Gb SA SERIES 500 Watts Transient Voltage Suppressor Pb) RoHS DO-1 COMPLIANCE 140 36 10 (25.4) Features Du _ | ~ Plastic package has Underwriters Laboratory Loy f- Flammability Classification 94V-0 ee ~ 500W surge capability at 10 X 1000us waveform ~+ Excellent clamping capability oe ra) ~ Low Dynamic impedance DIA. ~ Fast response time: Typically less than 1.0ps from 0 volts to VBR for unidirectional and 5.0 ns for bidirectional ~ Typical Ip less than 1 A above 10V ~ High temperature soldering guaranteed: Dimensions in inches and (millimeters) 260C / 10 seconds / 375 (9.5mm) lead length Marking Diagram / Slbs.,(2.3kg) tension ~ Green compound with suffix G on packing code & prefix G on datecode. SAXX = Specific Device Code Mechanical Data sw G = Green Compound ~ Case: Molded plastic WW = Work Week ~ Lead: Pure tin plated lead free, solderable per TO MIL-STD-202, Method 208 ~ Polarity: Color band denotes cathode except bipolar ~ Weight: 0.354 grams Maximum Ratings and Electrical Characteristics Rating at 25C ambient temperature unless otherwise specified. Type Number Symbol Value Units Peak Power Dissipation at T,=25C, Tp=1ms (Note 1) Ppx Minimum 500 Watts Steady State Power Dissipation at T.=75 C Pp 3.0 Watts Lead Lengths .375, 9.5mm (Note 2) Peak Forward Surge Current, 8.3 ms Single Half Sine-wave Superimposed on Rated Load lrsm 70 Amps (JEDEC method) (Note 3) Maximum Instantaneous Forward Voltage at 35.0A for Unidirectional Only Ve 3.5 Volts Operating and Storage Temperature Range Ty, Tste -55 to + 175 C Notes: 1. Non-repetitive Current Pulse Per Fig. 3 and Derated above T,=25C Per Fig. 2. 2. Mounted on Copper Pad Area of 0.4 x 0.4 (10 x 10 mm) Per Fig. 2. 3. 8.3ms Single Half Sine-wave or Equivalent Square Wave, Duty Cycle=4 Pulses Per Minutes Maximum. Devices for Bipolar Applications 1. For Bidirectional Use C or CA Suffix for Types SA5.0 through Types SA170. 2. Electrical Characteristics Apply in Both Directions. Version: F10Sb RATINGS AND CHARACTERISTIC CURVES (SA SERIES) FIG.1- PEAK PULSE POWER RATING CURVE 40 NON-REPETITIVE PULSE WAVEFORM = SHOWN in FIG.3 z 10 TA=25C f 6 a Ww a a | > = (nr ene W Poe | ay & px square i! ot (CURRENT WAVEFORM O41 ps lps 10p8 100pus 1,000ps. 10,000, tp, PULSE WIDTH, sec. FIG.3- CLAMPING POWER PULSE WAVEFORM 150 PULSE WIDTH (td) is DEFINED tr=10psec. as the POINT WHERE the 1 CURRENT DECAYS x PEAK VALUE to 50% of IPpM 5 IPPM 2 100 3 HALF VALUE- IppM uw 2 Sec. Q 10/1000; WAVEFORM z as DEFINED by R.E.A. x 50 a ao 0 1.0 2.0 3.0 t, TIME, ms FIG.5- TYPICAL JUNCTION CAPACITANCE (UNIDIRECTIONAL) 8000 1000 ec | j=25c & f = 1.0MHz w Vsig = 50 mVp-p Zz = 2 z MEASURED at 400 STAND-OFF VOLTAGE, Vwu 8 z 3 3 1 10 100 200 (sr), BREAKDOWN VOLTAGE. VOLTS PEAK POWER (Ppp) DERATING IN PERCENTAGE, % IFsm, PEAK FORWARD SURGE CURRENT, FIG.2- POWER DERATING CURVE 100 T,, LEAD TEMPERATURE 75 L=0.375"(9.5mm) Ta, AMBIENT LEAD LENGTHS sor >| |e C0 0.4 X 0.4 X .040" (10 X10 X 1mm.) COPPER HEAT SINKS Q 25 50 75 100 125 TEMPERATURE, G 150 175 200 FIG.4- MAXIMUM NON-REPETITIVE FORWARD SURGE CURRENT UNIDIRECTIONAL ONLY 200 8.3ms Single