This is information on a product in full production.
May 2019 DS12930 Rev 1 1/242
STM32H747xI/G
Dual 32-bit Arm
®
Cortex
®
-M7 up to 480MHz and -M4 MCUs, up to
2MB Flash, 1MB RAM, 46 com. and analog interfaces, SMPS, DSI
Datasheet - production data
Features
Dual core
32-bit Arm® Cortex®-M7 core with double-
precision FPU and L1 cache: 16 Kbytes of data
and 16 Kbytes of instruction cache; frequency
up to 480 MHz, MPU, 1027 DMIPS/
2.14 DMIPS/MHz (Dhrystone 2.1), and DSP
instructions
32-bit Arm® 32-bit Cortex®-M4 core with FPU,
Adaptive real-time accelerator (ART
Accelerator™) for internal Flash memory and
external memories, frequency up to 240 MHz,
MPU, 300 DMIPS/1.25 DMIPS /MHz
(Dhrystone 2.1), and DSP instructions
Memories
Up to 2 Mbytes of Flash memory with read-
while-write support
1 Mbyte of RAM: 192 Kbytes of TCM RAM (inc.
64 Kbytes of ITCM RAM + 128 Kbytes of
DTCM RAM for time critical routines),
864 Kbytes of user SRAM, and 4 Kbytes of
SRAM in Backup domain
Dual mode Quad-SPI memory interface
running up to 133 MHz
Flexible external memory controller with up to
32-bit data bus: SRAM, PSRAM,
SDRAM/LPSDR SDRAM, NOR/NAND Flash
memory clocked up to 125 MHz in
Synchronous mode
CRC calculation unit
Security
ROP, PC-ROP, active tamper
General-purpose input/outputs
Up to 168 I/O ports with interrupt capability
Reset and power management
3 separate power domains which can be
independently clock-gated or switched off:
D1: high-performance capabilities
D2: communication peripherals and timers
D3: reset/clock control/power management
1.62 to 3.6 V application supply and I/Os
POR, PDR, PVD and BOR
Dedicated USB power embedding a 3.3 V
internal regulator to supply the internal PHYs
Embedded regulator (LDO) to supply the digital
circuitry
High power-efficiency SMPS step-down
converter regulator to directly supply VCORE
and/or external circuitry
Voltage scaling in Run and Stop mode (6
configurable ranges)
Backup regulator (~0.9 V)
Voltage reference for analog peripheral/VREF+
1.2 to 3.6 V VBAT supply
Low-power modes: Sleep, Stop, Standby and
VBAT supporting battery charging
Low-power consumption
VBAT battery operating mode with charging
capability
CPU and domain power state monitoring pins
2.95 µA in Standby mode (Backup SRAM OFF,
RTC/LSE ON)
UFBGA169
(7 × 7 mm)
TFBGA240+25
(14x14 mm)
LQFP176
(24x24 mm)
LQFP208
(28x28 mm)
FBGA
WLCSP156
(4.96x4.64 mm)
www.st.com
STM32H747xI/G
2/242 DS12930 Rev 1
Clock management
Internal oscillators: 64 MHz HSI, 48 MHz
HSI48, 4 MHz CSI, 32 kHz LSI
External oscillators: 4-48 MHz HSE,
32.768 kHz LSE
3× PLLs (1 for the system clock, 2 for kernel
clocks) with Fractional mode
Interconnect matrix
3 bus matrices (1 AXI and 2 AHB)
Bridges (5× AHB2-APB, 2× AXI2-AHB)
4 DMA controllers to unload the CPU
1× high-speed master direct memory access
controller (MDMA) with linked list support
2× dual-port DMAs with FIFO
1× basic DMA with request router capabilities
Up to 35 communication peripherals
4× I2Cs FM+ interfaces (SMBus/PMBus)
4× USARTs/4x UARTs (ISO7816 interface,
LIN, IrDA, up to 12.5 Mbit/s) and 1x LPUART
6× SPIs, 3 with muxed duplex I2S audio class
accuracy via internal audio PLL or external
clock, 1x I2S in LP domain (up to 150 MHz)
4x SAIs (serial audio interface)
SPDIFRX interface
SWPMI single-wire protocol master I/F
MDIO Slave interface
2× SD/SDIO/MMC interfaces (up to 125 MHz)
2× CAN controllers: 2 with CAN FD, 1 with
time-triggered CAN (TT-CAN)
2× USB OTG interfaces (1FS, 1HS/FS) crystal-
less solution with LPM and BCD
Ethernet MAC interface with DMA controller
HDMI-CEC
8- to 14-bit camera interface (up to 80 MHz)
11 analog peripherals
3× ADCs with 16-bit max. resolution (up to 36
channels, up to 3.6 MSPS)
1× temperature sensor
2× 12-bit D/A converters (1 MHz)
2× ultra-low-power comparators
2× operational amplifiers (7.3 MHz bandwidth)
1× digital filters for sigma delta modulator
(DFSDM) with 8 channels/4 filters
Graphics
LCD-TFT controller up to XGA resolution
MIPI DSI host including an MIPI D-PHY to
interface with low-pin count large displays
Chrom-ART graphical hardware Accelerator™
(DMA2D) to reduce CPU load
Hardware JPEG Codec
Up to 22 timers and watchdogs
1× high-resolution timer (2.1 ns max
resolution)
2× 32-bit timers with up to 4 IC/OC/PWM or
pulse counter and quadrature (incremental)
encoder input (up to 240 MHz)
2× 16-bit advanced motor control timers (up to
240 MHz)
10× 16-bit general-purpose timers (up to
240 MHz)
5× 16-bit low-power timers (up to 240 MHz)
4× watchdogs (independent and window)
2× SysTick timers
RTC with sub-second accuracy and hardware
calendar
Debug mode
SWD & JTAG interfaces
4-Kbyte Embedded Trace Buffer
True random number generators (3
oscillators each)
96-bit unique ID
All packages are ECOPACK®2 compliant
Table 1. Device summary
Reference Part number
STM32H747
xI
STM32H747AI, STM32H747BI,
STM32H747II, STM32H747XI, STM32H747ZI
STM32H747
xG
STM32H747AG, STM32H747BG,
STM32H747IG, STM32H747XG
DS12930 Rev 1 1/242
STM32H747xI/G Contents
4
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Dual Arm® Cortex® cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.1.1 Arm® Cortex®-M7 with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 Arm® Cortex®-M4 with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.1 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.2 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.3 ART™ accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5.1 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5.3 Voltage regulator (SMPS step-down converter and LDO) . . . . . . . . . . . 18
3.5.4 SMPS step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Low-power strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7 Reset and clock controller (RCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7.1 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7.2 System reset sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.8 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.9 Bus-interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.10 DMA controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.11 Chrom-ART Accelerator™ (DMA2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.12 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 24
3.13 Extended interrupt and event controller (EXTI) . . . . . . . . . . . . . . . . . . . . 24
3.14 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 24
3.15 Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.16 Quad-SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 25
Contents STM32H747xI/G
2/242 DS12930 Rev 1
3.17 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.18 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.19 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.20 Digital-to-analog converters (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.21 Ultra-low-power comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.22 Operational amplifiers (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.23 Digital filter for sigma-delta modulators (DFSDM) . . . . . . . . . . . . . . . . . . 28
3.24 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.25 LCD-TFT controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.26 DSI Host (DSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.27 JPEG Codec (JPEG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.28 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.29 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.29.1 High-resolution timer (HRTIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.29.2 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.29.3 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.29.4 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.29.5 Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5) . . . . 36
3.29.6 Independent watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.29.7 Window watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.29.8 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.30 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 37
3.31 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.32 Universal synchronous/asynchronous receiver transmitter (USART) . . . 38
3.33 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 39
3.34 Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S) . 40
3.35 Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.36 SPDIFRX Receiver Interface (SPDIFRX) . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.37 Single wire protocol master interface (SWPMI) . . . . . . . . . . . . . . . . . . . . 41
3.38 Management Data Input/Output (MDIO) slaves . . . . . . . . . . . . . . . . . . . . 42
3.39 SD/SDIO/MMC card host interfaces (SDMMC) . . . . . . . . . . . . . . . . . . . . 42
3.40 Controller area network (FDCAN1, FDCAN2) . . . . . . . . . . . . . . . . . . . . . 42
3.41 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 43
3.42 Ethernet MAC interface with dedicated DMA controller (ETH) . . . . . . . . . 43
DS12930 Rev 1 3/242
STM32H747xI/G Contents
4
3.43 High-definition multimedia interface (HDMI)
- consumer electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.44 Debug infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3.2 VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.3 SMPS step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.4 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . 105
6.3.5 Embedded reset and power control block characteristics . . . . . . . . . . 106
6.3.6 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.7 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.8 Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3.9 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3.10 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.3.11 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.12 MIPI D-PHY characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.3.13 MIPI D-PHY regulator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.3.14 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.3.15 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.3.16 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 144
6.3.17 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.3.18 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Contents STM32H747xI/G
4/242 DS12930 Rev 1
6.3.19 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.3.20 FMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.3.21 Quad-SPI interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.3.22 Delay block (DLYB) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.3.23 16-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.3.24 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
6.3.25 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 190
6.3.26 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.3.27 Temperature and VBAT monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.3.28 Voltage booster for analog switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.3.29 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.3.30 Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 194
6.3.31 Digital filter for Sigma-Delta Modulators (DFSDM) characteristics . . . 196
6.3.32 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 199
6.3.33 LCD-TFT controller (LTDC) characteristics . . . . . . . . . . . . . . . . . . . . . 200
6.3.34 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
6.3.35 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
7.1 WLCSP156 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
7.2 UFBGA169 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
7.3 LQFP176 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
7.4 LQFP208 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
7.5 TFBGA240+25 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
7.6 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
7.6.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
DS12930 Rev 1 1/242
STM32H747xI/G List of tables
4
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 1. STM32H747xI/G features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 2. System vs domain low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 3. DFSDM implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 4. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 5. USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 6. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 7. STM32H747xI/G pin/ball definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 8. Port A alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 9. Port B alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 10. Port C alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 11. Port D alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 12. Port E alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 13. Port F alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 14. Port G alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 15. Port H alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 16. Port I alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 17. Port J alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 18. Port K alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 19. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 20. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 21. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 22. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 23. Supply voltage and maximum frequency configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 24. VCAP operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 25. Characteristics of SMPS step-down converter external components . . . . . . . . . . . . . . . . 104
Table 26. SMPS step-down converter characteristics for external usage . . . . . . . . . . . . . . . . . . . . 105
Table 27. Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . 105
Table 28. Reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 29. Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 30. Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 31. Typical and maximum current consumption in Run mode, code with data processing
running from ITCM for Cortex-M7 core, and Flash memory for Cortex-M4
(ART accelerator ON), LDO regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 32. Typical and maximum current consumption in Run mode, code with data processing
running from ITCM for Arm Cortex-M7 and Flash memory for Arm Cortex-M4,
ART accelerator ON, SMPS regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 33. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory, both cores running, cache ON,
ART accelerator ON, LDO regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 34. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory, both cores running, cache OFF,
ART accelerator OFF, LDO regulator ON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 35. Typical and maximum current consumption in Run mode, code with data processing
running from ITCM, only Arm Cortex-M7 running, LDO regulator ON . . . . . . . . . . . . . . . 111
Table 36. Typical and maximum current consumption in Run mode, code with data processing
running from ITCM, only Arm Cortex-M7 running, SMPS regulator. . . . . . . . . . . . . . . . . 112
Table 37. Typical and maximum current consumption in Run mode, code with data processing
List of tables STM32H747xI/G
2/242 DS12930 Rev 1
running from Flash memory, only Arm Cortex-M7 running, cache ON,
LDO regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 38. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory, only Arm Cortex-M7 running, cache OFF,
LDO regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 39. Typical and maximum current consumption batch acquisition mode,
LDO regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 40. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory, only Arm Cortex-M4 running, ART accelerator ON,
LDO regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 41. Typical and maximum current consumption in Run mode, code with data processing
running from Flash bank 2, only Arm Cortex-M4 running, ART accelerator ON,
SMPS regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 42. Typical and maximum current consumption in Stop, LDO regulator ON . . . . . . . . . . . . . 115
Table 43. Typical and maximum current consumption in Stop, SMPS regulator . . . . . . . . . . . . . . . 116
Table 44. Typical and maximum current consumption in Sleep mode, LDO regulator . . . . . . . . . . 117
Table 45. Typical and maximum current consumption in Sleep mode, SMPS regulator . . . . . . . . . 117
Table 46. Typical and maximum current consumption in Standby . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 47. Typical and maximum current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . 118
Table 48. Peripheral current consumption in Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 49. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 50. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 51. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 52. 4-48 MHz HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 53. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 54. HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Table 55. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 56. CSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 57. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 58. PLL characteristics (wide VCO frequency range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Table 59. PLL characteristics (medium VCO frequency range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 60. MIPI D-PHY characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 61. MIPI D-PHY AC characteristics LP mode and HS/LP
transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Table 62. DSI regulator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 63. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Table 64. Flash memory programming (single bank configuration nDBANK=1) . . . . . . . . . . . . . . . 141
Table 65. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 66. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 67. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 68. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 69. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 70. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Table 71. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Table 72. Output voltage characteristics for all I/Os except PC13, PC14, PC15 and PI8 . . . . . . . . 148
Table 73. Output voltage characteristics for PC13, PC14, PC15 and PI8 . . . . . . . . . . . . . . . . . . . . 149
Table 74. Output timing characteristics (HSLV OFF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Table 75. Output timing characteristics (HSLV ON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Table 76. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 77. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 155
Table 78. Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings . . . . . . . . . . . 155
Table 79. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 157
DS12930 Rev 1 3/242
STM32H747xI/G List of tables
4
Table 80. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings. . . . . . . . . . . 157
Table 81. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Table 82. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 159
Table 83. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Table 84. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 160
Table 85. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Table 86. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Table 87. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 166
Table 88. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Table 89. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Table 90. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Table 91. SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Table 92. LPSDR SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Table 93. SDRAM Write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Table 94. LPSDR SDRAM Write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Table 95. QUADSPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Table 96. QUADSPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Table 97. Delay Block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Table 98. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Table 99. Minimum sampling time vs RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Table 100. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Table 101. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Table 102. DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Table 103. VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Table 104. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Table 105. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Table 106. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Table 107. VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Table 108. Temperature monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Table 109. Voltage booster for analog switch characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Table 110. COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Table 111. Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Table 112. DFSDM measured timing 1.62-3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Table 113. DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Table 114. LTDC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Table 115. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Table 116. Minimum i2c_ker_ck frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Table 117. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Table 118. USART characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Table 119. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Table 120. I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Table 121. SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Table 122. MDIO Slave timing parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Table 123. Dynamics characteristics: SD / MMC characteristics, VDD=2.7 to 3.6 V . . . . . . . . . . . . . 214
Table 124. Dynamics characteristics: eMMC characteristics VDD=1.71V to 1.9V . . . . . . . . . . . . . . . 215
Table 125. Dynamics characteristics: USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Table 126. Dynamics characteristics: Ethernet MAC signals for SMI . . . . . . . . . . . . . . . . . . . . . . . . 218
Table 127. Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 219
Table 128. Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 219
Table 129. Dynamics JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Table 130. Dynamics SWD characteristics: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Table 131. WLCSP156 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
List of tables STM32H747xI/G
4/242 DS12930 Rev 1
Table 132. WLCSP156 bump recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Table 133. UFBGA169 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Table 134. LQFP176 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Table 135. LQFP208 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Table 136. TFBG240+25 ball package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Table 137. TFBGA240+25 recommended PCB design rules (0.8 mm pitch) . . . . . . . . . . . . . . . . . . . 237
Table 138. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Table 139. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
DS12930 Rev 1 1/242
STM32H747xI/G List of figures
2
List of figures
Figure 1. STM32H747xI/G block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 2. TFBGA240+25 ball assignment differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 3. ART™ accelerator schematic and environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 4. Power-up/power-down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 5. STM32H747xI/G bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 6. WLCSP156 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 7. UFBGA169 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 8. LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 9. LQFP208 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 10. TFBGA240+25 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 11. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 12. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 13. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 14. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 15. External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 16. External components for SMPS step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 17. Typical SMPS efficiency (%) vs load current (A) in Run mode at TJ = 30 °C. . . . . . . . . . 119
Figure 18. Typical SMPS efficiency (%) vs load current (A) in Run mode at TJ = TJmax . . . . . . . . 119
Figure 19. Typical SMPS efficiency (%) vs load current (A) in low-power mode at TJ = 30 °C . . . . . 120
Figure 20. Typical SMPS efficiency (%) vs load current (A) in low-power mode at TJ = TJmax . . . 121
Figure 21. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Figure 22. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Figure 23. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Figure 24. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Figure 25. MIPI D-PHY HS/LP clock lane transition timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . 140
Figure 26. MIPI D-PHY HS/LP data lane transition timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Figure 27. VIL/VIH for all I/Os except BOOT0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Figure 28. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Figure 29. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 154
Figure 30. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 156
Figure 31. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 158
Figure 32. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Figure 33. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Figure 34. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 165
Figure 35. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Figure 36. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Figure 37. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Figure 38. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 170
Figure 39. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 171
Figure 40. SDRAM read access waveforms (CL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Figure 41. SDRAM write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Figure 42. Quad-SPI timing diagram - SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Figure 43. Quad-SPI timing diagram - DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Figure 44. ADC accuracy characteristics (12-bit resolution) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Figure 45. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Figure 46. Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 185
Figure 47. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 185
Figure 48. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
List of figures STM32H747xI/G
2/242 DS12930 Rev 1
Figure 49. Channel transceiver timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Figure 50. DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Figure 51. LCD-TFT horizontal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Figure 52. LCD-TFT vertical timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Figure 53. USART timing diagram in Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Figure 54. USART timing diagram in Slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Figure 55. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Figure 56. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Figure 57. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Figure 58. I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Figure 59. I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Figure 60. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Figure 61. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Figure 62. MDIO Slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Figure 63. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Figure 64. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Figure 65. DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Figure 66. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Figure 67. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Figure 68. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Figure 69. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Figure 70. JTAG timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Figure 71. SWD timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Figure 72. WLCSP156 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Figure 73. WLCSP156 bump recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Figure 74. WLCSP156 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Figure 75. UFBGA169 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Figure 76. UFBGA169 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Figure 77. LQFP176 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Figure 78. LQFP176 package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Figure 79. LQFP176 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Figure 80. LQFP208 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Figure 81. LQFP208 package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Figure 82. LQFP208 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Figure 83. TFBGA240+25 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Figure 84. TFBGA240+25 package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Figure 85. TFBGA240+25 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
DS12930 Rev 1 3/242
STM32H747xI/G Introduction
46
1 Introduction
This document provides information on STM32H747xI/G microcontrollers, such as
description, functional overview, pin assignment and definition, electrical characteristics,
packaging, and ordering information.
This document should be read in conjunction with the STM32H747xI/G reference manual
(RM0399), available from the STMicroelectronics website www.st.com.
For information on the Arm®(a) Cortex®-M7 core and Arm® Cortex®-M4 core, please refer to
the Cortex®-M7 Technical Reference Manual, available from the http://www.arm.com
website.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
Description STM32H747xI/G
4/242 DS12930 Rev 1
2 Description
STM32H747xI/G devices are based on the high-performance Arm® Cortex®-M7 and
Cortex®-M4 32-bit RISC cores. The Cortex®-M7 core operates at up to 480 MHz and the
Cortex®-M4 core at up to 240 MHz. Both cores feature a floating point unit (FPU) which
supports Arm® single- and double-precision (Cortex®-M7 core) operations and conversions
(IEEE 754 compliant), including a full set of DSP instructions and a memory protection unit
(MPU) to enhance application security.
STM32H747xI/G devices incorporate high-speed embedded memories with a dual-bank
Flash memory of up to 2 Mbytes, up to 1 Mbyte of RAM (including 192 Kbytes of TCM RAM,
up to 864 Kbytes of user SRAM and 4 Kbytes of backup SRAM), as well as an extensive
range of enhanced I/Os and peripherals connected to APB buses, AHB buses, 2x32-bit
multi-AHB bus matrix and a multi layer AXI interconnect supporting internal and external
memory access.
All the devices offer three ADCs, two DACs, two ultra-low power comparators, a low-power
RTC, a high-resolution timer, 12 general-purpose 16-bit timers, two PWM timers for motor
control, five low-power timers, a true random number generator (RNG). The devices support
four digital filters for external sigma-delta modulators (DFSDM). They also feature standard
and advanced communication interfaces.
Standard peripherals
–Four I
2Cs
Four USARTs, four UARTs and one LPUART
Six SPIs, three I2Ss in Half-duplex mode. To achieve audio class accuracy, the I2S
peripherals can be clocked by a dedicated internal audio PLL or by an external
clock to allow synchronization.
Four SAI serial audio interfaces
One SPDIFRX interface
One SWPMI (Single Wire Protocol Master Interface)
Management Data Input/Output (MDIO) slaves
Two SDMMC interfaces
A USB OTG full-speed and a USB OTG high-speed interface with full-speed
capability (with the ULPI)
One FDCAN plus one TT-FDCAN interface
An Ethernet interface
Chrom-ART Accelerator
HDMI-CEC
Advanced peripherals including
A flexible memory control (FMC) interface
A Quad-SPI Flash memory interface
A camera interface for CMOS sensors
An LCD-TFT display controller
A JPEG hardware compressor/decompressor
A DSI Host interface.
DS12930 Rev 1 5/242
STM32H747xI/G Description
46
Refer to Table 1: STM32H747xI/G features and peripheral counts for the list of peripherals
available on each part number.
STM32H747xI/G devices operate in the –40 to +85 °C temperature range from a 1.62 to
3.6 V power supply. The supply voltage can drop down to 1.62 V by using an external power
supervisor (see Section 3.5.2: Power supply supervisor) and connecting the PDR_ON pin to
VSS. Otherwise the supply voltage must stay above 1.71 V with the embedded power
voltage detector enabled.
Dedicated supply inputs for USB (OTG_FS and OTG_HS) are available on all packages to
allow a greater power supply choice.
A comprehensive set of power-saving modes allows the design of low-power applications.
STM32H747xI/G devices are offered in 5 packages ranging from 156 pins to 240 pins/balls.
The set of included peripherals changes with the device chosen.
These features make STM32H747xI/G microcontrollers suitable for a wide range of
applications:
Motor drive and application control
Medical equipment
Industrial applications: PLC, inverters, circuit breakers
Printers, and scanners
Alarm systems, video intercom, and HVAC
Home audio appliances
Mobile applications, Internet of Things
Wearable devices: smart watches.
Figure 1 shows the device block diagram.
Description STM32H747xI/G
6/242 DS12930 Rev 1
Table 1. STM32H747xI/G features and peripheral counts
Peripherals
STM32H747AG
STM32H747IG
STM32H747BG
STM32H747XG
STM32H747ZI
STM32H747AI
STM32H747II
STM32H747BI
STM32H747XI
Flash memory in Kbytes 2 x 512 Kbytes 2 x 1 Mbyte
SRAM in Kbytes
SRAM
mapped onto
AXI bus
512
SRAM1
(D2 domain) 128
SRAM2
(D2 domain) 128
SRAM3
(D2 domain) 32
SRAM4
(D3 domain) 64
TCM RAM in
Kbytes
ITCM RAM
(instruction) 64
DTCM RAM
(data) 128
Backup SRAM (Kbytes) 4
FMC Yes
General-purpose input/outputs 112 119 148 168 99 112 119 148 168
Quad-SPI Yes
Ethernet Yes
Timers
High-
resolution 1
General-
purpose 10
Advanced-
control (PWM) 2
Basic 2
Low-power 5
Wakeup pins
Tamper pins
4
2
6
3
4
2
6
3
Random number generator Yes
DS12930 Rev 1 7/242
STM32H747xI/G Description
46
Communication
interfaces
SPI / I2S6/3
(1)
I2C4
USART/UART
/LPUART
4/4
/1
SAI 4
SPDIFRX 4 inputs
SWPMI Yes
MDIO Yes
SDMMC 2
FDCAN/TT-
FDCAN 1/1
USB OTG_FS Yes
USB OTG_HS Yes
Ethernet and camera interface Yes
LCD-TFT Yes
MIPI-DSI Host Yes
JPEG Codec Yes
Chrom-ART Accelerator™
(DMA2D) Yes
GPIOs Up to 168
16-bit ADCs
Number of Direct channels
Number of Fast channels
Number of Slow channels
3
2
9
17
2
9
21
4
9
23
2
7
14
2
9
17
2
9
21
4
9
23
12-bit DAC
Number of channels
Yes
2
Comparators 2
Operational amplifiers 2
DFSDM Yes
Maximum CPU frequency 480 MHz
Table 1. STM32H747xI/G features and peripheral counts (continued)
Peripherals
STM32H747AG
STM32H747IG
STM32H747BG
STM32H747XG
STM32H747ZI
STM32H747AI
STM32H747II
STM32H747BI
STM32H747XI
Description STM32H747xI/G
8/242 DS12930 Rev 1
Operating voltage 1.62 to 3.6 V(2)
Operating temperatures
Ambient temperatures: –40 up to +85 °C(3)
Junction temperature: –40 to + 125 °C
Package UFBGA
169
LQFP
176
LQFP
208
TFBGA
240+25
WLCSP
156
UFBG
A169
LQFP
176
LQFP
208
TFBGA
240+25
1. The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio
mode.
2. VDD/VDDA can drop down to 1.62 V by using an external power supervisor (see Section 3.5.2: Power supply supervisor) and
connecting PDR_ON pin to VSS. Otherwise the supply voltage must stay above 1.71 V with the embedded power voltage
detector enabled.
3. The product junction temperature must be kept within the –40 to +125 °C range.
Table 1. STM32H747xI/G features and peripheral counts (continued)
Peripherals
STM32H747AG
STM32H747IG
STM32H747BG
STM32H747XG
STM32H747ZI
STM32H747AI
STM32H747II
STM32H747BI
STM32H747XI
DS12930 Rev 1 9/242
STM32H747xI/G Description
46
Figure 1. STM32H747xI/G block diagram
MSv43739V12
FDCAN1
FDCAN2
I2C1/SMBUS
I2C2/SMBUS
I2C3/SMBUS
AXI/AHB12 (200MHz)
4 compl. chan. (TIM1_CH1[1:4]N),
4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF
APB1 30MHz
TX, RX
SCL, SDA, SMBAL as AF
APB1 100 MHz (max)
MDMA
PK[7:0]
4 compl. chan.(TIM8_CH1[1:4]N),
4 chan. (TIM8_CH1[1:4], ETR, BKIN as
AF
RX, TX, SCK, CTS, RTS as AF
SCL, SDA, SMBAL as AF
SCL, SDA, SMBAL as AF
MOSI, MISO, SCK, NSS/SDO,
SDI, CK, WS, MCK, as AF
TX, RX
RX, TX as AF
RX, TX as AF
RX, TX, SCK
CTS, RTS as AF
RX, TX, SCK, CTS,
RTS as AF
1 channel as AF
smcard
irDA
1 channel as AF
2 channels as AF
4 channels
4 channels, ETR as AF
4 channels, ETR as AF
4 channels, ETR as AF
RX, TX as AF
FIFO
LCD-TFT
FIFO
CHROM-ART
(DMA2D)
SD, SCK, FS, MCLK as AF
FIFO
LCD_R[7:0], LCD_G[7:0],
LCD_B[7:0], LCD_HSYNC,
LCD_VSYNC, LCD_DE,
LCD_CLK CLK, CS,D[7:0]
64-bit AXI BUS-MATRIX
CEC as AF
IN[1:4] as AF
MDC, MDIO
AXIM
A
XI
M
AHBP
AHBS
TRACECK
TRACED[3:0]
JTRST, JTDI,
JTCK/SWCLK
JTDO/SWD, JTDO
JTAG/SW
ETM
I-Cache
16KB
D-Cache
16KB
I-
TCM
4KB
D-
TCM
64KB
16 Streams
FIFO
SDMMC1
SDMMC_D[7:0],SDMMC_D[7:3,1]Dir
SDMMC_D0dir, SDMMC_D2dir
CMD, CMDdir, CK, Ckin,
CKio as AF
FIFO
DMA1
FIFOs
8 Stream
DMA2
FIFOs
ETHER
MAC SDMMC2
FIFO
OTG_HS
FIFO
OTG_FS
FIFO
SRAM1
128 KB
8 Stream
FMC_signals
DMA DMA/ DMA/
PHY PHY
MII / RMII
MDIO
as AF
DP, DM, STP,
NXT,ULPI:CK
, D[7:0], DIR,
ID, VBUS
AHB1 (200MHz)
ADC1
DAC1_OUT, DAC2_OUT as AF
16b
AXI/AHB34 (200MHz)
JPEGWWDG1
AHB2 (200MHz)
AHB2 (200MHz)
PA..J[15:0]
HSYNC, VSYNC, PUIXCLK, D[13:0]
SAI3
MOSI, MISO, SCK, NSS as AF
MOSI, MISO, SCK, NSS as AF
smcard
irDA
32-bit AHB BUS-MATRIX
32-bit AHB BUS-MATRIX
AHB4 (200MHz)
BDMA
DMA
Mux2
Up to 20 analog inputs
common to ADC1 & 2
HSEM
AHB4 (200MHz)
AHB3
AHB4
AHB4
AHB4
AHB4
AHB4
VDDA, VSSA
NRESET
WKUP[5:0]
@VDD
RCC
Reset &
control
OSC32_IN
OSC32_OUT
VBAT = 1.2 to 3.6 V
AWU
VDD12
LS LS
OSC_IN
OSC_OUT
RTC_TS
RTC_TAMP[1:3]
RTC_OUT
RTC_REFIN
VDD = 1.62 to 3.6V
VDDUSB33 = 3.0 to 3.6V
VDDDSI = 1.8 to 3.6V
VSS
VCAP
VDDMMC33 = 1.8 to 3.6 V
VDDSMPS, VSSSMPS
VLXSMPS, VFBSMPS
@VDD
@VDD33
@VSW
PWRCTRL
AHB4 (200MHz)
SUPPLY SUPERVISION
Int
POR
reset
@VDD
LPTIM1_IN1, LPTIM1_IN2,
LPTIM1_OUT as AF
OPAMPx_VINM
OPAMPx_VINP
OPAMPx_VOUT as AF
HRTIM1_CH[A..E]x
HRTIM1_FLT[5:1],
HRTIM1_FLT[5:1]_in, SYSFLT
DFSDM1_CKOUT,
DFSDM1_DATAIN[0:7],
DFSDM1_CKIN[0:7]
2 compl. chan.(TIM15_CH1[1:2]N),
2 chan. (TIM_CH15[1:2], BKIN as AF
1 compl. chan.(TIM16_CH1N),
1 chan. (TIM16_CH1, BKIN as AF
1 compl. chan.(TIM17_CH1N),
1 chan. (TIM17_CH1, BKIN as AF
SDMMC_
D[7:0],
CMD, CK as AF
Up to 17 analog inputs
common to ADC1 and 2
SD, SCK, FS, MCLK,
PDM_DI/CK[4:1] as AF
SCL, SDA, SMBAL as AF
COMPx_INP, COMPx_INM,
COMPx_OUT as AF
LPTIM5_OUT as AF
D-
TCM
64KB
AHB/APB
Quad-SPI
Up to 1 MB
FLASH
Up to 1 MB
FLASH
512 KB AXI
SRAM
FMC
Delay block
DCMI AHB/APB
HRTIM1
DFSDM1
SD, SCK, FS, MCLK as AF
FIFO
SAI2
SD, SCK, FS, MCLK, D[3:1],
CK[2:1] as AF
FIFO
SAI1
SPI5
TIM17
TIM16
TIM15
SPI4
MOSI, MISO, SCK, NSS/
SDO, SDI, CK, WS, MCK, as AF SPI/I2S1
USART6
RX, TX, SCK, CTS, RTS as AF irDA USART1
TIM1/PWM 16b
TIM8/PWM 16b
APB2 100 MHz (max)
ADC3
GPIO PORTA.. J
GPIO PORTK
SAI4
COMP1&2
LPTIM5
LPTIM4_OUT as AF LPTIM4
LPTIM3_OUT as AF LPTIM3
I2C4
MISO, MOSI, SCK, NSS as AF SPI6
RX, TX, CK, CTS, RTS as AF LPUART1
LPTIM2
VREF
SYSCFG
EXTI WKUP
CRC
DAP
DMA
Mux1
To APB1-2
peripherals
SRAM2
128 KB
SRAM3
32 KB
ADC2
AHB/APB
TIM6 16b
TIM7 16b
SWPMI
TIM2
32b
TIM3
16b
TIM4
16b
TIM5
32b
TIM12
16b
TIM13
16b
TIM14
16b
USART2
smcard
irDA
USART3
UART4
UART5
UART7
RX, TX as AF
UART8
SPI2/I2S2
MOSI, MISO, SCK, NSS/SDO,
SDI, CK, WS, MCK, as AF
SPI3/I2S3
Digital filter
MDIOS
FIFO
10 KB SRAM
RAM
I/F
CRS
SPDIFRX1
HDMI-CEC
DAC1&2
LPTIM1
OPAMP1&2
AHB/APB
XTAL 32 kHz
RTC
Backup registers
XTAL OSC
4- 48 MHz
32 KHz LSI RC
PLL1+PLL2+PLL3
POR/PDR/BOR
PVD
smcard
LSI
HSI
CSI
RC48
LPTIM2_OUT as AF
AHB1 (200MHz)
DP, DM, ID,
VBUS
64 KB SRAM 4 KB BKP
RAM
AHB4
ARM
Cortex
M4
Arm
Cortex
M7
I-
Bus
D-
Bus
S-
Bus
D
S
I
DSI_D0_P, DSI_D0_N
DSI_D1_P, DSI_D1_N
DSI_CK_P, DSI_CK_N
PHY
ART
(instruction cache)
AHB ART (200MHz)
AHB ART(200MHz)
RNG
WWDG2
IWDG1
IWDG2
Voltage regulator
3.3 to 1.2V
SMPS step-down
converter
4 MHz CSI
48 MHz HSI48 RC
64 MHz HSI RC
APB4 100 MHz (max)
APB4 100 MHz (max)
IWDG1
IWDG2
VDDREF_ADC Tem. sensor
Description STM32H747xI/G
10/242 DS12930 Rev 1
Compatibility throughout the family
STM32H747xI/G devices are not pin-to-pin compatible with STM32H7x3 devices (single
core line):
The TFBGA240+25 ballout is compatible with STM32H7x3 devices, except for a few
I/O balls as shown in Figure 2.
