/O I/O 91 I/O I/O QCLKB, I/O 92 I/O I/O I/O 93 I/O WD, I/O WD, I/O 94 I/O WD, I/O WD, I/O DS2316 Datasheet Revision 16.0 111 Package Pin Assignments Table 53 * PQ208 (continued) PQ208 Pin Number A42MX16 Function A42MX24 Function A42MX36 Function 95 NC I/O I/O 96 NC I/O I/O 97 NC I/O I/O 98 VCCI VCCI VCCI 99 I/O I/O I/O 100 I/O WD, I/O WD, I/O 101 I/O WD, I/O WD, I/O 102 I/O I/O I/O 103 SDO, I/O SDO, TDO, I/O SDO, TDO, I/O 104 I/O I/O I/O 105 GND GND GND 106 NC VCCA VCCA 107 I/O I/O I/O 108 I/O I/O I/O 109 I/O I/O I/O 110 I/O I/O I/O 111 I/O I/O I/O 112 NC I/O I/O 113 NC I/O I/O 114 NC I/O I/O 115 NC I/O I/O 116 I/O I/O I/O 117 I/O I/O I/O 118 I/O I/O I/O 119 I/O I/O I/O 120 I/O I/O I/O 121 I/O I/O I/O 122 I/O I/O I/O 123 I/O I/O I/O 124 I/O I/O I/O 125 I/O I/O I/O 126 GND GND GND 127 I/O I/O I/O 128 I/O TCK, I/O TCK, I/O 129 LP LP LP 130 VCCA VCCA VCCA 131 GND GND GND DS2316 Datasheet Revision 16.0 112 Package Pin Assignments Table 53 * PQ208 (continued) PQ208 Pin Number A42MX16 Function A42MX24 Function A42MX36 Function 132 VCCI VCCI VCCI 133 VCCA VCCA VCCA 134 I/O I/O I/O 135 I/O I/O I/O 136 VCCA VCCA VCCA 137 I/O I/O I/O 138 I/O I/O I/O 139 I/O I/O I/O 140 I/O I/O I/O 141 NC I/O I/O 142 I/O I/O I/O 143 I/O I/O I/O 144 I/O I/O I/O 145 I/O I/O I/O 146 NC I/O I/O 147 NC I/O I/O 148 NC I/O I/O 149 NC I/O I/O 150 GND GND GND 151 I/O I/O I/O 152 I/O I/O I/O 153 I/O I/O I/O 154 I/O I/O I/O 155 I/O I/O I/O 156 I/O I/O I/O 157 GND GND GND 158 I/O I/O I/O 159 SDI, I/O SDI, I/O SDI, I/O 160 I/O I/O I/O 161 I/O WD, I/O WD, I/O 162 I/O WD, I/O WD, I/O 163 I/O I/O I/O 164 VCCI VCCI VCCI 165 NC I/O I/O 166 NC I/O I/O 167 I/O I/O I/O 168 I/O WD, I/O WD, I/O DS2316 Datasheet Revision 16.0 113 Package Pin Assignments Table 53 * PQ208 (continued) PQ208 Pin Number A42MX16 Function A42MX24 Function A42MX36 Function 169 I/O WD, I/O WD, I/O 170 I/O I/O I/O 171 NC I/O QCLKD, I/O 172 I/O I/O I/O 173 I/O I/O I/O 174 I/O I/O I/O 175 I/O I/O I/O 176 I/O WD, I/O WD, I/O 177 I/O WD, I/O WD, I/O 178 PRA, I/O PRA, I/O PRA, I/O 179 I/O I/O I/O 180 CLKA, I/O CLKA, I/O CLKA, I/O 181 NC I/O I/O 182 NC VCCI VCCI 183 VCCA VCCA VCCA 184 GND GND GND 185 I/O I/O I/O 186 CLKB, I/O CLKB, I/O CLKB, I/O 187 I/O I/O I/O 188 PRB, I/O PRB, I/O PRB, I/O 189 I/O I/O I/O 190 I/O WD, I/O WD, I/O 191 I/O WD, I/O WD, I/O 192 I/O I/O I/O 193 NC I/O I/O 194 NC WD, I/O WD, I/O 195 NC WD, I/O WD, I/O 196 I/O I/O QCLKC, I/O 197 NC I/O I/O 198 I/O I/O I/O 199 I/O I/O I/O 200 I/O I/O I/O 201 NC I/O I/O 202 VCCI VCCI VCCI 203 I/O WD, I/O WD, I/O 204 I/O WD, I/O WD, I/O 205 I/O I/O I/O DS2316 Datasheet Revision 16.0 114 Package Pin Assignments Table 53 * PQ208 (continued) PQ208 Pin Number A42MX16 Function A42MX24 Function A42MX36 Function 206 I/O I/O I/O 207 DCLK, I/O DCLK, I/O DCLK, I/O 208 I/O I/O I/O * * * Figure 45 * PQ240 240 1 * * * * * * * * * 240-Pin PQFP Note: This figure shows the 240-Pin PQFP Package top view. Table 54 * PQ240 PQ240 Pin Number A42MX36 Function 1 I/O 2 DCLK, I/O 3 I/O 4 I/O 5 I/O 6 WD, I/O 7 WD, I/O 8 VCCI 9 I/O 10 I/O 11 I/O 12 I/O 13 I/O 14 I/O DS2316 Datasheet Revision 16.0 115 Package Pin Assignments Table 54 * PQ240 (continued) PQ240 Pin Number A42MX36 Function 15 QCLKC, I/O 16 I/O 17 WD, I/O 18 WD, I/O 19 I/O 20 I/O 