Half Sine 00 AMPERES 4 10 NUMBER OF CYCLES AT 60Hz Version: F10ELECTRICAL CHARACTERISTICS (Ta =25C unless otherwise noted) Breakdown Maximum Maximum Maximum Maximum Voltage Test Stand-Off Reverse Peak Clamping Temperature ps General (Note 1) Current Voltage Leakage Surge Voltage Coefficient Part @Vwu Current @ Ippm Number Var kr Vw Ib Ippm Ve Var v mA Vv uA A Vv mvV/ Min. Max. (Note 2) SA5.0 6.40 7.30 10 5.0 600 54.0 9.6 5 SA5.0A 6.40 7.00 10 5.0 600 57.0 9.2 5 SA6.0 6.67 8.15 10 6.0 600 46.0 11.4 5 SA6.0A 6.67 7.37 10 6.0 600 50.0 10.3 5 SA6.5 7.22 8.82 10 6.5 400 42.0 12.3 5 SA6.5A 7.22 7.98 10 6.5 400 46.0 11.2 5 SA7.0 7.78 9.51 10 7.0 150 39.0 13.3 6 SA7.0A 7.78 8.60 10 7.0 150 43.0 12.0 6 SA7.5 8.33 10.2 1 75 50 36.0 14.3 7 SA7.5A 8.33 9.21 1 75 50 40.0 12.9 7 SA8.0 8.89 10.9 1 8.0 25 35.0 15.0 7 SA8.0A 8.89 9.83 1 8.0 25 38.0 13.6 7 SA8.5 9.44 11.5 1 8.5 10 33.0 15.9 8 SA8.5A 9.44 10.4 1 8.5 10 36.0 14.4 8 SA9.0 10.0 12.2 1 9.0 5 31.0 16.9 9 SA9.0A 10.0 11.1 1 9.0 5 34.0 15.4 9 SA10 11.1 13.6 1 10 1 27.0 18.8 10 SA10A 11.1 12.3 1 10 1 30.0 17.0 10 SA11 12.2 14.9 1 11 1 26.0 20.1 11 SA11A 12.2 13.5 1 11 1 28.0 18.2 11 SA12 13.3 16.3 1 12 1 23.0 22.0 12 SA12A 13.3 14.7 1 12 1 26.3 19.9 12 SA13 14.4 17.6 1 13 1 22.0 23.8 13 SA13A 14.4 15.9 1 13 1 24.0 21.5 13 SA14 16.6 19.1 1 14 1 20.3 25.8 14 SA14A 15.6 17.2 1 14 1 22.6 23.2 14 SA15 16.7 20.4 1 15 1 19.5 26.9 16 SA15A 16.7 18.5 1 15 1 21.0 24.4 16 SA16 17.8 21.8 1 16 1 18.0 28.8 19 SA16A 17.8 19.7 1 16 1 20.0 26.0 17 SA17 18.9 23.1 1 17 1 17.0 30.5 20 SA17A 18.9 20.9 1 17 1 19.0 27.6 19 SA18 20.0 24.4 1 18 1 16.3 32.2 21 SA18A 20.0 22.1 1 18 1 17.9 29.2 20 'SA20 22.2 27.1 1 20 1 14.0 35.8 25 SA20A 22.2 24.5 1 20 1 16.0 32.4 23 SA22 24.4 29.8 1 22 1 13.0 39.4 28 SA22A 24.4 26.9 1 22 1 14.7 35.5 25 SA24 26.7 32.6 1 24 1 12.0 43.0 31 SA24A 26.7 29.5 1 24 1 13.4 38.9 28 SA26 28.9 35.3 1 26 1 11.0 46.6 31 SA26A 28.9 31.9 1 26 1 12.4 42.1 30 SA28 31.1 38.0 1 28 1 10.0 50.1 35 SA28A 31.1 34.4 1 28 1 11.5 45.4 31 SA30 33.3 40.7 1 30 1 9.8 53.5 39 SA30A 33.3 36.8 1 30 1 10.8 48.4 36 SA33 36.7 44.9 1 33 1 8.8 59.0 42 SA33A 36.7 40.6 1 33 1 9.8 53.3 39 SA36 40.0 48.9 1 36 1 8.1 64.3 46 SA36A 40.0 44.2 1 36 1 9.0 58.1 41 SA40 44.4 54.3 1 40 1 7.3 71.4 51 SA40A 44.4 49.1 1 40 1 8.1 64.5 46 SA43 47.8 58.4 1 43 1 6.8 76.7 55 SA43A 47.8 52.8 1 43 1 75 69.4 50 Version: F10ELECTRICAL CHARACTERISTICS (Ta =25C unless otherwise noted) Breakdown Maximum Maximum Maximum Maximum Voltage Test Stand-Off Reverse Peak Clamping Temperature General (Note 1) Current Voltage Leakage Surge Voltage Coefficient Part @Vwu Current @lopm Number Ver k Vw lb Ippm Ve Var Vv mA Vv uA A v mV / C Min. Max. (Note 2) SA45 50.0 61.1 1 45 1 6.5 80.3 58 SA45A 50.0 55.3 1 45 1 7.2 72.7 52 SA48 53.3 65.2 1 48 1 6.1 85.5 63 SA48A 53.3 58.9 1 48 1 6.7 774 56 SA51 56.7 69.3 1 51 1 5.7 91.1 66 SA51A 56.7 62.7 1 51 1 6.3 82.4 61 SA54 60.0 73.3 1 54 1 5.4 96.3 71 SA54A 60.0 66.3 1 54 1 6.0 87.1 65 SA58 64.4 78.7 1 58 1 5.0 103 78 SA58A 64.4 71.2 1 58 1 5.6 93.6 70 SA60 66.7 81.5 1 60 1 49 107 80 SA60A 66.7 73.7 1 60 1 5.4 96.8 71 SA64 71.1 86.9 