LQFP208 and LQFP176 pinouts, as well as UFBGA176+25 ballout are not compatible
with STM32H7x3 devices.
Figure 2. TFBGA240+25 ball assignment differences
1. The balls highlighted in gray correspond to different signals on STM32H747xI/G and STM32H7x3 devices.
MSv48802V2
VDD
SMPS
STM32H7x7 STM32H7x3
VLX
SMPS
VSS
SMPS
VFB
SMPS
NC
PI9
PF2
NC
NC
NC
12345678910 111213 14151617
AVSS PI6 PI5 PI4 PB5 VDDLDO VCAP PK5 PG10 PG9 PD5 PD4 PC10 PA15 PI1 PI0 VSS
BVBAT VSS PI7 PE1 PB6 VSS PB4 PK4 PG11 PJ15 PD6 PD3 PC11 PA14 PI2 PH15 PH14
C
PC15-
OSC32_
OUT
PC14-
OSC32_
IN
PE2 PE0 PB7 PB3 PK6 PK3 PG12 VSS PD7 PC12 VSS PI3 PA13 VSS VDDLDO
DPE5 PE4 PE3 PB9 PB8 PG15 PK7 PG14 PG13 PJ14 PJ12 PD2 PD0 PA10 PA9 PH13 VCAP
EPI9 PC13 PI8 PE6 VDD PDR
_ON BOOT0 VDD PJ13 VDD PD1 PC8 PC9 PA8 PA12 PA11
FPI10 PI11 VDD PC7 PC6 PG8 PG7 VDD33
USB
GPF2 PF1 PF0 VDD VSS VSS VSS VSS VSS VDD PG5 PG6 VSS VDD5
USB
HPI12 PI13 PI14 PF3 VDD VSS VSS VSS VSS VSS VDD PG4 PG3 PG2 PK2
J
PH1-
OSC_
OUT
PH0-
OSC_
IN
VSS PF5 PF4 VSS VSS VSS VSS VSS VDD PK0 PK1 VSS
DSI VSSDSI
KNRST PF6 PF7 PF8 VDD VSS VSS VSS VSS VSS VDD PJ11
LVDDA PC0 PF10 PF9 VDD VSS VSS VSS VSS VSS VDD PJ10
MVREF+ PC1 PC2 PC3 VDD VDD PJ9
NVREF- PH2 PA2 PA1 PA0 PJ0 VDD VDD PE10 VDD VDD VDD PJ8 PJ7 PJ6 VSS
PVSSA PH3 PH4 PH5 PI15 PJ1 PF13 PF14 PE9 PE11 PB10 PB11 PH10 PH11 PD15 PD14
RPC2_C PC3_C PA6 VSS PA7 PB2 PF12 VSS PF15 PE12 PE15 PJ5 PH9 PH12 PD11 PD12 PD13
TPA0_C PA1_C PA5 PC4 PB1 PJ2 PF11 PG0 PE8 PE13 PH6 VSS PH8 PB12 PB15 PD10 PD9
UVSS PA3 PA4 PC5 PB0 PJ3 PJ4 PG1 PE7 PE14 VCAP VDDLDO PH7 PB13 PB14 PD8 VSS
VSSDSI
PI9
PF2
VSSDSI
DSI_CKP DSI_CKN
DSI_D0N
DSI_D1P DSI_D1N
VSS VDDCAP
DSI
PJ6
PD14 VDDDSI
PD15
PI9
PF2 VSSDSI DSI_D0P
VSS
PI9
PF2
VSS
NC NC
NC
NC NC
VSS NC
PJ6
PD14 VDD
PD15
VSS NC
DS12930 Rev 1 11/242
STM32H747xI/G Functional overview
46
3 Functional overview
3.1 Dual Arm® Cortex® cores
The dual-core MIPI-DSI STM32H747xI/G devices embed two Arm® cores, a Cortex®-M7
and a Cortex®-M4. The Cortex®-M4 offers optimal performance for real-time applications
while the Cortex®-M7 core can execute high-performance tasks in parallel.
The two cores belong to separate power domains. This allows designing gradual high-
power efficiency solutions in combination with the low-power modes already available on all
STM32 microcontrollers.
3.1.1 Arm® Cortex®-M7 with FPU
The Arm® Cortex®-M7 with double-precision FPU processor is the latest generation of Arm
processors for embedded systems. It was developed to provide a low-cost platform that
meets the needs of MCU implementation, with a reduced pin count and optimized power
consumption, while delivering outstanding computational performance and low interrupt
latency.
The Cortex®-M7 processor is a highly efficient high-performance featuring:
Six-stage dual-issue pipeline
Dynamic branch prediction
Harvard architecture with L1 caches (16 Kbytes of I-cache and 16 Kbytes of D-cache)
64-bit AXI interface
64-bit ITCM interface
2x32-bit DTCM interfaces
The following memory interfaces are supported:
Separate Instruction and Data buses (Harvard Architecture) to optimize CPU latency
Tightly Coupled Memory (TCM) interface designed for fast and deterministic SRAM
accesses
AXI Bus interface to optimize Burst transfers
Dedicated low-latency AHB-Lite peripheral bus (AHBP) to connect to peripherals.
The processor supports a set of DSP instructions which allow efficient signal processing and
complex algorithm execution.
It also supports single and double precision FPU (floating point unit) speeds up software
development by using metalanguage development tools, while avoiding saturation.
Figure 1 shows the general block diagram of the STM32H747xI/G family.
Note: Cortex®-M7 with FPU core is binary compatible with the Cortex®-M4 core.
Functional overview STM32H747xI/G
12/242 DS12930 Rev 1
3.1.2 Arm® Cortex®-M4 with FPU
The Arm® Cortex®-M4 processor is a high-performance embedded processor which
supports DSP instructions. It was developed to provide an optimized power consumption
MCU, while delivering outstanding computational performance and low interrupt latency.
The Arm® Cortex®-M4 processor is a highly efficient MCU featuring:
3-stage pipeline with branch prediction
Harvard architecture
32-bit System (S-BUS) interface
32-bit I-BUS interface
32-bit D-BUS interface
The Arm® Cortex®-M4 processor also features a dedicated hardware adaptive real-time
accelerator (ART Accelerator). This is an instruction cache memory composed of sixty-
four 256-bit lines, a 256-bit cache buffer connected to the 64-bit AXI interface and a 32-bit
interface for non-cacheable accesses.
3.2 Memory protection unit (MPU)
The devices feature two memory protection units. Each MPU manages the CPU access
rights and the attributes of the system resources. It has to be programmed and enabled
before use. Its main purposes are to prevent an untrusted user program to accidentally
corrupt data used by the OS and/or by a privileged task, but also to protect data processes
or read-protect memory regions.
The MPU defines access rules for privileged accesses and user program accesses. It
allows defining up to 16 protected regions that can in turn be divided into up to 8
independent subregions, where region address, size, and attributes can be configured. The
protection area ranges from 32 bytes to 4 Gbytes of addressable memory.
When an unauthorized access is performed, a memory management exception is
generated.
DS12930 Rev 1 13/242
STM32H747xI/G Functional overview
46
3.3 Memories
3.3.1 Embedded Flash memory
The STM32H747xI/G devices embed up to 2 Mbytes of Flash memory that can be used for
storing programs and data.
The Flash memory is organized as 266-bit Flash words memory that can be used for storing
both code and data constants. Each word consists of:
One Flash word (8 words, 32 bytes or 256 bits)
10 ECC bits.
The Flash memory is divided into two independent banks. Each bank is organized as
follows:
A user Flash memory block of 512 Kbytes (STM32H7xxxG) or 1-Mbyte (STM32H7xxxI)
containing eight user sectors of 128 Kbytes (4 K Flash memory words)
128 Kbytes of System Flash memory from which the device can boot
2 Kbytes (64 Flash words) of user option bytes for user configuration
3.3.2 Embedded SRAM
All devices feature around 1 Mbyte of RAM with hardware ECC. The RAM is divided as
follows:
512 Kbytes of AXI-SRAM mapped onto AXI bus on D1 domain.
SRAM1 mapped on D2 domain: 128 Kbytes
SRAM2 mapped on D2 domain: 128 Kbytes
SRAM3 mapped on D2 domain: 32 Kbytes
SRAM4 mapped on D3 domain: 64 Kbytes
4 Kbytes of backup SRAM
The content of this area is protected against possible unwanted write accesses,
and is retained in Standby or VBAT mode.
RAM mapped to TCM interface (ITCM and DTCM):
Both ITCM and DTCM RAMs are 0 wait state memories. They can be accessed either
from the Arm® Cortex®-M7 CPU or the MDMA (even in Sleep mode) through a specific
AHB slave of the Cortex®-M7(AHBS):
64 Kbytes of ITCM-RAM (instruction RAM)
This RAM is connected to ITCM 64-bit interface designed for execution of critical
real-times routines by the Cortex®-M7.
128 Kbytes of DTCM-RAM (2x 64-Kbyte DTCM-RAMs on 2x32-bit DTCM ports)
The DTCM-RAM could be used for critical real-time data, such as interrupt service
routines or stack/heap memory. Both DTCM-RAMs can be used in parallel (for
load/store operations) thanks to the Cortex®-M7 dual issue capability.
The MDMA can be used to load code or data in ITCM or DTCM RAMs.
Functional overview STM32H747xI/G
14/242 DS12930 Rev 1
Error code correction (ECC)
Over the product lifetime, and/or due to external events such as radiations, invalid bits in
memories may occur. They can be detected and corrected by ECC. This is an expected
behavior that has to be managed at final-application software level in order to ensure data
integrity through ECC algorithms implementation.
SRAM data are protected by ECC:
7 ECC bits are added per 32-bit word.
8 ECC bits are added per 64-bit word for AXI-SRAM and ITCM-RAM.
The ECC mechanism is based on the SECDED algorithm. It supports single-error correction
and double-error detection.
3.3.3 ART accelerator
The ART (adaptive real-time) accelerator block speeds up instruction fetch accesses of
the Cortex®-M4 core from D1-domain internal memories (Flash memory bank 1, Flash
memory bank 2, AXI SRAM) and from D1-domain external memories attached via Quad-
SPI controller and Flexible memory controller (FMC).
The ART accelerator is a 256-bit cache line using 64-bit WRAP4 accesses from the 64-bit
AXI D1 domain. The acceleration is achieved by loading selected code into an embedded
cache and making it instantly available to Cortex®-M4 core, thus avoiding latency due to
memory wait states.
Figure 3. shows the block schematic and the environment of the ART accelerator.
DS12930 Rev 1 15/242
STM32H747xI/G Functional overview
46
Figure 3. ART accelerator schematic and environment
3.4 Boot modes
By default, the boot codes are executed simultaneously by both cores. However, by
programming the appropriate Flash user option byte, it is possible to boot from one core
while clock-gating the other core.
At startup, the boot memory space is selected by the BOOT pin and BOOT_ADDx option
bytes, allowing to program any boot memory address from 0x0000 0000 to 0x3FFF FFFF
which includes:
All Flash address space
Flash memory and SRAMs (except for ITCM /DTCM RAMs which cannot be accessed
by the Cortex®-M4 core)
MSv39757V2
64-bit AXI bus matrix
Flash bank 1
Flash bank 2
AXI SRAM
QSPI
FMC
AHB from D2 domain
32-bit bus
64-bit bus
Bus multiplexer
Legend
Master interface
Slave interface
AXI AHB
ART accelerator
AHB switch
Non-cacheable
access path
Cacheable
access path
AXI access
AHB access
D1 domain
Control
control
Cache memory
64 x 256-bit
Cache memory
64 x 256-bit
Cache buffer
1 x 256-bit
Cache
non-
cacheable
access
Detect of
write to cacheable page instruction
fetch
cache
hit
cache
miss
cache
refill
Cache
manager
Functional overview STM32H747xI/G
16/242 DS12930 Rev 1
The bootloader is located in non-user System memory. It is used to reprogram the Flash
memory through a serial interface (USART, I2C, SPI, USB-DFU). Refer to STM32
microcontroller System memory Boot mode application note (AN2606) for details.
3.5 Power supply management
3.5.1 Power supply scheme
STM32H747xI/G power supply voltages are the following:
VDD = 1.62 to 3.6 V: external power supply for I/Os, provided externally through VDD
pins.
VDDLDO = 1.62 to 3.6 V: supply voltage for the internal regulator supplying VCORE
VDDA = 1.62 to 3.6 V: external analog power supplies for ADC, DAC, COMP and
OPAMP.
VDD33USB and VDD50USB:
VDD50USB can be supplied through the USB cable to generate the VDD33USB via the
USB internal regulator. This allows supporting a VDD supply different from 3.3 V.
The USB regulator can be bypassed to supply directly VDD33USB if VDD = 3.3 V.
VBAT = 1.2 to 3.6 V: power supply for the VSW domain when VDD is not present.
VCAP: VCORE supply voltage, which values depend on voltage scaling (1.0 V, 1.1 V,
1.2 V or 1.35 V). They are configured through VOS bits in PWR_D3CR register and
ODEN bit in the SYSCFG_PWRCR register. The VCORE domain is split into the
following power domains that can be independently switch off.
D1 domain containing some peripherals and the Cortex®-M7 core.
D2 domain containing a large part of the peripherals and the Cortex®-M4 core.
D3 domain containing some peripherals and the system control.
VDDSMPS= 1.62 V to 3.6 V: SMPS step-down converter power supply
VDDSMPS must be kept at the same voltage level as VDD.
VLXSMPS = SMPS step-down converter output coupled to an inductor.
VFBSMPS = VCORE, 1.8 V or 2.5 V external SMPS step-down converter feedback
voltage sense input.
VDDDSI = 1.62 to 3.6 V: supply voltage for the DSI internal regulator
VDD12DSI = 1.15 to 1.3 V: optional supply voltage for the DSI PHY (DSI regulator off)
VCAPDSI: DSI regulator supply output
During power-up and power-down phases, the following power sequence requirements
must be respected (see Figure 4):
When VDD is below 1 V, other power supplies (VDDA, VDD33USB, VDD50USB, VDDDSI)
must remain below VDD + 300 mV.
When VDD is above 1 V, all power supplies are independent (except for VDDSMPS,
which must remain at the same level as VDD).
During the power-down phase, VDD can temporarily become lower than other supplies only
if the energy provided to the microcontroller remains below 1 mJ. This allows external
decoupling capacitors to be discharged with different time constants during the power-down
transient phase.
DS12930 Rev 1 17/242
STM32H747xI/G Functional overview
46
Figure 4. Power-up/power-down sequence
1. VDDx refers to any power supply among VDDA, VDD33USB, VDD50USB and VDDDSI.
2. VDD and VDDSMPS must be wired together into order to follow the same voltage sequence.
3.5.2 Power supply supervisor
The devices have an integrated power-on reset (POR)/ power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry:
Power-on reset (POR)
The POR supervisor monitors VDD power supply and compares it to a fixed threshold.
The devices remain in Reset mode when VDD is below this threshold,
Power-down reset (PDR)
The PDR supervisor monitors VDD power supply. A reset is generated when VDD drops
below a fixed threshold.
The PDR supervisor can be enabled/disabled through PDR_ON pin.
Brownout reset (BOR)
The BOR supervisor monitors VDD power supply. Three BOR thresholds (from 2.1 to
2.7 V) can be configured through option bytes. A reset is generated when VDD drops
below this threshold.
MSv47490V1
0.3
1
VBOR0
3.6
Operating modePower-on Power-down time
V
VDDX(1)
VDD
Invalid supply area VDDX < VDD + 300 mV VDDX independent from VDD
Functional overview STM32H747xI/G
18/242 DS12930 Rev 1
3.5.3 Voltage regulator (SMPS step-down converter and LDO)
The same voltage regulator supplies the 3 power domains (D1, D2 and D3). D1 and D2 can
be independently switched off.
Voltage regulator output can be adjusted according to application needs through 6 power
supply levels:
Run mode (VOS0 to VOS3)
Scale 0: boosted performance (available only with LDO regulator)
Scale 1: high performance
Scale 2: medium performance and consumption
Scale 3: optimized performance and low-power consumption
Note: For STM32H7x7xIT3 sales types (industrial temperature range) the voltage regulator output
can be set only to VOS2 or VOS3 in Run mode (VOS1 is not available for industrial
temperature range).
Stop mode (SVOS3 to SVOS5)
Scale 3: peripheral with wakeup from Stop mode capabilities (UART, SPI, I2C,
LPTIM) are operational
Scale 4 and 5 where the peripheral with wakeup from Stop mode is disabled
The peripheral functionality is disabled but wakeup from Stop mode is possible
through GPIO or asynchronous interrupt.
3.5.4 SMPS step-down converter
The built-in SMPS step-down converter is a highly power-efficient DC/DC non-linear
switching regulator that provides lower power consumption than a conventional voltage
regulator (LDO).
DS12930 Rev 1 19/242
STM32H747xI/G Functional overview
46
The SMPS step-down converter can be used for the following purposes:
Direct supply of the VCORE domain
the SMPS step-down converter operating modes follow the device system
operating modes (Run, Stop, Standby).
the SMPS step-down converter output voltage are set according to the selected
VOS and SVOS bits (voltage scaling)
Delivery of an intermediate voltage level to supply the internal voltage regulator (LDO)
SMPS step-down converter operating modes
When the SDEXTHP bit is equal to 0 in the PWR_CR3 register, the SMPS step-
down converter follows the device system operating modes (Run, Stop and
Standby).
When the SDEXTHP bit is equal to 1 in PWR_CR3, the SMPS step-down
converter is forced to High-performance mode and does not follow the device
system operating modes (Run, Stop and Standby).
The SMPS step-down converter output equals 1.8 V or 2.5 V according to the
selected SD level
Delivery of an external supply
The SMPS step-down converter is forced to High-performance mode (provided
SDEXTHP bit is equal to 1 in PWR_CR3)
The SMPS step-down converter output equals 1.8 V or 2.5 V according to the
selected SD level
3.6 Low-power strategy
There are several ways to reduce power consumption on STM32H747xI/G:
Select the SMPS step-down converter as VCORE supply voltage source, as it allows to
enhance power efficiency.
Select the adequate voltage scaling
Decrease the dynamic power consumption by slowing down the system clocks even in
Run mode, and by individually clock gating the peripherals that are not used.
Save power consumption when one or both CPUs are idle, by selecting among the
available low-power mode according to the user application needs. This allows
achieving the best compromise between short startup time, low-power consumption, as
well as available wakeup sources.
The devices feature several low-power modes:
CSleep (CPU clock stopped)
CStop (CPU sub-system clock stopped)
DStop (Domain bus matrix clock stopped)
Stop (System clock stopped)
DStandby (Domain powered down)
Standby (System powered down)
CSleep and CStop low-power modes are entered by the MCU when executing the WFI
(Wait for Interrupt) or WFE (Wait for Event) instructions, or when the SLEEPONEXIT bit of
the Cortex®-Mx core is set after returning from an interrupt service routine.
Functional overview STM32H747xI/G
20/242 DS12930 Rev 1
A domain can enter low-power mode (DStop or DStandby) when the processor, its
subsystem and the peripherals allocated in the domain enter low-power mode. For instance
D1 or D2 domain enters DStop/DStandby mode when the CPU of the domain is in CStop
mode AND the other CPU has no peripheral allocated in that domain, or if it is in CStop
mode too. D3 domain can enter DStop/DStandby mode if both core subsystems do not have
active peripherals in D3 domain, and D3 is not forced in Run mode.
If part of the domain is not in low-power mode, the domain remains in the current mode.
Finally the system can enter Stop or Standby when all EXTI wakeup sources are cleared
and the power domains are in DStop or DStandby mode.
The clock system can be re-initialize by a master CPU (either the Cortex®-M4 or -M7) after
exiting Stop mode while the slave CPU is held in low-power mode. Once the master CPU
has re-initialized the system, the slave CPU can receive a wakeup interrupt and proceed
with the interrupt service routine.
3.7 Reset and clock controller (RCC)
The clock and reset controller is located in D3 domain. The RCC manages the generation of
all the clocks, as well as the clock gating and the control of the system and peripheral
resets. It provides a high flexibility in the choice of clock sources and allows to apply clock
ratios to improve the power consumption. In addition, on some communication peripherals
that are capable to work with two different clock domains (either a bus interface clock or a
kernel peripheral clock), the system frequency can be changed without modifying the
baudrate.
3.7.1 Clock management
The devices embed four internal oscillators, two oscillators with external crystal or
resonator, two internal oscillators with fast startup time and three PLLs.
The RCC receives the following clock source inputs:
Internal oscillators:
64 MHz HSI clock
48 MHz RC oscillator
4 MHz CSI clock
32 kHz LSI clock
External oscillators:
HSE clock: 4-50 MHz (generated from an external source) or 4-48 MHz(generated
from a crystal/ceramic resonator)
LSE clock: 32.768 kHz
Table 2. System vs domain low-power mode
System power mode D1 domain power
mode
D2 domain power
mode
D3 domain power
mode
Run DRun/DStop/DStandby DRun/DStop/DStandby DRun
Stop DStop/DStandby DStop/DStandby DStop
Standby DStandby DStandby DStandby
DS12930 Rev 1 21/242
STM32H747xI/G Functional overview
46
The RCC provides three PLLs: one for system clock, two for kernel clocks.
The system starts on the HSI clock. The user application can then select the clock
configuration.
3.7.2 System reset sources
Power-on reset initializes all registers while system reset reinitializes the system except for
the debug, part of the RCC and power controller status registers, as well as the backup
power domain.
A system reset is generated in the following cases:
Power-on reset (pwr_por_rst)
Brownout reset
Low level on NRST pin (external reset)
Independent watchdog 1 (from D1 domain)
Independent watchdog 2 (from D2 domain)
Window watchdog 1 (from D1 domain)
Window watchdog 2 (from D2 domain)
Software reset
Low-power mode security reset
Exit from Standby
3.8 General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current-capable and have speed selection to better
manage internal noise, power consumption and electromagnetic emission.
After reset, all GPIOs (except debug pins) are in Analog mode to reduce power
consumption (refer to GPIOs register reset values in the device reference manual).
The I/O configuration can be locked if needed by following a specific sequence in order to
avoid spurious writing to the I/Os registers.
3.9 Bus-interconnect matrix
The devices feature an AXI bus matrix, two AHB bus matrices and bus bridges that allow
interconnecting bus masters with bus slaves (see Figure 5).
Functional overview STM32H747xI/G
22/242 DS12930 Rev 1
Figure 5. STM32H747xI/G bus matrix
DS12930 Rev 1 23/242
STM32H747xI/G Functional overview
46
3.10 DMA controllers
The devices feature four DMA instances to unload CPU activity:
A master direct memory access (MDMA)
The MDMA is a high-speed DMA controller, which is in charge of all types of memory
transfers (peripheral to memory, memory to memory, memory to peripheral), without
any CPU action. It features a master AXI interface and a dedicated AHB interface to
access Cortex®-M7 TCM memories.
The MDMA is located in D1 domain. It is able to interface with the other DMA
controllers located in D2 domain to extend the standard DMA capabilities, or can
manage peripheral DMA requests directly.
Each of the 16 channels can perform single block transfers, repeated block transfers
and linked list transfers.
Two dual-port DMAs (DMA1, DMA2) located in D2 domain, with FIFO and request
router capabilities.
One basic DMA (BDMA) located in D3 domain, with request router capabilities.
The DMA request router could be considered as an extension of the DMA controller. It
routes the DMA peripheral requests to the DMA controller itself. This allowing managing the
DMA requests with a high flexibility, maximizing the number of DMA requests that run
concurrently, as well as generating DMA requests from peripheral output trigger or DMA
event.
3.11 Chrom-ART Accelerator™ (DMA2D)
The Chrom-Art Accelerator™ (DMA2D) is a graphical accelerator which offers advanced bit
blitting, row data copy and pixel format conversion. It supports the following functions:
Rectangle filling with a fixed color
Rectangle copy
Rectangle copy with pixel format conversion
Rectangle composition with blending and pixel format conversion
Various image format coding are supported, from indirect 4bpp color mode up to 32bpp
direct color. It embeds dedicated memory to store color lookup tables. The DMA2D also
supports block based YCbCr to handle JPEG decoder output.
An interrupt can be generated when an operation is complete or at a programmed
watermark.
All the operations are fully automatized and are running independently from the CPU or the
DMAs.
Functional overview STM32H747xI/G
24/242 DS12930 Rev 1
3.12 Nested vectored interrupt controller (NVIC)
Both Cortex®-M7 (CPU1) and Cortex®-M4 (CPU2) cores have their own nested vector
interrupt controller (respectively NVIC1 and NVIC2). Each NVIC instance is able to manage
16 priority levels, and handle up to 150 maskable interrupt channels plus the 16 interrupt
lines of the Cortex®-M7 with FPU core.
Closely coupled NVIC gives low-latency interrupt processing
Interrupt entry vector table address passed directly to the core
Allows early processing of interrupts
Processing of late arriving, higher-priority interrupts
Support tail chaining
Processor context automatically saved on interrupt entry, and restored on interrupt exit
with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
3.13 Extended interrupt and event controller (EXTI)
The EXTI controller performs interrupt and event management. In addition, it can wake up
the processors, power domains and/or D3 domain from Stop mode.
The EXTI handles up to 89 independent event/interrupt lines split as 28 configurable events
and 61 direct events (including two interrupt lines for inter-core management).
Configurable events have dedicated pending flags, active edge selection, and software
trigger capable.
Direct events provide interrupts or events from peripherals having a status flag.
3.14 Cyclic redundancy check calculation unit (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
programmable polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at link-
time and stored at a given memory location.
DS12930 Rev 1 25/242
STM32H747xI/G Functional overview
46
3.15 Flexible memory controller (FMC)
The FMC controller main features are the following:
Interface with static-memory mapped devices including:
Static random access memory (SRAM)
NOR Flash memory/OneNAND Flash memory
PSRAM (4 memory banks)
NAND Flash memory with ECC hardware to check up to 8 Kbytes of data
Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories
8-,16-,32-bit data bus width
Independent Chip Select control for each memory bank
Independent configuration for each memory bank
Write FIFO
Read FIFO for SDRAM controller
The maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is the
FMC kernel clock divided by 2.
3.16 Quad-SPI memory interface (QUADSPI)
All devices embed a Quad-SPI memory interface, which is a specialized communication
interface targeting Single, Dual or Quad-SPI Flash memories. It supports both single and
double datarate operations.
It can operate in any of the following modes:
Direct mode through registers
External Flash status register polling mode
Memory mapped mode.
Up to 256 Mbytes of external Flash memory can be mapped, and 8-, 16- and 32-bit data
accesses are supported as well as code execution.
The opcode and the frame format are fully programmable.
3.17 Analog-to-digital converters (ADCs)
The STM32H747xI/G devices embed three analog-to-digital converters, which resolution
can be configured to 16, 14, 12, 10 or 8 bits.
Each ADC shares up to 20 external channels, performing conversions in the Single-shot or
Scan mode. In Scan mode, automatic conversion is performed on a selected group of
analog inputs.
Additional logic functions embedded in the ADC interface allow:
Simultaneous sample and hold
Interleaved sample and hold
The ADC can be served by the DMA controller, thus allowing to automatically transfer ADC
converted values to a destination location without any software action.
Functional overview STM32H747xI/G
26/242 DS12930 Rev 1
In addition, an analog watchdog feature can accurately monitor the converted voltage of
one, some or all selected channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,
TIM2, TIM3, TIM4, TIM6, TIM8, TIM15, HRTIM1 and LPTIM1 timer.
3.18 Temperature sensor
STM32H747xI/G devices embed a temperature sensor that generates a voltage (VTS) that
varies linearly with the temperature. This temperature sensor is internally connected to
ADC3_IN18. The conversion range is between 1.7 V and 3.6 V. It can measure the device
junction temperature ranging from 40 up to +125 °C.
The temperature sensor have a good linearity, but it has to be calibrated to obtain a good
overall accuracy of the temperature measurement. As the temperature sensor offset varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only. To improve the accuracy of
the temperature sensor measurement, each device is individually factory-calibrated by ST.
The temperature sensor factory calibration data are stored by ST in the System memory
area, which is accessible in Read-only mode.
3.19 VBAT operation
The VBAT power domain contains the RTC, the backup registers and the backup SRAM.
To optimize battery duration, this power domain is supplied by VDD when available or by the
voltage applied on VBAT pin (when VDD supply is not present). VBAT power is switched
when the PDR detects that VDD dropped below the PDR level.
The voltage on the VBAT pin could be provided by an external battery, a supercapacitor or
directly by VDD, in which case, the VBAT mode is not functional.
VBAT operation is activated when VDD is not present.
The VBAT pin supplies the RTC, the backup registers and the backup SRAM.
Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation.
When PDR_ON pin is connected to VSS (Internal Reset OFF), the VBAT functionality is no
more available and VBAT pin should be connected to VDD.
DS12930 Rev 1 27/242
STM32H747xI/G Functional overview
46
3.20 Digital-to-analog converters (DAC)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two
analog voltage signal outputs.
This dual digital Interface supports the following features:
two DAC converters: one for each output channel
8-bit or 12-bit monotonic output
left or right data alignment in 12-bit mode
synchronized update capability
noise-wave generation
triangular-wave generation
dual DAC channel independent or simultaneous conversions
DMA capability for each channel including DMA underrun error detection
external triggers for conversion
input voltage reference VREF+ or internal VREFBUF reference.
The DAC channels are triggered through the timer update outputs that are also connected
to different DMA streams.
3.21 Ultra-low-power comparators (COMP)
STM32H747xI/G devices embed two rail-to-rail comparators (COMP1 and COMP2). They
feature programmable reference voltage (internal or external), hysteresis and speed (low
speed for low-power) as well as selectable output polarity.
The reference voltage can be one of the following:
An external I/O
A DAC output channel
An internal reference voltage or submultiple (1/4, 1/2, 3/4).
All comparators can wake up from Stop mode, generate interrupts and breaks for the timers,
and be combined into a window comparator.
3.22 Operational amplifiers (OPAMP)
STM32H747xI/G devices embed two rail-to-rail operational amplifiers (OPAMP1 and
OPAMP2) with external or internal follower routing and PGA capability.
The operational amplifier main features are:
PGA with a non-inverting gain ranging of 2, 4, 8 or 16 or inverting gain ranging of -1, -3,
-7 or -15
One positive input connected to DAC
Output connected to internal ADC
Low input bias current down to 1 nA
Low input offset voltage down to 1.5 mV
Gain bandwidth up to 7.3 MHz
Functional overview STM32H747xI/G
28/242 DS12930 Rev 1
The devices embeds two operational amplifiers (OPAMP1 and OPAMP2) with two inputs
and one output each. These three I/Os can be connected to the external pins, thus enabling
any type of external interconnections. The operational amplifiers can be configured
internally as a follower, as an amplifier with a non-inverting gain ranging from 2 to 16 or with
inverting gain ranging from -1 to -15.
3.23 Digital filter for sigma-delta modulators (DFSDM)
The devices embed one DFSDM with 4 digital filters modules and 8 external input serial
channels (transceivers) or alternately 8 internal parallel inputs support.
The DFSDM peripheral is dedicated to interface the external  modulators to
microcontroller and then to perform digital filtering of the received data streams (which
represent analog value on  modulators inputs). DFSDM can also interface PDM (Pulse
Density Modulation) microphones and perform PDM to PCM conversion and filtering in
hardware. DFSDM features optional parallel data stream inputs from internal ADC
peripherals or microcontroller memory (through DMA/CPU transfers into DFSDM).
DFSDM transceivers support several serial interface formats (to support various 
modulators). DFSDM digital filter modules perform digital processing according user
selected filter parameters with up to 24-bit final ADC resolution.
The DFSDM peripheral supports:
8 multiplexed input digital serial channels:
configurable SPI interface to connect various SD modulator(s)
configurable Manchester coded 1 wire interface support
PDM (Pulse Density Modulation) microphone input support
maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding)
clock output for SD modulator(s): 0..20 MHz
alternative inputs from 8 internal digital parallel channels (up to 16 bit input resolution):
internal sources: ADC data or memory data streams (DMA)
4 digital filter modules with adjustable digital signal processing:
–Sinc
x filter: filter order/type (1..5), oversampling ratio (up to 1..1024)
integrator: oversampling ratio (1..256)
up to 24-bit output data resolution, signed output data format
automatic data offset correction (offset stored in register by user)
continuous or single conversion
start-of-conversion triggered by:
software trigger
internal timers
external events
start-of-conversion synchronously with first digital filter module (DFSDM0)
analog watchdog feature:
low value and high value data threshold registers
dedicated configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32)
input from final output data or from selected input digital serial channels
continuous monitoring independently from standard conversion
DS12930 Rev 1 29/242
STM32H747xI/G Functional overview
46
short circuit detector to detect saturated analog input values (bottom and top range):
up to 8-bit counter to detect 1..256 consecutive 0’s or 1’s on serial data stream
monitoring continuously each input serial channel
break signal generation on analog watchdog event or on short circuit detector event
extremes detector:
storage of minimum and maximum values of final conversion data
refreshed by software
DMA capability to read the final conversion data
interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial
channel clock absence
“regular” or “injected” conversions:
“regular” conversions can be requested at any time or even in Continuous mode
without having any impact on the timing of “injected” conversions
“injected” conversions for precise timing and with high conversion priority
3.24 Digital camera interface (DCMI)
The devices embed a camera interface that can connect with camera modules and CMOS
sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera
interface can achieve a data transfer rate up to 140 Mbyte/s using a 80 MHz pixel clock. It
features:
Programmable polarity for the input pixel clock and synchronization signals
Parallel data communication can be 8-, 10-, 12- or 14-bit
Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2
progressive video, RGB 565 progressive video or compressed data (like JPEG)
Supports Continuous mode or Snapshot (a single frame) mode
Capability to automatically crop the image
Table 3. DFSDM implementation
DFSDM features DFSDM1
Number of filters 4
Number of input
transceivers/channels 8
Internal ADC parallel input X
Number of external triggers 16
Regular channel information in
identification register X
Functional overview STM32H747xI/G
30/242 DS12930 Rev 1
3.25 LCD-TFT controller
The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue)
and delivers all signals to interface directly to a broad range of LCD and TFT panels up to
XGA (1024x768) resolution with the following features:
2 display layers with dedicated FIFO (64x64-bit)
Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer
Up to 8 input color formats selectable per layer
Flexible blending between two layers using alpha value (per pixel or constant)
Flexible programmable parameters for each layer
Color keying (transparency color)
Up to 4 programmable interrupt events
AXI master interface with burst of 16 words
3.26 DSI Host (DSI)
The DSI Host is a dedicated peripheral for interfacing with MIPI® DSI compliant displays. It
includes a dedicated video interface internally connected to the LTDC, a generic APB
interface that can be used to transmit information to the display, and Video mode pattern
generator:
LTDC interface
It is used to transmit information in Video mode, in which the transfers from the host
processor to the peripheral take the form of a real-time pixel stream (DPI).