21 WD, I/O 22 WD, I/O 23 I/O 24 PRB, I/O 25 I/O 26 CLKB, I/O 27 I/O 28 GND 29 VCCA 30 VCCI 31 I/O 32 CLKA, I/O 33 I/O 34 PRA, I/O 35 I/O 36 I/O 37 WD, I/O 38 WD, I/O 39 I/O 40 I/O 41 I/O 42 I/O 43 I/O 44 I/O 45 QCLKD, I/O 46 I/O 47 WD, I/O 48 WD, I/O 49 I/O 50 I/O 51 I/O DS2316 Datasheet Revision 16.0 116 Package Pin Assignments Table 54 * PQ240 (continued) PQ240 Pin Number A42MX36 Function 52 VCCI 53 I/O 54 WD, I/O 55 WD, I/O 56 I/O 57 SDI, I/O 58 I/O 59 VCCA 60 GND 61 GND 62 I/O 63 I/O 64 I/O 65 I/O 66 I/O 67 I/O 68 I/O 69 I/O 70 I/O 71 VCCI 72 I/O 73 I/O 74 I/O 75 I/O 76 I/O 77 I/O 78 I/O 79 I/O 80 I/O 81 I/O 82 I/O 83 I/O 84 I/O 85 VCCA 86 I/O 87 I/O 88 VCCA DS2316 Datasheet Revision 16.0 117 Package Pin Assignments Table 54 * PQ240 (continued) PQ240 Pin Number A42MX36 Function 89 VCCI 90 VCCA 91 LP 92 TCK, I/O 93 I/O 94 GND 95 I/O 96 I/O 97 I/O 98 I/O 99 I/O 100 I/O 101 I/O 102 I/O 103 I/O 104 I/O 105 I/O 106 I/O 107 I/O 108 VCCI 109 I/O 110 I/O 111 I/O 112 I/O 113 I/O 114 I/O 115 I/O 116 I/O 117 I/O 118 VCCA 119 GND 120 GND 121 GND 122 I/O 123 SDO, TDO, I/O 124 I/O 125 WD, I/O DS2316 Datasheet Revision 16.0 118 Package Pin Assignments Table 54 * PQ240 (continued) PQ240 Pin Number A42MX36 Function 126 WD, I/O 127 I/O 128 VCCI 129 I/O 130 I/O 131 I/O 132 WD, I/O 133 WD, I/O 134 I/O 135 QCLKB, I/O 136 I/O 137 I/O 138 I/O 139 I/O 140 I/O 141 I/O 142 WD, I/O 143 WD, I/O 144 I/O 145 I/O 146 I/O 147 I/O 148 I/O 149 I/O 150 VCCI 151 VCCA 152 GND 153 I/O 154 I/O 155 I/O 156 I/O 157 I/O 158 I/O 159 WD, I/O 160 WD, I/O 161 I/O 162 I/O DS2316 Datasheet Revision 16.0 119 Package Pin Assignments Table 54 * PQ240 (continued) PQ240 Pin Number A42MX36 Function 163 WD, I/O 164 WD, I/O 165 I/O 166 QCLKA, I/O 167 I/O 168 I/O 169 I/O 170 I/O 171 I/O 172 VCCI 173 I/O 174 WD, I/O 175 WD, I/O 176 I/O 177 I/O 178 TDI, I/O 179 TMS, I/O 180 GND 181 VCCA 182 GND 183 I/O 184 I/O 185 I/O 186 I/O 187 I/O 188 I/O 189 I/O 190 I/O 191 I/O 192 VCCI 193 I/O 194 I/O 195 I/O 196 I/O 197 I/O 198 I/O 199 I/O DS2316 Datasheet Revision 16.0 120 Package Pin Assignments Table 54 * PQ240 (continued) PQ240 Pin Number A42MX36 Function 200 I/O 201 I/O 202 I/O 203 I/O 204 I/O 205 I/O 206 VCCA 207 I/O 208 I/O 209 VCCA 210 VCCI 211 I/O 212 I/O 213 I/O 214 I/O 215 I/O 216 I/O 217 I/O 218 I/O 219 VCCA 220 I/O 221 I/O 222 I/O 223 I/O 224 I/O 225 I/O 226 I/O 227 VCCI 228 I/O 229 I/O 230 I/O 231 I/O 232 I/O 233 I/O 234 I/O 235 I/O 236 I/O DS2316 Datasheet Revision 16.0 121 Package Pin Assignments Table 54 * PQ240 (continued) PQ240 Pin Number A42MX36 Function 237 GND 238 MODE 239 VCCA 240 GND Figure 46 * VQ80 80 1 80-Pin VQFP Table 55 * VQ80 VQ80 Pin Number A40MX02 Function A40MX04 Function 1 I/O I/O 2 NC I/O 3 NC I/O 4 NC I/O 5 I/O I/O 6 I/O I/O 7 GND GND 8 I/O I/O 9 I/O I/O 10 I/O I/O 11 I/O I/O 12 I/O I/O DS2316 Datasheet Revision 16.0 122 Package Pin Assignments Table 55 * VQ80 (continued) VQ80 Pin Number A40MX02 Function A40MX04 Function 13 VCC VCC 14 I/O I/O 15 I/O I/O 16 I/O I/O 17 NC I/O 18 NC I/O 19 NC I/O 20 VCC VCC 21 I/O I/O 22 I/O I/O 23 I/O I/O 24 I/O I/O 25 I/O I/O 26 I/O I/O 27 GND GND 28 I/O I/O 29 I/O I/O 30 I/O I/O 31 I/O I/O 32 I/O I/O 33 VCC VCC 34 I/O I/O 35 I/O I/O 36 I/O I/O 37 I/O I/O 38 I/O I/O 39 I/O I/O 40 I/O