1 64 1 46 114 86 SA64A 71.1 78.6 1 64 1 5.0 103 76 SA70 778 95.1 1 70 1 42 125 94 SA70A 778 86.0 1 70 1 46 113 85 SA75 83.3 102 1 75 1 3.9 134 101 SA75A 83.3 92.1 1 75 1 43 121 91 SA78 86.7 103 1 78 1 3.7 139 105 SA78A 86.7 95.8 1 78 1 41 126 95 SA85 94.4 115 1 85 1 3.4 151 114 SA85A 94.4 104 1 85 1 3.8 137 103 SA90 100 122 1 90 1 3.2 160 121 SAS0A 100 111 1 90 1 3.5 146 110 SA100 111 136 1 100 1 2.9 179 135 SA100A 111 123 1 100 1 3.2 162 123 SA110 122 149 1 110 1 26 196 148 SA110A 122 135 1 110 1 29 177 133 SA120 133 163 1 120 1 24 214 162 SA120A 133 147 1 120 1 27 193 146 SA130 144 176 1 130 1 2.2 230 175 SA130A 144 159 1 130 1 25 209 158 SA150 167 204 1 150 1 1.9 268 203 SA150A 167 185 1 150 1 2.1 243 184 SA160 178 218 1 160 1 2.0 257 217 SA160A 178 197 1 160 1 2.0 259 196 SA170 189 231 1 170 1 1.7 304 230 SA170A 189 209 1 170 1 0.1 275 208 Notes: 1. Var measured after I; applied for 300 us,| ;=square wave pulse or equivalent. 2. Surge current waveform per Figure 3 and derate per Figure 2. 3. For bipolar types having Vy of 10 volts and under,the Ip limit is doubled. 4. All terms and symbols are consistent with ANSI/IEEE C62.35. Version: F10TVS APPLICATION NOTES: Transient Voltage Suppressors may be used at various points in a circuit to provide various degrees of protection. The following is a typical linear power supply with transient voltage suppressor units placed at different points. All provide protection of the load. E 1 ys IvSe FIGURE 1 == |Loap Transient Voltage Suppressors 1 provides maximum protection. However, the system will probably require replacement of the line fuse(F) since it provides a dominant portion of the series impedance when a surge is encountered. However, we do not recommend to use the TVS diode here, unless we can know the electric circuit impedance and the magnitude of surge rushed into the circuit. Otherwise the TVS diode is easy to be destroyed by voltage surge. Transient Voltage Suppressor 2 provides excellent protection of circuitry excluding the transformer(T). However, since the transformer is a large part of the series impedance, the chance of the line fuse opening during the surge condition is reduced. Transient Voltage Suppressor 3 provides the load with complete protection. It uses a unidirectional Transient Voltage Suppressor, which is a cost advantage. The series impedance now includes the line fuse, transformer, and bridge rectifier(B) so failure of the line fuse is further reduced. If only Transient Voltage Suppressor 3 is in use, then the bridge rectifier is unprotected and would require a higher voltage and current rating to prevent failure by transients. Any combination of these three, or any one of these applications, will prevent damage to the load. This would require varying trade-offs in power supply protection versus maintenance(changing the time fuse). An additional method is to utilize the Transient Voltage Suppressor units as a controlled avalanche bridge. This reduces the parts count and incorporates the protection within the bridge rectifier. AC J z\ - + & x AC FIGURE 2 Version: F10