This interface can also be used to transmit information in full bandwidth in the Adapted
Command mode (DBI).
APB slave interface
The APB slave interface allows transmitting generic information in Command mode
though a proprietary register interface. It can operate concurrently with the LTDC
interface either in Video or Adapted Command mode.
The Video mode pattern generator allows transmitting horizontal/vertical color bar and
D-PHY BER testing pattern without any kind of stimuli.
The DSI Host main features are the following:
Compliance with MIPI® Alliance standards
Interface with MIPI® D-PHY
Support for all commands defined in the MIPI® Alliance specification for DCS:
Transmission of all Command mode packets through the APB interface
Transmission of commands in low-power and high-speed during Video mode
Support for up to two D-PHY data lanes
Bidirectional communication and Escape mode support through data lane 0
Support for non-continuous clock in D-PHY clock lane for additional power saving
Support for Ultra Low-Power mode with PLL disabled
ECC and Checksum capabilities
Support for End of Transmission Packet (EoTp)
Fault recovery schemes
DS12930 Rev 1 31/242
STM32H747xI/G Functional overview
46
3D transmission support
Configurable selection of system interfaces
AMBA APB for control and optional support for Generic and DCS commands
Video mode interface through LTDC
Adapted Command mode interface through LTDC
Independently programmable Virtual Channel ID in Video, Adapted Command or
APB Slave mode
Video mode interfaces features
LTDC interface color coding mappings into 24-bit interface:
16-bit RGB, configurations 1, 2, and 3
18-bit RGB, configurations 1 and 2
24-bit RGB
Programmable polarity of all LTDC interface signals
Extended resolutions beyond the DPI standard maximum resolution of 800x480
pixels; the maximum resolution is limited by the available DSI physical link
bandwidth:
Number of lanes: 2
Maximum speed per lane: 1 Gbps
Adapted interface features
Support for sending large amounts of data through the memory_write_start (WMS)
and memory_write_continue (WMC) DCS commands
LTDC interface color coding mappings into 24-bit interface:
16-bit RGB, configurations 1, 2, and 3
18-bit RGB, configurations 1 and 2
24-bit RGB
Video mode pattern generator
Vertical and horizontal color bar generation without LTDC stimuli
BER pattern without LTDC stimuli
3.27 JPEG Codec (JPEG)
The JPEG Codec can encode and decode a JPEG stream as defined in the ISO/IEC 10918-
1 specification. It provides an fast and simple hardware compressor and decompressor of
JPEG images with full management of JPEG headers.
Functional overview STM32H747xI/G
32/242 DS12930 Rev 1
The JPEG codec main features are as follows:
8-bit/channel pixel depths
Single clock per pixel encoding and decoding
Support for JPEG header generation and parsing
Up to four programmable quantization tables
Fully programmable Huffman tables (two AC and two DC)
Fully programmable minimum coded unit (MCU)
Encode/decode support (non simultaneous)
Single clock Huffman coding and decoding
Two-channel interface: Pixel/Compress In, Pixel/Compressed Out
Support for single greyscale component
Ability to enable/disable header processing
Fully synchronous design
Configuration for High-speed decode mode
3.28 Random number generator (RNG)
All devices embed an RNG that delivers 32-bit random numbers generated by an integrated
analog circuit.
3.29 Timers and watchdogs
The devices include one high-resolution timer, two advanced-control timers, ten general-
purpose timers, two basic timers, five low-power timers, two watchdogs and a SysTick timer.
All timer counters can be frozen in Debug mode.
Table 4 compares the features of the advanced-control, general-purpose and basic timers.
Table 4. Timer feature comparison
Timer
type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Comple-
mentary
output
Max
interface
clock
(MHz)
Max
timer
clock
(MHz)
(1)
High-
resolution
timer
HRTIM1 16-bit Up
/1 /2 /4
(x2 x4 x8
x16 x32,
with DLL)
Yes 10 Yes 480 480
Advanced
-control
TIM1,
TIM8 16-bit
Up,
Down,
Up/down
Any
integer
between 1
and
65536
Yes 4 Yes 120 240
DS12930 Rev 1 33/242
STM32H747xI/G Functional overview
46
General
purpose
TIM2,
TIM5 32-bit
Up,
Down,
Up/down
Any
integer
between 1
and
65536
Yes 4 No 120 240
TIM3,
TIM4 16-bit
Up,
Down,
Up/down
Any
integer
between 1
and
65536
Yes 4 No 120 240
TIM12 16-bit Up
Any
integer
between 1
and
65536
No 2 No 120 240
TIM13,
TIM14 16-bit Up
Any
integer
between 1
and
65536
No 1 No 120 240
TIM15 16-bit Up
Any
integer
between 1
and
65536
Yes 2 1 120 240
TIM16,
TIM17 16-bit Up
Any
integer
between 1
and
65536
Yes 1 1 120 240
Basic TIM6,
TIM7 16-bit Up
Any
integer
between 1
and
65536
Yes 0 No 120 240
Low-
power
timer
LPTIM1,
LPTIM2,
LPTIM3,
LPTIM4,
LPTIM5
16-bit Up
1, 2, 4, 8,
16, 32, 64,
128
No 0 No 120 240
1. The maximum timer clock is up to 480 MHz depending on TIMPRE bit in the RCC_CFGR register and D2PRE1/2 bits in
RCC_D2CFGR register.
Table 4. Timer feature comparison (continued)
Timer
type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Comple-
mentary
output
Max
interface
clock
(MHz)
Max
timer
clock
(MHz)
(1)
Functional overview STM32H747xI/G
34/242 DS12930 Rev 1
3.29.1 High-resolution timer (HRTIM1)
The high-resolution timer (HRTIM1) allows generating digital signals with high-accuracy
timings, such as PWM or phase-shifted pulses.
It consists of 6 timers, 1 master and 5 slaves, totaling 10 high-resolution outputs, which can
be coupled by pairs for deadtime insertion. It also features 5 fault inputs for protection
purposes and 10 inputs to handle external events such as current limitation, zero voltage or
zero current switching.
The HRTIM1 timer is made of a digital kernel clocked at 480 MHz The high-resolution is
available on the 10 outputs in all operating modes: variable duty cycle, variable frequency,
and constant ON time.
The slave timers can be combined to control multiswitch complex converters or operate
independently to manage multiple independent converters.
The waveforms are defined by a combination of user-defined timings and external events
such as analog or digital feedbacks signals.
HRTIM1 timer includes options for blanking and filtering out spurious events or faults. It also
offers specific modes and features to offload the CPU: DMA requests, Burst mode
controller, Push-pull and Resonant mode.
It supports many topologies including LLC, Full bridge phase shifted, buck or boost
converters, either in voltage or current mode, as well as lighting application (fluorescent or
LED). It can also be used as a general purpose timer, for instance to achieve high-resolution
PWM-emulated DAC.
DS12930 Rev 1 35/242
STM32H747xI/G Functional overview
46
3.29.2 Advanced-control timers (TIM1, TIM8)
The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators
multiplexed on 6 channels. They have complementary PWM outputs with programmable
inserted dead times. They can also be considered as complete general-purpose timers.
Their 4 independent channels can be used for:
Input capture
Output compare
PWM generation (Edge- or Center-aligned modes)
One-pulse mode output
If configured as standard 16-bit timers, they have the same features as the general-purpose
TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-
100%).
The advanced-control timer can work together with the TIMx timers via the Timer Link
feature for synchronization or event chaining.
TIM1 and TIM8 support independent DMA request generation.
3.29.3 General-purpose timers (TIMx)
There are ten synchronizable general-purpose timers embedded in the STM32H747xI/G
devices (see Table 4 for differences).
TIM2, TIM3, TIM4, TIM5
The devices include 4 full-featured general-purpose timers: TIM2, TIM3, TIM4 and
TIM5. TIM2 and TIM5 are based on a 32-bit auto-reload up/downcounter and a 16-bit
prescaler while TIM3 and TIM4 are based on a 16-bit auto-reload up/downcounter and
a 16-bit prescaler. All timers feature 4 independent channels for input capture/output
compare, PWM or One-pulse mode output. This gives up to 16 input capture/output
compare/PWMs on the largest packages.
TIM2, TIM3, TIM4 and TIM5 general-purpose timers can work together, or with the
other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the
Timer Link feature for synchronization or event chaining.
Any of these general-purpose timers can be used to generate PWM outputs.
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are
capable of handling quadrature (incremental) encoder signals and the digital outputs
from 1 to 4 hall-effect sensors.
TIM12, TIM13, TIM14, TIM15, TIM16, TIM17
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM13, TIM14, TIM16 and TIM17 feature one independent channel, whereas TIM12
and TIM15 have two independent channels for input capture/output compare, PWM or
One-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5
full-featured general-purpose timers or used as simple timebases.
Functional overview STM32H747xI/G
36/242 DS12930 Rev 1
3.29.4 Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger and waveform generation. They can also be
used as a generic 16-bit time base.
TIM6 and TIM7 support independent DMA request generation.
3.29.5 Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5)
The low-power timers have an independent clock and is running also in Stop mode if it is
clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode.
This low-power timer supports the following features:
16-bit up counter with 16-bit autoreload register
16-bit compare register
Configurable output: pulse, PWM
Continuous / One-shot mode
Selectable software / hardware input trigger
Selectable clock source:
Internal clock source: LSE, LSI, HSI or APB clock
External clock source over LPTIM input (working even with no internal clock source
running, used by the Pulse Counter Application)
Programmable digital glitch filter
Encoder mode
3.29.6 Independent watchdogs
There are two independent watchdogs, one per domain. Each independent watchdog is
based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32
kHz internal RC and as it operates independently from the main clock, it can operate in Stop
and Standby modes. It can be used either as a watchdog to reset the device when a
problem occurs, or as a free-running timer for application timeout management. It is
hardware- or software-configurable through the option bytes.
3.29.7 Window watchdogs
There are two window watchdogs, one per domain. Each window watchdog is based on a 7-
bit downcounter that can be set as free-running. It can be used as a watchdog to reset the
device or each respective domain (configurable in the RCC register), when a problem
occurs. It is clocked from the main clock. It has an early warning interrupt capability and the
counter can be frozen in Debug mode.
3.29.8 SysTick timer
The devices feature two SysTick timers, one per CPU. These timers are dedicated to real-
time operating systems, but could also be used as a standard downcounter. It features:
A 24-bit downcounter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source.
DS12930 Rev 1 37/242
STM32H747xI/G Functional overview
46
3.30 Real-time clock (RTC), backup SRAM and backup registers
The RTC is an independent BCD timer/counter. It supports the following features:
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
Two programmable alarms.
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal
inaccuracy.
Three anti-tamper detection pins with programmable filter.
Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to
VBAT mode.
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable
resolution and period.
The RTC and the 32 backup registers are supplied through a switch that takes power either
from the VDD supply when present or from the VBAT pin.
The backup registers are 32-bit registers used to store 128 bytes of user application data
when VDD power is not present. They are not reset by a system or power reset, or when the
device wakes up from Standby mode.
The RTC clock sources can be:
A 32.768 kHz external crystal (LSE)
An external resonator or oscillator (LSE)
The internal low-power RC oscillator (LSI, with typical frequency of 32 kHz)
The high-speed external clock (HSE) divided by 32.
The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the
LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in
all low-power modes.
All RTC events (Alarm, Wakeup Timer, Timestamp or Tamper) can generate an interrupt and
wakeup the device from the low-power modes.
Functional overview STM32H747xI/G
38/242 DS12930 Rev 1
3.31 Inter-integrated circuit interface (I2C)
STM32H747xI/G devices embed four I2C interfaces.
The I2C bus interface handles communications between the microcontroller and the serial
I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing.
The I2C peripheral supports:
I2C-bus specification and user manual rev. 5 compatibility:
Slave and Master modes, multimaster capability
Standard-mode (Sm), with a bitrate up to 100 kbit/s
Fast-mode (Fm), with a bitrate up to 400 kbit/s
Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
Programmable setup and hold times
Optional clock stretching
System Management Bus (SMBus) specification rev 2.0 compatibility:
Hardware PEC (Packet Error Checking) generation and verification with ACK
control
Address resolution protocol (ARP) support
SMBus alert
Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility
Independent clock: a choice of independent clock sources allowing the I2C
communication speed to be independent from the PCLK reprogramming.
Wakeup from Stop mode on address match
Programmable analog and digital noise filters
1-byte buffer with DMA capability
3.32 Universal synchronous/asynchronous receiver transmitter
(USART)
STM32H747xI/G devices have four embedded universal synchronous receiver transmitters
(USART1, USART2, USART3 and USART6) and four universal asynchronous receiver
transmitters (UART4, UART5, UART7 and UART8). Refer to Table 5 for a summary of
USARTx and UARTx features.
These interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire Half-duplex communication mode and
have LIN Master/Slave capability. They provide hardware management of the CTS and RTS
signals, and RS485 Driver Enable. They are able to communicate at speeds of up to
12.5 Mbit/s.
USART1, USART2, USART3 and USART6 also provide Smartcard mode (ISO 7816
compliant) and SPI-like communication capability.
The USARTs embed a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO mode
is enabled by software and is disabled by default.
DS12930 Rev 1 39/242
STM32H747xI/G Functional overview
46
All USART have a clock domain independent from the CPU clock, allowing the USARTx to
wake up the MCU from Stop mode.The wakeup from Stop mode is programmable and can
be done on:
Start bit detection
Any received data frame
A specific programmed data frame
Specific TXFIFO/RXFIFO status when FIFO mode is enabled.
All USART interfaces can be served by the DMA controller.
3.33 Low-power universal asynchronous receiver transmitter
(LPUART)
The device embeds one Low-Power UART (LPUART1). The LPUART supports
asynchronous serial communication with minimum power consumption. It supports half
duplex single wire communication and modem operations (CTS/RTS). It allows
multiprocessor communication.
The LPUARTs embed a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO
mode is enabled by software and is disabled by default.
Table 5. USART features
USART modes/features(1)
1. X = supported.
USART1/2/3/6 UART4/5/7/8
Hardware flow control for modem X X
Continuous communication using DMA X X
Multiprocessor communication X X
Synchronous mode (Master/Slave) X -
Smartcard mode X -
Single-wire Half-duplex communication X X
IrDA SIR ENDEC block X X
LIN mode X X
Dual clock domain and wakeup from low power mode X X
Receiver timeout interrupt X X
Modbus communication X X
Auto baud rate detection X X
Driver Enable X X
USART data length 7, 8 and 9 bits
Tx/Rx FIFO X X
Tx/Rx FIFO size 16
Functional overview STM32H747xI/G
40/242 DS12930 Rev 1
The LPUART has a clock domain independent from the CPU clock, and can wakeup the
system from Stop mode. The wakeup from Stop mode are programmable and can be done
on:
Start bit detection
Any received data frame
A specific programmed data frame
Specific TXFIFO/RXFIFO status when FIFO mode is enabled.
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to
9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame
while having an extremely low energy consumption. Higher speed clock can be used to
reach higher baudrates.
LPUART interface can be served by the DMA controller.
3.34 Serial peripheral interface (SPI)/inter- integrated sound
interfaces (I2S)
The devices feature up to six SPIs (SPI2S1, SPI2S2, SPI2S3, SPI4, SPI5 and SPI6) that
allow communicating up to 150 Mbits/s in Master and Slave modes, in Half-duplex, Full-
duplex and Simplex modes. The 3-bit prescaler gives 8 master mode frequencies and the
frame is configurable from 4 to 16 bits. All SPI interfaces support NSS pulse mode, TI mode,
Hardware CRC calculation and 8x 8-bit embedded Rx and Tx FIFOs with DMA capability.
Three standard I2S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available. They
can be operated in Master or Slave mode, in Simplex communication modes, and can be
configured to operate with a 16-/32-bit resolution as an input or output channel. Audio
sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the
I2S interfaces is/are configured in Master mode, the master clock can be output to the
external DAC/CODEC at 256 times the sampling frequency. All I2S interfaces support 16x 8-
bit embedded Rx and Tx FIFOs with DMA capability.
3.35 Serial audio interfaces (SAI)
The devices embed 4 SAIs (SAI1, SAI2, SAI3 and SAI4) that allow designing many stereo
or mono audio protocols such as I2S, LSB or MSB-justified, PCM/DSP, TDM or AC’97. An
SPDIF output is available when the audio block is configured as a transmitter. To bring this
level of flexibility and reconfigurability, the SAI contains two independent audio sub-blocks.
Each block has it own clock generator and I/O line controller.
Audio sampling frequencies up to 192 kHz are supported.
In addition, up to 8 microphones can be supported thanks to an embedded PDM interface.
The SAI can work in master or slave configuration. The audio sub-blocks can be either
receiver or transmitter and can work synchronously or asynchronously (with respect to the
other one). The SAI can be connected with other SAIs to work synchronously.
DS12930 Rev 1 41/242
STM32H747xI/G Functional overview
46
3.36 SPDIFRX Receiver Interface (SPDIFRX)
The SPDIFRX peripheral is designed to receive an S/PDIF flow compliant with IEC-60958
and IEC-61937. These standards support simple stereo streams up to high sample rate,
and compressed multi-channel surround sound, such as those defined by Dolby or DTS (up
to 5.1).
The main SPDIFRX features are the following:
Up to 4 inputs available
Automatic symbol rate detection
Maximum symbol rate: 12.288 MHz
Stereo stream from 32 to 192 kHz supported
Supports Audio IEC-60958 and IEC-61937, consumer applications
Parity bit management
Communication using DMA for audio samples
Communication using DMA for control and user channel information
Interrupt capabilities
The SPDIFRX receiver provides all the necessary features to detect the symbol rate, and
decode the incoming data stream. The user can select the wanted SPDIF input, and when a
valid signal will be available, the SPDIFRX will re-sample the incoming signal, decode the
Manchester stream, recognize frames, sub-frames and blocks elements. It delivers to the
CPU decoded data, and associated status flags.
The SPDIFRX also offers a signal named spdif_frame_sync, which toggles at the S/PDIF
sub-frame rate that will be used to compute the exact sample rate for clock drift algorithms.
3.37 Single wire protocol master interface (SWPMI)
The Single wire protocol master interface (SWPMI) is the master interface corresponding to
the Contactless Frontend (CLF) defined in the ETSI TS 102 613 technical specification. The
main features are:
Full-duplex communication mode
automatic SWP bus state management (active, suspend, resume)
configurable bitrate up to 2 Mbit/s
automatic SOF, EOF and CRC handling
SWPMI can be served by the DMA controller.
Functional overview STM32H747xI/G
42/242 DS12930 Rev 1
3.38 Management Data Input/Output (MDIO) slaves
The devices embed an MDIO slave interface it includes the following features:
32 MDIO Registers addresses, each of which is managed using separate input and
output data registers:
32 x 16-bit firmware read/write, MDIO read-only output data registers
32 x 16-bit firmware read-only, MDIO write-only input data registers
Configurable slave (port) address
Independently maskable interrupts/events:
MDIO Register write
MDIO Register read
MDIO protocol error
Able to operate in and wake up from Stop mode
3.39 SD/SDIO/MMC card host interfaces (SDMMC)
Two SDMMC host interfaces are available. They support MultiMediaCard System
Specification Version 4.51 in three different databus modes: 1 bit (default), 4 bits and 8 bits.
Both interfaces support the SD memory card specifications version 4.1. and the SDIO card
specification version 4.0. in two different databus modes: 1 bit (default) and 4 bits.
Each SDMMC host interface supports only one SD/SDIO/MMC card at any one time and a
stack of MMC Version 4.51 or previous.
The SDMMC host interface embeds a dedicated DMA controller allowing high-speed
transfers between the interface and the SRAM.
3.40 Controller area network (FDCAN1, FDCAN2)
The controller area network (CAN) subsystem consists of two CAN modules, a shared
message RAM memory and a clock calibration unit.
Both CAN modules (FDCAN1 and FDCAN2) are compliant with ISO 11898-1 (CAN protocol
specification version 2.0 part A, B) and CAN FD protocol specification version 1.0.
FDCAN1 supports time triggered CAN (TT-FDCAN) specified in ISO 11898-4, including
event synchronized time-triggered communication, global system time, and clock drift
compensation. The FDCAN1 contains additional registers, specific to the time triggered
feature. The CAN FD option can be used together with event-triggered and time-triggered
CAN communication.
A 10-Kbyte message RAM memory implements filters, receive FIFOs, receive buffers,
transmit event FIFOs, transmit buffers (and triggers for TT-FDCAN). This message RAM is
shared between the two FDCAN1 and FDCAN2 modules.
The common clock calibration unit is optional. It can be used to generate a calibrated clock
for both FDCAN1 and FDCAN2 from the HSI internal RC oscillator and the PLL, by
evaluating CAN messages received by the FDCAN1.
DS12930 Rev 1 43/242
STM32H747xI/G Functional overview
46
3.41 Universal serial bus on-the-go high-speed (OTG_HS)
The devices embed two USB OTG high-speed (up to 480 Mbit/s) device/host/OTG
peripheral. OTG-HS1 supports both full-speed and high-speed operations, while OTG-HS2
supports only full-speed operations. They both integrate the transceivers for full-speed
operation (12 Mbit/s) and are able to operate from the internal HSI48 oscillator. OTG-HS1
features a UTMI low-pin interface (ULPI) for high-speed operation (480 Mbit/s). When using
the USB OTG-HS1 in HS mode, an external PHY device connected to the ULPI is required.
The USB OTG HS peripherals are compliant with the USB 2.0 specification and with the
OTG 2.0 specification. They have software-configurable endpoint setting and supports
suspend/resume. The USB OTG controllers require a dedicated 48 MHz clock that is
generated by a PLL connected to the HSE oscillator.
The main features are:
Combined Rx and Tx FIFO size of 4 Kbytes with dynamic FIFO sizing
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
9 bidirectional endpoints (including EP0)
16 host channels with periodic OUT support
Software configurable to OTG1.3 and OTG2.0 modes of operation
USB 2.0 LPM (Link Power Management) support
Battery Charging Specification Revision 1.2 support
Internal FS OTG PHY support
External HS or HS OTG operation supporting ULPI in SDR mode (OTG_HS1 only)
The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can
be clocked using the 60 MHz output.
Internal USB DMA
HNP/SNP/IP inside (no need for any external resistor)
For OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
3.42 Ethernet MAC interface with dedicated DMA controller (ETH)
The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for
ethernet LAN communications through an industry-standard medium-independent interface
(MII) or a reduced medium-independent interface (RMII). The microcontroller requires an
external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair,
fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals
for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller.
Functional overview STM32H747xI/G
44/242 DS12930 Rev 1
The devices include the following features:
Supports 10 and 100 Mbit/s rates
Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM
and the descriptors
Tagged MAC frame support (VLAN support)
Half-duplex (CSMA/CD) and full-duplex operation
MAC control sublayer (control frames) support
32-bit CRC generation and removal
Several address filtering modes for physical and multicast address (multicast and
group addresses)
32-bit status code for each transmitted or received frame
Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the
receive FIFO are both 2 Kbytes.
Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008
(PTP V2) with the time stamp comparator connected to the TIM2 input
Triggers interrupt when system time becomes greater than target time
3.43 High-definition multimedia interface (HDMI)
- consumer electronics control (CEC)
The devices embed a HDMI-CEC controller that provides hardware support for the
Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).
This protocol provides high-level control functions between all audiovisual products in an
environment. It is specified to operate at low speeds with minimum processing and memory
overhead. It has a clock domain independent from the CPU clock, allowing the HDMI-CEC
controller to wakeup the MCU from Stop mode on data reception.
3.44 Debug infrastructure
The devices offer a comprehensive set of debug and trace features on both cores to support
software development and system integration.
Breakpoint debugging
Code execution tracing
Software instrumentation
JTAG debug port
Serial-wire debug port
Trigger input and output
Serial-wire trace port
Trace port
Arm® CoreSight™ debug and trace components
The debug can be controlled via a JTAG/Serial-wire debug access port, using industry
standard debugging tools. The debug infrastructure allows debugging one core at a time, or
both cores in parallel.
The trace port performs data capture for logging and analysis.
DS12930 Rev 1 45/242
STM32H747xI/G Functional overview
46
A 4-Kbyte embedded trace FIFO (ETF) allows recording data and sending them to any com
port. In Trace mode, the trace is transferred by DMA to system RAM or to a high-speed
interface (such as SPI or USB). It can even be monitored by a software running on one of
the cores. Unlike hardware FIFO mode, this mode is invasive since it uses system
resources which are shared by the processors.
Memory mapping STM32H747xI/G
46/242 DS12930 Rev 1
4 Memory mapping
Refer to the product line reference manual for details on the memory mapping as well as the
boundary addresses for all peripherals.
DS12930 Rev 1 47/242
STM32H747xI/G Pin descriptions
95
5 Pin descriptions
Figure 6. WLCSP156 ballout
1. The DNC ball must neither be connected to GND nor to VDD.
2. The above figure shows the package top view.
MSv43741V5
ADNC(1) VDDLDO VCAP PB8 VDD PB4 PG15 VDD PD4 PD0 PA15 VDDLDO VSS
BVBAT PE4 VDD PE0 VSS PB5 PB3 VSS PD3 PC12 VDD VCAP PA12
CPC14-
OSC32_IN PE5 VSS PB9 PB7 PB6 PD6 PC11 VSS PA13 PA10 PA11
DVDD VSS
SMPS VSS PE3 PE2 PE1 BOOT0 PD7 PC10 PA9 PA8 PC9 PC8
EVDD
SMPS
VLX
SMPS
VFB
SMPS PF0 PC13 PE6 PDR_ON PD2 PA14 PC7 VDD50
USB VDD VDD33
USB
FPF3 PF2 PF4 PF5 PF1 PF11 PD5 PD1 PC6 PG4 VSS PG8 PG5
GVDD VSS PC0 PC1 PA6 PF12 PE10 PE11 PD8 PG3 PG2 DSI_
D1P
DSI_
D1N
HPH1-
OSC_OUT
PH0-
OSC_IN NRST PA5 PB1 PF13 PE7 PB10 PB13 PD14 VSSDSI DSI_
CKP
DSI_
CKN
JVSSA VREF+ VDDA PA3 PA7 PF15 PE8 PE12 PB12 PD11 PD15 DSI_
D0P
DSI_
D0N
KPC2_C PC3_C PA2 PA4 PB0 PF14 PE9 PE13 PB11 PD9 PD13 VDD VCAP
DSI
LPA0 PA1 VSS PC5 VSS PG0 VSS PE15 VSS VDDLDO PD10 PD12 VSS
MVSS VDD PC4 PB2 VDD PG1 VDD PE14 VCAP VDD PB14 PB15 VSS
PC15-
OSC32_OUT
13121110987654321
Pin descriptions STM32H747xI/G
48/242 DS12930 Rev 1
Figure 7. UFBGA169 ballout
1. The above figure shows the package top view.
MSv43740V4
AVSS PE2 VDDLDO VCAP PB5 PB3 VSS PD7 VDD PD3 PA14 VSS PA10
BVBAT VDD PDR_
ON VSS BOOT0 PB4 VDD PD6 VSS PA15 PA13 VDD VDDLDO
C
PC14_
OSC32_
IN
PE6 PE3 PE1 PB7 PG15 PG9 PD5 PD1 PD0 PC10 VSS VCAP
DVSS
PC15_
OSC32_
OUT
PE4 PE0 PB8 PB9 PG10 PD4 PC12 PA8 PA9 PA11 PA12
EVLX
SMPS VDD PC13 PE5 PB6 PG14 PG11 PD2 PC11 PC7 PC9 VDD VSS
FVDD
SMPS
VSS
SMPS
VFB
SMPS PF0 PF1 PF2 PG13 PG7 PG8 PC8 PC6 VDD50_
USB
VDD33_
USB
GPF4 PF3 PF5 PF6 PF7 PF8 PG12 PG3 PG5 PG4 PG6 VSSDSI VSSDSI
HVDD VSS PF9 PF10 NRST PB1 PG2 PE13 PD14 PD15 VSS
DSI
DSI_
D1P
DSI_
D1N
JPH1_
OSCOUT
PH0_
OSCIN PC1 PC0 PA5 PF12 PG1 PE12 PD13 PD12 VSS
DSI
DSI_
CKP
DSI_
CKN
KPC2_C PC3_C PA0 PA7 PC5 PF11 PE7 PE15 PB10 PD11 VSS
DSI
DSI_
D0P
DSI_
D0N
LVSSA_
VREF- VDDA PA1 PC4 PB2 PG0 PE10 PE8 VDD PB12 VDD VCAP
DSI VSS
MVREF+ VDD PA2 PA6 PF13 VSS PF15 PE14 VSS PB13 PB15 PD9 VDD
DSI
NVSS PA3 PA4 PB0 PF14 PE9 PE11 PB11 VCAP VDDLDO PB14 PD8 PD10
1 2345678910111213
DS12930 Rev 1 49/242
STM32H747xI/G Pin descriptions
95
Figure 8. LQFP176 pinout
1. The above figure shows the package top view.
MSv43745V4
176-pins
VDD
VDDLDO
PDR_ON
VSS
VCAP
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
VDD
VSS
PG14
PG13
PG12
PG11
PG10
PG9
VDD
VSS
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
VSS
VDD
VDDLDO
VSS
VCAP
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
PE2 1 132 PA13
PE3 2 131 PA12
PE4 3 130 PA11
PE5 4 129 PA10
PE6 5 128 PA9
VSS 6 127 PA8
VDD 7 126 VDD
VBAT 8 125 PC9
PC13 9 124 PC8
PC14-OSC32_IN 10 123 PC7
PC15-OSC32_OUT 11 122 PC6
VSS 12 121 VDD33USB
VDD 13 120 VDD50USB
VSSSMPS 14 119 VSS
VLXSMPS 15 118 PG8
VDDSMPS 16 117 PG7
VFBSMPs 17 116 PG6
PF0 18 115 PG5
PF1 19 114 PG4
PF2 20 113 VDD
PF3 21 112 VSS
PF4 22 111 PG3
PF5 23 110 PG2
VSS 24 109 VSSDSI
VDD 25 108 VDD12DSI
PF6 26 107 DSI_CKN
PF7 27 106 DSI_CKP
PF8 28 105 VSSDSI
PF9 29 104 DSI_D0N
PF10 30 103 DSI_D0P
PH0-OSC_IN 31 102 VDD12DSI
PH1-OSC_OUT 32 101 VCAPDSI
NRST 33 100 VSS
PC0 34 99 VDD
PC1 35 98 PD15
PC2_C 36 97 PD14
PC3_C 37 96 PD13
VSSA 38 95 PD12
VREF+ 39 94 PD11
VDDA 40 93 VSS
PA0 41 92 VDD
PA1 42 91 PD10
PA2 43 90 PD9
VDD 44 89 PD8
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
VSS
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PF11
PF12
PF13
PF14
PF15
PG0
VSS
VDD
PG1
PE7
PE8
PE9
VSS
VDD
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VCAP
VSS
VDDLDO
VSS
VDD
PB12
PB13
PB14
PB15
Pin descriptions STM32H747xI/G
50/242 DS12930 Rev 1
Figure 9. LQFP208 pinout
1. The above figure shows the package top view.
MSv43749V4
VDD
VSS
PI7
PI6
PI5
PI4
VDDLDO
PDR_ON
VSS
VCAP
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
VDD
VSS
PG14
PG13
PG12
PG11
PG10
PG9
VDD
VSS
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
PI3
PI2
PI1
VDD
VSS
PI0
PH15
PH14
PE2 1156 PH13
PE3 2 155 VDD
PE4 3 154 VDDLDO
PE5 4 153 VSS
PE6 5 152 VCAP
VSS 6 151 PA13
VDD 7 150 PA12
VBAT 8 149 PA11
PI8 9 148 PA10
PC13 10 147 PA9
PC14-OSC32_IN 11 146 PA8
PC15-OSC32_OUT 12 145 PC9
PI9 13 144 PC8
PI10 14 143 PC7
PI11 15 142 PC6
VSS 16 141 VDD33USB
VDD 17 140 VDD50USB
VSSSMPS 18 139 VSS
VLXSMPS 19 138 PG8
VDDSMPS 20 137 PG7
VFBSMPS 21 136 PG6
PF0 22 135 PG5
PF1 23 134 PG4
PF2 24 133 VDD
PF3 25 208-pins 132 VSS
PF4 26 131 PG3
PF5 27 130 PG2
VSS 28 129 VSSDSI
VDD 29 128 DSI_D1N
PF6 30 127 DSI_D1P
PF7 31 126 VDD12DSI
PF8 32 125 DSI_CKN
PF9 33 124 DSI_CKP
PF10 34 123 VSSDSI
PH0-OSC_IN 35 122 DSI_D0N
PH1-OSC_OUT 36 121 DSI_D0P
NRST 37 120 VDD12DSI
PC0 38 119 VCAPDSI
PC1 39 118 VSS
PC2_C 40 117 VDD
PC3_C 41 116 PD15
VSSA 42 115 PD14
VREF+ 43 114 VDD
VDDA 44 113 VSS
PA0 45 112 PD13
PA1 46 111 PD12
PA2 47 110 PD11
PH2 48 109 VSS
VDD 49 108 VDD
VSS 50 107 PD10
PH3 51 106 PD9
PH4 52 PD8
PH5
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PI15
PF11
PF12
PF13
PF14
PF15
PG0
VSS
VDD
PG1
PE7
PE8
PE9
VSS
VDD
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VCAP
VSS
VDDLDO
PH6
PH7
PH8
PH9
PH10
PH11
PH12
VSS
VDD
PB12
PB13
PB14
PB15
208
207
206
205
204
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
DS12930 Rev 1 51/242
STM32H747xI/G Pin descriptions
95
Figure 10. TFBGA240+25 ballout
1. The above figure shows the package top view.
MSv43743V4
12345678910111213 14151617
AVSS PI6 PI5 PI4 PB5 VDD
LDO VCAP PK5 PG10 PG9 PD5 PD4 PC10 PA15 PI1 PI0 VSS
BVBAT VSS PI7 PE1 PB6 VSS PB4 PK4 PG11 PJ15 PD6 PD3 PC11 PA14 PI2 PH15 PH14
C
PC15-
OSC32_
OUT
PC14-
OSC32
_IN
PE2 PE0 PB7 PB3 PK6 PK3 PG12 VSS PD7 PC12 VSS PI3 PA13 VSS VDD
LDO
DPE5 PE4 PE3 PB9 PB8 PG15 PK7 PG14 PG13 PJ14 PJ12 PD2 PD0 PA10 PA9 PH13 VCAP
EVLX
SMPS PI9 PC13 PI8 PE6 VDD PDR
_ON BOOT0 VDD PJ13 VDD PD1 PC8 PC9 PA8 PA12 PA11
FVDD
SMPS
VSS
SMPS PI10 PI11 VDD PC7 PC6 PG8 PG7 VDD
33USB
GPF2 VFB
SMPS PF1 PF0 VDD VSS VSS VSS VSS VSS VDD PG5 PG6 VSS VDD50
USB
HPI12 PI13 PI14 PF3 VDD VSS VSS VSS VSS VSS VDD PG4 PG3 PG2 PK2
J
PH1-
OSC_
OUT
PH0-
OSC
_IN
VSS PF5 PF4 VSS VSS VSS VSS VSS VDD PK0 PK1 VSS
DSI VSSDSI
KNRST PF6 PF7 PF8 VDD VSS VSS VSS VSS VSS VDD PJ11 VSSDSI DSI_
D1P
DSI_
D1N
LVDDA PC0 PF10 PF9 VDD VSS VSS VSS VSS VSS VDD PJ10 VSSDSI DSI_
CKP
DSI_
CKN
MVREF+ PC1 PC2 PC3 VDD VDD PJ9 VSSDSI DSI_
D0P
DSI_
D0N
NVREF- PH2 PA2 PA1 PA0 PJ0 VDD VDD PE10 VDD VDD VDD PJ8 PJ7 PJ6 VSS VCAP
DSI
PVSSA PH3 PH4 PH5 PI15 PJ1 PF13 PF14 PE9 PE11 PB10 PB11 PH10 PH11 PD15 PD14 VDD
DSI
RPC2_C PC3_C PA6 VSS PA7 PB2 PF12 VSS PF15 PE12 PE15 PJ5 PH9 PH12 PD11 PD12 PD13
TPA0_C PA1_C PA5 PC4 PB1 PJ2 PF11 PG0 PE8 PE13 PH6 VSS PH8 PB12 PB15 PD10 PD9
UVSS PA3 PA4 PC5 PB0 PJ3 PJ4 PG1 PE7 PE14 VCAP VDD
LDO PH7 PB13 PB14 PD8 VSS
Pin descriptions STM32H747xI/G
52/242 DS12930 Rev 1
Table 6. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function during
and after reset is the same as the actual pin name
Pin type
S Supply pin
I Input only pin
I/O Input / output pin
ANA Analog-only Input
I/O structure
FT 5 V tolerant I/O
TT 3.3 V tolerant I/O
B Dedicated BOOT0 pin
RST Bidirectional reset pin with embedded weak pull-up resistor
Option for TT and FT I/Os
_f I2C FM+ option
_a analog option (supplied by VDDA)
_u USB option (supplied by VDD33USB)
_h High-speed low-voltage I/O
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and
after reset.