I/O 41 NC I/O 42 NC I/O 43 NC I/O 44 I/O I/O 45 I/O I/O 46 I/O I/O 47 GND GND 48 I/O I/O 49 I/O I/O DS2316 Datasheet Revision 16.0 123 Package Pin Assignments Table 55 * VQ80 (continued) VQ80 Pin Number A40MX02 Function A40MX04 Function 50 CLK, I/O CLK, I/O 51 I/O I/O 52 MODE MODE 53 VCC VCC 54 NC I/O 55 NC I/O 56 NC I/O 57 SDI, I/O SDI, I/O 58 DCLK, I/O DCLK, I/O 59 PRA, I/O PRA, I/O 60 NC NC 61 PRB, I/O PRB, I/O 62 I/O I/O 63 I/O I/O 64 I/O I/O 65 I/O I/O 66 I/O I/O 67 I/O I/O 68 GND GND 69 I/O I/O 70 I/O I/O 71 I/O I/O 72 I/O I/O 73 I/O I/O 74 VCC VCC 75 I/O I/O 76 I/O I/O 77 I/O I/O 78 I/O I/O 79 I/O I/O 80 I/O I/O DS2316 Datasheet Revision 16.0 124 Package Pin Assignments Figure 47 * VQ100 100 1 100-Pin VQFP Table 56 * VQ100 VQ100 Pin Number A42MX09 Function A42MX16 Function 1 I/O I/O 2 MODE MODE 3 I/O I/O 4 I/O I/O 5 I/O I/O 6 I/O I/O 7 GND GND 8 I/O I/O 9 I/O I/O 10 I/O I/O 11 I/O I/O 12 I/O I/O 13 I/O I/O 14 VCCA NC 15 VCCI VCCI 16 I/O I/O 17 I/O I/O 18 I/O I/O 19 I/O I/O 20 GND GND DS2316 Datasheet Revision 16.0 125 Package Pin Assignments Table 56 * VQ100 (continued) VQ100 Pin Number A42MX09 Function A42MX16 Function 21 I/O I/O 22 I/O I/O 23 I/O I/O 24 I/O I/O 25 I/O I/O 26 I/O I/O 27 I/O I/O 28 I/O I/O 29 I/O I/O 30 I/O I/O 31 I/O I/O 32 GND GND 33 I/O I/O 34 I/O I/O 35 I/O I/O 36 I/O I/O 37 I/O I/O 38 VCCA VCCA 39 I/O I/O 40 I/O I/O 41 I/O I/O 42 I/O I/O 43 I/O I/O 44 GND GND 45 I/O I/O 46 I/O I/O 47 I/O I/O 48 I/O I/O 49 I/O I/O 50 SDO, I/O SDO, I/O 51 I/O I/O 52 I/O I/O 53 I/O I/O 54 I/O I/O 55 GND GND 56 I/O I/O 57 I/O I/O DS2316 Datasheet Revision 16.0 126 Package Pin Assignments Table 56 * VQ100 (continued) VQ100 Pin Number A42MX09 Function A42MX16 Function 58 I/O I/O 59 I/O I/O 60 I/O I/O 61 I/O I/O 62 LP LP 63 VCCA VCCA 64 VCCI VCCI 65 VCCA VCCA 66 I/O I/O 67 I/O I/O 68 I/O I/O 69 I/O I/O 70 GND GND 71 I/O I/O 72 I/O I/O 73 I/O I/O 74 I/O I/O 75 I/O I/O 76 I/O I/O 77 SDI, I/O SDI, I/O 78 I/O I/O 79 I/O I/O 80 I/O I/O 81 I/O I/O 82 GND GND 83 I/O I/O 84 I/O I/O 85 PRA, I/O PRA, I/O 86 I/O I/O 87 CLKA, I/O CLKA, I/O 88 VCCA VCCA 89 I/O I/O 90 CLKB, I/O CLKB, I/O 91 I/O I/O 92 PRB, I/O PRB, I/O 93 I/O I/O 94 GND GND DS2316 Datasheet Revision 16.0 127 Package Pin Assignments Table 56 * VQ100 (continued) VQ100 Pin Number A42MX09 Function A42MX16 Function 95 I/O I/O 96 I/O I/O 97 I/O I/O 98 I/O I/O 99 I/O I/O 100 DCLK, I/O DCLK, I/O Figure 48 * TQ176 176 1 176-Pin TQFP Table 57 * TQ176 TQ176 Pin Number A42MX09 Function A42MX16 Function A42MX24 Function 1 GND GND GND 2 MODE MODE MODE 3 I/O I/O I/O 4 I/O I/O I/O 5 I/O I/O I/O 6 I/O I/O I/O 7 I/O I/O I/O 8 NC NC I/O 9 I/O I/O I/O 10 NC I/O I/O 11 NC I/O I/O 12 I/O I/O I/O DS2316 Datasheet Revision 16.0 128 Package Pin Assignments Table 57 * TQ176 (continued) TQ176 Pin Number A42MX09 Function A42MX16 Function A42MX24 Function 13 NC VCCA VCCA 14 I/O I/O I/O 15 I/O I/O I/O 16 I/O I/O I/O 17 I/O I/O I/O 18 GND GND GND 19 NC I/O I/O 20 NC I/O I/O 21 I/O I/O I/O 22 NC I/O I/O 23 GND GND GND 24 NC VCCI VCCI 25 VCCA VCCA VCCA 26 NC I/O I/O 27 NC I/O I/O 28 VCCI VCCA VCCA 29 NC I/O I/O 30 I/O I/O I/O 31 I/O I/O I/O 32 I/O I/O I/O 33 NC NC I/O 34 I/O I/O I/O 35 I/O I/O I/O 36 I/O I/O I/O 37 NC I/O I/O 38 NC NC I/O 39 I/O I/O I/O 40 I/O I/O I/O 41 I/O I/O I/O 42 I/O I/O I/O 43 I/O I/O I/O 44 I/O I/O I/O 45 GND GND GND 46 I/O I/O TMS, I/O 47 I/O I/O TDI, I/O 48 I/O I/O I/O 49 I/O I/O WD, I/O DS2316 Datasheet Revision 16.0 129 Package Pin Assignments Table 57 * TQ176 (continued) TQ176 Pin Number A42MX09 Function A42MX16 Function A42MX24 Function 50 I/O I/O WD, I/O 51 I/O I/O I/O 52 NC VCCI VCCI 53 I/O I/O I/O 54 NC I/O I/O 55 NC I/O WD, I/O 56 I/O I/O WD, I/O 57 NC NC I/O 58 I/O I/O I/O 59 I/O I/O WD, I/O 60 I/O I/O WD, I/O 61 NC I/O I/O 62 I/O I/O I/O 63 I/O I/O I/O 64 NC I/O I/O 65 I/O I/O I/O 66 NC I/O I/O 67 GND GND GND 68 VCCA VCCA VCCA 69 I/O I/O WD, I/O 70 I/O I/O WD, I/O 71 I/O I/O I/O 72 I/O I/O I/O 73 I/O I/O I/O 74 NC I/O I/O 75 I/O I/O I/O 76 I/O I/O I/O 77 NC NC WD, I/O 78 NC I/O WD, I/O 79 I/O I/O I/O 80 NC I/O I/O 81 I/O I/O I/O 82 NC VCCI VCCI 83 I/O I/O I/O 84 I/O I/O WD, I/O 85 I/O I/O WD, I/O 86 NC I/O I/O DS2316 Datasheet Revision 16.0 130 Package Pin Assignments Table 57 * TQ176 (continued) TQ176 Pin Number A42MX09 Function A42MX16 Function A42MX24 Function 87 SDO, I/O SDO, I/O SDO, TDO, I/O 88 I/O I/O I/O 89 GND GND GND 90 I/O I/O I/O 91 I/O I/O I/O 92 I/O I/O I/O 93 I/O I/O I/O 94 I/O I/O I/O 95 I/O I/O I/O 96 NC I/O I/O 97 NC I/O I/O 98 I/O I/O I/O 99 I/O I/O I/O 100 I/O I/O I/O 101 NC NC I/O 102 I/O I/O I/O 103 NC I/O I/O 104 I/O I/O I/O 105 I/O I/O I/O 106 GND GND GND 107 NC I/O I/O 108 NC I/O TCK, I/O 109 LP LP LP 110 VCCA VCCA VCCA 111 GND GND GND 112 VCCI VCCI VCCI 113 VCCA VCCA VCCA 114 NC I/O I/O 115 NC I/O I/O 116 NC VCCA VCCA 117 I/O I/O I/O 118 I/O I/O I/O 119 I/O I/O I/O 120 I/O I/O I/O 121 NC NC I/O 122 I/O I/O I/O 123 I/O I/O I/O DS2316 Datasheet Revision 16.0 131 Package Pin Assignments Table 57 * TQ176 (continued) TQ176 Pin Number A42MX09 Function A42MX16 Function A42MX24 Function 124 NC I/O I/O 125 NC I/O I/O 126 NC NC I/O 127 I/O I/O I/O 128 I/O I/O I/O 129 I/O I/O I/O 130 I/O I/O I/O 131 I/O I/O I/O 132 I/O I/O I/O 133 GND GND GND 134 I/O I/O I/O 135 SDI, I/O SDI, I/O SDI, I/O 136 NC I/O I/O 137 I/O I/O WD, I/O 138 I/O I/O WD, I/O 139 I/O I/O I/O 140 NC VCCI VCCI 141 I/O I/O I/O 142 I/O I/O I/O 143 NC I/O I/O 144 NC I/O WD, I/O 145 NC NC WD, I/O 146 I/O I/O I/O 147 NC I/O I/O 148 I/O I/O I/O 149 I/O I/O I/O 150 I/O I/O WD, I/O 151 NC I/O WD, I/O 152 PRA, I/O PRA, I/O PRA, I/O 153 I/O I/O I/O 154 CLKA, I/O CLKA, I/O CLKA, I/O 155 VCCA VCCA VCCA 156 GND GND GND 157 I/O I/O I/O 158 CLKB, I/O CLKB, I/O CLKB, I/O DS2316 Datasheet Revision 16.0 132 Package Pin Assignments Table 57 * TQ176 (continued) TQ176 Pin Number A42MX09 Function A42MX16 Function A42MX24 Function 159 I/O I/O I/O 160 PRB, I/O PRB, I/O PRB, I/O 161 NC I/O WD, I/O 162 I/O I/O WD, I/O 163 I/O I/O I/O 164 I/O I/O I/O 165 NC NC WD, I/O 166 NC I/O WD, I/O 167 I/O I/O I/O 168 NC I/O I/O 169 I/O I/O I/O 170 NC VCCI VCCI 171 I/O I/O WD, I/O 172 I/O I/O WD, I/O 173 NC I/O I/O 174 I/O I/O I/O 175 DCLK, I/O DCLK, I/O DCLK, I/O 176 I/O I/O I/O Figure 49 * CQ208 208207206205204203202201200 164163162161160159158157 Pin #1 Index 1 2 3 4 5 6 7 8 156 155 154 153 152 151 150 149 A42MX36 208-Pin CQFP 113 112 111 110 109 108 107 106 105 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 97 98 99 100101102103104 DS2316 Datasheet Revision 