Pin functions
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
DS12930 Rev 1 53/242
STM32H747xI/G Pin descriptions
95
Table 7. STM32H747xI/G pin/ball definition
Pin/ball name
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP156
UFBGA169
LQFP176
LQFP208
TFBGA240+25
D9 A2 1 1 C3 PE2 I/O FT_
h-
TRACECLK, SAI1_CK1,
SPI4_SCK,
SAI1_MCLK_A,
SAI4_MCLK_A,
QUADSPI_BK1_IO2,
SAI4_CK1,
ETH_MII_TXD3,
FMC_A23, EVENTOUT
-
D10 C3 2 2 D3 PE3 I/O FT_
h-
TRACED0,
TIM15_BKIN,
SAI1_SD_B,
SAI4_SD_B, FMC_A19,
EVENTOUT
-
B12 D3 3 3 D2 PE4 I/O FT_
h-
TRACED1, SAI1_D2,
DFSDM1_DATIN3,
TIM15_CH1N,
SPI4_NSS, SAI1_FS_A,
SAI4_FS_A, SAI4_D2,
FMC_A20, DCMI_D4,
LCD_B0, EVENTOUT
-
C11 E4 4 4 D1 PE5 I/O FT_
h-
TRACED2, SAI1_CK2,
DFSDM1_CKIN3,
TIM15_CH1,
SPI4_MISO,
SAI1_SCK_A,
SAI4_SCK_A,
SAI4_CK2, FMC_A21,
DCMI_D6, LCD_G0,
EVENTOUT
-
E8 C2 5 5 E5 PE6 I/O FT_
h-
TRACED3,
TIM1_BKIN2, SAI1_D1,
TIM15_CH2,
SPI4_MOSI,
SAI1_SD_A,
SAI4_SD_A, SAI4_D1,
SAI2_MCLK_B,
TIM1_BKIN2_COMP12,
FMC_A22, DCMI_D7,
LCD_G1, EVENTOUT
-
-A166A1 VSS S-- - -
-A977 - VDD S-- - -
B13 B1 8 8 B1 VBAT S - - - -
Pin descriptions STM32H747xI/G
54/242 DS12930 Rev 1
D11 - - - B2 VSS S - - - -
- - - 9 E4 PI8 I/O FT - EVENTOUT RTC_TAMP2/
WKUP3
E9 E3 9 10 E3 PC13 I/O FT - EVENTOUT RTC_TAMP1/
RTC_TS/WKUP2
C13 C1 10 11 C2
PC14-
OSC32_IN
(OSC32_IN)(1)
I/O FT - EVENTOUT OSC32_IN
C12 D2 11 12 C1
PC15-
OSC32_OUT(
OSC32_OUT)
(1)
I/O FT - EVENTOUT OSC32_OUT
---13E2 PI9 I/O
FT_
h-
UART4_RX,
FDCAN1_RX,
FMC_D30,
LCD_VSYNC,
EVENTOUT
-
- - - 14 F3 PI10 I/O FT_
h-
FDCAN1_RXFD_MODE,
ETH_MII_RX_ER,
FMC_D31,
LCD_HSYNC,
EVENTOUT
-
- - - 15 F4 PI11 I/O FT -
LCD_G6,
OTG_HS_ULPI_DIR,
EVENTOUT
WKUP4
-B41216A17 VSS S-- - -
D13E21317E6 VDD S - - - -
D12 F2 14 18 F2 VSSSMPS S - - - -
E12E11519E1 VLXSMPS S - - - -
E13 F1 16 20 F1 VDDSMPS S - - - -
E11 F3 17 21 G2 VFBSMPS S - - - -
E10 F4 18 22 G4 PF0 I/O FT_f - I2C2_SDA, FMC_A0,
EVENTOUT -
F9 F5 19 23 G3 PF1 I/O FT_f - I2C2_SCL, FMC_A1,
EVENTOUT -
F12 F6 20 24 G1 PF2 I/O FT - I2C2_SMBA, FMC_A2,
EVENTOUT -
Table 7. STM32H747xI/G pin/ball definition (continued)
Pin/ball name
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP156
UFBGA169
LQFP176
LQFP208
TFBGA240+25
DS12930 Rev 1 55/242
STM32H747xI/G Pin descriptions
95
- ---H1 PI12 I/OFT- LCD_HSYNC,
EVENTOUT -
- ---H2 PI13 I/OFT- LCD_VSYNC,
EVENTOUT -
- ---H3 PI14 I/O
FT_
h- LCD_CLK, EVENTOUT -
F13 G2 21 25 H4 PF3 I/O FT_
ha - FMC_A3, EVENTOUT ADC3_INP5
F11 G1 22 26 J5 PF4 I/O FT_
ha - FMC_A4, EVENTOUT ADC3_INN5,
ADC3_INP9
F10 G3 23 27 J4 PF5 I/O FT_
ha - FMC_A5, EVENTOUT ADC3_INP4
G12 - 24 28 C10 VSS S - - -
G13 H1 25 29 E9 VDD S - - -
-G42630K2 PF6 I/O
FT_
ha -
TIM16_CH1, SPI5_NSS,
SAI1_SD_B,
UART7_RX,
SAI4_SD_B,
QUADSPI_BK1_IO3,
EVENTOUT
ADC3_INN4,
ADC3_INP8
-G52731K3 PF7 I/O
FT_
ha -
TIM17_CH1, SPI5_SCK,
SAI1_MCLK_B,
UART7_TX,
SAI4_MCLK_B,
QUADSPI_BK1_IO2,
EVENTOUT
ADC3_INP3
-G62832K4 PF8 I/O
FT_
ha -
TIM16_CH1N,
SPI5_MISO,
SAI1_SCK_B,
UART7_RTS/UART7_
DE, SAI4_SCK_B,
TIM13_CH1,
QUADSPI_BK1_IO0,
EVENTOUT
ADC3_INN3,
ADC3_INP7
Table 7. STM32H747xI/G pin/ball definition (continued)
Pin/ball name
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP156
UFBGA169
LQFP176
LQFP208
TFBGA240+25
Pin descriptions STM32H747xI/G
56/242 DS12930 Rev 1
- H32933L4 PF9 I/O
FT_
ha -
TIM17_CH1N,
SPI5_MOSI,
SAI1_FS_B,
UART7_CTS,
SAI4_FS_B,
TIM14_CH1,
QUADSPI_BK1_IO1,
EVENTOUT
ADC3_INP2
- H43034L3 PF10 I/O
FT_
ha -
TIM16_BKIN, SAI1_D3,
QUADSPI_CLK,
SAI4_D3, DCMI_D11,
LCD_DE, EVENTOUT
ADC3_INN2,
ADC3_INP6
H12 J2 31 35 J2 PH0-
OSC_IN(PH0) I/O FT - EVENTOUT OSC_IN
H13 J1 32 36 J1
PH1-
OSC_OUT(P
H1)
I/O FT - EVENTOUT OSC_OUT
H11 H5 33 37 K1 NRST I/O RST - - -
G11J43438L2 PC0 I/O
FT_
a-
DFSDM1_CKIN0,
DFSDM1_DATIN4,
SAI2_FS_B,
OTG_HS_ULPI_STP,
FMC_SDNWE, LCD_R5,
EVENTOUT
ADC123_INP10
G10 J3 35 39 M2 PC1 I/O FT_
ha -
TRACED0, SAI1_D1,
DFSDM1_DATIN0,
DFSDM1_CKIN4,
SPI2_MOSI/I2S2_SDO,
SAI1_SD_A,
SAI4_SD_A,
SDMMC2_CK, SAI4_D1,
ETH_MDC,
MDIOS_MDC,
EVENTOUT
ADC123_INN10,
ADC123_INP11,
RTC_TAMP3/
WKUP5
- ---M3
(2) PC2 I/O FT_
a-C1DSLEEP,
DFSDM1_CKIN1,
SPI2_MISO/I2S2_SDI,
DFSDM1_CKOUT,
OTG_HS_ULPI_DIR,
ETH_MII_TXD2,
FMC_SDNE0,
EVENTOUT
ADC123_INN11,
ADC123_INP12
K13(3) K1(3) 36(3) 40(3) R1(1) PC2_C AN
A
TT_
a-ADC3_INN1,
ADC3_INP0
Table 7. STM32H747xI/G pin/ball definition (continued)
Pin/ball name
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP156
UFBGA169
LQFP176
LQFP208
TFBGA240+25
DS12930 Rev 1 57/242
STM32H747xI/G Pin descriptions
95
- ---M4
(1) PC3 I/O FT_
a-C1SLEEP,
DFSDM1_DATIN1,
SPI2_MOSI/I2S2_SDO,
OTG_HS_ULPI_NXT,
ETH_MII_TX_CLK,
FMC_SDCKE0,
EVENTOUT
ADC12_INN12,
ADC12_INP13
K12(3) K2(3) 37(3) 41(3) R2(1) PC3_C AN
A
TT_
a- ADC3_INP1
-M2- -E11 VDD S-- - -
-C12- -C13 VSS S-- - -
J13 - 38 42 P1 VSSA S - - - -
-L1- -N1 VREF- S-- - -
J12 M1 39 43 M1 VREF+ S - - - -
J11L24044L1 VDDA S - - - -
L13 K3 41 45 N5(1) PA0 I/O FT_
a-TIM2_CH1/TIM2_ETR,
TIM5_CH1, TIM8_ETR,
TIM15_BKIN,
USART2_CTS/USART2
_NSS, UART4_TX,
SDMMC2_CMD,
SAI2_SD_B,
ETH_MII_CRS,
EVENTOUT
ADC1_INP16,
WKUP0
- ---T1
(1) PA0_C AN
A
TT_
a-ADC12_INN1,
ADC12_INP0
L12 L3 42 46 N4(1) PA1 I/O FT_
ha -TIM2_CH2, TIM5_CH2,
LPTIM3_OUT,
TIM15_CH1N,
USART2_RTS/USART2
_DE, UART4_RX,
QUADSPI_BK1_IO3,
SAI2_MCLK_B,
ETH_MII_RX_CLK/ETH
_RMII_REF_CLK,
LCD_R2, EVENTOUT
ADC1_INN16,
ADC1_INP17
- ---T2
(1) PA1_C AN
A
TT_
a- ADC12_INP1
K11 M3 43 47 N3 PA2 I/O FT_
a-
TIM2_CH3, TIM5_CH3,
LPTIM4_OUT,
TIM15_CH1,
USART2_TX,
SAI2_SCK_B,
ETH_MDIO,
MDIOS_MDIO, LCD_R1,
EVENTOUT
ADC12_INP14,
WKUP1
Table 7. STM32H747xI/G pin/ball definition (continued)
Pin/ball name
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP156
UFBGA169
LQFP176
LQFP208
TFBGA240+25
Pin descriptions STM32H747xI/G
58/242 DS12930 Rev 1
---48N2 PH2 I/O
FT_
ha -
LPTIM1_IN2,
QUADSPI_BK2_IO0,
SAI2_SCK_B,
ETH_MII_CRS,
FMC_SDCKE0,
LCD_R0, EVENTOUT
ADC3_INP13
--4449F5 VDD S-- - -
-N14550C16 VSS S-- - -
---51P2 PH3 I/O
FT_
ha -
QUADSPI_BK2_IO1,
SAI2_MCLK_B,
ETH_MII_COL,
FMC_SDNE0, LCD_R1,
EVENTOUT
ADC3_INN13,
ADC3_INP14
---52P3 PH4 I/O
FT_f
a-
I2C2_SCL, LCD_G5,
OTG_HS_ULPI_NXT,
LCD_G4, EVENTOUT
ADC3_INN14,
ADC3_INP15
---53P4 PH5 I/O
FT_f
a-
I2C2_SDA, SPI5_NSS,
FMC_SDNWE,
EVENTOUT
ADC3_INN15,
ADC3_INP16
J10N24654U2 PA3 I/O
FT_
ha -
TIM2_CH4, TIM5_CH4,
LPTIM5_OUT,
TIM15_CH2,
USART2_RX, LCD_B2,
OTG_HS_ULPI_D0,
ETH_MII_COL,
LCD_B5, EVENTOUT
ADC12_INP15
L11 - 47 55 - VSS S - - - -
M12 - 48 56 G5 VDD S - - - -
K10N34957U3 PA4 I/O
TT_
a-
D1PWREN, TIM5_ETR,
SPI1_NSS/I2S1_WS,
SPI3_NSS/I2S3_WS,
USART2_CK,
SPI6_NSS,
OTG_HS_SOF,
DCMI_HSYNC,
LCD_VSYNC,
EVENTOUT
ADC12_INP18,
DAC1_OUT1
Table 7. STM32H747xI/G pin/ball definition (continued)
Pin/ball name
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP156
UFBGA169
LQFP176
LQFP208
TFBGA240+25
DS12930 Rev 1 59/242
STM32H747xI/G Pin descriptions
95
H10 J5 50 58 T3 PA5 I/O TT_
ha -
D2PWREN,
TIM2_CH1/TIM2_ETR,
TIM8_CH1N,
SPI1_SCK/I2S1_CK,
SPI6_SCK,
OTG_HS_ULPI_CK,
LCD_R4, EVENTOUT
ADC12_INN18,
ADC12_INP19,
DAC1_OUT2
G9 M4 51 59 R3 PA6 I/O FT_
a-
TIM1_BKIN, TIM3_CH1,
TIM8_BKIN,
SPI1_MISO/I2S1_SDI,
SPI6_MISO,
TIM13_CH1,
TIM8_BKIN_COMP12,
MDIOS_MDC,
TIM1_BKIN_COMP12,
DCMI_PIXCLK,
LCD_G2, EVENTOUT
ADC12_INP3
J9 K4 52 60 R5 PA7 I/O TT_
a-
TIM1_CH1N,
TIM3_CH2,
TIM8_CH1N,
SPI1_MOSI/I2S1_SDO,
SPI6_MOSI,
TIM14_CH1,
ETH_MII_RX_DV/ETH_
RMII_CRS_DV,
FMC_SDNWE,
EVENTOUT
ADC12_INN3,
ADC12_INP7,
OPAMP1_VINM
M11 L4 53 61 T4 PC4 I/O TT_
a-
C2DSLEEP,
DFSDM1_CKIN2,
I2S1_MCK,
SPDIFRX1_IN3,
ETH_MII_RXD0/ETH_R
MII_RXD0,
FMC_SDNE0,
EVENTOUT
ADC12_INP4,
OPAMP1_VOUT,
COMP1_INM
Table 7. STM32H747xI/G pin/ball definition (continued)
Pin/ball name
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP156
UFBGA169
LQFP176
LQFP208
TFBGA240+25
Pin descriptions STM32H747xI/G
60/242 DS12930 Rev 1
L10 K5 54 62 U4 PC5 I/O TT_
a-
C2SLEEP, SAI1_D3,
DFSDM1_DATIN2,
SPDIFRX1_IN4,
SAI4_D3,
ETH_MII_RXD1/ETH_R
MII_RXD1,
FMC_SDCKE0,
COMP1_OUT,
EVENTOUT
ADC12_INN4,
ADC12_INP8,
OPAMP1_VINM
- ---G13 VDD S-- - -
-H2- -R4 VSS S-- - -
K9 N4 55 63 U5 PB0 I/O FT_
a-
TIM1_CH2N,
TIM3_CH3,
TIM8_CH2N,
DFSDM1_CKOUT,
UART4_CTS, LCD_R3,
OTG_HS_ULPI_D1,
ETH_MII_RXD2,
LCD_G1, EVENTOUT
ADC12_INN5,
ADC12_INP9,
OPAMP1_VINP,
COMP1_INP
H9 H6 56 64 T5 PB1 I/O TT_
u-
TIM1_CH3N,
TIM3_CH4,
TIM8_CH3N,
DFSDM1_DATIN1,
LCD_R6,
OTG_HS_ULPI_D2,
ETH_MII_RXD3,
LCD_G0, EVENTOUT
ADC12_INP5,
COMP1_INM
M10 L5 57 65 R6 PB2 I/O FT_
ha -
RTC_OUT, SAI1_D1,
DFSDM1_CKIN1,
SAI1_SD_A,
SPI3_MOSI/I2S3_SDO,
SAI4_SD_A,
QUADSPI_CLK,
SAI4_D1, EVENTOUT
COMP1_INP
- - - 66 P5 PI15 I/O FT - LCD_G2, LCD_R0,
EVENTOUT -
- ---N6 PJ0 I/OFT-
LCD_R7, LCD_R1,
EVENTOUT -
- - - - P6 PJ1 I/O FT - LCD_R2, EVENTOUT -
- ---T6 PJ2 I/OFT-
DSI_TE, LCD_R3,
EVENTOUT -
Table 7. STM32H747xI/G pin/ball definition (continued)
Pin/ball name
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP156
UFBGA169
LQFP176
LQFP208
TFBGA240+25
DS12930 Rev 1 61/242
STM32H747xI/G Pin descriptions
95
- - - - U6 PJ3 I/O FT - LCD_R4, EVENTOUT -
- - - - U7 PJ4 I/O FT - LCD_R5, EVENTOUT -
F8 K6 58 67 T7 PF11 I/O FT_
a-
SPI5_MOSI,
SAI2_SD_B,
FMC_SDNRAS,
DCMI_D12, EVENTOUT
ADC1_INP2
G8 J6 59 68 R7 PF12 I/O FT_
ha - FMC_A6, EVENTOUT ADC1_INN2,
ADC1_INP6
L9---J3 VSS S - - -
M9---H5 VDD S - - -
H8 M5 60 69 P7 PF13 I/O FT_
ha -
DFSDM1_DATIN6,
I2C4_SMBA, FMC_A7,
EVENTOUT
ADC2_INP2
K8 N5 61 70 P8 PF14 I/O FT_f
ha -
DFSDM1_CKIN6,
I2C4_SCL, FMC_A8,
EVENTOUT
ADC2_INN2,
ADC2_INP6
J8 M7 62 71 R9 PF15 I/O FT_f
h-I2C4_SDA, FMC_A9,
EVENTOUT -
L8 L6 63 72 T8 PG0 I/O FT_
h- FMC_A10, EVENTOUT -
-M96473J16 VSS S - - -
- - 65 74 H13 VDD S - - -
M8 J7 66 75 U8 PG1 I/O TT_
h- FMC_A11, EVENTOUT OPAMP2_VINM
H7 K7 67 76 U9 PE7 I/O TT_
ha -
TIM1_ETR,
DFSDM1_DATIN2,
UART7_RX,
QUADSPI_BK2_IO0,
FMC_D4/FMC_DA4,
EVENTOUT
OPAMP2_VOUT,
COMP2_INM
J7 L8 68 77 T9 PE8 I/O TT_
ha -
TIM1_CH1N,
DFSDM1_CKIN2,
UART7_TX,
QUADSPI_BK2_IO1,
FMC_D5/FMC_DA5,
COMP2_OUT,
EVENTOUT
OPAMP2_VINM
Table 7. STM32H747xI/G pin/ball definition (continued)
Pin/ball name
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP156
UFBGA169
LQFP176
LQFP208
TFBGA240+25
Pin descriptions STM32H747xI/G
62/242 DS12930 Rev 1
K7 N6 69 78 P9 PE9 I/O TT_
ha -
TIM1_CH1,
DFSDM1_CKOUT,
UART7_RTS/UART7_
DE,
QUADSPI_BK2_IO2,
FMC_D6/FMC_DA6,
EVENTOUT
OPAMP2_VINP,
COMP2_INP
L7 M6 70 79 J17 VSS S - - - -
M7 - 71 80 J13 VDD S - - - -
G7 L7 72 81 N9 PE10 I/O FT_
ha -
TIM1_CH2N,
DFSDM1_DATIN4,
UART7_CTS,
QUADSPI_BK2_IO3,
FMC_D7/FMC_DA7,
EVENTOUT
COMP2_INM
G6 N7 73 82 P10 PE11 I/O FT_
ha -
TIM1_CH2,
DFSDM1_CKIN4,
SPI4_NSS, SAI2_SD_B,
FMC_D8/FMC_DA8,
LCD_G3, EVENTOUT
COMP2_INP
J6 J8 74 83 R10 PE12 I/O FT_
h-
TIM1_CH3N,
DFSDM1_DATIN5,
SPI4_SCK,
SAI2_SCK_B,
FMC_D9/FMC_DA9,
COMP1_OUT, LCD_B4,
EVENTOUT
-
K6 H8 75 84 T10 PE13 I/O FT_
h-
TIM1_CH3,
DFSDM1_CKIN5,
SPI4_MISO,
SAI2_FS_B,
FMC_D10/FMC_DA10,
COMP2_OUT, LCD_DE,
EVENTOUT
-
-H2- -T12 VSS S-- - -
- ---K13 VDD S - - -
M6 M8 76 85 U10 PE14 I/O FT_
h-
TIM1_CH4, SPI4_MOSI,
SAI2_MCLK_B,
FMC_D11/FMC_DA11,
LCD_CLK, EVENTOUT
-
Table 7. STM32H747xI/G pin/ball definition (continued)
Pin/ball name
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP156
UFBGA169
LQFP176
LQFP208
TFBGA240+25
DS12930 Rev 1 63/242
STM32H747xI/G Pin descriptions
95
L6 K8 77 86 R11 PE15 I/O FT_
h-
TIM1_BKIN,
COMP_TIM1_BKIN,
FMC_D12/FMC_DA12,
TIM1_BKIN_COMP12,
LCD_R7, EVENTOUT
-
H6 K9 78 87 P11 PB10 I/O FT_f -
TIM2_CH3,
HRTIM_SCOUT,
LPTIM2_IN1, I2C2_SCL,
SPI2_SCK/I2S2_CK,
DFSDM1_DATIN7,
USART3_TX,
QUADSPI_BK1_NCS,
OTG_HS_ULPI_D3,
ETH_MII_RX_ER,
LCD_G4, EVENTOUT
-
K5 N8 79 88 P12 PB11 I/O FT_f -
TIM2_CH4,
HRTIM_SCIN,
LPTIM2_ETR,
I2C2_SDA,
DFSDM1_CKIN7,
USART3_RX,
OTG_HS_ULPI_D4,
ETH_MII_TX_EN/ETH_
RMII_TX_EN, DSI_TE,
LCD_G5, EVENTOUT
-
M5 N9 80 89 U11 VCAP S - - - -
L5 - 81 90 - VSS S - - - -
L4 N10 82 91 U12 VDDLDO S - - - -
M4---L13 VDD S-- - -
- - - - R12 PJ5 I/O FT - LCD_R6, EVENTOUT -
---92T11 PH6 I/OFT-
TIM12_CH1,
I2C2_SMBA, SPI5_SCK,
ETH_MII_RXD2,
FMC_SDNE1,
DCMI_D8, EVENTOUT
-
---93U13 PH7 I/O
FT_f
a-
I2C3_SCL, SPI5_MISO,
ETH_MII_RXD3,
FMC_SDCKE1,
DCMI_D9, EVENTOUT
-
Table 7. STM32H747xI/G pin/ball definition (continued)
Pin/ball name
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP156
UFBGA169
LQFP176
LQFP208
TFBGA240+25
Pin descriptions STM32H747xI/G
64/242 DS12930 Rev 1
---94T13 PH8 I/O
FT_f
ha -
TIM5_ETR, I2C3_SDA,
FMC_D16,
DCMI_HSYNC,
LCD_R2, EVENTOUT
-
-E13--- VSS S-- - -
M4 L9 - - M13 VDD S - - - -
---95R13 PH9 I/O
FT_
h-
TIM12_CH2,
I2C3_SMBA, FMC_D17,
DCMI_D0, LCD_R3,
EVENTOUT
-
---96P13PH10I/O
FT_
h-
TIM5_CH1,
I2C4_SMBA, FMC_D18,
DCMI_D1, LCD_R4,
EVENTOUT
-
---97P14PH11I/O
FT_f
h-
TIM5_CH2, I2C4_SCL,
FMC_D19, DCMI_D2,
LCD_R5, EVENTOUT
-
---98R14PH12I/O
FT_f
h-
TIM5_CH3, I2C4_SDA,
FMC_D20, DCMI_D3,
LCD_R6, EVENTOUT
-
-D18399N16 VSS S-- - -
M4 - 84 100 - VDD S - - - -
J5 L10 85 101 T14 PB12 I/O FT_
u-
TIM1_BKIN,
I2C2_SMBA,
SPI2_NSS/I2S2_WS,
DFSDM1_DATIN1,
USART3_CK,
FDCAN2_RX,
OTG_HS_ULPI_D5,
ETH_MII_TXD0/ETH_R
MII_TXD0, OTG_HS_ID,
TIM1_BKIN_COMP12,
UART5_RX,
EVENTOUT
-
Table 7. STM32H747xI/G pin/ball definition (continued)
Pin/ball name
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP156
UFBGA169
LQFP176
LQFP208
TFBGA240+25
DS12930 Rev 1 65/242
STM32H747xI/G Pin descriptions
95
H5 M10 86 102 U14 PB13 I/O FT_
u-
TIM1_CH1N,
LPTIM2_OUT,
SPI2_SCK/I2S2_CK,
DFSDM1_CKIN1,
USART3_CTS/USART3
_NSS, FDCAN2_TX,
OTG_HS_ULPI_D6,
ETH_MII_TXD1/ETH_R
MII_TXD1, UART5_TX,
EVENTOUT
OTG_HS_VBUS
M3 N11 87 103 U15 PB14 I/O FT_
u-
TIM1_CH2N,
TIM12_CH1,
TIM8_CH2N,
USART1_TX,
SPI2_MISO/I2S2_SDI,
DFSDM1_DATIN2,
USART3_RTS/USART3
_DE, UART4_RTS/
UART4_DE,
SDMMC2_D0,
OTG_HS_DM,
EVENTOUT
-
M2 M11 88 104 T15 PB15 I/O FT_
u-
RTC_REFIN,
TIM1_CH3N,
TIM12_CH2,
TIM8_CH3N,
USART1_RX,
SPI2_MOSI/I2S2_SDO,
DFSDM1_CKIN2,
UART4_CTS,
SDMMC2_D1,
OTG_HS_DP,
EVENTOUT
-
G5 N12 89 105 U16 PD8 I/O FT_
h-
DFSDM1_CKIN3,
SAI3_SCK_B,
USART3_TX,
SPDIFRX1_IN2,
FMC_D13/FMC_DA13,
EVENTOUT
-
Table 7. STM32H747xI/G pin/ball definition (continued)
Pin/ball name
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP156
UFBGA169
LQFP176
LQFP208
TFBGA240+25
Pin descriptions STM32H747xI/G
66/242 DS12930 Rev 1
K4 M12 90 106 T17 PD9 I/O FT_
h-
DFSDM1_DATIN3,
SAI3_SD_B,
USART3_RX,
FDCAN2_RXFD_MODE,
FMC_D14/FMC_DA14,
EVENTOUT
-
L3 N13 91 107 T16 PD10 I/O FT_
h-
DFSDM1_CKOUT,
SAI3_FS_B,
USART3_CK,
FDCAN2_TXFD_MODE,
FMC_D15/FMC_DA15,
LCD_B3, EVENTOUT
- L11 92 108 N12 VDD S - - - -
M1 L13 93 109 U17 VSS S - - - -
J4 K10 94 110 R15 PD11 I/O FT_
h-
LPTIM2_IN2,
I2C4_SMBA,
USART3_CTS/USART3
_NSS,
QUADSPI_BK1_IO0,
SAI2_SD_A, FMC_A16,
EVENTOUT
-
L2 J10 95 111 R16 PD12 I/O FT_f
h-
LPTIM1_IN1,
TIM4_CH1,
LPTIM2_IN1, I2C4_SCL,
USART3_RTS/
USART3_DE,
QUADSPI_BK1_IO1,
SAI2_FS_A, FMC_A17,
EVENTOUT
-
K3 J9 96 112 R17 PD13 I/O FT_f
h-
LPTIM1_OUT,
TIM4_CH2, I2C4_SDA,
QUADSPI_BK1_IO3,
SAI2_SCK_A,
FMC_A18, EVENTOUT
-
L1 - - 113 - VSS S - - - -
- - - 114 N11 VDD S - - - -
H4 H9 97 115 P16 PD14 I/O FT_
h-
TIM4_CH3,
SAI3_MCLK_B,
UART8_CTS,
FMC_D0/FMC_DA0,
EVENTOUT
-
Table 7. STM32H747xI/G pin/ball definition (continued)
Pin/ball name
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP156
UFBGA169
LQFP176
LQFP208
TFBGA240+25
DS12930 Rev 1 67/242
STM32H747xI/G Pin descriptions
95
J3 H10 98 116 P15 PD15 I/O FT_
h-
TIM4_CH4,
SAI3_MCLK_A,
UART8_RTS/
UART8_DE,
FMC_D1/FMC_DA1,
EVENTOUT
-
- ---N15 PJ6 I/OFT-
TIM8_CH2, LCD_R7,
EVENTOUT -
- ---N14 PJ7 I/OFT-
TRGIN, TIM8_CH2N,
LCD_G0, EVENTOUT -
K2 - - - N10 VDD S - - - -
-C12- - R8 VSS S-- - -
- ---N13 PJ8 I/OFT-
TIM1_CH3N,
TIM8_CH1, UART8_TX,
LCD_G1, EVENTOUT
-
- ---M14 PJ9 I/OFT-
TIM1_CH3,
TIM8_CH1N,
UART8_RX, LCD_G2,
EVENTOUT
-
- ---L14 PJ10 I/OFT-
TIM1_CH2N,
TIM8_CH2, SPI5_MOSI,
LCD_G3, EVENTOUT
-
- ---K14 PJ11 I/OFT-
TIM1_CH2,
TIM8_CH2N,
SPI5_MISO, LCD_G4,
EVENTOUT
-
--99117N8 VDD S - - -
- M13 - - P17 VDDDSI S - - -
- - 100 118 U1 VSS S - - -
K1 L12 101 119 N17 VCAPDSI S - - -
- - 102 120 - VDD12DSI S - - -
J2 K12 103 121 M16 DSI_D0P I/O TT - - -
J1 K13 104 122 M17 DSI_D0N I/O TT - - -
H3 G12 105 123 K15 VSSDSI S - - -
H2 J12 106 124 L16 DSI_CKP I/O TT - - -
H1 J13 107 125 L17 DSI_CKN I/O TT - - -
Table 7. STM32H747xI/G pin/ball definition (continued)
Pin/ball name
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP156
UFBGA169
LQFP176
LQFP208
TFBGA240+25
Pin descriptions STM32H747xI/G
68/242 DS12930 Rev 1
- - 108 126 - VDD12DSI S - - - -
G2 H12 - 127 K16 DSI_D1P I/O TT - - -
G1 H13 - 128 K17 DSI_D1N I/O TT - - -
- G13 109 129 L15 VSSDSI S - - - -
- ---J14 PK0 I/OFT-
TIM1_CH1N,
TIM8_CH3, SPI5_SCK,
LCD_G5, EVENTOUT
-
- ---J15 PK1 I/OFT-
TIM1_CH1,
TIM8_CH3N,
SPI5_NSS, LCD_G6,
EVENTOUT
-
- ---H17 PK2 I/OFT-
TIM1_BKIN,
TIM8_BKIN,
TIM8_BKIN_COMP12,
TIM1_BKIN_COMP12,
LCD_G7, EVENTOUT
-
G3 H7 110 130 H16 PG2 I/O FT_
h-
TIM8_BKIN,
TIM8_BKIN_COMP12,
FMC_A12, EVENTOUT
-
G4 G8 111 131 H15 PG3 I/O FT_
h-
TIM8_BKIN2,
TIM8_BKIN2_COMP12,
FMC_A13, EVENTOUT
-
--112132- VSS S-- - -
- E12 113 133 N7 VDD S - - - -
F4 G10 114 134 H14 PG4 I/O FT_
h-
TIM1_BKIN2,
TIM1_BKIN2_COMP12,
FMC_A14/FMC_BA0,
EVENTOUT
-
F1 G9 115 135 G14 PG5 I/O FT_
h-
TIM1_ETR,
FMC_A15/FMC_BA1,
EVENTOUT
-
- G11 116 136 G15 PG6 I/O FT_
h-
TIM17_BKIN,
HRTIM_CHE1,
QUADSPI_BK1_NCS,
FMC_NE3, DCMI_D12,
LCD_R7, EVENTOUT
-
Table 7. STM32H747xI/G pin/ball definition (continued)
Pin/ball name
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP156
UFBGA169
LQFP176
LQFP208
TFBGA240+25
DS12930 Rev 1 69/242
STM32H747xI/G Pin descriptions
95
- F8 117 137 F16 PG7 I/O FT_
h-
HRTIM_CHE2,
SAI1_MCLK_A,
USART6_CK, FMC_INT,
DCMI_D13, LCD_CLK,
EVENTOUT
-
F2 F9 118 138 F15 PG8 I/O FT_
h-
TIM8_ETR, SPI6_NSS,
USART6_RTS/USART6
_DE, SPDIFRX1_IN3,
ETH_PPS_OUT,
FMC_SDCLK, LCD_G7,
EVENTOUT
-
F3 - 119 139 G16 VSS S - - - -
E3 F12 120 140 G17 VDD50USB S - - - -
E1 F13 121 141 F17 VDD33USB S - - - -
E2 - - - M5 VDD S - - - -
F5 F11 122 142 F14 PC6 I/O FT_
h-
HRTIM_CHA1,
TIM3_CH1, TIM8_CH1,
DFSDM1_CKIN3,
I2S2_MCK,
USART6_TX,
SDMMC1_D0DIR,
FMC_NWAIT,
SDMMC2_D6,
SDMMC1_D6,
DCMI_D0,
LCD_HSYNC,
EVENTOUT
SWPMI_IO
E4 E10 123 143 F13 PC7 I/O FT_
h-
TRGIO, HRTIM_CHA2,
TIM3_CH2, TIM8_CH2,
DFSDM1_DATIN3,
I2S3_MCK,
USART6_RX,
SDMMC1_D123DIR,
FMC_NE1,
SDMMC2_D7,
SWPMI_TX,
SDMMC1_D7,
DCMI_D1, LCD_G6,
EVENTOUT
-
Table 7. STM32H747xI/G pin/ball definition (continued)
Pin/ball name
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP156
UFBGA169
LQFP176
LQFP208
TFBGA240+25
Pin descriptions STM32H747xI/G
70/242 DS12930 Rev 1
D1 F10 124 144 E13 PC8 I/O FT_
h-
TRACED1,
HRTIM_CHB1,
TIM3_CH3, TIM8_CH3,
USART6_CK,
UART5_RTS/
UART5_DE,
FMC_NE2/FMC_NCE,
SWPMI_RX,
SDMMC1_D0,
DCMI_D2, EVENTOUT
-
D2 E11 125 145 E14 PC9 I/O FT_f
h-
MCO2, TIM3_CH4,
TIM8_CH4, I2C3_SDA,
I2S_CKIN, UART5_CTS,
QUADSPI_BK1_IO0,
LCD_G3,
SWPMI_SUSPEND,
SDMMC1_D1,
DCMI_D3, LCD_B2,
EVENTOUT
-
- - 126 - L5 VDD S - - - -
D3 D10 127 146 E15 PA8 I/O FT_f
ha -
MCO1, TIM1_CH1,
HRTIM_CHB2,
TIM8_BKIN2,
I2C3_SCL,