16.0 133 Package Pin Assignments Table 58 * CQ208 CQ208 Pin Number A42MX36 Function 1 GND 2 VCCA 3 MODE 4 I/O 5 I/O 6 I/O 7 I/O 8 I/O 9 I/O 10 I/O 11 I/O 12 I/O 13 I/O 14 I/O 15 I/O 16 I/O 17 VCCA 18 I/O 19 I/O 20 I/O 21 I/O 22 GND 23 I/O 24 I/O 25 I/O 26 I/O 27 GND 28 VCCI 29 VCCA 30 I/O 31 I/O 32 VCCA 33 I/O 34 I/O 35 I/O 36 I/O DS2316 Datasheet Revision 16.0 134 Package Pin Assignments Table 58 * CQ208 (continued) CQ208 Pin Number A42MX36 Function 37 I/O 38 I/O 39 I/O 40 I/O 41 I/O 42 I/O 43 I/O 44 I/O 45 I/O 46 I/O 47 I/O 48 I/O 49 I/O 50 I/O 51 I/O 52 GND 53 GND 54 TMS, I/O 55 TDI, I/O 56 I/O 57 WD, I/O 58 WD, I/O 59 I/O 60 VCCI 61 I/O 62 I/O 63 I/O 64 I/O 65 QCLKA, I/O 66 WD, I/O 67 WD, I/O 68 I/O 69 I/O 70 WD, I/O 71 WD, I/O 72 I/O 73 I/O DS2316 Datasheet Revision 16.0 135 Package Pin Assignments Table 58 * CQ208 (continued) CQ208 Pin Number A42MX36 Function 74 I/O 75 I/O 76 I/O 77 I/O 78 GND 79 VCCA 80 VCCI 81 I/O 82 I/O 83 I/O 84 I/O 85 WD, I/O 86 WD, I/O 87 I/O 88 I/O 89 I/O 90 I/O 91 QCLKB, I/O 92 I/O 93 WD, I/O 94 WD, I/O 95 I/O 96 I/O 97 I/O 98 VCCI 99 I/O 100 WD, I/O 101 WD, I/O 102 I/O 103 TDO, I/O 104 I/O 105 GND 106 VCCA 107 I/O 108 I/O 109 I/O 110 I/O DS2316 Datasheet Revision 16.0 136 Package Pin Assignments Table 58 * CQ208 (continued) CQ208 Pin Number A42MX36 Function 111 I/O 112 I/O 113 I/O 114 I/O 115 I/O 116 I/O 117 I/O 118 I/O 119 I/O 120 I/O 121 I/O 122 I/O 123 I/O 124 I/O 125 I/O 126 GND 127 I/O 128 TCK, I/O 129 LP 130 VCCA 131 GND 132 VCCI 133 VCCA 134 I/O 135 I/O 136 VCCA 137 I/O 138 I/O 139 I/O 140 I/O 141 I/O 142 I/O 143 I/O 144 I/O 145 I/O 146 I/O 147 I/O DS2316 Datasheet Revision 16.0 137 Package Pin Assignments Table 58 * CQ208 (continued) CQ208 Pin Number A42MX36 Function 148 I/O 149 I/O 150 GND 151 I/O 152 I/O 153 I/O 154 I/O 155 I/O 156 I/O 157 GND 158 I/O 159 SDI, I/O 160 I/O 161 WD, I/O 162 WD, I/O 163 I/O 164 VCCI 165 I/O 166 I/O 167 I/O 168 WD, I/O 169 WD, I/O 170 I/O 171 QCLKD, I/O 172 I/O 173 I/O 174 I/O 175 I/O 176 WD, I/O 177 WD, I/O 178 PRA, I/O 179 I/O 180 CLKA, I/O 181 I/O 182 VCCI 183 VCCA 184 GND DS2316 Datasheet Revision 16.0 138 Package Pin Assignments Table 58 * CQ208 (continued) CQ208 Pin Number A42MX36 Function 185 I/O 186 CLKB, I/O 187 I/O 188 PRB, I/O 189 I/O 190 WD, I/O 191 WD, I/O 192 I/O 193 I/O 194 WD, I/O 195 WD, I/O 196 QCLKC, I/O 197 I/O 198 I/O 199 I/O 200 I/O 201 I/O 202 VCCI 203 WD, I/O 204 WD, I/O 205 I/O 206 I/O 207 DCLK, I/O 208 I/O DS2316 Datasheet Revision 16.0 139 Package Pin Assignments Figure 50 * CQ256 256255254253252251250249248 200199198197196195194193 Pin #1 Index 1 2 3 4 5 6 7 8 192 191 190 189 188 187 186 185 A42MX36 256-Pin CQFP 137 136 135 134 133 132 131 130 129 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 Table 59 * 121122123124125126127128 CQ256 CQ256 Pin Number A42MX36 Function 1 NC 2 GND 3 I/O 4 I/O 5 I/O 6 I/O 7 I/O 8 I/O 9 I/O 10 GND 11 I/O 12 I/O 13 I/O 14 I/O 15 I/O 16 I/O 17 I/O 18 I/O 19 I/O 20 I/O 21 I/O DS2316 Datasheet Revision 16.0 140 Package Pin Assignments Table 59 * CQ256 (continued) CQ256 Pin Number A42MX36 Function 22 I/O 23 I/O 24 I/O 25 I/O 26 VCCA 27 I/O 28 I/O 29 VCCA 30 VCCI 31 GND 32 VCCA 33 LP 34 TCK, I/O 35 I/O 36 GND 37 I/O 38 I/O 39 I/O 40 I/O 41 I/O 42 I/O 43 I/O 44 