USART1_CK,
OTG_FS_SOF,
UART7_RX,
TIM8_BKIN2_COMP12,
LCD_B3, LCD_R6,
EVENTOUT
-
D4 D11 128 147 D15 PA9 I/O FT_
u-
TIM1_CH2,
HRTIM_CHC1,
LPUART1_TX,
I2C3_SMBA,
SPI2_SCK/I2S2_CK,
USART1_TX,
FDCAN1_RXFD_MODE,
DCMI_D0, LCD_R5,
EVENTOUT
OTG_FS_VBUS
Table 7. STM32H747xI/G pin/ball definition (continued)
Pin/ball name
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP156
UFBGA169
LQFP176
LQFP208
TFBGA240+25
DS12930 Rev 1 71/242
STM32H747xI/G Pin descriptions
95
C2 A13 129 148 D14 PA10 I/O FT_
u-
TIM1_CH3,
HRTIM_CHC2,
LPUART1_RX,
USART1_RX,
FDCAN1_TXFD_MODE,
OTG_FS_ID,
MDIOS_MDIO, LCD_B4,
DCMI_D1, LCD_B1,
EVENTOUT
-
C1 D12 130 149 E17 PA11 I/O FT_
u-
TIM1_CH4,
HRTIM_CHD1,
LPUART1_CTS,
SPI2_NSS/I2S2_WS,
UART4_RX,
USART1_CTS/USART1
_NSS, FDCAN1_RX,
OTG_FS_DM, LCD_R4,
EVENTOUT
-
B1 D13 131 150 E16 PA12 I/O FT_
u-
TIM1_ETR,
HRTIM_CHD2,
LPUART1_RTS/
LPUART1_DE,
SPI2_SCK/I2S2_CK,
UART4_TX,
USART1_RTS/
USART1_DE,
SAI2_FS_B,
FDCAN1_TX,
OTG_FS_DP, LCD_R5,
EVENTOUT
-
C3 B11 132 151 C15 PA13(JTMS/
SWDIO) I/O FT - JTMS-SWDIO,
EVENTOUT -
B2 C13 133 152 D17 VCAP S - - - -
A1 - 134 153 - VSS S - - - -
A2 B13 135 154 C17 VDDLDO - - - -
B3 - 136 155 K5 VDD S - - - -
- - - 156 D16 PH13 I/O FT_
h-
TIM8_CH1N,
UART4_TX,
FDCAN1_TX,
FMC_D21, LCD_G2,
EVENTOUT
-
Table 7. STM32H747xI/G pin/ball definition (continued)
Pin/ball name
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP156
UFBGA169
LQFP176
LQFP208
TFBGA240+25
Pin descriptions STM32H747xI/G
72/242 DS12930 Rev 1
---157B17PH14I/O
FT_
h-
TIM8_CH2N,
UART4_RX,
FDCAN1_RX,
FMC_D22, DCMI_D4,
LCD_G3, EVENTOUT
-
---158B16PH15I/O
FT_
h-
TIM8_CH3N,
FDCAN1_TXFD_MODE,
FMC_D23, DCMI_D11,
LCD_G4, EVENTOUT
-
---159A16 PI0 I/O
FT_
h-
TIM5_CH4,
SPI2_NSS/I2S2_WS,
FDCAN1_RXFD_MODE,
FMC_D24, DCMI_D13,
LCD_G5, EVENTOUT
-
---160- VSS S - - -
- B12 - 161 VDD VDD S - - -
---162A15 PI1 I/O
FT_
h-
TIM8_BKIN2,
SPI2_SCK/I2S2_CK,
TIM8_BKIN2_COMP12,
FMC_D25, DCMI_D8,
LCD_G6, EVENTOUT
-
---163B15 PI2 I/O
FT_
h-
TIM8_CH4,
SPI2_MISO/I2S2_SDI,
FMC_D26, DCMI_D9,
LCD_G7, EVENTOUT
-
---164C14 PI3 I/O
FT_
h-
TIM8_ETR,
SPI2_MOSI/I2S2_SDO,
FMC_D27, DCMI_D10,
EVENTOUT
-
C4 - 137 - - VSS S - - - -
B3 - - - VDD VDD S - - - -
E5 A11 138 165 B14 PA14(JTCK/
SWCLK) I/O FT - JTCK-SWCLK,
EVENTOUT -
Table 7. STM32H747xI/G pin/ball definition (continued)
Pin/ball name
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP156
UFBGA169
LQFP176
LQFP208
TFBGA240+25
DS12930 Rev 1 73/242
STM32H747xI/G Pin descriptions
95
A3 B10 139 166 A14 PA15(JTDI) I/O FT -
JTDI,
TIM2_CH1/TIM2_ETR,
HRTIM_FLT1, CEC,
SPI1_NSS/I2S1_WS,
SPI3_NSS/I2S3_WS,
SPI6_NSS,
UART4_RTS/UART4_D
E, UART7_TX, DSI_TE,
EVENTOUT
-
D5 C11 140 167 A13 PC10 I/O FT_
ha -
HRTIM_EEV1,
DFSDM1_CKIN5,
SPI3_SCK/I2S3_CK,
USART3_TX,
UART4_TX,
QUADSPI_BK1_IO1,
SDMMC1_D2,
DCMI_D8, LCD_R2,
EVENTOUT
-
C5 E9 141 168 B13 PC11 I/O FT_
h-
HRTIM_FLT2,
DFSDM1_DATIN5,
SPI3_MISO/I2S3_SDI,
USART3_RX,
UART4_RX,
QUADSPI_BK2_NCS,
SDMMC1_D3,
DCMI_D4, EVENTOUT
-
B4 D9 142 169 C12 PC12 I/O FT_
h-
TRACED3,
HRTIM_EEV2,
SPI3_MOSI/I2S3_SDO,
USART3_CK,
UART5_TX,
SDMMC1_CK,
DCMI_D9, EVENTOUT
-
-A7--- VSS S-- - -
- ---VDD VDD S-- - -
A4 C10 143 170 D13 PD0 I/O FT_
h-
DFSDM1_CKIN6,
SAI3_SCK_A,
UART4_RX,
FDCAN1_RX,
FMC_D2/FMC_DA2,
EVENTOUT
-
Table 7. STM32H747xI/G pin/ball definition (continued)
Pin/ball name
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP156
UFBGA169
LQFP176
LQFP208
TFBGA240+25
Pin descriptions STM32H747xI/G
74/242 DS12930 Rev 1
F6 C9 144 171 E12 PD1 I/O FT_
h-
DFSDM1_DATIN6,
SAI3_SD_A,
UART4_TX,
FDCAN1_TX,
FMC_D3/FMC_DA3,
EVENTOUT
-
E6 E8 145 172 D12 PD2 I/O FT_
h-
TRACED2, TIM3_ETR,
UART5_RX,
SDMMC1_CMD,
DCMI_D11, EVENTOUT
-
B5 A10 146 173 B12 PD3 I/O FT_
h-
DFSDM1_CKOUT,
SPI2_SCK/I2S2_CK,
USART2_CTS/USART2
_NSS, FMC_CLK,
DCMI_D5, LCD_G7,
EVENTOUT
-
A5 D8 147 174 A12 PD4 I/O FT_
h-
HRTIM_FLT3,
SAI3_FS_A,
USART2_RTS/USART2
_DE,
FDCAN1_RXFD_MODE,
FMC_NOE, EVENTOUT
-
F7 C8 148 175 A11 PD5 I/O FT_
h-
HRTIM_EEV3,
USART2_TX,
FDCAN1_TXFD_MODE,
FMC_NWE, EVENTOUT
-
B6---- VSS S-- - -
A6 B2 - - VDD VDD S - - - -
C6 B8 149 176 B11 PD6 I/O FT_
h-
SAI1_D1,
DFSDM1_CKIN4,
DFSDM1_DATIN1,
SPI3_MOSI/I2S3_SDO,
SAI1_SD_A,
USART2_RX,
SAI4_SD_A,
FDCAN2_RXFD_MODE,
SAI4_D1, SDMMC2_CK,
FMC_NWAIT,
DCMI_D10, LCD_B2,
EVENTOUT
-
Table 7. STM32H747xI/G pin/ball definition (continued)
Pin/ball name
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP156
UFBGA169
LQFP176
LQFP208
TFBGA240+25
DS12930 Rev 1 75/242
STM32H747xI/G Pin descriptions
95
D6 A8 150 177 C11 PD7 I/O FT_
h-
DFSDM1_DATIN4,
SPI1_MOSI/I2S1_SDO,
DFSDM1_CKIN1,
USART2_CK,
SPDIFRX1_IN0,
SDMMC2_CMD,
FMC_NE1, EVENTOUT
-
- ---D11 PJ12 I/OFT-
TRGOUT, LCD_G3,
LCD_B0, EVENTOUT -
- ---E10 PJ13 I/OFT-
LCD_B4, LCD_B1,
EVENTOUT -
- - - - D10 PJ14 I/O FT - LCD_B2, EVENTOUT -
- - - - B10 PJ15 I/O FT - LCD_B3, EVENTOUT -
B9 B9 151 178 - VSS S - - - -
- - 152 179 VDD VDD S - - - -
- C7 153 180 A10 PG9 I/O FT_
h-
SPI1_MISO/I2S1_SDI,
USART6_RX,
SPDIFRX1_IN4,
QUADSPI_BK2_IO2,
SAI2_FS_B,
FMC_NE2/FMC_NCE,
DCMI_VSYNC,
EVENTOUT
-
- D7 154 181 A9 PG10 I/O FT_
h-
HRTIM_FLT5,
SPI1_NSS/I2S1_WS,
LCD_G3, SAI2_SD_B,
FMC_NE3, DCMI_D2,
LCD_B2, EVENTOUT
-
- E7 155 182 B9 PG11 I/O FT_
h-
LPTIM1_IN2,
HRTIM_EEV4,
SPI1_SCK/I2S1_CK,
SPDIFRX1_IN1,
SDMMC2_D2,
ETH_MII_TX_EN/ETH_
RMII_TX_EN, DCMI_D3,
LCD_B3, EVENTOUT
-
Table 7. STM32H747xI/G pin/ball definition (continued)
Pin/ball name
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP156
UFBGA169
LQFP176
LQFP208
TFBGA240+25
Pin descriptions STM32H747xI/G
76/242 DS12930 Rev 1
- G7 156 183 C9 PG12 I/O FT_
h-
LPTIM1_IN1,
HRTIM_EEV5,
SPI6_MISO,
USART6_RTS/USART6
_DE, SPDIFRX1_IN2,
LCD_B4,
ETH_MII_TXD1/ETH_R
MII_TXD1, FMC_NE4,
LCD_B1, EVENTOUT
-
- F7 157 184 D9 PG13 I/O FT_
h-
TRACED0,
LPTIM1_OUT,
HRTIM_EEV10,
SPI6_SCK,
USART6_CTS/USART6
_NSS,
ETH_MII_TXD0/ETH_R
MII_TXD0, FMC_A24,
LCD_R0, EVENTOUT
-
- E6 158 185 D8 PG14 I/O FT_
h-
TRACED1,
LPTIM1_ETR,
SPI6_MOSI,
USART6_TX,
QUADSPI_BK2_IO3,
ETH_MII_TXD1/ETH_R
MII_TXD1, FMC_A25,
LCD_B0, EVENTOUT
-
- - 159 186 - VSS S - - - -
- - 160 187 VDD VDD S - - - -
- - - - C8 PK3 I/O FT - LCD_B4, EVENTOUT -
- - - - B8 PK4 I/O FT - LCD_B5, EVENTOUT -
- - - - A8 PK5 I/O FT - LCD_B6, EVENTOUT -
- - - - C7 PK6 I/O FT - LCD_B7, EVENTOUT -
- - - - D7 PK7 I/O FT - LCD_DE, EVENTOUT -
-B7- -VDD VDD S - - -
A7 C6 161 188 D6 PG15 I/O FT_
h-
USART6_CTS/USART6
_NSS, FMC_SDNCAS,
DCMI_D13, EVENTOUT
-
Table 7. STM32H747xI/G pin/ball definition (continued)
Pin/ball name
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP156
UFBGA169
LQFP176
LQFP208
TFBGA240+25
DS12930 Rev 1 77/242
STM32H747xI/G Pin descriptions
95
B7 A6 162 189 C6 PB3(JTDO/TR
ACESWO) I/O FT -
JTDO/TRACESWO,
TIM2_CH2,
HRTIM_FLT4,
SPI1_SCK/I2S1_CK,
SPI3_SCK/I2S3_CK,
SPI6_SCK,
SDMMC2_D2,
CRS_SYNC,
UART7_RX,
EVENTOUT
-
A8 B6 163 190 B7 PB4(NJTRST) I/O FT -
NJTRST, TIM16_BKIN,
TIM3_CH1,
HRTIM_EEV6,
SPI1_MISO/I2S1_SDI,
SPI3_MISO/I2S3_SDI,
SPI2_NSS/I2S2_WS,
SPI6_MISO,
SDMMC2_D3,
UART7_TX, EVENTOUT
-
B8 A5 164 191 A5 PB5 I/O FT -
TIM17_BKIN,
TIM3_CH2,
HRTIM_EEV7,
I2C1_SMBA,
SPI1_MOSI/I2S1_SDO,
I2C4_SMBA,
SPI3_MOSI/I2S3_SDO,
SPI6_MOSI,
FDCAN2_RX,
OTG_HS_ULPI_D7,
ETH_PPS_OUT,
FMC_SDCKE1,
DCMI_D10, UART5_RX,
EVENTOUT
-
A9 - - - VDD VDD S - - - -
Table 7. STM32H747xI/G pin/ball definition (continued)
Pin/ball name
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP156
UFBGA169
LQFP176
LQFP208
TFBGA240+25
Pin descriptions STM32H747xI/G
78/242 DS12930 Rev 1
C7 E5 165 192 B5 PB6 I/O FT_f -
TIM16_CH1N,
TIM4_CH1,
HRTIM_EEV8,
I2C1_SCL, CEC,
I2C4_SCL,
USART1_TX,
LPUART1_TX,
FDCAN2_TX,
QUADSPI_BK1_NCS,
DFSDM1_DATIN5,
FMC_SDNE1,
DCMI_D5, UART5_TX,
EVENTOUT
-
C8 C5 166 193 C5 PB7 I/O FT_f
a-
TIM17_CH1N,
TIM4_CH2,
HRTIM_EEV9,
I2C1_SDA, I2C4_SDA,
USART1_RX,
LPUART1_RX,
FDCAN2_TXFD_MODE,
DFSDM1_CKIN5,
FMC_NL,
DCMI_VSYNC,
EVENTOUT
PVD_IN
D7 B5 167 194 E8 BOOT0 I B - - VPP
A10 D5 168 195 D5 PB8 I/O FT_f
h-
TIM16_CH1, TIM4_CH3,
DFSDM1_CKIN7,
I2C1_SCL, I2C4_SCL,
SDMMC1_CKIN,
UART4_RX,
FDCAN1_RX,
SDMMC2_D4,
ETH_MII_TXD3,
SDMMC1_D4,
DCMI_D6, LCD_B6,
EVENTOUT
-
Table 7. STM32H747xI/G pin/ball definition (continued)
Pin/ball name
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP156
UFBGA169
LQFP176
LQFP208
TFBGA240+25
DS12930 Rev 1 79/242
STM32H747xI/G Pin descriptions
95
C9 D6 169 196 D4 PB9 I/O FT_f
h-
TIM17_CH1, TIM4_CH4,
DFSDM1_DATIN7,
I2C1_SDA,
SPI2_NSS/I2S2_WS,
I2C4_SDA,
SDMMC1_CDIR,
UART4_TX,
FDCAN1_TX,
SDMMC2_D5,
I2C4_SMBA,
SDMMC1_D5,
DCMI_D7, LCD_B7,
EVENTOUT
-
B10 D4 170 197 C4 PE0 I/O FT_
h-
LPTIM1_ETR,
TIM4_ETR,
HRTIM_SCIN,
LPTIM2_ETR,
UART8_RX,
FDCAN1_RXFD_MODE,
SAI2_MCLK_A,
FMC_NBL0, DCMI_D2,
EVENTOUT
-
D8 C4 171 198 B4 PE1 I/O FT_
h-
LPTIM1_IN2,
HRTIM_SCOUT,
UART8_TX,
FDCAN1_TXFD_MODE,
FMC_NBL1, DCMI_D3,
EVENTOUT
-
A11 A4 172 199 A7 VCAP S - - - -
C10 - 173 200 B6 VSS S - - - -
E7 B3 174 201 E7 PDR_ON I FT - - -
A12 A3 175 202 A6 VDDLDO S - - - -
B11 - - - VDD VDD S - - - -
- - - 203 A4 PI4 I/O FT_
h-
TIM8_BKIN,
SAI2_MCLK_A,
TIM8_BKIN_COMP12,
FMC_NBL2, DCMI_D5,
LCD_B4, EVENTOUT
-
Table 7. STM32H747xI/G pin/ball definition (continued)
Pin/ball name
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP156
UFBGA169
LQFP176
LQFP208
TFBGA240+25
Pin descriptions STM32H747xI/G
80/242 DS12930 Rev 1
- - - 204 A3 PI5 I/O FT_
h-
TIM8_CH1,
SAI2_SCK_A,
FMC_NBL3,
DCMI_VSYNC,
LCD_B5, EVENTOUT
-
- - - 205 A2 PI6 I/O FT_
h-
TIM8_CH2, SAI2_SD_A,
FMC_D28, DCMI_D6,
LCD_B6, EVENTOUT
-
- - - 206 B3 PI7 I/O FT_
h-
TIM8_CH3, SAI2_FS_A,
FMC_D29, DCMI_D7,
LCD_B7, EVENTOUT
-
---207- VSS S-- - -
B11 - 176 208 VDD VDD S - - - -
M13---- VSS S-- - -
A13---- DNC -- - -
- - - - M15 VSSDSI S - - - -
1. When this pin/ball was previously configured as an oscillator, the oscillator function is kept during and after a reset. This is
valid for all resets except for power-on reset.
2. Pxy_C and Pxy pins/balls are two separate pads (analog switch open). The analog switch is configured through a SYSCFG
register. Refer to the product reference manual for a detailed description of the switch configuration bits.
3. There is a direct path between Pxy_C and Pxy pins/balls, through an analog switch. Pxy alternate functions are available on
Pxy_C when the analog switch is closed. The analog switch is configured through a SYSCFG register. Refer to the product
reference manual for a detailed description of the switch configuration bits.
Table 7. STM32H747xI/G pin/ball definition (continued)
Pin/ball name
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP156
UFBGA169
LQFP176
LQFP208
TFBGA240+25
STM32H747xI/G Pin descriptions
DS12930 Rev 1 81/242
Table 8. Port A alternate functions
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
TIM1/2/16/1
7/LPTIM1/
HRTIM1
SAI1/TIM3/
4/5/HRTIM
1
LPUART/
TIM8/LPTIM
2/3/4/5/
HRTIM1/
DFSDM1
I2C1/2/3/4/U
SART1/
TIM15/
LPTIM2/
DFSDM1/CE
C
SPI1/2/3/4/
5/6/CEC
SPI2/3/SAI1
/3/I2C4/
UART4/
DFSDM1
SPI2/3/6/
USART1/2/
3/6/UART7/
SDMMC1
SPI6/SAI2/
4/UART4/5/
8/LPUART/
SDMMC1/
SPDIFRX1
SAI4/FDCA
N1/FDACN
2/TIM13/14
/QUADSPI/
FMC/SDM
MC2/LCD/
SPDIFRX1
SAI2/4/TIM
8/QUADSPI
/SDMMC2/
OTG1_HS/
OTG2_FS/
LCD
I2C4/UART
7/SWPMI1/
TIM1/8/
DFSDM1/
SDMMC2/
MDIOS/
ETH
TIM1/8/FMC
/SDMMC1/
MDIOS/
OTG1_FS/
LCD
TIM1/DCMI/
LCD/DSI/
COMP
UART5/
LCD SYS
Port A
PA0 - TIM2_CH1/
TIM2_ETR TIM5_CH1 TIM8_ETR TIM15_BKIN - -
USART2_
CTS/USAR
T2_NSS
UART4_TX SDMMC2_
CMD SAI2_SD_B ETH_MII_
CRS - - - EVENT
OUT
PA1 - TIM2_CH2 TIM5_CH2 LPTIM3_
OUT
TIM15_
CH1N --
USART2_
RTS/
USART2_
DE
UART4_RX QUADSPI_
BK1_IO3
SAI2_MCLK
_B
ETH_MII_
RX_CLK/
ETH_RMII_
REF_CLK
- - LCD_R2 EVENT
OUT
PA2 TIM2_CH3 TIM5_CH3 LPTIM4_
OUT TIM15_CH1 - - USART2_
TX
SAI2_SCK
_B --ETH_MDIO
MDIOS_
MDIO -LCD_R1 EVENT
OUT
PA3 TIM2_CH4 TIM5_CH4 LPTIM5_
OUT TIM15_CH2 - - USART2_
RX -LCD_B2
OTG_HS_
ULPI_D0
ETH_MII_
COL - - LCD_B5 EVENT
OUT
PA4 D1PWR
E-TIM5_ETR- -SPI1_NSS/
I2S1_WS
SPI3_NSS/
I2S3_WS
USART2_C
KSPI6_NSS - - - OTG_HS_
SOF
DCMI_HSY
NC
LCD_VSY
NC
EVENT
OUT
PA5 D2PWR
E
TIM2_CH1/
TIM2_ETR -TIM8_CH1N - SPI1_SCK/
I2S1_CK --SPI6_SCK-
OTG_HS_
ULPI_CK ---LCD_R4 EVENT
OUT
PA6 - TIM1_BKIN TIM3_CH1 TIM8_BKIN - SPI1_MISO
/I2S1_SDI - - SPI6_MISO TIM13_CH
1
TIM8_BKIN
_COMP12
MDIOS_
MDC
TIM1_BKIN
_COMP12
DCMI_PIXC
LK LCD_G2 EVENT
OUT
PA7 - TIM1_CH1N TIM3_CH2 TIM8_CH1N - SPI1_MOSI
/I2S1_SDO - - SPI6_MOSI TIM14_
CH1
ETH_MII_R
X_DV/ETH_
RMII_CRS_
DV
FMC_
SDNWE - - EVENT
OUT
PA8 MCO1 TIM1_CH1 HRTIM_
CHB2 TIM8_BKIN2 I2C3_SCL - - USART1_
CK --
OTG_FS_
SOF UART7_RX TIM8_BKIN
2_COMP12 LCD_B3 LCD_R6 EVENT
OUT
PA9 - TIM1_CH2 HRTIM_
CHC1
LPUART1_
TX I2C3_SMBA SPI2_SCK/
I2S2_CK -USART1_
TX -
FDCAN1_
RXFD_
MODE
-ETH_TX_
ER -DCMI_D0 LCD_R5 EVENT
OUT
PA10 - TIM1_CH3 HRTIM_
CHC2
LPUART1_
RX ---
USART1_
RX -
FDCAN1_
TXFD_
MODE
OTG_FS_
ID
MDIOS_
MDIO LCD_B4 DCMI_D1 LCD_B1 EVENT
OUT
PA11 - TIM1_CH4 HRTIM_
CHD1
LPUART1_
CTS -SPI2_NSS/
I2S2_WS UART4_RX
USART1_
CTS/
USART1_
NSS
-FDCAN1_
RX
OTG_FS_
DM ---LCD_R4 EVENT
OUT
PA12 - TIM1_ETR HRTIM_
CHD2
LPUART1_
RTS/
LPUART1_
DE
-SPI2_SCK/
I2S2_CK UART4_TX
USART1_
RTS/
USART1_
DE
SAI2_FS_B FDCAN1_
TX
OTG_FS_
DP ---LCD_R5 EVENT
OUT
Pin descriptions STM32H747xI/G
82/242 DS12930 Rev 1
Port A
PA13 JTMS/
SWDIO - - - - - - ---- - - - - EVENT
OUT
PA14 JTCK/
SWCLK - - - - - - ---- - - - - EVENT
OUT
PA15 JTDI TIM2_CH1/
TIM2_ETR
HRTIM_FL
T1 -CEC
SPI1_NSS/
I2S1_WS
SPI3_NSS/
I2S3_WS SPI6_NSS
UART4_
RTS/UART
4_DE
--UART7_TX-DSI_TE -EVENT
OUT
Table 8. Port A alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
TIM1/2/16/1
7/LPTIM1/
HRTIM1
SAI1/TIM3/
4/5/HRTIM
1
LPUART/
TIM8/LPTIM
2/3/4/5/
HRTIM1/
DFSDM1
I2C1/2/3/4/U
SART1/
TIM15/
LPTIM2/
DFSDM1/CE
C
SPI1/2/3/4/
5/6/CEC
SPI2/3/SAI1
/3/I2C4/
UART4/
DFSDM1
SPI2/3/6/
USART1/2/
3/6/UART7/
SDMMC1
SPI6/SAI2/
4/UART4/5/
8/LPUART/
SDMMC1/
SPDIFRX1
SAI4/FDCA
N1/FDACN
2/TIM13/14
/QUADSPI/
FMC/SDM
MC2/LCD/
SPDIFRX1
SAI2/4/TIM
8/QUADSPI
/SDMMC2/
OTG1_HS/
OTG2_FS/
LCD
I2C4/UART
7/SWPMI1/
TIM1/8/
DFSDM1/
SDMMC2/
MDIOS/
ETH
TIM1/8/FMC
/SDMMC1/
MDIOS/
OTG1_FS/
LCD
TIM1/DCMI/
LCD/DSI/
COMP
UART5/
LCD SYS
STM32H747xI/G Pin descriptions
DS12930 Rev 1 83/242
Table 9. Port B alternate functions
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
TIM1/2/16/1
7/LPTIM1/
HRTIM1
SAI1/TIM3/
4/5/HRTIM
1
LPUART/
TIM8/LPTIM
2/3/4/5/
HRTIM1/
DFSDM1
I2C1/2/3/4/U
SART1/
TIM15/
LPTIM2/
DFSDM1/
CEC
SPI1/2/3/4/
5/6/CEC
SPI2/3/SAI1
/3/I2C4/
UART4/
DFSDM1
SPI2/3/6/
USART1/2/
3/6/UART7/
SDMMC1
SPI6/SAI2/
4/UART4/5/
8/LPUART/
SDMMC1/
SPDIFRX1
SAI4/FDCA
N1/FDACN
2/TIM13/14
/QUADSPI/
FMC/SDM
MC2/LCD/
SPDIFRX1
SAI2/4/TIM
8/QUADSPI
/SDMMC2/
OTG1_HS/
OTG2_FS/
LCD/CRS
I2C4/UART
7/SWPMI1/
TIM1/8/
DFSDM1/
SDMMC2/
MDIOS/
ETH
TIM1/8/FMC
/SDMMC1/
MDIOS/
OTG1_FS/
LCD
TIM1/DCMI/
LCD/DSI/
COMP
UART5/
LCD SYS
Port B
PB0 - TIM1_CH2N TIM3_CH3 TIM8_CH2N - - DFSDM1_C
KOUT -UART4_
CTS LCD_R3 OTG_HS_
ULPI_D1
ETH_MII_
RXD2 - - LCD_G1 EVENT
OUT
PB1 - TIM1_CH3N TIM3_CH4 TIM8_CH3N - - DFSDM1_
DATIN1 - - LCD_R6 OTG_HS_
ULPI_D2
ETH_MII_
RXD3 --LCD_G0 EVENT
OUT
PB2 RTC_
OUT - SAI1_D1 - DFSDM1_
CKIN1 - SAI1_SD_A SPI3_MOSI
/I2S3_SDO
SAI4_SD_
A
QUADSPI_
CLK SAI4_D1 - - - - EVENT
OUT
PB3
JTDO/
TRACES
WO
TIM2_CH2 HRTIM_
FLT4 --
SPI1_SCK/
I2S1_CK
SPI3_SCK/I
2S3_CK - SPI6_SCK SDMMC2_
D2 CRS_SYNC UART7_RX - - - EVENT
OUT
PB4 NJTRST TIM16_BKIN TIM3_CH1 HRTIM_EEV
6-SPI1_MISO
/I2S1_SDI
SPI3_MISO/
I2S3_SDI
SPI2_NSS/
I2S2_WS SPI6_MISO SDMMC2_
D3 -UART7_TX- - -
EVENT
OUT
PB5 - TIM17_BKIN TIM3_CH2 HRTIM_EEV
7I2C1_SMBA SPI1_MOSI
/I2S1_SDO I2C4_SMBA SPI3_MOSI
/I2S3_SDO SPI6_MOSI FDCAN2_
RX
OTG_HS_U
LPI_D7
ETH_PPS_
OUT
FMC_SDCK
E1 DCMI_D10 UART5_R
X
EVENT
OUT
PB6 - TIM16_CH1
NTIM4_CH1 HRTIM_EEV
8I2C1_SCL CEC I2C4_SCL USART1_
TX
LPUART1_
TX
FDCAN2_
TX
QUADSPI_
BK1_NCS
DFSDM1_D
ATIN5
FMC_SDNE
1DCMI_D5 UART5_T
X
EVENT
OUT
PB7 - TIM17_CH1
NTIM4_CH2 HRTIM_EEV
9I2C1_SDA - I2C4_SDA USART1_
RX
LPUART1_
RX
FDCAN2_
TXFD_
MODE
-DFSDM1_C
KIN5 FMC_NL DCMI_VSY
NC -EVENT
OUT
PB8 - TIM16_CH1 TIM4_CH3 DFSDM1_C
KIN7 I2C1_SCL - I2C4_SCL SDMMC1_
CKIN UART4_RX FDCAN1_
RX
SDMMC2_
D4
ETH_MII_
TXD3
SDMMC1_
D4 DCMI_D6 LCD_B6 EVENT
OUT
Pin descriptions STM32H747xI/G
84/242 DS12930 Rev 1
Port B
PB9 - TIM17_CH1 TIM4_CH4 DFSDM1_
DATIN7 I2C1_SDA SPI2_NSS/
I2S2_WS I2C4_SDA SDMMC1_
CDIR UART4_TX FDCAN1_
TX
SDMMC2_
D5 I2C4_SMBA SDMMC1_
D5 DCMI_D7 LCD_B7 EVENT
OUT
PB10 - TIM2_CH3 HRTIM_SC
OUT LPTIM2_IN1 I2C2_SCL SPI2_SCK/
I2S2_CK
DFSDM1_
DATIN7
USART3_
TX -QUADSPI_
BK1_NCS
OTG_HS_
ULPI_D3
ETH_MII_
RX_ER --LCD_G4 EVENT
OUT
PB11 - TIM2_CH4 HRTIM_
SCIN
LPTIM2_
ETR I2C2_SDA - DFSDM1_
CKIN7
USART3_
RX --
OTG_HS_
ULPI_D4
ETH_MII_
TX_EN/ETH
_RMII_TX_
EN
-DSI_TE LCD_G5 EVENT
OUT
PB12 - TIM1_BKIN - - I2C2_SMBA SPI2_NSS/
I2S2_WS
DFSDM1_
DATIN1
USART3_
CK -FDCAN2_
RX
OTG_HS_U
LPI_D5
ETH_MII_
TXD0/ETH_
RMII_TXD0
OTG_HS_
ID
TIM1_BKIN
_COMP12
UART5_
RX
EVENT
OUT
PB13 - TIM1_CH1N - LPTIM2_
OUT -SPI2_SCK/
I2S2_CK
DFSDM1_
CKIN1
USART3_
CTS/
USART3_N
SS
-FDCAN2_
TX
OTG_HS_
ULPI_D6
ETH_MII_
TXD1/ETH_
RMII_TXD1
--
UART5_T
X
EVENT
OUT
PB14 - TIM1_CH2N - TIM8_CH2N USART1_TX SPI2_MISO
/I2S2_SDI
DFSDM1_
DATIN2
USART3_
RTS/
USART3_
DE
UART4_
RTS/
UART4_DE
SDMMC2_
D0 --
OTG_HS_
DM -EVENT
OUT
PB15 RTC_RE
FIN TIM1_CH3N - TIM8_CH3N USART1_RX SPI2_MOSI
/I2S2_SDO
DFSDM1_
CKIN2 -UART4_
CTS
SDMMC2_
D1 --
OTG_HS_
DP -EVENT
OUT
Table 9. Port B alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
TIM1/2/16/1
7/LPTIM1/
HRTIM1
SAI1/TIM3/
4/5/HRTIM
1
LPUART/
TIM8/LPTIM
2/3/4/5/
HRTIM1/
DFSDM1
I2C1/2/3/4/U
SART1/
TIM15/
LPTIM2/
DFSDM1/
CEC
SPI1/2/3/4/
5/6/CEC
SPI2/3/SAI1
/3/I2C4/
UART4/
DFSDM1
SPI2/3/6/
USART1/2/
3/6/UART7/
SDMMC1
SPI6/SAI2/
4/UART4/5/
8/LPUART/
SDMMC1/
SPDIFRX1
SAI4/FDCA
N1/FDACN
2/TIM13/14
/QUADSPI/
FMC/SDM
MC2/LCD/
SPDIFRX1
SAI2/4/TIM
8/QUADSPI
/SDMMC2/
OTG1_HS/
OTG2_FS/
LCD/CRS
I2C4/UART
7/SWPMI1/
TIM1/8/
DFSDM1/
SDMMC2/
MDIOS/
ETH
TIM1/8/FMC
/SDMMC1/
MDIOS/
OTG1_FS/
LCD
TIM1/DCMI/
LCD/DSI/
COMP
UART5/
LCD SYS
STM32H747xI/G Pin descriptions
DS12930 Rev 1 85/242
Table 10. Port C alternate functions
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
TIM1/2/16/1
7/LPTIM1/
HRTIM1
SAI1/TIM3/
4/5/HRTIM
1
LPUART/
TIM8/LPTIM
2/3/4/5/
HRTIM1/
DFSDM1
I2C1/2/3/4/U
SART1/
TIM15/
LPTIM2/
DFSDM1/
CEC
SPI1/2/3/4/
5/6/CEC
SPI2/3/SAI1
/3/I2C4/
UART4/
DFSDM1
SPI2/3/6/
USART1/2/
3/6/UART7/
SDMMC1
SPI6/SAI2/
4/UART4/5/
8/LPUART/
SDMMC1/
SPDIFRX1
SAI4/FDCA
N1/FDACN
2/TIM13/14
/QUADSPI/
FMC/SDM
MC2/LCD/
SPDIFRX1
SAI2/4/TIM
8/QUADSPI
/SDMMC2/
OTG1_HS/
OTG2_FS/
LCD
I2C4/UART
7/SWPMI1/
TIM1/8/
DFSDM1/
SDMMC2/
MDIOS/
ETH
TIM1/8/FMC
/SDMMC1/
MDIOS/
OTG1_FS/
LCD
TIM1/DCMI/
LCD/DSI/
COMP
UART5/
LCD SYS
Port C
PC0 - - - DFSDM1_C
KIN0 - - DFSDM1_
DATIN4 -SAI2_FS_B - OTG_HS_
ULPI_STP -FMC_SDN
WE - LCD_R5 EVENT
OUT
PC1 TRACED
0-SAI1_D1
DFSDM1_
DATIN0
DFSDM1_
CKIN4
SPI2_MOSI
/I2S2_SDO SAI1_SD_A - SAI4_SD_
A
SDMMC2_
CK SAI4_D1 ETH_MDC MDIOS_
MDC --
EVENT
OUT
PC2 C1
DSLEEP --
DFSDM1_
CKIN1 -SPI2_MISO
/I2S2_SDI
DFSDM1_
CKOUT ---
OTG_HS_
ULPI_DIR
ETH_MII_
TXD2
FMC_SDNE
0--
EVENT
OUT
PC3 C1
SLEEP --
DFSDM1_
DATIN1 -SPI2_MOSI
/I2S2_SDO - ---
OTG_HS_U
LPI_NXT
ETH_MII_
TX_CLK
FMC_SDCK
E0 --
EVENT
OUT
PC4 C2
DSLEEP --
DFSDM1_
CKIN2 - I2S1_MCK - - SPDIFRX1
_IN3 -
ETH_MII_
RXD0/ETH_
RMII_RXD0
FMC_SDNE
0--
EVENT
OUT
PC5 C2
SLEEP -SAI1_D3
DFSDM1_
DATIN2 -----
SPDIFRX1
_IN4 SAI4_D3
ETH_MII_
RXD1/ETH_
RMII_RXD1
FMC_
SDCKE0
COMP1_
OUT -EVENT
OUT
PC6 - HRTIM_CH
A1 TIM3_CH1 TIM8_CH1 DFSDM1_
CKIN3 I2S2_MCK - USART6_
TX
SDMMC1_
D0DIR
FMC_
NWAIT
SDMMC2_
D6 -SDMMC1_
D6 DCMI_D0 LCD_
HSYNC
EVENT
OUT
PC7 TRGIO HRTIM_CH
A2 TIM3_CH2 TIM8_CH2 DFSDM1_
DATIN3 -I2S3_MCK
USART6_
RX
SDMMC1_
D123DIR FMC_NE1 SDMMC2_
D7 SWPMI_TX SDMMC1_
D7 DCMI_D1 LCD_G6 EVENT
OUT
PC8 TRACED
1
HRTIM_CH
B1 TIM3_CH3 TIM8_CH3 - - - USART6_
CK
UART5_
RTS/
UART5_DE
FMC_NE2/
FMC_NCE -SWPMI_RX
SDMMC1_
D0 DCMI_D2 - EVENT
OUT
PC9 MCO2 - TIM3_CH4 TIM8_CH4 I2C3_SDA I2S_CKIN - - UART5_
CTS
QUADSPI_
BK1_IO0 LCD_G3 SWPMI_
SUSPEND
SDMMC1_
D1 DCMI_D3 LCD_B2 EVENT
OUT
PC10 - - HRTIM_EE
V1
DFSDM1_
CKIN5 --
SPI3_SCK/
I2S3_CK
USART3_
TX UART4_TX QUADSPI_
BK1_IO1 --
SDMMC1_
D2 DCMI_D8 LCD_R2 EVENT
OUT
PC11 - - HRTIM_FL
T2
DFSDM1_
DATIN5 --
SPI3_MISO/
I2S3_SDI
USART3_
RX UART4_RX QUADSPI_
BK2_NCS --
SDMMC1_
D3 DCMI_D4 - EVENT
OUT
PC12 TRACED
3-HRTIM_EE
V2 ---
SPI3_MOSI/
I2S3_SDO
USART3_
CK UART5_TX - - - SDMMC1_
CK DCMI_D9 - EVENT
OUT
PC13-- - - - - - --- - - - --
EVENT
OUT
PC14-- - - - - - --- - - - --
EVENT
OUT
PC15-- - - - - - --- - - - --
EVENT
OUT
Pin descriptions STM32H747xI/G
86/242 DS12930 Rev 1
Table 11. Port D alternate functions
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
TIM1/2/16/
17/LPTIM1
/
HRTIM1
SAI1/TIM3/
4/5/HRTIM
1
LPUART/
TIM8/LPTI
M2/3/4/5/
HRTIM1/
DFSDM1
I2C1/2/3/4/
USART1/
TIM15/
LPTIM2/
DFSDM1/
CEC
SPI1/2/3/4/
5/6/CEC
SPI2/3/SAI1
/3/I2C4/
UART4/
DFSDM1
SPI2/3/6/
USART1/2/3/6/
UART7/
SDMMC1
SPI6/SAI2/
4/UART4/5/
8/LPUART/
SDMMC1/
SPDIFRX1
SAI4/FDCA
N1/FDACN
2/TIM13/14
/QUADSPI/
FMC/SDM
MC2/LCD/
SPDIFRX1
SAI2/4/TIM
8/QUADSPI
/SDMMC2/
OTG1_HS/
OTG2_FS/
LCD
I2C4/UART
7/SWPMI1/
TIM1/8/
DFSDM1/
SDMMC2/
MDIOS/
ETH
TIM1/8/FMC
/SDMMC1/
MDIOS/
OTG1_FS/
LCD
TIM1/DCMI/
LCD/DSI/
COMP
UART5/
LCD SYS
Port D
PD0 - - - DFSDM1_
CKIN6 --
SAI3_SCK_
A-UART4_RX FDCAN1_
RX --
FMC_D2/
FMC_DA2 --
EVENT
OUT
PD1 - - - DFSDM1_
DATIN6 --SAI3_SD_A -UART4_TX FDCAN1_
TX --
FMC_D3/
FMC_DA3 --
EVENT
OUT
PD2 TRACE
D2 - TIM3_ETR - - - - - UART5_RX - - - SDMMC1_
CMD DCMI_D11 - EVENT
OUT
PD3 - - - DFSDM1_
CKOUT -SPI2_SCK/
I2S2_CK -USART2_CTS/
USART2_NSS - - - - FMC_CLK DCMI_D5 LCD_G7 EVENT
OUT
PD4 - - HRTIM_
FLT3 ---SAI3_FS_A
USART2_RTS/
USART2_DE -
FDCAN1_
RXFD_
MODE
- - FMC_NOE - - EVENT
OUT
PD5 - - HRTIM_EE
V3 --- USART2_
TX -
FDCAN1_
TXFD_
MODE
- - FMC_NWE - - EVENT
OUT
PD6 - - SAI1_D1 DFSDM1_
CKIN4
DFSDM1_
DATIN1
SPI3_MOSI
/I2S3_SDO SAI1_SD_A USART2_
RX
SAI4_SD_
A
FDCAN2_
RXFD_
MODE
SAI4_D1 SDMMC2_
CK
FMC_
NWAIT DCMI_D10 LCD_B2 EVENT
OUT
PD7 - - - DFSDM1_
DATIN4 -SPI1_MOSI
/I2S1_SDO
DFSDM1_
CKIN1
USART2_
CK -SPDIFRX1
_IN1 -SDMMC2_
CMD FMC_NE1 - - EVENT
OUT
PD8 - - - DFSDM1_
CKIN3 --
SAI3_SCK_
B
USART3_
TX -SPDIFRX1
_IN2 --
FMC_D13/
FMC_DA13 --
EVENT
OUT
PD9 - - - DFSDM1_
DATIN3 --SAI3_SD_B
USART3_
RX -
FDCAN2_
RXFD_
MODE
--
FMC_D14/F
MC_DA14 --
EVENT
OUT
PD10 - - - DFSDM1_
CKOUT - - SAI3_FS_B USART3_
CK -
FDCAN2_
TXFD_
MODE
--
FMC_D15/
FMC_DA15 -LCD_B3
EVENT
OUT
PD11 - - - LPTIM2_IN
2
I2C4_SMB
A--
USART3_CTS/
USART3_NSS -QUADSPI_
BK1_IO0 SAI2_SD_A - FMC_A16 - - EVENT
OUT
PD12 - LPTIM1_IN
1TIM4_CH1 LPTIM2_IN
1I2C4_SCL - - USART3_RTS/
USART3_DE -QUADSPI_
BK1_IO1 SAI2_FS_A - FMC_A17 - - EVENT
OUT
PD13 - LPTIM1_
OUT TIM4_CH2 I2C4_SDA - - QUADSPI_
BK1_IO3
SAI2_SCK_
A- FMC_A18 - - EVENT
OUT
STM32H747xI/G Pin descriptions
DS12930 Rev 1 87/242
Port D
PD14 - TIM4_CH3 - - - SAI3_MCLK
_B -UART8_
CTS -- -
FMC_D0/
FMC_DA0 --
EVENT
OUT
PD15 - TIM4_CH4 - - - SAI3_MCLK
_A -
UART8_
RTS/UART
8_DE
-- -
FMC_D1/
FMC_DA1 --
EVENT
OUT
Table 11. Port D alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
TIM1/2/16/
17/LPTIM1
/
HRTIM1
SAI1/TIM3/
4/5/HRTIM
1
LPUART/
TIM8/LPTI
M2/3/4/5/
HRTIM1/
DFSDM1
I2C1/2/3/4/
USART1/
TIM15/
LPTIM2/
DFSDM1/
CEC
SPI1/2/3/4/
5/6/CEC
SPI2/3/SAI1
/3/I2C4/
UART4/
DFSDM1
SPI2/3/6/
USART1/2/3/6/
UART7/
SDMMC1
SPI6/SAI2/
4/UART4/5/
8/LPUART/
SDMMC1/
SPDIFRX1
SAI4/FDCA
N1/FDACN
2/TIM13/14
/QUADSPI/
FMC/SDM
MC2/LCD/
SPDIFRX1
SAI2/4/TIM
8/QUADSPI
/SDMMC2/
OTG1_HS/
OTG2_FS/
LCD
I2C4/UART
7/SWPMI1/
TIM1/8/
DFSDM1/
SDMMC2/
MDIOS/
ETH
TIM1/8/FMC
/SDMMC1/
MDIOS/
OTG1_FS/
LCD
TIM1/DCMI/
LCD/DSI/
COMP
UART5/
LCD SYS
Pin descriptions STM32H747xI/G
88/242 DS12930 Rev 1
Table 12. Port E alternate functions
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
TIM1/2/16/
17/LPTIM1
/HRTIM1
SAI1/TIM3/
4/5/HRTIM
1
LPUART/
TIM8/LPTIM
2/3/4/5/
HRTIM1/
DFSDM1
I2C1/2/3/4/U
SART1/
TIM15/
LPTIM2/
DFSDM1/
CEC
SPI1/2/3/4/
5/6/CEC
SPI2/3/SAI1
/3/I2C4/
UART4/
DFSDM1
SPI2/3/6/
USART1/2/
3/6/UART7/
SDMMC1
SPI6/SAI2/
4/UART4/5/
8/LPUART/
SDMMC1/
SPDIFRX1
SAI4/FDCA
N1/FDACN
2/TIM13/14
/QUADSPI/
FMC/SDM
MC2/LCD/
SPDIFRX1
SAI2/4/TIM
8/QUADSPI
/SDMMC2/
OTG1_HS/
OTG2_FS/
LCD
I2C4/UART
7/SWPMI1/
TIM1/8/
DFSDM1/
SDMMC2/
MDIOS/
ETH
TIM1/8/FMC
/SDMMC1/
MDIOS/
OTG1_FS/
LCD
TIM1/DCMI/
LCD/DSI/
COMP
UART5/
LCD SYS
Port E
PE0 - LPTIM1_
ETR TIM4_ETR HRTIM_
SCIN
LPTIM2_
ETR - - - UART8_RX
FDCAN1_
RXFD_
MODE
SAI2_MCLK
_A -FMC_NBL0 DCMI_D2 - EVENT
OUT
PE1 - LPTIM1_
IN2 -HRTIM_SC
OUT ----UART8_TX
FDCAN1_
TXFD_
MODE
--FMC_NBL1 DCMI_D3 - EVENT
OUT
PE2 TRACE
CLK - SAI1_CK1 - - SPI4_SCK SAI1_MCLK
_A -SAI4_MCL
K_A
QUADSPI_
BK1_IO2 SAI4_CK1 ETH_MII_
TXD3 FMC_A23 - - EVENT
OUT
PE3 TRACE
D0 - - - TIM15_BKIN - SAI1_SD_B - SAI4_SD_
B-- -FMC_A19--
EVENT
OUT
PE4 TRACE
D1 -SAI1_D2
DFSDM1_
DATIN3
TIM15_CH1
NSPI4_NSS SAI1_FS_A - SAI4_FS_A - SAI4_D2 - FMC_A20 DCMI_D4 LCD_B0 EVENT
OUT
PE5 TRACE
D2 - SAI1_CK2 DFSDM1_C
KIN3 TIM15_CH1 SPI4_MISO SAI1_SCK_
A-SAI4_SCK
_A - SAI4_CK2 - FMC_A21 DCMI_D6 LCD_G0 EVENT
OUT
PE6 TRACE
D3
TIM1_
BKIN2 SAI1_D1 - TIM15_CH2 SPI4_MOSI SAI1_SD_A - SAI4_SD_
ASAI4_D1 SAI2_MCLK
_B
TIM1_BKIN
2_COMP12 FMC_A22 DCMI_D7 LCD_G1 EVENT
OUT
PE7 - TIM1_ETR - DFSDM1_D
ATIN2 ---UART7_RX--
QUADSPI_
BK2_IO0 -FMC_D4/
FMC_DA4 --
EVENT
OUT
PE8 - TIM1_CH1
N-DFSDM1_C
KIN2 ---UART7_TX--
QUADSPI_
BK2_IO1 -FMC_D5/
FMC_DA5
COMP2_
OUT -EVENT
OUT
PE9 - TIM1_CH1 - DFSDM1_C
KOUT ---
UART7_
RTS/UART
7_DE
--
QUADSPI_
BK2_IO2 -FMC_D6/
FMC_DA6 --
EVENT
OUT
PE10 - TIM1_CH2
N-DFSDM1_
DATIN4 ---
UART7_
CTS --
QUADSPI_
BK2_IO3 -FMC_D7/
FMC_DA7 --
EVENT
OUT
PE11 - TIM1_CH2 - DFSDM1_C
KIN4 - SPI4_NSS - - - - SAI2_SD_B - FMC_D8/
FMC_DA8 - LCD_G3 EVENT
OUT
PE12 - TIM1_CH3
N-DFSDM1_
DATIN5 -SPI4_SCK- ---
SAI2_SCK_
B-FMC_D9/F
MC_DA9
COMP1_
OUT LCD_B4 EVENT
OUT
PE13 - TIM1_CH3 - DFSDM1_C
KIN5 - SPI4_MISO - - - - SAI2_FS_B - FMC_D10/
FMC_DA10
COMP2_
OUT LCD_DE EVENT
OUT
PE14 - TIM1_CH4 - - - SPI4_MOSI - - - - SAI2_MCLK
_B -FMC_D11/
FMC_DA11 - LCD_CLK EVENT
OUT
PE15 - TIM1_
BKIN -- -TIM1_BKIN------
FMC_D12/
FMC_DA12
TIM1_BKIN
_COMP12/
COMP_TIM
1_BKIN
LCD_R7 EVENT
OUT
STM32H747xI/G Pin descriptions
DS12930 Rev 1 89/242
Table 13. Port F alternate functions
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
TIM1/2/16/
17/LPTIM1/
HRTIM1
SAI1/TIM3/
4/5/HRTIM
1
LPUART/
TIM8/LPTIM
2/3/4/5/
HRTIM1/
DFSDM1
I2C1/2/3/4/U
SART1/
TIM15/
LPTIM2/
DFSDM1/
CEC
SPI1/2/3/4/
5/6/CEC
SPI2/3/SAI1
/3/I2C4/
UART4/
DFSDM1
SPI2/3/6/
USART1/2/
3/6/UART7/
SDMMC1
SPI6/SAI2/
4/UART4/5/
8/LPUART/
SDMMC1/
SPDIFRX1
SAI4/FDCA
N1/FDACN
2/TIM13/14
/QUADSPI/
FMC/SDM
MC2/LCD/
SPDIFRX1
SAI2/4/TIM
8/QUADSPI
/SDMMC2/
OTG1_HS/
OTG2_FS/
LCD
I2C4/UART
7/SWPMI1/
TIM1/8/
DFSDM1/
SDMMC2/
MDIOS/
ETH
TIM1/8/FMC
/SDMMC1/
MDIOS/
OTG1_FS/
LCD
TIM1/DCMI/
LCD/DSI/
COMP
UART5/
LCD SYS
Port F
PF0 - - - - I2C2_SDA - - - - - - - FMC_A0 - - EVENT
OUT
PF1--- -I2C2_SCL- - --- - -FMC_A1 - - EVENT
OUT
PF2 - - - - I2C2_SMBA - - - - - - - FMC_A2 - - EVENT
OUT
PF3--- - - - - --- - -FMC_A3--
EVENT
OUT
PF4--- - - - - --- - -FMC_A4--
EVENT
OUT
PF5--- - - - - --- - -FMC_A5--
EVENT
OUT
PF6 - TIM16_CH
1- - - SPI5_NSS SAI1_SD_B UART7_RX SAI4_SD_
B
QUADSPI_
BK1_IO3 -----
EVENT
OUT
PF7 - TIM17_CH
1- - - SPI5_SCK SAI1_MCLK
_B UART7_TX SAI4_MCL
K_B
QUADSPI_
BK1_IO2 -----
EVENT
OUT
PF8 - TIM16_
CH1N -- -SPI5_MISO
SAI1_SCK_
B
UART7_
RTS/UART
7_DE
SAI4_SCK
_B
TIM13_CH
1
QUADSPI_
BK1_IO0 ----
EVENT
OUT
PF9 - TIM17_
CH1N - - - SPI5_MOSI SAI1_FS_B UART7_
CTS SAI4_FS_B TIM14_CH
1
QUADSPI_
BK1_IO1 ----
EVENT
OUT
PF10 - TIM16_
BKIN SAI1_D3 - - - - - - QUADSPI_
CLK SAI4_D3 - - DCMI_D11 LCD_DE EVENT
OUT
PF11 - - - - - SPI5_MOSI - - - - SAI2_SD_B FMC_SDNR
AS DCMI_D12 -EVENT
OUT
PF12---- - -------FMC_A6--
EVENT
OUT
PF13 - - - DFSDM1_D
ATIN6 I2C4_SMBA - - - - - - - FMC_A7 - - EVENT
OUT
PF14 - - - DFSDM1_C
KIN6 I2C4_SCL - - - - - - - FMC_A8 - - EVENT
OUT
PF15 - - - - I2C4_SDA - - - - - - - FMC_A9 - - EVENT
OUT
Pin descriptions STM32H747xI/G
90/242 DS12930 Rev 1
Table 14. Port G alternate functions
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
TIM1/2/16/1
7/LPTIM1/
HRTIM1
SAI1/TIM3/
4/5/HRTIM
1
LPUART/
TIM8/LPTIM
2/3/4/5/
HRTIM1/
DFSDM1
I2C1/2/3/4/U
SART1/
TIM15/
LPTIM2/
DFSDM1/
CEC
SPI1/2/3/4/
5/6/CEC
SPI2/3/SAI1
/3/I2C4/
UART4/
DFSDM1
SPI2/3/6/
USART1/2/
3/6/UART7/
SDMMC1
SPI6/SAI2/
4/UART4/5/
8/LPUART/
SDMMC1/
SPDIFRX1
SAI4/FDCA
N1/FDACN
2/TIM13/14
/QUADSPI/
FMC/SDM
MC2/LCD/
SPDIFRX1
SAI2/4/TIM
8/QUADSPI
/SDMMC2/
OTG1_HS/
OTG2_FS/
LCD
I2C4/UART
7/SWPMI1/
TIM1/8/
DFSDM1/
SDMMC2/
MDIOS/
ETH
TIM1/8/FMC
/SDMMC1/
MDIOS/
OTG1_FS/
LCD
TIM1/DCMI/
LCD/DSI/
COMP
UART5/
LCD SYS
Port G
PG0-- - - - - - --- - -FMC_A10 - - EVENT
OUT
PG1-- - - - - - --- - -FMC_A11 - - EVENT
OUT
PG2-- -TIM8_BKIN- - - --- -
TIM8_BKIN
_COMP12 FMC_A12 - - EVENT
OUT
PG3-- -TIM8_BKIN2- - - --- -
TIM8_BKIN
2_COMP12 FMC_A13 - - EVENT
OUT
PG4 - TIM1_BKIN
2- - - - - --- -
TIM1_BKIN
2_COMP12
FMC_A14/
FMC_BA0 --
EVENT
OUT
PG5 - TIM1_ETR - - - - - - - - - - FMC_A15/
FMC_BA1 --
EVENT
OUT
PG6 - TIM17_
BKIN
HRTIM_CH
E1 - - - - ---
QUADSPI_
BK1_NCS -FMC_NE3
DCMI_D12 LCD_R7 EVENT
OUT
PG7 - HRTIM_CH
E2
SAI1_MCLK
_A
USART6_
CK --- -FMC_INT
DCMI_D13 LCD_CLK EVENT
OUT
PG8 - - - TIM8_ETR - SPI6_NSS -
USART6_
RTS/USAR
T6_DE
SPDIFRX1
_IN3 --
ETH_PPS_
OUT
FMC_SDCL
K- LCD_G7 EVENT
OUT
PG9 - - - - - SPI1_MISO
/I2S1_SDI -USART6_
RX
SPDIFRX1
_IN4
QUADSPI_
BK2_IO2 SAI2_FS_B - FMC_NE2/F
MC_NCE
DCMI_
VSYNC -EVENT
OUT
PG10 - HRTIM_
FLT5 --
SPI1_NSS/
I2S1_WS - - - LCD_G3 SAI2_SD_B - FMC_NE3 DCMI_D2 LCD_B2 EVENT
OUT
PG11 - LPTIM1_IN
2
HRTIM_
EEV4 --
SPI1_SCK/
I2S1_CK --
SPDIFRX1
_IN1 -SDMMC2_
D2
ETH_MII_
TX_EN/
ETH_RMII_
TX_EN
- DCMI_D3 LCD_B3 EVENT
OUT
PG12 LPTIM1_IN
1
HRTIM_
EEV5 --SPI6_MISO-
USART6_
RTS/
USART6_
DE
SPDIFRX1
_IN2 LCD_B4 -
ETH_MII_T
XD1/ETH_R
MII_TXD1
FMC_NE4 - LCD_B1 EVENT
OUT
PG13 TRACE
D0
LPTIM1_
OUT
HRTIM_
EEV10 --SPI6_SCK-
USART6_
CTS/
USART6_
NSS
---
ETH_MII_T
XD0/ETH_R
MII_TXD0
FMC_A24 - LCD_R0 EVENT
OUT
STM32H747xI/G Pin descriptions
DS12930 Rev 1 91/242
Port G
PG14 TRACE
D1
LPTIM1_
ETR -- -SPI6_MOSI-
USART6_
TX -QUADSPI_
BK2_IO3 -
ETH_MII_
TXD1/ETH_
RMII_TXD1
FMC_A25 - LCD_B0 EVENT
OUT
PG15 ---- - --
USART6_
CTS/
USART6_
NSS
--- -
FMC_SDNC
AS
DCMI_D13
-EVENT
OUT
Table 14. Port G alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
TIM1/2/16/1
7/LPTIM1/
HRTIM1
SAI1/TIM3/
4/5/HRTIM
1
LPUART/
TIM8/LPTIM
2/3/4/5/
HRTIM1/
DFSDM1
I2C1/2/3/4/U
SART1/
TIM15/
LPTIM2/
DFSDM1/
CEC
SPI1/2/3/4/
5/6/CEC
SPI2/3/SAI1
/3/I2C4/
UART4/
DFSDM1
SPI2/3/6/
USART1/2/
3/6/UART7/
SDMMC1
SPI6/SAI2/
4/UART4/5/
8/LPUART/
SDMMC1/
SPDIFRX1
SAI4/FDCA
N1/FDACN
2/TIM13/14
/QUADSPI/
FMC/SDM
MC2/LCD/
SPDIFRX1
SAI2/4/TIM
8/QUADSPI
/SDMMC2/
OTG1_HS/
OTG2_FS/
LCD
I2C4/UART
7/SWPMI1/
TIM1/8/
DFSDM1/
SDMMC2/
MDIOS/
ETH
TIM1/8/FMC
/SDMMC1/
MDIOS/
OTG1_FS/
LCD
TIM1/DCMI/
LCD/DSI/
COMP
UART5/
LCD SYS
Pin descriptions STM32H747xI/G
92/242 DS12930 Rev 1
Table 15. Port H alternate functions
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
TIM1/2/16/1
7/LPTIM1/
HRTIM1
SAI1/TIM3/
4/5/HRTIM
1
LPUART/
TIM8/LPTIM
2/3/4/5/
HRTIM1/
DFSDM1
I2C1/2/3/4/U
SART1/
TIM15/
LPTIM2/
DFSDM1/
CEC
SPI1/2/3/4/
5/6/CEC
SPI2/3/SAI1
/3/I2C4/
UART4/
DFSDM1
SPI2/3/6/
USART1/2/
3/6/UART7/
SDMMC1
SPI6/SAI2/
4/UART4/5/
8/LPUART/
SDMMC1/
SPDIFRX1
SAI4/FDCA
N1/FDACN
2/TIM13/14
/QUADSPI/
FMC/SDM
MC2/LCD/
SPDIFRX1
SAI2/4/TIM
8/QUADSPI
/SDMMC2/
OTG1_HS/
OTG2_FS/
LCD
I2C4/UART
7/SWPMI1/
TIM1/8/
DFSDM1/
SDMMC2/
MDIOS/
ETH
TIM1/8/FMC
/SDMMC1/
MDIOS/
OTG1_FS/
LCD
TIM1/DCMI/
LCD/DSI/
COMP
UART5/
LCD SYS
Port H
PH0---- - ----------
EVENT
OUT
PH1---- - ----------
EVENT
OUT
PH2 - LPTIM1_IN2 - - - - - - - QUADSPI_
BK2_IO0
SAI2_SCK_
B
ETH_MII_
CRS
FMC_SDCK
E0 - LCD_R0 EVENT
OUT
PH3 - - - - - - - - - QUADSPI_
BK2_IO1
SAI2_MCLK
_B
ETH_MII_
COL
FMC_SDNE
0- LCD_R1 EVENT
OUT
PH4 - - - - I2C2_SCL - - - - LCD_G5 OTG_HS_
ULPI_NXT - - LCD_G4 EVENT
OUT
PH5 - - - - I2C2_SDA SPI5_NSS - - - - - - FMC_
SDNWE --
EVENT
OUT
PH6 - - - - I2C2_SMBA SPI5_SCK- --- -
ETH_MII_R
XD2
FMC_SDNE
1 DCMI_D8 - EVENT
OUT
PH7 - - - - I2C3_SCL SPI5_MISO- ----
ETH_MII_R
XD3
FMC_SDCK
E1 DCMI_D9 - EVENT
OUT
PH8 - - TIM5_ETR - I2C3_SDA - - - - - - - FMC_D16 DCMI_
HSYNC LCD_R2 EVENT
OUT
PH9 - - - - I2C3_SMBA - - - - - - - FMC_D17 DCMI_D0 LCD_R3 EVENT
OUT
PH10 - - TIM5_CH1 - I2C4_SMBA - - - - - - - FMC_D18 DCMI_D1 LCD_R4 EVENT
OUT
PH11 - - TIM5_CH2 - I2C4_SCL - - - - - - - FMC_D19 DCMI_D2 LCD_R5 EVENT
OUT
PH12 - - TIM5_CH3 - I2C4_SDA - - - - - - - FMC_D20 DCMI_D3 LCD_R6 EVENT
OUT
PH13 - - - TIM8_CH1N - - - - UART4_TX FDCAN1_
TX --FMC_D21 - LCD_G2 EVENT
OUT
PH14 - - - TIM8_CH2N - - - - UART4_RX FDCAN1_
RX --FMC_D22 DCMI_D4 LCD_G3 EVENT
OUT
PH15 - - - TIM8_CH3N - - - - -
FDCAN1_
TXFD_
MODE
--FMC_D23 DCMI_D11 LCD_G4 EVENT
OUT
STM32H747xI/G Pin descriptions
DS12930 Rev 1 93/242
Table 16. Port I alternate functions
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
TIM1/2/16/1
7/LPTIM1/
HRTIM1
SAI1/TIM3/
4/5/HRTIM
1
LPUART/
TIM8/LPTIM
2/3/4/5/
HRTIM1/
DFSDM1
I2C1/2/3/4/U
SART1/
TIM15/
LPTIM2/
DFSDM1/
CEC
SPI1/2/3/4/
5/6/CEC
SPI2/3/SAI1
/3/I2C4/
UART4/
DFSDM1
SPI2/3/6/
USART1/2/
3/6/UART7/
SDMMC1
SPI6/SAI2/
4/UART4/5/
8/LPUART/
SDMMC1/
SPDIFRX1
SAI4/FDCA
N1/FDACN
2/TIM13/14
/QUADSPI/
FMC/SDM
MC2/LCD/
SPDIFRX1
SAI2/4/TIM
8/QUADSPI
/SDMMC2/
OTG1_HS/
OTG2_FS/
LCD
I2C4/UART
7/SWPMI1/
TIM1/8/
DFSDM1/
SDMMC2/
MDIOS/
ETH
TIM1/8/FMC
/SDMMC1/
MDIOS/
OTG1_FS/
LCD
TIM1/DCMI/
LCD/DSI/
COMP
UART5/
LCD SYS
Port I
PI0 - - TIM5_CH4 - - SPI2_NSS/
I2S2_WS ---
FDCAN1_
RXFD_
MODE
--FMC_D24 DCMI_D13 LCD_G5 EVENT
OUT
PI1 - - - TIM8_BKIN2 - SPI2_SCK/
I2S2_CK - ----
TIM8_BKIN
2_COMP12 FMC_D25 DCMI_D8 LCD_G6 EVENT
OUT
PI2 - - - TIM8_CH4 - SPI2_MISO
/I2S2_SDI - ---- -FMC_D26 DCMI_D9 LCD_G7 EVENT
OUT
PI3 - - - TIM8_ETR - SPI2_MOSI
/I2S2_SDO - ---- -FMC_D27 DCMI_D10 - EVENT
OUT
PI4-- -TIM8_BKIN- - - ---
SAI2_MCLK
_A
TIM8_BKIN
_COMP12 FMC_NBL2 DCMI_D5 LCD_B4 EVENT
OUT
PI5 - - - TIM8_CH1 - - - - - - SAI2_SCK_
A-FMC_NBL3 DCMI_VSY
NC LCD_B5 EVENT
OUT
PI6 - - - TIM8_CH2 - - - - - - SAI2_SD_A - FMC_D28 DCMI_D6 LCD_B6 EVENT
OUT
PI7 - - - TIM8_CH3 - - - - - - SAI2_FS_A - FMC_D29 DCMI_D7 LCD_B7 EVENT
OUT
PI8---- - ----------
EVENT
OUT
PI9 - - - - - - - - UART4_RX FDCAN1_
RX --FMC_D30 - LCD_
VSYNC
EVENT
OUT
PI10 - - - - - - - - -
FDCAN1_
RXFD_
MODE
-ETH_MII_
RX_ER FMC_D31 - LCD_
HSYNC
EVENT
OUT
PI11 - - - - - - - - - LCD_G6 OTG_HS_U
LPI_DIR --- EVENT
OUT
PI12-- - - - - - ---- ---
LCD_HSY
NC
EVENT
OUT
PI13-- - - - - - ---- - - -
LCD_VSY
NC
EVENT
OUT
PI14-- - - - - - ---- - - - LCD_CLK EVENT
OUT
PI15 - - - - - - - - - LCD_G2 - - - - LCD_R0 EVENT
OUT
Pin descriptions STM32H747xI/G
94/242 DS12930 Rev 1
Table 17. Port J alternate functions
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
TIM1/2/16/1
7/LPTIM1/
HRTIM1
SAI1/TIM3/
4/5/HRTIM
1
LPUART/
TIM8/LPTIM
2/3/4/5/
HRTIM1/
DFSDM1
I2C1/2/3/4/U
SART1/
TIM15/
LPTIM2/
DFSDM1/
CEC
SPI1/2/3/4/
5/6/CEC
SPI2/3/SAI1
/3/I2C4/
UART4/
DFSDM1
SPI2/3/6/
USART1/2/
3/6/UART7/
SDMMC1
SPI6/SAI2/
4/UART4/5/
8/LPUART/
SDMMC1/
SPDIFRX1
SAI4/FDCA
N1/FDACN
2/TIM13/14
/QUADSPI/
FMC/SDM
MC2/LCD/
SPDIFRX1
SAI2/4/TIM
8/QUADSPI
/SDMMC2/
OTG1_HS/
OTG2_FS/
LCD
I2C4/UART
7/SWPMI1/
TIM1/8/
DFSDM1/
SDMMC2/
MDIOS/
ETH
TIM1/8/FMC
/SDMMC1/
MDIOS/
OTG1_FS/
LCD
TIM1/DCMI/
LCD/DSI/
COMP
UART5/
LCD SYS
Port J
PJ0 - - - - - - - - - LCD_R7 - - - - LCD_R1 EVENT
OUT
PJ1---- - --------- LCD_R2 EVENT
OUT
PJ2---- - --------
DSI_TE LCD_R3 EVENT
OUT
PJ3---- - --------- LCD_R4 EVENT
OUT
PJ4---- - --------- LCD_R5 EVENT
OUT
PJ5---- - --------- LCD_R6 EVENT
OUT
PJ6---TIM8_CH2- --------- LCD_R7 EVENT
OUT
PJ7 TRGIN - - TIM8_CH2N - - - - - - - - - - LCD_G0 EVENT
OUT
PJ8 - TIM1_CH3N - TIM8_CH1 - - - - UART8_TX - - - - - LCD_G1 EVENT
OUT
PJ9 - TIM1_CH3 - TIM8_CH1N - - - - UART8_RX - - - - - LCD_G2 EVENT
OUT
PJ10 - TIM1_CH2N - TIM8_CH2 - SPI5_MOSI- ---- - - - LCD_G3 EVENT
OUT
PJ11 - TIM1_CH2 - TIM8_CH2N - SPI5_MISO- ---- - - - LCD_G4 EVENT
OUT
PJ12 TRGOU
T--- - ----LCD_G3---- LCD_B0 EVENT
OUT
PJ13 - - - - - - - - - LCD_B4 - - - - LCD_B1 EVENT
OUT
PJ14-- - - - -- ---- - - - LCD_B2 EVENT
OUT
PJ15-- - - - -- ---- - - - LCD_B3 EVENT
OUT
STM32H747xI/G Pin descriptions
DS12930 Rev 1 95/242
Table 18. Port K alternate functions
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
TIM1/2/16/1
7/LPTIM1/
HRTIM1
SAI1/TIM3/
4/5/HRTIM
1
LPUART/
TIM8/LPTIM
2/3/4/5/
HRTIM1/
DFSDM1
I2C1/2/3/4/U
SART1/
TIM15/
LPTIM2/
DFSDM1/
CEC
SPI1/2/3/4/
5/6/CEC
SPI2/3/SAI1
/3/I2C4/
UART4/
DFSDM1
SPI2/3/6/
USART1/2/
3/6/UART7/
SDMMC1
SPI6/SAI2/
4/UART4/5/
8/LPUART/
SDMMC1/
SPDIFRX1
SAI4/FDCA
N1/FDACN
2/TIM13/14
/QUADSPI/
FMC/SDM
MC2/LCD/
SPDIFRX1
SAI2/4/TIM
8/QUADSPI
/SDMMC2/
OTG1_HS/
OTG2_FS/
LCD
I2C4/UART
7/SWPMI1/
TIM1/8/
DFSDM1/
SDMMC2/
MDIOS/
ETH
TIM1/8/FMC
/SDMMC1/
MDIOS/
OTG1_FS/
LCD
TIM1/DCMI/
LCD/DSI/
COMP
UART5/
LCD SYS
Port K
PK0 - TIM1_CH1N - TIM8_CH3 - SPI5_SCK- --- - - - - LCD_G5 EVENT
OUT
PK1 - TIM1_CH1 - TIM8_CH3N - SPI5_NSS - - - - - - - - LCD_G6 EVENT
OUT
PK2 - TIM1_BKIN - TIM8_BKIN - - - - - - TIM8_BKIN
_COMP12
TIM1_BKIN
_COMP12 -- LCD_G7 EVENT
OUT
PK3 - - - - - - - - - - - - - - LCD_B4 EVENT
OUT
PK4 - - - - - - - - - - - - - - LCD_B5 EVENT
OUT
PK5 - - - - - - - - - - - - - - LCD_B6 EVENT
OUT
PK6 - - - - - - - - - - - - - - LCD_B7 EVENT
OUT
PK7 - - - - - - - - - - - - - - LCD_DE EVENT
OUT
Electrical characteristics STM32H747xI/G
96/242 DS12930 Rev 1
6 Electrical characteristics
6.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of junction temperature, supply voltage and frequencies by tests in production on
100% of the devices with an junction temperature at TJ = 25 °C and TJ = TJmax (given by the
selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes. Based on characterization, the minimum and maximum
values refer to sample tests and represent the mean value plus or minus three times the
standard deviation (mean±3).
6.1.2 Typical values
Unless otherwise specified, typical data are based on TJ = 25 °C, VDD = 3.3 V (for the
1.7 V VDD 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2).
6.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 11.
6.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 12.
Figure 11. Pin loading conditions Figure 12. Pin input voltage
MS19011V2
C = 50 pF
MCU pin
MS19010V2
MCU pin
VIN
DS12930 Rev 1 97/242
STM32H747xI/G Electrical characteristics
221
6.1.6 Power supply scheme
Figure 13. Power supply scheme
1. N corresponds to the number of VDD pins available on the package.
2. A tolerance of +/- 20% is acceptable on decoupling capacitors.
3. VCAPDSI pin must be externally connected to VDD12DSI pin.
Caution: Each power supply pair (VDD/VSS, VDDA/VSSA ...) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
MSv62410V2
BKUP
IOs
VDD domain
Analog domain
Core domain (VCORE)
Backup domain
D3 domain
(System
logic,
EXTI,
Peripherals,
RAM)
D1 domain
(CPU, peripherals,
RAM)
Level shifter
OPAMP,
Comparator
Voltage
regulator
ADC, DAC
Flash
D2 domain
(peripherals,
RAM)
Power
switch
Power switch
VCAP
VSS
VDDLDO
VBAT
VDDA
VREF+
VREF-
VSSA
Backup
regulator
VDD
Backup
RAM
Power switch
HSI, CSI,
HSI48,
HSE, PLLs
IOs
Power
switch
USB
regulator
VDD50USB
VDD33USB
VSS
VSS
VSS
REF_BUF
VSS
IO
logic
VREF+
USB
IOs
VSS
VSW
LSI, LSE,
RTC, Wakeup
logic, backup
registers,
Reset
IO
logic
VBKP
VBAT
charging
VREF-
VDDA
VBAT
1.2 to 3.6V
2 x 2.2 μF
N(1) x 100 nF
+ 1 x 4.7 μF
100 nF
100 nF + 1 x 1 μF
4..7μF
100 nF
VDD
VDDLDO
100 nF + 1 x 1 μF
VREF
VDD33USB VDD50USB
Step
Down
Coverter
(SMPS)
VDDSMPS
VLXSMPS
VFBSMPS
VSSSMPS
VDD12DSI
DSI
PHY
DSI
regulator
VSSDSI
VDDDSI
VCAPDSI(1)
2.2 μF
Electrical characteristics STM32H747xI/G
98/242 DS12930 Rev 1
below, the appropriate pins on the underside of the PCB to ensure good operation of the
device. It is not recommended to remove filtering capacitors to reduce PCB size or cost.
This might cause incorrect operation of the device.
6.1.7 Current consumption measurement
Figure 14. Current consumption measurement scheme
6.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 19: Voltage characteristics,
Table 20: Current characteristics, and Table 21: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and the functional operation
of the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
ai14126
VBAT
VDD
VDDA
IDD_VBAT
IDD
Table 19. Voltage characteristics (1)
1. All main power (VDD, VDDA, VDD33USB, VDDSMPS, VBAT) and ground (VSS, VSSA) pins must always be
connected to the external power supply, in the permitted range.
Symbols Ratings Min Max Unit
VDDX - VSS
External main supply voltage (including VDD,
VDDLDO, VDDSMPS, VDDA, VDD33USB, VBAT)0.3 4.0 V
VIN(2)
2. VIN maximum must always be respected. Refer to Table 70: I/O current injection susceptibility for the
maximum allowed injected current values.
Input voltage on FT_xxx pins VSS0.3
Min(VDD, VDDA,
VDD33USB, VBAT)
+4.0(3)(4)
3. This formula has to be applied on power supplies related to the IO structure described by the pin definition
table.
V
Input voltage on TT_xx pins VSS-0.3 4.0 V
Input voltage on BOOT0 pin VSS 9.0 V
Input voltage on any other pins VSS-0.3 4.0 V
|VDDX|Variations between different VDDX power pins
of the same domain -50mV
|VSSx-VSS| Variations between all the different ground pins - 50 mV
DS12930 Rev 1 99/242
STM32H747xI/G Electrical characteristics
221
4. To sustain a voltage higher than 4V the internal pull-up/pull-down resistors must be disabled.
Table 20. Current characteristics
Symbols Ratings Max Unit
ΣIVDD Total current into sum of all VDD power lines (source)(1)
1. All main power (VDD, VDDA, VDD33USB) and ground (VSS, VSSA) pins must always be connected to the
external power supplies, in the permitted range.
620
mA
ΣIVSS Total current out of sum of all VSS ground lines (sink)(1) 620
IVDD Maximum current into each VDD power pin (source)(1) 100
IVSS Maximum current out of each VSS ground pin (sink)(1) 100
IIO Output current sunk by any I/O and control pin 20
ΣI(PIN)
Total output current sunk by sum of all I/Os and control pins(2)
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output
current must not be sunk/sourced between two consecutive power supply pins referring to high pin count
QFP packages.
140
Total output current sourced by sum of all I/Os and control pins(2) 140
IINJ(PIN)(3)(4)
3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the
specified maximum value.
4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer also to Table 19: Voltage characteristics for the maximum allowed input voltage
values.
Injected current on FT_xxx, TT_xx, RST and B pins except PA4,
PA5 5/+0
Injected current on PA4, PA5 0/0
ΣIINJ(PIN) Total injected current (sum of all I/Os and control pins)(5)
5. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values).
±25
Table 21. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range 65 to +150
°C
TJMaximum junction temperature 125
Electrical characteristics STM32H747xI/G
100/242 DS12930 Rev 1
6.3 Operating conditions
6.3.1 General operating conditions
Table 22. General operating conditions
Symbol Parameter Operating
conditions Min Typ Max Unit
VDD Standard operating voltage - 1.62(1) - 3.6 V
VDDLDO
Supply voltage for the internal
regulator VDDLDO VDD
1.62(1) -3.6
V
1.2(2) -3.6
VDDSMPS
Supply voltage for the internal SMPS
Step-down converter VDDSMPS = VDD 1.62(1) -3.6V
VDD33USB
Standard operating voltage, USB
domain
USB used 3.0 - 3.6
V
USB not used 0 - 3.6
VDDA Analog operating voltage
ADC or COMP used 1.62 -
3.6
DAC used 1.8 -
OPAMP used 2.0 -
VREFBUF used 1.8 -
ADC, DAC, OPAMP,
COMP, VREFBUF not
used
0-
VIN I/O Input voltage
TT_xx I/O 0.3 - VDD+0.3
BOOT0 0 - 9
All I/O except BOOT0
and TT_xx 0.3 -
Min(VDD, VDDA,
VDD33USB)
+3.6V <
5.5V(3)(4)
DS12930 Rev 1 101/242
STM32H747xI/G Electrical characteristics
221
VCORE
Internal regulator ON (LDO)
VOS3 (max frequency
200 MHz) 0.95 1.0 1.26
V
VOS2 (max frequency
300 MHz) 1.05 1.10 1.26
VOS1 (max frequency
400 MHz) 1.15 1.20 1.26
VOS0(5) (max
frequency 480 MHz(6)) 1.26 1.35 1.40
Internal regulator ON (SMPS step-
down converter)(7)
VOS3 (max frequency
200 MHz) 0.95 1.0 1.26
VOS2 (max frequency
300 MHz) 1.05 1.10 1.26
VOS1 (max frequency
400 MHz) 1.15 1.20 1.26
Regulator OFF: external VCORE
voltage must be supplied from external
regulator on two VCAP pins
VOS3 (max frequency
200 MHz) 0.98 1.03 1.26
VOS2 (max frequency
300 MHz) 1.08 1.13 1.26
VOS1 (max frequency
400 MHz) 1.17 1.23 1.26
VOS0 (max frequency
480 MHz(6)) 1.37 1.38 1.40
Table 22. General operating conditions (continued)
Symbol Parameter Operating
conditions Min Typ Max Unit
Electrical characteristics STM32H747xI/G
102/242 DS12930 Rev 1
fCPU1 Arm® Cortex®-M7 clock frequency
VOS3 - - 200
MHz
VOS2 - - 300
VOS1 - - 400
VOS0 - - 480(6)
fCPU2 Arm® Cortex®-M4 clock frequency
VOS3 - - 200
VOS2 - - 150
VOS1 - - 200
VOS0 - - 240(6)
fACLK AXI clock frequency
VOS3 - - 100
VOS2 - - 150
VOS1 - - 200
VOS0 - - 240(6)
fHCLK AHB clock frequency
VOS3 - - 100
VOS2 - - 150
VOS1 - - 200
VOS0 - - 240(6)
fPCLK APB clock frequency
VOS3 - - 50(8)
VOS2 - - 75
VOS1 - - 100
VOS0 - - 120(6)
1. When RESET is released functionality is guaranteed down to VBOR0 min
2. Only for power-up sequence when the SMPS step-down converter is configured to supply the LDO and TJMax = 105 °C.
3. This formula has to be applied on power supplies related to the IO structure described by the pin definition table.
4. For operation with voltage higher than Min (VDD, VDDA, VDD33USB) +0.3V, the internal Pull-up and Pull-Down resistors must
be disabled.
5. VOS0 is available only when the LDO regulator is ON.
6. TJmax = 105 °C.
7. At startup, the external VCORE voltage must remain higher or equal to 1.10 V before disabling the internal regulator (LDO).
8. Maximum APB clock frequency when at least one peripheral is enabled.
Table 22. General operating conditions (continued)
Symbol Parameter Operating
conditions Min Typ Max Unit
DS12930 Rev 1 103/242
STM32H747xI/G Electrical characteristics
221
6.3.2 VCAP external capacitor
Stabilization for the main regulator is achieved by connecting an external capacitor CEXT to
the VCAP pin. CEXT is specified in Table 24. Two external capacitors can be connected to
VCAP pins.
Figure 15. External capacitor CEXT
1. Legend: ESR is the equivalent series resistance.
Table 23. Supply voltage and maximum frequency configuration
Power scale VCORE source Max TJ (°C) Max frequency (MHz) Min VDD (V)
VOS0
LDO 105 480 1.7
SMPS step-down
converter(1)
1. VOS0 (power scale 0) is not available when the SMPS step-down converter directly supplies VCORE.
-- -
VOS1
LDO
125 400 1.62
SMPS step-down
converter
VOS2
LDO 125
300 1.62
SMPS step-down
converter 125
VOS3
LDO(2)
2. Only for power-up sequence when the SMPS step-down converter supplies the LDO.
105 64 1.2(2)
LDO 125
200 1.62
SMPS step-down
converter 125
SVOS4
LDO 105
N/A 1.62
SMPS step-down
converter 125
SVOS5
LDO 105
N/A 1.62
SMPS step-down
converter 125
MS19044V2
ESR
R
Leak
C
Electrical characteristics STM32H747xI/G
104/242 DS12930 Rev 1
6.3.3 SMPS step-down converter
The devices embed a high power efficiency SMPS step-down converter. SMPS
characteristics for external usage are given in Table 26. The SMPS step-down converter
requires external components that are specified in Figure 16 and Table 25.
Figure 16. External components for SMPS step-down converter
Table 24. VCAP operating conditions(1)
1. When bypassing the voltage regulator, the two 2.2 µF VCAP capacitors are not required and should be
replaced by two 100 nF decoupling capacitors.
Symbol Parameter Conditions
CEXT Capacitance of external capacitor 2.2 µF(2)
2. This value corresponds to CEXT typical value. A variation of +/-20% is tolerated.
ESR ESR of external capacitor < 100 mΩ
MSv61398V2
VC
AP
VCAP
V
DDLD
O
VDDLDO
V
DD
S
MP
S
VDDSMPS
V
LX
S
MP
S
VLXSMPS
V
re
g
(
OFF
)
V reg
(OFF)
V
DD
VDD
S
MP
S
(
O
N
)
SMPS
(ON)
VSSS
MP
S
VSSSMPS
V
FB
S
MP
S
VFBSMPS
V
S
S
VSS
V
C
OR
E
VCORE
Cin L
Cout1
Cout2
Cfilt
VC
AP
VCAP
V
DDLD
O
VDDLDO
V
DD
S
MP
S
VDDSMPS
V
LX
S
MP
S
VLXSMPS
V
re
g
(
O
N)
V reg
(ON)
V
DD
VDD
SMPS
P
(
ON
N
)
SMPS
(ON)
VSSS
MP
S
VSSSMPS
V
FB
S
MP
S
VFBSMPS
V
S
S
VSS
V
C
OR
E
VCORE
Cin L
2xCout
CEXT
Cfilt
Direct SMPS supply External SMPS supply, LDO supplied
by SMPS
V
DD
_
Ext
e
rn
al
VDD_
External
Table 25. Characteristics of SMPS step-down converter external components
Symbol Parameter Conditions
Cin
Capacitance of external capacitor on VDDSMPS 4.7 µF
ESR of external capacitor 100 m
Cfilt Capacitance of external capacitor on VLXSMPS pin 220 pF
COUT
Capacitance of external capacitor on VFBSMPS pin 10 µF
ESR of external capacitor 20 m
L Inductance of external Inductor on VLXSMPS pin 2.2 µH
- Serial DC resistor 150 m
DS12930 Rev 1 105/242
STM32H747xI/G Electrical characteristics
221
6.3.4 Operating conditions at power-up / power-down
Subject to general operating conditions for TA.
Table 27. Operating conditions at power-up / power-down (regulator ON)
ISAT
DC current at which the inductance drops 30% from
its value without current. 1.7 A
IRMS
Average current for a 40 °C rise: rated current for
which the temperature of the inductor is raised 40°C
by DC current
1.4 A
Table 26. SMPS step-down converter characteristics for external usage
Parameters Conditions Min Typ Max Unit
VDDSMPS(1)
1. The switching frequency is 2.4 MHz±10%
VOUT = 1.8 V 2.3 - 3.6
V
VOUT = 2.5 V 3 - 3.6
VOUT(2)
2. Including line transient and load transient.
Iout=600 mA
2.25 2.5 2.75
V
1.62 1.8 1.98
IOUT
internal and external usage - - 600
mA
External usage only(3)
3. These characteristics are given for SDEXTHP bit is set in the PWR_CR3 register.
- - 600
RDSON - - 100 120 m
IDDSMPS_Q Quiescent current - 220 - µA
TSMPS_START
VOUT = 1.8 V - - 225
µs
VOUT = 2.5 V - - 300
Table 25. Characteristics of SMPS step-down converter external components
Symbol Parameter Conditions
Symbol Parameter Min Max Unit
tVDD
VDD rise time rate 0
µs/V
VDD fall time rate 10
tVDDA
VDDA rise time rate 0
VDDA fall time rate 10
tVDDUSB
VDDUSB rise time rate 0
VDDUSB fall time rate 10
Electrical characteristics STM32H747xI/G
106/242 DS12930 Rev 1
6.3.5 Embedded reset and power control block characteristics
The parameters given in Table 28 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 22: General operating
conditions.
Table 28. Reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
tRSTTEMPO(1) Reset temporization
after BOR0 released - - 377 - µs
VBOR0 Brown-out reset threshold 0
Rising edge(1) 1.62 1.67 1.71
V
Falling edge 1.58 1.62 1.68
VBOR1 Brown-out reset threshold 1
Rising edge 2.04 2.10 2.15
Falling edge 1.95 2.00 2.06
VBOR2 Brown-out reset threshold 2
Rising edge 2.34 2.41 2.47
Falling edge 2.25 2.31 2.37
VBOR3 Brown-out reset threshold 3
Rising edge 2.63 2.70 2.78
Falling edge 2.54 2.61 2.68
VPVD0
Programmable Voltage
Detector threshold 0
Rising edge 1.90 1.96 2.01
Falling edge 1.81 1.86 1.91
VPVD1
Programmable Voltage
Detector threshold 1
Rising edge 2.05 2.10 2.16
Falling edge 1.96 2.01 2.06
VPVD2
Programmable Voltage
Detector threshold 2
Rising edge 2.19 2.26 2.32
Falling edge 2.10 2.15 2.21
VPVD3
Programmable Voltage
Detector threshold 3
Rising edge 2.35 2.41 2.47
Falling edge 2.25 2.31 2.37
VPVD4
Programmable Voltage
Detector threshold 4
Rising edge 2.49 2.56 2.62
Falling edge 2.39 2.45 2.51
VPVD5
Programmable Voltage
Detector threshold 5
Rising edge 2.64 2.71 2.78
Falling edge 2.55 2.61 2.68
VPVD6
Programmable Voltage
Detector threshold 6
Rising edge 2.78 2.86 2.94
Falling edge in Run mode 2.69 2.76 2.83
Vhyst_BOR_PVD
Hysteresis voltage of BOR
(unless BOR0) and PVD Hysteresis in Run mode - 100 - mV
IDD_BOR_PVD(1) BOR(2) (unless BOR0) and
PVD consumption from VDD
- - 0.630 µA
DS12930 Rev 1 107/242
STM32H747xI/G Electrical characteristics
221
6.3.6 Embedded reference voltage
The parameters given in Table 29 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 22: General operating
conditions.
VAVM_0
Analog voltage detector for
VDDA threshold 0
Rising edge 1.66 1.71 1.76
V
Falling edge 1.56 1.61 1.66
VAVM_1
Analog voltage detector for
VDDA threshold 1
Rising edge 2.06 2.12 2.19
Falling edge 1.96 2.02 2.08
VAVM_2
Analog voltage detector for
VDDA threshold 2
Rising edge 2.42 2.50 2.58
Falling edge 2.35 2.42 2.49
VAVM_3
Analog voltage detector for
VDDA threshold 3
Rising edge 2.74 2.83 2.91
Falling edge 2.64 2.72 2.80
Vhyst_VDDA
Hysteresis of VDDA voltage
detector - - 100 - mV
IDD_PVM
PVM consumption from
VDD(1)
---0.25µA
IDD_VDDA
Voltage detector
consumption on VDDA(1) Resistor bridge - - 2.5 µA
1. Guaranteed by design.
2. BOR0 is enabled in all modes and its consumption is therefore included in the supply current characteristics tables (refer to
Section 6.3.7: Supply current characteristics).
Table 28. Reset and power control block characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 29. Embedded reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT Internal reference voltages -40°C < TJ < 125 °C,
VDD = 3.3 V 1.180 1.216 1.255 V
tS_vrefint(1)(2)
ADC sampling time when
reading the internal reference
voltage
-4.3--
µs
tS_vbat(1)(2)
VBAT sampling time when
reading the internal VBAT
reference voltage
-9--
Irefbuf(2) Reference Buffer
consumption for ADC VDDA=3.3 V 9 13.5 23 µA
ΔVREFINT(2)
Internal reference voltage
spread over the temperature
range
-40°C < TJ < 125 °C - 5 15 mV
Tcoeff(2) Average temperature
coefficient
Average temperature
coefficient -2070ppm/°C
VDDcoeff(2) Average Voltage coefficient 3.0V < VDD < 3.6V - 10 1370 ppm/V
Electrical characteristics STM32H747xI/G
108/242 DS12930 Rev 1
6.3.7 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 14: Current consumption
measurement scheme.
All the run-mode current consumption measurements given in this section are performed
with a CoreMark code.
Typical and maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in analog input mode.
All peripherals are disabled except when explicitly mentioned.
The Flash memory access time is adjusted with the minimum wait states number,
depending on the fACLK frequency (refer to the table “Number of wait states according to
CPU clock (frcc_c_ck) frequency and VCORE range” available in the reference manual).
When the peripherals are enabled, the AHB clock frequency is the CPU1 frequency
divided by 2 and the APB clock frequency is AHB clock frequency divided by 2.
The parameters given in the below tables are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 22: General operating
conditions.
VREFINT_DIV1 1/4 reference voltage - - 25 -
%
VREFINT
VREFINT_DIV2 1/2 reference voltage - - 50 -
VREFINT_DIV3 3/4 reference voltage - - 75 -
1. The shortest sampling time for the application can be determined by multiple iterations.
2. Guaranteed by design.
Table 29. Embedded reference voltage (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 30. Internal reference voltage calibration values
Symbol Parameter Memory address
VREFIN_CAL Raw data acquired at temperature of 30 °C, VDDA = 3.3 V 1FF1E860 - 1FF1E861
DS12930 Rev 1 109/242
STM32H747xI/G Electrical characteristics
221
Table 31. Typical and maximum current consumption in Run mode, code with data processing
running from ITCM for Cortex-M7 core, and Flash memory for Cortex-M4
(ART accelerator ON), LDO regulator ON(1)(2)
Symbol Parameter Conditions
Arm
Cortex-
M7
fCPU1
(MHz)
Arm
Cortex-
M4
fCPU2
(MHz)
Typ
Max(3)
Unit
Tj=
25 °C
Tj=
85 °C
Tj=
105°C
Tj=
125°C
IDD
Supply
current in
Run mode
All
peripherals
disabled
VOS0
480 240 179 272 387 498
mA
400 200 151 - - -
VOS1 400 200 132 181 292 382 502
VOS2 300 150 91 122 211 281 377
VOS3 200 100 56 79 150 206 284
All
peripherals
enabled
VOS0
480 240 247 374 462 571
400 200 208 - - -
VOS1 400 200 181 232 337 422 541
VOS2 300 150 126 163 248 318 414
VOS3 200 100 78 104 173 229 307
1. Data are in DTCM for best computation performance, the cache has no influence on consumption in this case.
2. The grayed cells correspond to the forbidden configurations.
3. Guaranteed by characterization results, unless otherwise specified.
Table 32. Typical and maximum current consumption in Run mode, code with data processing
running from ITCM for Arm Cortex-M7 and Flash memory for Arm Cortex-M4,
ART accelerator ON, SMPS regulator(1)
Symbol Parameter Conditions
Arm
Cortex-
M7
fCPU1
(MHz)
Arm
Cortex-
M4
fCPU2
(MHz)
Typ
Max
Unit
Tj=
25 °C
Tj=
85 °C
Tj=
105°C
Tj=
125°C
IDD
Supply
current in
Run mode
All
peripherals
disabled
VOS1 400 200 58.3 79.0 129.0 175.1 236.0
mA
VOS2 300 150 37.0 50.2 84.7 115.6 161.1
VOS3 200 100 21.5 29.9 56.1 77.1 107.6
All
peripherals
enabled
VOS1 400 200 78.1 100.1 148.9 193.4 254.3
VOS2 300 150 51.2 65.5 100.8 130.9 176.9
VOS3 200 100 29.5 39.4 63.9 86.7 116.3
1. The parameters given in the above table for the SMPS regulator are derived by extrapolation from the LDO consumption
and typical SMPS efficiency factors.
Electrical characteristics STM32H747xI/G
110/242 DS12930 Rev 1
Table 33. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory, both cores running, cache ON,
ART accelerator ON, LDO regulator ON(1)
Symbol Parameter Conditions
Arm
Cortex
-M7
fCPU1
(MHz)
Arm
Cortex-
M4
fCPU2
(MHz)
Typ
Max(2)
Unit
Tj=
25 °C
Tj=
85 °C
Tj=
105°C
Tj=
125°C
IDD
Supply
current in
Run mode
All
peripherals
disabled
VOS0
480 240 173 268 385 496
mA
400 200 147 - - -
VOS1 400 200 128 175 288 379 499
VOS2 300 150 88 120 209 279 374
VOS3 200 100 55 77 149 205 283
All
peripherals
enabled
VOS0 480 240 242 368 459 569
VOS1 400 200 178 229(3) 334 419(3) 537
VOS2 300 150 123 161 246 316 412
VOS3 200 100 77 102 172 228 306
1. The grayed cells correspond to the forbidden configurations.
2. Guaranteed by characterization results, unless otherwise specified.
3. Guaranteed by tests in production.
Table 34. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory, both cores running, cache OFF,
ART accelerator OFF, LDO regulator ON(1)
Symbol Parameter Conditions
Arm
Cortex-
M7
fCPU1
(MHz)
Arm
Cortex-
M4
fCPU2
(MHz)
Typ
Max(2)
Unit
Tj=
25 °C
Tj=
85 °C
Tj=
105°C
Tj=
125°C
IDD
Supply
current in
Run mode
All
peripherals
disabled
VOS0 480 240 109 191 330 444
mA
VOS1 400 200 96 149 256 347 468
VOS2 300 150 67 95 187 257 354
VOS3 200 100 43 62 136 192 270
All
peripherals
enabled
VOS0 480 240 178 291 403 517
VOS1 400 200 147 224 310 401 523
VOS2 300 150 103 136 224 295 392
VOS3 200 100 64 87 159 215 293
1. The grayed cells correspond to the forbidden configurations.
2. Guaranteed by characterization results, unless otherwise specified.
DS12930 Rev 1 111/242
STM32H747xI/G Electrical characteristics
221
Table 35. Typical and maximum current consumption in Run mode, code with data processing
running from ITCM, only Arm Cortex-M7 running, LDO regulator ON(1)(2)
Symbol Parameter Conditions fCPU1
(MHz) Typ
Max(3)
Unit
Tj=25
°C
Tj=85
°C
Tj=105
°C
Tj=125
°C
IDD
Supply
current in
Run mode
All
peripherals
disabled
VOS0
480 148 226 307 390
mA
400 125 - - -
VOS1
400 110 168 230 296 384
30084----
VOS2
300 76 114 170 224 297
216 56 88 152 205 278
20053----
VOS3
200 47 71 121 164 223
180 43 64 116 159 218
168 40 63 115 158 217
144 35 55 109 153 212
60 16 36 92 135 194
25 12 24 83 126 185
All
peripherals
enabled
VOS0
480 226 222 439 550
400 190 - - -
VOS1
400 167 222 327 416 536
300135----
VOS2
300 122 160 248 320 419
20085----
VOS3 200 76 103 174 233 313
1. Data are in DTCM for best computation performance, the cache has no influence on consumption in this case.
2. The grayed cells correspond to the forbidden configurations.
3. Guaranteed by characterization results, unless otherwise specified.
Electrical characteristics STM32H747xI/G
112/242 DS12930 Rev 1
Table 36. Typical and maximum current consumption in Run mode, code with data processing
running from ITCM, only Arm Cortex-M7 running, SMPS regulator(1)
Symbol Parameter Conditions fCPU1
(MHz) Typ
Max
Unit
Tj=25
°C
Tj=85
°C
Tj=105
°C
Tj=125
°C
IDD
Supply
current in
Run mode
All
peripherals
disabled
VOS1 400 48.6 73.3 100.4 132.4 176.0
mA
VOS2 300 31.3 46.3 68.3 90.0 122.2
VOS3 200 18.0 26.9 45.3 60.6 82.4
All
peripherals
enabled
VOS1 400 72.9 95.8 144.5 190.7 252.0
VOS2 300 49.6 64.3 99.6 131.7 179.1
VOS3 200 28.8 38.5 64.3 88.3 118.6
1. The parameters given in the above table for the SMPS regulator are derived by extrapolation from the LDO consumption
and typical SMPS efficiency factors.