I/O 45 I/O 46 I/O 47 I/O 48 GND 49 I/O 50 I/O 51 I/O 52 I/O 53 I/O 54 I/O 55 I/O 56 I/O 57 I/O 58 I/O DS2316 Datasheet Revision 16.0 141 Package Pin Assignments Table 59 * CQ256 (continued) CQ256 Pin Number A42MX36 Function 59 I/O 60 VCCA 61 GND 62 GND 63 NC 64 NC 65 NC 66 I/O 67 SDO, TDO, I/O 68 I/O 69 WD, I/O 70 WD, I/O 71 I/O 72 VCCI 73 I/O 74 I/O 75 I/O 76 WD, I/O 77 GND 78 WD, I/O 79 I/O 80 QCLKB, I/O 81 I/O 82 I/O 83 I/O 84 I/O 85 I/O 86 I/O 87 WD, I/O 88 WD, I/O 89 I/O 90 I/O 91 I/O 92 I/O 93 I/O 94 I/O 95 VCCI DS2316 Datasheet Revision 16.0 142 Package Pin Assignments Table 59 * CQ256 (continued) CQ256 Pin Number A42MX36 Function 96 VCCA 97 GND 98 GND 99 I/O 100 I/O 101 I/O 102 I/O 103 I/O 104 I/O 105 WD, I/O 106 WD, I/O 107 I/O 108 I/O 109 WD, I/O 110 WD, I/O 111 I/O 112 QCLKA, I/O 113 I/O 114 GND 115 I/O 116 I/O 117 I/O 118 I/O 119 VCCI 120 I/O 121 WD, I/O 122 WD, I/O 123 I/O 124 I/O 125 I/O 126 I/O 127 GND 128 NC 129 NC 130 NC 131 GND 132 I/O DS2316 Datasheet Revision 16.0 143 Package Pin Assignments Table 59 * CQ256 (continued) CQ256 Pin Number A42MX36 Function 133 I/O 134 I/O 135 I/O 136 I/O 137 I/O 138 I/O 139 GND 140 I/O 141 I/O 142 I/O 143 I/O 144 I/O 145 I/O 146 I/O 147 I/O 148 I/O 149 I/O 150 I/O 151 I/O 152 I/O 153 I/O 154 I/O 155 VCCA 156 I/O 157 I/O 158 VCCA 159 VCCI 160 GND 161 I/O 162 I/O 163 I/O 164 I/O 165 GND 166 I/O 167 I/O 168 I/O 169 I/O DS2316 Datasheet Revision 16.0 144 Package Pin Assignments Table 59 * CQ256 (continued) CQ256 Pin Number A42MX36 Function 170 VCCA 171 I/O 172 I/O 173 I/O 174 I/O 175 I/O 176 I/O 177 I/O 178 I/O 179 I/O 180 GND 181 I/O 182 I/O 183 I/O 184 I/O 185 I/O 186 I/O 187 I/O 188 MODE 189 VCCA 190 GND 191 NC 192 NC 193 NC 194 I/O 195 DCLK, I/O 196 I/O 197 I/O 198 I/O 199 WD, I/O 200 WD, I/O 201 VCCI 202 I/O 203 I/O 204 I/O 205 I/O 206 GND DS2316 Datasheet Revision 16.0 145 Package Pin Assignments Table 59 * CQ256 (continued) CQ256 Pin Number A42MX36 Function 207 I/O 208 I/O 209 QCLKC, I/O 210 I/O 211 WD, I/O 212 WD, I/O 213 I/O 214 I/O 215 WD, I/O 216 WD, I/O 217 I/O 218 PRB, I/O 219 I/O 220 CLKB, I/O 221 I/O 222 GND 223 GND 224 VCCA 225 VCCI 226 I/O 227 CLKA, I/O 228 I/O 229 PRA, I/O 230 I/O 231 I/O 232 WD, I/O 233 WD, I/O 234 I/O 235 I/O 236 I/O 237 I/O 238 I/O 239 I/O 240 QCLKD, I/O 241 I/O 242 WD, I/O 243 GND DS2316 Datasheet Revision 16.0 146 Package Pin Assignments Table 59 * CQ256 (continued) CQ256 Pin Number A42MX36 Function 244 WD, I/O 245 I/O 246 I/O 247 I/O 248 VCCI 249 I/O 250 WD, I/O 251 WD, I/O 252 I/O 253 SDI, I/O 254 I/O 255 GND 256 NC Figure 51 * BG272 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 A B C D E F G 272-Pin PBGA H J K L M N P R T U V W Y Table 60 * BG272 BG272 Pin Number A42MX36 Function A1 GND A2 GND A3 I/O A4 WD, I/O A5 I/O DS2316 Datasheet Revision 16.0 147 Package Pin Assignments Table 60 * BG272 (continued) BG272 Pin Number A42MX36 Function A6 I/O A7 WD, I/O A8 WD, I/O A9 I/O A10 I/O A11 CLKA A12 I/O A13 I/O A14 I/O A15 I/O A16 WD, I/O A17 I/O A18 I/O A19 GND A20 GND B1 GND B2 GND B3 DCLK, I/O B4 I/O B5 I/O B6 I/O B7 WD, I/O B8 I/O B9 PRB, I/O B10 I/O B11 I/O B12 WD, I/O B13 I/O B14 I/O B15 WD, I/O B16 I/O B17 WD, I/O B18 I/O B19 GND B20 GND C1 I/O C2 MODE DS2316 Datasheet Revision 16.0 148 Package Pin Assignments Table 60 * BG272 (continued) BG272 Pin Number A42MX36 Function C3 GND C4 I/O C5 WD, I/O C6 I/O C7 QCLKC, I/O C8 I/O C9 I/O C10 CLKB C11 PRA, I/O C12 WD, I/O C13 I/O C14 QCLKD, I/O C15 I/O C16 WD, I/O C17 SDI, I/O C18 I/O C19 I/O C20 I/O D1 I/O D2 I/O D3 I/O D4 I/O D5 VCCI D6 I/O D7 I/O D8 VCCA D9 WD, I/O D10 VCCI D11 I/O D12 VCCI D13 I/O D14 VCCI D15 I/O D16 VCCA D17 GND D18 I/O D19 I/O DS2316 Datasheet Revision 16.0 149 Package Pin Assignments Table 60 * BG272 (continued) BG272 Pin Number A42MX36 Function D20 I/O E1 I/O E2 I/O E3 I/O E4 VCCA E17 VCCI E18 I/O E19 I/O E20 I/O F1 I/O F2 I/O F3 I/O F4 VCCI F17 I/O F18 I/O F19 I/O F20 I/O G1 I/O G2 I/O G3 I/O G4 VCCI G17 VCCI G18 I/O G19 I/O G20 I/O H1 I/O H2 I/O H3 I/O H4 VCCA H17 I/O H18 I/O H19 I/O H20 I/O J1 I/O J2 I/O J3 I/O J4 VCCI DS2316 Datasheet Revision 16.0 150 Package Pin Assignments Table 60 * BG272 (continued) BG272 Pin Number A42MX36 Function J9 GND J10 GND J11 GND J12 GND J17 VCCA J18 I/O J19 I/O J20 I/O K1 I/O K2 I/O K3 I/O K4 VCCI K9 GND K10 GND K11 GND K12 GND K17 I/O K18 VCCA K19 VCCA K20 LP L1 I/O L2 I/O L3 VCCA L4 VCCA L9 GND L10 GND L11 GND L12 GND L17 VCCI L18 I/O L19 I/O L20 TCK, I/O M1 I/O M2 I/O M3 I/O M4 VCCI M9 GND DS2316 Datasheet Revision 16.0 151 Package Pin Assignments Table 60 * BG272 (continued) BG272 Pin Number A42MX36 Function M10 GND M11 GND M12 GND M17 I/O M18 I/O M19 I/O M20 I/O N1 I/O N2 I/O N3 I/O N4 VCCI N17 VCCI N18 I/O N19 I/O N20 I/O P1 I/O P2 I/O P3 I/O P4 VCCA P17 I/O P18 I/O P19 I/O P20 I/O R1 I/O R2 I/O R3 I/O R4 VCCI R17 VCCI R18 I/O R19 I/O R20 I/O T1 I/O T2 I/O T3 I/O T4 I/O T17 VCCA T18 I/O DS2316 Datasheet Revision 16.0 152 Package Pin Assignments Table 60 * BG272 (continued) BG272 Pin Number A42MX36 Function T19 I/O T20 I/O U1 I/O U2 I/O U3 I/O U4 I/O U5 VCCI U6 WD, I/O U7 I/O U8 I/O U9 WD, I/O U10 VCCA U11 VCCI U12 I/O U13 I/O U14 QCLKB, I/O U15 I/O U16 VCCI U17 I/O U18 GND U19 I/O U20 I/O V1 I/O V2 I/O V3 GND V4 GND V5 I/O V6 I/O V7 I/O V8 WD, I/O V9 I/O V10 I/O V11 I/O V12 I/O V13 WD, I/O V14 I/O V15 WD, I/O DS2316 Datasheet Revision 16.0 153 Package Pin Assignments Table 60 * BG272 (continued) BG272 Pin Number A42MX36 Function V16 I/O V17 I/O V18 SDO, TDO, I/O V19 I/O V20 I/O W1 GND W2 GND W3 I/O W4 TMS, I/O W5 I/O W6 I/O W7 I/O W8 WD, I/O W9 WD, I/O W10 I/O W11 I/O W12 I/O W13 WD, I/O W14 I/O W15 I/O W16 WD, I/O W17 I/O W18 WD, I/O W19 GND W20 GND Y1 GND Y2 GND Y3 I/O Y4 TDI, I/O Y5 WD, I/O Y6 I/O Y7 QCLKA, I/O Y8 I/O Y9 I/O Y10 I/O Y11 I/O Y12 I/O DS2316 Datasheet Revision 16.0 154 Package Pin Assignments Table 60 * BG272 (continued) BG272 Pin Number A42MX36 Function Y13 I/O Y14 I/O Y15 I/O Y16 I/O Y17 I/O Y18 WD, I/O Y19 GND Y20 GND Figure 52 * PG132 1 2 3 4 5 6 7 8 9 10 11 12 13 A A B B C C D D E E F F 132-Pin CPGA G H G H J J K K L L M M N N 1 2 3 4 5 6 7 8 9 10 11 12 13 Orientation Pin Table 61 * PG132 PG132 Pin Number A42MX09 Function - PMPOUT B2 I/O A1 MODE B1 I/O D3 I/O C2 I/O C1 I/O D2 I/O D1 I/O E2 I/O E1 I/O F3 I/O DS2316 Datasheet Revision 16.0 155 Package Pin Assignments Table 61 * PG132 (continued) PG132 Pin Number A42MX09 Function F2 I/O F1 I/O G1 I/O G4 VSV H1 I/O H2 I/O H3 I/O H4 I/O J1 I/O K1 I/O L1 I/O K2 I/O M1 I/O K3 I/O L2 I/O N1 I/O L3 BININ M2 BINOUT N2 I/O M3 I/O L4 I/O N3 I/O M4 I/O N4 I/O M5 I/O K6 I/O N5 I/O N6 I/O L6 I/O M6 I/O M7 I/O N7 I/O N8 I/O M8 I/O L8 I/O K8 I/O N9 I/O DS2316 Datasheet Revision 16.0 156 Package Pin Assignments Table 61 * PG132 (continued) PG132 Pin Number A42MX09 Function N10 I/O M10 I/O N11 I/O L10 I/O M11 I/O N12 SDO M12 I/O L11 I/O N13 I/O M13 I/O K11 I/O L12 I/O L13 I/O K13 I/O H10 I/O J12 I/O J13 I/O H11 I/O H12 I/O H13 VKS G13 VPP DS2316 Datasheet Revision 16.0 157 Package Pin Assignments Table 61 * PG132 (continued) PG132 Pin Number A42MX09 Function G12 VSV F13 I/O F12 I/O F11 I/O F10 I/O E13 I/O D13 I/O D12 I/O C13 I/O B13 I/O D11 I/O C12 I/O A13 I/O C11 I/O B12 SDI B11 I/O C10 I/O A12 I/O A11 I/O B10 I/O D8 I/O A10 I/O C8 I/O A9 I/O B8 PRBA A8 I/O B7 CLKA A7 I/O B6 CLKB A6 I/O C6 PRBB A5 I/O D6 I/O A4 I/O B4 I/O A3 I/O C4 I/O DS2316 Datasheet Revision 16.0 158 Package Pin Assignments Table 61 * PG132 (continued) PG132 Pin Number A42MX09 Function B3 I/O A2 I/O C3 DCLK B5 GNDA E12 GNDA J2 GNDA M9 GNDA B9 GNDI C5 GNDI E11 GNDI F4 GNDI J3 GNDI J11 GNDI L5 GNDI L9 GNDI C9 GNDQ E3 GNDQ K12 GNDQ D7 VCCA G3 VCCA G10 VCCA L7 VCCA C7 VCCI G2 VCCI G11 VCCI K7 VCCI DS2316 Datasheet Revision 16.0 159 Package Pin Assignments Figure 53 * CQ172 Table 62 * CQ172 CQ172 Pin Number A42MX16 Function 1 MODE 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 GND 8 I/O 9 I/O 10 I/O 11 I/O 12 VCC 13 I/O 14 I/O 15 I/O 16 I/O 17 GND 18 I/O 19 I/O 20 I/O DS2316 Datasheet Revision 16.0 160 Package Pin Assignments Table 62 * CQ172 (continued) CQ172 Pin Number A42MX16 Function 21 I/O 22 GND 23 VCCI 24 VSV 25 I/O 26 I/O 27 VCC 28 I/O 29 I/O 30 I/O 31 I/O 32 GND 33 I/O 34 I/O 35 I/O 36 I/O 37 GND 38 I/O 39 I/O 40 I/O 41 I/O 42 I/O 43 I/O 44 BININ 45 BINOUT 46 I/O 47 I/O 48 I/O 49 I/O 50 VCCI 51 I/O 52 I/O 53 I/O 54 I/O 55 GND 56 I/O 57 I/O DS2316 Datasheet Revision 16.0 161 Package Pin Assignments Table 62 * CQ172 (continued) CQ172 Pin Number A42MX16 Function 58 I/O 59 I/O 60 I/O 61 I/O 62 I/O 63 I/O 64 I/O 65 GND 66 VCC 67 I/O 68 I/O 69 I/O 70 I/O 71 I/O 72 I/O 73 I/O 74 I/O 75 GND 76 I/O 77 I/O 78 I/O 79 I/O 80 VCCI 81 I/O 82 I/O 83 I/O 84 I/O 85 SDO 86 I/O 87 I/O 88 I/O 89 I/O 90 I/O 91 I/O 92 I/O 93 I/O 94 I/O DS2316 Datasheet Revision 16.0 162 Package Pin Assignments Table 62 * CQ172 (continued) CQ172 Pin Number A42MX16 Function 95 I/O 96 I/O 97 I/O 98 GND 99 I/O 100 I/O 101 I/O 102 I/O 103 GND 104 I/O 105 I/O 106 VKS 107 VPP 108 GND 109 VCCI 110 VSV 111 I/O 112 I/O 113 VCC 114 I/O 115 I/O 116 I/O 117 I/O 118 GND 119 I/O 120 I/O 121 I/O 122 I/O 123 GNDI 124 I/O 125 I/O 126 I/O 127 I/O 128 I/O 129 I/O 130 I/O 131 SDI DS2316 Datasheet Revision 16.0 163 Package Pin Assignments Table 62 * CQ172 (continued) CQ172 Pin Number A42MX16 Function 132 I/O 133 I/O 134 I/O 135 I/O 136 VCCI 137 I/O 138 I/O 139 I/O 140 I/O 141 GND 142 I/O 143 I/O 144 I/O 145 I/O 146 I/O 147 I/O 148 PROBA 149 I/O 150 CLKA 151 VCC 152 GND 153 I/O 154 CLKB 155 I/O 156 PROBB 157 I/O 158 I/O 159 I/O 160 I/O 161 GND 162 I/O 163 I/O 164 I/O 165 I/O 166 VCCI 167 I/O 168 I/O DS2316 Datasheet Revision 16.0 164 Package Pin Assignments Table 62 * CQ172 (continued) CQ172 Pin Number A42MX16 Function 169 I/O 170 I/O 171 DCLK DS2316 Datasheet Revision 16.0 165