Table 37. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory, only Arm Cortex-M7 running, cache ON,
LDO regulator ON(1)
Symbol Parameter Conditions fCPU1
(MHz) Typ
Max(2)
Unit
Tj=25
°C
Tj=85
°C
Tj=105
°C
Tj=125
°C
IDD
Supply
current in
Run mode
All
peripherals
disabled
VOS0
480 110 222 304 388
mA
40091---
VOS1
400 80 162 228 294 381
30061.5----
VOS2
216 55 111 168 222 294
20038.5----
VOS3 200 34.5 69 120 163 222
All
peripherals
enabled
VOS0
480 220 342 436 546
400195---
VOS1
400 175 264 336 424 544
300135----
VOS2
300 120 180 246 318 418
20083----
VOS3 200 75 114 173 232 312
1. The grayed cells correspond to the forbidden configurations.
2. Guaranteed by characterization results, unless otherwise specified.
DS12930 Rev 1 113/242
STM32H747xI/G Electrical characteristics
221
Table 38. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory, only Arm Cortex-M7 running, cache OFF,
LDO regulator ON(1)
Symbol Parameter Conditions fCPU1
(MHz) Typ
Max(2)
Unit
Tj=25°C Tj=85°C Tj=105
°C
Tj=125
°C
IDD
Supply
current in
Run mode
All
peripherals
disabled
VOS0 480 87 157 259 342
mA
VOS1 400 73 123 201 267 355
VOS2 300 52 85 150 204 277
VOS3 200 34 54 109 152 212
All
peripherals
enabled
VOS0 480 168 276 390 504
VOS1 400 135 224 308 397 519
VOS2 300 100 154 228 301 401
VOS3 200 70 103 167 226 307
1. The grayed cells correspond to the forbidden configurations.
2. Guaranteed by characterization results, unless otherwise specified.
Table 39. Typical and maximum current consumption batch acquisition mode,
LDO regulator ON
Symbol Parameter Conditions fHCLK
(MHz) Typ
Max(1)
Unit
Tj=25°C Tj=85°C Tj=105
°C
Tj=125
°C
IDD
Supply
current in
batch
acquisition
mode
D1
Standby,
D2
Standby,
D3 Run
VOS3
64 2.7 4.7 12.9 19.0 27.5
mA
81.1----
D1 Stop,
D2 Stop,
D3 Run
VOS3
64 5.4 18.4 83.7 132.6 202.4
83.8----
1. Guaranteed by characterization results, unless otherwise specified.
Electrical characteristics STM32H747xI/G
114/242 DS12930 Rev 1
Table 40. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory, only Arm Cortex-M4 running, ART accelerator ON,
LDO regulator ON(1)
Symbol Parameter Conditions fCPU2
(MHz) Typ
Max(2)
Unit
Tj=25
°C
Tj=85
°C
Tj=105
°C
Tj=125
°C
IDD
Supply
current in
Run mode
All
peripherals
disabled
VOS0
240 121 203 339 453
mA
200 90 - - -
VOS1
200 79 123 234 323 444
15061----
VOS2 150 56 85 178 250 350
VOS3 100 35 59 131 189 269
All
peripherals
enabled
VOS0
240 190 303 412 525
200 146 - - -
VOS1 200 129 195 287 376 499
VOS2 150 90 134 214 287 386
VOS3 100 61 100 158 216 297
1. The grayed cells correspond to the forbidden configurations.
2. Guaranteed by characterization results, unless otherwise specified.
Table 41. Typical and maximum current consumption in Run mode, code with data processing
running from Flash bank 2, only Arm Cortex-M4 running, ART accelerator ON,
SMPS regulator(1)
Symbol Parameter Conditions Typ
Max
Unit
Tj=25
°C
Tj=85
°C
Tj=105
°C
Tj=125
°C
IDD
Supply
current in Run
mode
All
peripherals
disabled
VOS1 35.3 54.3 102.1 144.4 203.5
mA
VOS2 23.3 35.0 70.6 99.2 145.8
VOS3 13.6 22.3 49.0 69.8 101.9
All
peripherals
enabled
VOS1 57.0 84.1 126.8 172.3 234.6
VOS2 36.6 54.5 84.9 118.1 165.0
VOS3 23.1 37.4 58.4 79.8 112.5
1. The parameters given in the above table for the SMPS regulator are derived by extrapolation from the LDO consumption
and typical SMPS efficiency factors.
DS12930 Rev 1 115/242
STM32H747xI/G Electrical characteristics
221
Table 42. Typical and maximum current consumption in Stop, LDO regulator ON(1)
Symbol Parameter Conditions Typ
Max(2)
Unit
Tj=25°C Tj=85°C Tj=105
°C
Tj=125
°C
IDD (Stop)
D1 Stop,
D2 Stop,
D3 Stop
Flash
memory
OFF, no
IWDG
SVOS5 1.27 6.3 42.5 72.0
mA
SVOS4 1.96 9.4 57.4 94.6
SVOS3 2.78 13.8(3) 75.9 121.3(3) 183.8
Flash
memory
ON, no
IWDG
SVOS5 1.27 6.3 42.5 72.0
SVOS4 2.25 9.8 57.9 95.2
SVOS3 3.07 14.1 76.4 122.0 184.8
D1 Stop,
D2 Standby,
D3 Stop
Flash
memory
OFF, no
IWDG
SVOS5 0.91 4.6 30.4 51.2
SVOS4 1.42 6.8 41.1 67.3
SVOS3 2.02 10.0 54.4 86.6 130.0
Flash
memory
ON, no
IWDG
SVOS5 0.91 4.6 30.4 51.2
SVOS4 1.70 7.2 41.5 67.9
SVOS3 2.31 10.3 54.9 87.1 130.8
D1 Standby,
D2 Stop,
D3 Stop Flash
memory
OFF, no
IWDG
SVOS5 0.49 2.4 16.5 28.0
SVOS4 0.76 3.6 22.2 36.6
SVOS3 1.10 5.3 29.3 46.9 71.2
D1 Standby,
D2 Standby,
D3 Stop
SVOS5 0.15 0.7(3) 4.3 7.3(3)
SVOS4 0.22 1.0 5.8 9.6
SVOS3 0.35 1.5(3) 7.8 12.3(3) 18.6
1. The parameters given in the above table for the SMPS regulator are derived by extrapolation from the LDO consumption
and typical SMPS efficiency factors.
2. Guaranteed by characterization results, unless otherwise specified.
3. Guaranteed by tests in production.
Electrical characteristics STM32H747xI/G
116/242 DS12930 Rev 1
Table 43. Typical and maximum current consumption in Stop, SMPS regulator(1)
Symbol Parameter Conditions Typ
Max
Unit
Tj=25°C Tj=85°C Tj=105
°C
Tj=125
°C
IDD (Stop)
D1 Stop,
D2 Stop,
D3 Stop
Flash
OFF, no
IWDG
SVOS5 0.36 1.73 11.91 21.53 -
mA
SVOS4 0.63 3.05 19.57 33.51 -
SVOS3 1.00 4.98 29.11 47.13 68.76
Flash
ON, no
IWDG
SVOS5 0.36 1.73 11.91 21.53 -
SVOS4 0.73 3.18 19.74 33.72 -
SVOS3 1.11 5.09 29.31 47.40 69.14
D1 Stop,
D2 Standby,
D3 Stop
Flash
OFF, no
IWDG
SVOS5 0.25 1.24 8.21 14.00 -
SVOS4 0.46 2.21 14.01 22.94 -
SVOS3 0.73 3.57 19.62 32.80 49.24
Flash
ON, no
IWDG
SVOS5 0.25 1.24 8.21 14.00 -
SVOS4 0.55 2.34 14.15 23.15 -
SVOS3 0.83 3.67 19.81 32.99 49.55
D1 Standby,
D2 Stop,
D3 Stop
Flash
OFF, no
IWDG
SVOS5 0.15 0.67 4.51 7.85 -
SVOS4 0.26 1.17 7.21 12.32 -
SVOS3 0.40 1.90 10.57 17.12 26.97
D1 Standby,
D2 Standby,
D3 Stop
Flash
ON, no
IWDG
SVOS5 0.06 0.20 1.18 2.05 -
µASVOS4 0.08 0.33 1.90 3.11 -
SVOS3 0.13 0.54 2.80 4.47 6.77
1. The parameters given in the above table for the SMPS regulator are derived by extrapolation from the LDO consumption
and typical SMPS efficiency factors.
DS12930 Rev 1 117/242
STM32H747xI/G Electrical characteristics
221
Table 44. Typical and maximum current consumption in Sleep mode, LDO regulator (1)
Symbol Parameter Conditions fHCLK
(MHz) Typ
Max(2)
Unit
Tj=25
°C
Tj=85
°C
Tj=105
°C
Tj=125
°C
IDD (Sleep)
Supply
current in
Sleep mode
All
peripherals
disabled
VOS0
480 50.7 96.3 253.4 366.1
mA
400 43.4 87.8 245.5 357.9
VOS1
400 35.3 66.5 181.3 265.8 379.6
300 27.9 - - - -
VOS2
300 24.6 47.3 139.1 207.3 300.4
200 18.8 - - - -
VOS3 200 16.5 33.6 106.4 160.9 236.1
All
peripherals
enabled
VOS0
480 136.0 194.7 348.5 464.4
400 115.0 169.0 325.9 441.7
VOS1
400 97.7 138.2 251.3 338.4 456.4
300 74.9 - - - -
VOS2
300 67.3 95.8 187.6 257.9 354.1
200 52.8 - - - -
VOS3 200 47.1 69.3 141.4 197.7 275.1
1. The parameters given in the above table for the SMPS regulator are derived by extrapolation from the LDO consumption
and typical SMPS efficiency factors.
2. Guaranteed by characterization results, unless otherwise specified.
Table 45. Typical and maximum current consumption in Sleep mode, SMPS regulator(1)
Symbol Parameter Conditions fHCLK
(MHz) Typ
Max
Unit
Tj=25
°C
Tj=85
°C
Tj=105
°C
Tj=125
°C
IDD (Sleep)
Supply
current in
Sleep mode
All
peripherals
disabled
VOS1
400 15.93 29.69 79.01 118.72 173.80
mA
300 12.58 - - - -
VOS2
300 10.21 19.63 56.46 82.14 123.46
200 7.89 - - - -
VOS3 200 6.50 12.98 39.73 59.35 87.10
All
peripherals
Enabled
VOS1 400 42.65 59.62 110.88 153.00 211.65
VOS2 300 27.70 38.94 75.26 102.22 147.38
VOS3 200 17.95 26.14 52.75 72.95 104.09
1. The parameters given in the above table for the SMPS regulator are derived by extrapolation from the LDO consumption
and typical SMPS efficiency factors.
Electrical characteristics STM32H747xI/G
118/242 DS12930 Rev 1
Table 46. Typical and maximum current consumption in Standby
Symbol Parameter
Conditions
Typ Max(1)
Unit
1.62 V 2.4 V 3 V 3.3 V
3 V
Backup
SRAM
RTC
and
LSE
Tj=25
°C
Tj=85
°C
Tj=105
°C
Tj=125
°C
IDD
(Standby)
Supply
current in
Standby
mode
OFF OFF 1,92 1,95 2,06 2,16 4 18 40 90
µA
ON OFF 3,33 3,44 3,6 3,79 8.2 47 83 141
OFF ON 2,43 2,57 2,77 2,95 - - - -
ON ON 3,82 4,05 4,31 4,55 - - - -
1. Guaranteed by characterization results, unless otherwise specified.
Table 47. Typical and maximum current consumption in VBAT mode
Symbol Parameter
Conditions Typ Max(1)
Unit
Backup
SRAM
RTC
and
LSE
1.2 V 2 V 3 V 3.4 V
3 V
Tj=25
°C
Tj=85
°C
Tj=105
°C
Tj=125
°C
IDD
(VBAT)
Supply
current in
VBAT mode
OFF OFF 0,02 0,02 0,03 0,05 0,5 4,1 10 24
µA
ON OFF 1,33 1,45 1,58 1,7 4,4 22 48 87
OFF ON 0,46 0,57 0,75 0,87 - - - -
ON ON 1,77 2 2,3 2,5 - - - -
1. Guaranteed by characterization results, unless otherwise specified.
DS12930 Rev 1 119/242
STM32H747xI/G Electrical characteristics
221
Typical SMPS efficiency versus load current and temperature
Figure 17. Typical SMPS efficiency (%) vs load current (A) in Run mode at TJ = 30 °C
Figure 18. Typical SMPS efficiency (%) vs load current (A) in Run mode at TJ = TJmax
MSv62424V1
0
10
20
30
40
50
60
70
80
90
100
0.001 0.01 0.1 1
VDDSMPS =
1.8V, VOS1
VDDSMPS =
3.3V, VOS1
VDDSMPS =
1.8V, VOS2
VDDSMPS =
3.3V, VOS2
VDDSMPS =
1.8V, VOS3
VDDSMPS =
3.3V, VOS3
MSv62425V1
0
10
20
30
40
50
60
70
80
90
100
0.001 0.01 0.1 1
VDDSMPS =
1.8V, VOS1
VDDSMPS =
3.3V, VOS1
VDDSMPS =
1.8V, VOS2
VDDSMPS =
3.3V, VOS2
VDDSMPS =
1.8V, VOS3
VDDSMPS =
3.3V, VOS3
Electrical characteristics STM32H747xI/G
120/242 DS12930 Rev 1
Figure 19. Typical SMPS efficiency (%) vs load current (A) in low-power mode at
TJ = 30 °C
MSv62426V1
0
10
20
30
40
50
60
70
80
90
100
0.00001 0.0001 0.001 0.01 0.1
°
VDDSMPS =
1.8V, SVOS5
VDDSMPS =
3.3V, SVOS5
VDDSMPS =
1.8V, SVOS4
VDDSMPS =
3.3V, SVOS4
VDDSMPS =
1.8V, SVOS3
VDDSMPS =
3.3V, SVOS3
DS12930 Rev 1 121/242
STM32H747xI/G Electrical characteristics
221
Figure 20. Typical SMPS efficiency (%) vs load current (A) in low-power mode at
TJ = TJmax
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate a current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 71: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
An additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid a current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
MSv62427V1
0
10
20
30
40
50
60
70
80
90
100
0.00001 0.0001 0.001 0.01 0.1
VDDSMPS =
1.8V, SVOS5
VDDSMPS =
3.3V, SVOS5
VDDSMPS =
1.8V, SVOS4
VDDSMPS =
3.3V, SVOS4
VDDSMPS =
1.8V, SVOS3
VDDSMPS =
3.3V, SVOS3
Electrical characteristics STM32H747xI/G
122/242 DS12930 Rev 1
I/O dynamic current consumption
In addition to the internal peripheral current consumption (see Table 48: Peripheral current
consumption in Run mode), the I/Os used by an application also contribute to the current
consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to
supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external)
connected to the pin:
ISW VDDx fSW CL
××=
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDDx is the MCU supply voltage
fSW is the I/O switching frequency
CL is the total capacitance seen by the I/O pin: C = CINT+ CEXT
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
On-chip peripheral current consumption
The MCU is placed under the following conditions:
At startup, all I/O pins are in analog input configuration.
All peripherals are disabled unless otherwise mentioned.
The I/O compensation cell is enabled.
frcc_c_ck is the CPU clock. fPCLK = frcc_c_ck/4, and fHCLK = frcc_c_ck/2.
The given value is calculated by measuring the difference of current consumption
with all peripherals clocked off
with only one peripheral clocked on
–f
rcc_c_ck = 480 MHz (Scale 0), frcc_c_ck = 400 MHz (Scale 1), frcc_c_ck = 300 MHz
(Scale 2), frcc_c_ck = 200 MHz (Scale 3)
The ambient operating temperature is 25 °C and VDD=3.3 V.
DS12930 Rev 1 123/242
STM32H747xI/G Electrical characteristics
221
Table 48. Peripheral current consumption in Run mode
Bus Peripheral VOS0 VOS1 VOS2 VOS3 Unit
AHB3
MDMA 4.6 3.8 3.4 3.2
µA/MHz
DMA2D 2.9 2.4 2.1 1.9
JPGDEC 4.1 3.7 3.4 3.1
FLASH 17.0 15.0 14.0 12.0
FMC registers 0.9 1.1 0.9 0.8
FMC kernel 7.0 6.1 5.6 5.0
QUADSPI registers 1.5 1.5 1.4 1.3
QSPI kernel 1.0 0.9 0.8 0.7
SDMMC1 registers 8.2 7.2 6.7 6.0
SDMMC1 kernel 1.3 1.2 0.9 0.9
DTCM1 7.9 6.8 6.0 5.3
DTCM2 8.3 7.2 6.4 5.7
ITCM 7.0 6.3 5.6 5.1
D1SRAM1 13.0 11.0 9.9 8.7
AHB3 bridge 35.0 32.0 29.0 26.0
Total AHB3 120 106 96 86
AHB1
DMA1 54.0 48.0 41.0 37.0
DMA2 55.0 49.0 42.0 37.0
ADC12 registers 4.5 4.1 3.7 3.3
ADC12 kernel 1.0 0.7 0.4 0.6
ART accelerator 4.1 3.7 3.2 2.9
ETH1MAC 17.0 15.0 14.0 12.0
ETH1TX 0.1 0.1 0.1 0.1
ETH1RX 0.1 0.1 0.1 0.1
USB1 OTG registers 23.0 21.0 19.0 17.0
USB1 OTG kernel 8.2 0.5 8.3 8.2
USB1 ULPI 0.1 0.1 0.1 0.1
USB2 OTG registers 21.0 19.0 17.0 15.0
USB2 OTG kernel 8.5 0.4 8.6 8.3
USB2 ULPI 23.0 19.0 20.0 19.0
AHB1 bridge 0.1 0.1 0.1 0.1
Total AHB1 220 181 178 161
Electrical characteristics STM32H747xI/G
124/242 DS12930 Rev 1
AHB2
DCMI 2.1 1.9 1.8 1.6
µA/MHz
RNG registers 1.7 2.0 1.3 1.2
RNG kernel 11.0 0.1 9.7 9.4
SDMMC2 registers 47.0 41.0 37.0 34.0
SDMMC2 kernel 1.7 1.2 1.1 1.0
D2SRAM1 5.7 4.9 4.4 3.9
D2SRAM2 5.2 4.5 4.0 3.5
D2SRAM3 4.1 3.6 3.2 2.8
AHB2 bridge 0.1 0.1 0.1 0.1
Total AHB2 79 60 63 58
AHB4
GPIOA 1.5 1.3 1.3 1.1
GPIOB 1.2 1.0 1.0 0.9
GPIOC 0.8 0.7 0.7 0.6
GPIOD 1.1 1.0 1.0 0.9
GPIOE 0.7 0.7 0.7 0.6
GPIOF 0.8 0.8 0.7 0.6
GPIOG 0.9 0.8 0.8 0.7
GPIOH 1.1 1.0 1.0 0.9
GPIOI 0.9 0.9 0.8 0.7
GPIOJ 0.8 0.8 0.7 0.7
GPIOK 0.7 0.8 0.7 0.6
CRC 0.4 0.5 0.4 0.3
BDMA 6.6 5.9 5.3 4.8
ADC3 registers 1.7 1.5 1.2 1.2
ADC3 kernel 0.4 0.3 0.5 0.2
BKPRAM 2.3 1.9 1.7 1.5
AHB4 bridge 0.1 0.1 0.1 0.1
Total AHB4 22 20 19 16
APB3
WWDG1 0.7 0.5 0.5 0.2
µA/MHz
LCD-TFT 81.0 36.0 33.0 30.0
DSI registers 4.7 4.2 4.0 3.6
DSI kernel 0.1 0.1 0.1 0.1
APB3 bridge 0.3 0.2 0.1 0.1
Total APB3 87 41 38 34
Table 48. Peripheral current consumption in Run mode (continued)
Bus Peripheral VOS0 VOS1 VOS2 VOS3 Unit
DS12930 Rev 1 125/242
STM32H747xI/G Electrical characteristics
221
APB1
TIM2 7.7 3.6 3.3 3.0
µA/MHz
TIM3 6.7 3.2 3.0 2.7
TIM4 6.3 3.1 2.8 2.5
TIM5 7.4 3.5 3.2 2.8
TIM6 1.4 0.7 0.8 0.6
TIM7 1.4 0.7 0.7 0.6
TIM12 3.2 1.5 1.5 1.3
TIM13 2.3 1.1 1.1 0.9
TIM14 2.1 1.1 1.1 0.9
LPTIM1 registers 0.7 0.5 0.8 0.7
LPTIM1 kernel 2.4 2.3 1.9 1.7
WWDG2 0.6 0.5 0.5 0.4
SPI2 registers 2.0 1.8 1.7 1.4
SPI2 kernel 0.8 0.6 0.5 0.6
SPI3 registers 1.8 1.6 1.6 1.3
SPI3 kernel 0.7 0.9 0.7 0.7
SPDIFRX1 registers 0.5 0.7 0.7 0.6
SPDIFRX1 kernel 3.5 2.8 2.4 2.2
USART2 registers 1.9 1.7 1.4 1.3
USART2 kernel 4.3 3.9 3.6 3.2
USART3 registers 1.9 1.7 1.4 1.3
USART3 kernel 4.4 3.9 3.5 3.2
UART4 registers 1.7 1.5 1.4 1.4
UART4 kernel 3.9 3.4 3.1 2.8
UART5 registers 1.6 1.4 1.4 1.3
UART5 kernel 3.8 3.4 3.0 2.7
I2C1 registers 1.1 0.8 0.9 0.8
I2C1 kernel 2.5 2.3 2.0 1.9
I2C2 registers 1.0 0.8 0.9 0.8
Table 48. Peripheral current consumption in Run mode (continued)
Bus Peripheral VOS0 VOS1 VOS2 VOS3 Unit
Electrical characteristics STM32H747xI/G
126/242 DS12930 Rev 1
APB1
(continued)
I2C2 kernel 2.3 2.2 1.9 1.7
µA/MHz
I2C3 registers 0.8 1.0 0.8 0.8
I2C3 kernel 2.4 1.9 1.8 1.6
HDMI-CEC registers 0.7 0.5 0.6 0.5
HDMI-CEC kernel 0.1 0.1 3.2 0.1
DAC12 3.6 1.3 1.2 1.0
USART7 registers 1.8 1.8 1.6 1.4
USART7 kernel 4.0 3.3 3.0 2.8
USART8 registers 2.0 1.6 1.6 1.4
USART8 kernel 3.9 3.4 3.1 2.8
CRS 6.4 5.5 5.0 4.5
SWPMI registers 2.7 2.4 2.3 1.9
SWPMI kernel 0.1 0.1 0.1 0.1
OPAMP 0.2 0.3 0.3 0.2
MDIO 3.3 2.9 2.6 2.3
FDCAN registers 19.0 17.0 15.0 13.0
FDCAN kernel 9.1 7.9 6.9 6.4
APB1 bridge 0.1 0.1 0.1 0.1
Total APB1 142 108 102 88
APB2
TIM1 11.0 5.0 4.5 4.0
TIM8 10.0 4.7 4.3 3.8
USART1 registers 3.6 2.5 2.7 2.9
USART1 kernel 0.1 0.1 0.1 0.1
USART6 registers 4.5 3.0 3.1 3.4
USART6 kernel 0.1 0.1 0.1 0.1
SPI1 registers 2.0 1.7 1.6 1.4
SPI1 kernel 0.9 0.8 0.7 0.6
SPI4 registers 2.1 1.7 1.6 1.5
SPI4 kernel 0.6 0.5 0.5 0.3
TIM15 5.5 2.5 2.3 2.1
TIM16 4.1 2.0 1.8 1.7
TIM17 4.1 1.9 1.8 1.6
SPI5 registers 2.0 1.8 1.6 1.3
SPI5 kernel 0.5 0.4 0.4 0.5
SAI1 registers 1.3 1.1 1.1 1.0
Table 48. Peripheral current consumption in Run mode (continued)
Bus Peripheral VOS0 VOS1 VOS2 VOS3 Unit
DS12930 Rev 1 127/242
STM32H747xI/G Electrical characteristics
221
APB2
(continued)
SAI1 kernel 1.4 1.1 1.0 0.8
µA/MHz
SAI2 registers 1.5 1.3 1.2 1.0
SAI2 kernel 1.1 1.0 0.9 0.9
SAI3 registers 1.6 1.3 1.1 1.0
SAI3 kernel 1.1 1.2 1.1 0.9
DFSDM1 registers 6.5 5.8 5.2 4.7
DFSDM1 kernel 0.3 0.2 0.2 0.4
HRTIM 84.0 39.0 35.0 32.0
APB2 bridge 0.2 0.1 0.1 0.2
Total APB2 150 81 74 68
APB4
SYSCFG 0.9 1.0 0.7 0.8
LPUART1 registers 1.1 1.3 1.0 0.8
LPUART1 kernel 2.9 2.2 2.2 2.1
SPI6 registers 1.8 1.6 1.4 1.3
SPI6 kernel 0.4 0.4 0.5 0.3
I2C4 registers 0.9 0.7 0.7 0.4
I2C4 kernel 2.2 2.1 1.9 1.8
LPTIM2 registers 0.8 0.6 0.7 0.5
LPTIM2 kernel 2.3 2.1 1.8 1.4
LPTIM3 registers 0.7 0.7 0.7 0.4
LPTIM3 kernel 2.1 1.7 1.6 1.5
LPTIM4 registers 0.8 0.4 0.6 0.4
LPTIM4 kernel 2.2 2.0 1.7 1.5
LPTIM5 registers 0.5 0.4 0.6 0.4
LPTIM5 kernel 2.0 1.8 1.5 1.2
COMP12 0.6 0.4 0.5 0.2
VREF 0.4 0.2 0.2 0.1
RTC 1.1 0.9 1.0 0.6
SAI4 registers 1.7 1.4 1.3 1.0
SAI4 kernel 2.0 2.0 1.8 1.6
APB4 bridge 0.1 0.1 0.1 0.1
Total APB4 28 24.4 22.4 18.9
Table 48. Peripheral current consumption in Run mode (continued)
Bus Peripheral VOS0 VOS1 VOS2 VOS3 Unit
Electrical characteristics STM32H747xI/G
128/242 DS12930 Rev 1
6.3.8 Wakeup time from low-power modes
The wakeup times given in Table 49 are measured starting from the wakeup event trigger up
to the first instruction executed by the CPU:
For Stop or Sleep modes: the wakeup event is WFE.
WKUP (PC1) pin is used to wakeup from Standby, Stop and Sleep modes.
All timings are derived from tests performed under ambient temperature and VDD=3.3 V.
Table 49. Low-power mode wakeup timings(1)
Symbol Parameter Conditions Typ(2) Max(2) Unit
tWUSLEEP(3) Wakeup from Sleep - 9 10
CPU
clock
cycles
tWUSTOP(3) Wakeup from Stop
VOS3, HSI, Flash memory in normal mode 4.4 5.6
µs
VOS3, HSI, Flash memory in low-power
mode 12 15
VOS4, HSI, Flash memory in normal mode 15 20
VOS4, HSI, Flash memory in low-power
mode 23 28
VOS5, HSI, Flash memory in normal mode 39 71
VOS5, HSI, Flash memory in low-power
mode 39 47
VOS3, CSI, Flash memory in normal mode 30 37
VOS3, CSI, Flash memory in low power
mode 36 50
VOS4, CSI, Flash memory in normal mode 38 48
VOS4, CSI, Flash memory in low-power
mode 47 61
VOS5, CSI, Flash memory in normal mode 68 75
VOS5, CSI, Flash memory in low-power
mode 68 77
tWUSTOP_
KERON(3)
Wakeup from Stop,
clock kept running
VOS3, HSI, Flash memory in normal mode 2.6 3.4
VOS3, CSI, Flash memory in normal mode 26 36
tWUSTDBY(3) Wakeup from Standby
mode - 390 500
1. The wakeup timings is valid for both CPUs.
2. Guaranteed by characterization results.
3. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.
DS12930 Rev 1 129/242
STM32H747xI/G Electrical characteristics
221
6.3.9 External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O.
The external clock signal has to respect the Table 71: I/O static characteristics. However,
the recommended clock input waveform is shown in Figure 21.
Figure 21. High-speed external clock source AC timing diagram
Table 50. High-speed external user clock characteristics(1)
1. Guaranteed by design.
Symbol Parameter Min Typ Max Unit
fHSE_ext User external clock source frequency 4 25 50 MHz
VSW
(VHSEH VHSEL)
OSC_IN amplitude 0.7VDD -V
DD V
VDC OSC_IN input voltage VSS -0.3V
SS
tW(HSE) OSC_IN high or low time 7 - - ns
ai17528b
OSC _I N
External
STM32
clock source
VHSEH
tf(HSE) tW(HSE)
IL
90 %
10 %
THSE
t
tr(HSE) tW(HSE)
fHSE_ext
VHSEL
Electrical characteristics STM32H747xI/G
130/242 DS12930 Rev 1
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The
external clock signal has to respect the Table 71: I/O static characteristics. However, the
recommended clock input waveform is shown in Figure 22.
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 22. Low-speed external clock source AC timing diagram
Table 51. Low-speed external user clock characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fLSE_ext User external clock source frequency - - 32.768 1000 kHz
VLSEH OSC32_IN input pin high level voltage - 0.7 VDDIOx -V
DDIOx V
VLSEL OSC32_IN input pin low level voltage - VSS -0.3 V
DDIOx
tw(LSEH)
tw(LSEL)
OSC32_IN high or low time - 250 - - ns
1. Guaranteed by design.
ai17529b
OSC32_IN
External
STM32
clock source
VLSEH
tf(LSE) tW(LSE)
IL
90%
10%
TLSE
t
tr(LSE) tW(LSE)
fLSE_ext
VLSEL
DS12930 Rev 1 131/242
STM32H747xI/G Electrical characteristics
221
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 52. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typical), designed for high-frequency applications, and selected to
match the requirements of the crystal or resonator (see Figure 23). CL1 and CL2 are usually
the same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. The PCB and MCU pin capacitance must be included
(10 pF can be used as a rough estimate of the combined pin and board capacitance) when
sizing CL1 and CL2.
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Table 52. 4-48 MHz HSE oscillator characteristics(1)
Symbol Parameter Operating
conditions(2) Min Typ Max Unit
F Oscillator frequency - 4 - 48 MHz
RFFeedback resistor - - 200 - k
IDD(HSE) HSE current consumption
During startup(3) -- 4
mA
VDD=3 V, Rm=30
CL=10pF@4MHz -0.35 -
VDD=3 V, Rm=30
CL=10 pF at 8 MHz -0.40 -
VDD=3 V, Rm=30
CL=10 pF at 16 MHz -0.45 -
VDD=3 V, Rm=30
CL=10 pF at 32 MHz -0.65 -
VDD=3 V, Rm=30
CL=10 pF at 48 MHz -0.95 -
Gmcritmax Maximum critical crystal gm Startup - - 1.5 mA/V
tSU(4) Start-up time VDD is stabilized - 2 - ms
1. Guaranteed by design.
2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time.
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is
reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
Electrical characteristics STM32H747xI/G
132/242 DS12930 Rev 1
Figure 23. Typical application with an 8 MHz crystal
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 53. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
ai17530b
OSC_OU T
OSC_IN fHSE
CL1
RF
STM32
8 MHz
resonator
Resonator with
integrated capacitors
Bias
controlled
gain
REXT(1)
CL2
Table 53. Low-speed external user clock characteristics(1)
Symbol Parameter Operating conditions(2) Min Typ Max Unit
F Oscillator frequency - - 32.768 - kHz
IDD
LSE current
consumption
LSEDRV[1:0] = 00,
Low drive capability -290 -
nA
LSEDRV[1:0] = 01,
Medium Low drive capability -390 -
LSEDRV[1:0] = 10,
Medium high drive capability -550 -
LSEDRV[1:0] = 11,
High drive capability -900 -
Gmcritmax
Maximum critical crystal
gm
LSEDRV[1:0] = 00,
Low drive capability --0.5
µA/V
LSEDRV[1:0] = 01,
Medium Low drive capability - - 0.75
LSEDRV[1:0] = 10,
Medium high drive capability --1.7
LSEDRV[1:0] = 11,
High drive capability --2.7
tSU(3) Startup time VDD is stabilized - 2 - s
1. Guaranteed by design.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers.
3. tSU is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768k Hz oscillation is
reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
DS12930 Rev 1 133/242
STM32H747xI/G Electrical characteristics
221
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 24. Typical application with a 32.768 kHz crystal
1. An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.
6.3.10 Internal clock source characteristics
The parameters given in Table 54 to Table 57 are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 22: General
operating conditions.
48 MHz high-speed internal RC oscillator (HSI48)
ai17531b
OSC32_OU T
OSC32_IN fLSE
CL1
RF
STM32
32.768 kHz
resonator
Resonator with
integrated capacitors
Bias
controlled
gain
CL2
Table 54. HSI48 oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSI48 HSI48 frequency VDD=3.3 V,
TJ=30 °C 47.5(1) 48 48.5(1) MHz
TRIM(2) USER trimming step - - 0.175 - %
USER TRIM
COVERAGE(3) USER TRIMMING Coverage ± 32 steps ±4.79 ±5.60 - %
DuCy(HSI48)(2) Duty Cycle - 45 - 55 %
ACCHSI48_REL(3)(4) Accuracy of the HSI48 oscillator over
temperature (factory calibrated) TJ=-40 to 125 °C –4.5 - 3.5 %
VDD(HSI48)(3) HSI48 oscillator frequency drift with
VDD(5)
VDD=3 to 3.6 V - 0.025 0.05
%
VDD=1.62 V to 3.6 V - 0.05 0.1
tsu(HSI48)(2) HSI48 oscillator start-up time - - 2.1 4.0 µs
IDD(HSI48)(2) HSI48 oscillator power consumption - - 350 400 µA
NT jitter Next transition jitter
Accumulated jitter on 28 cycles(6) - - ± 0.15 - ns
PT jitter Paired transition jitter
Accumulated jitter on 56 cycles(6) - - ± 0.25 - ns
1. Guaranteed by test in production.
2. Guaranteed by design.
3. Guaranteed by characterization.
4. fHSI = ACCHSI48_REL + VDD.
Electrical characteristics STM32H747xI/G
134/242 DS12930 Rev 1
64 MHz high-speed internal RC oscillator (HSI)
4 MHz low-power internal RC oscillator (CSI)
5. These values are obtained by using the formula: (Freq(3.6V) - Freq(3.0V)) / Freq(3.0V) or (Freq(3.6V) - Freq(1.62V)) /
Freq(1.62V).
6. Jitter measurements are performed without clock source activated in parallel.
Table 55. HSI oscillator characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fHSI HSI frequency VDD=3.3 V, TJ=30 °C 63.7(2) 64 64.3(2) MHz
TRIM HSI user trimming step
Trimming is not a multiple
of 32 - 0.24 0.32
%
Trimming is 128, 256 and
384 5.2 1.8 -
Trimming is 64, 192, 320
and 448 1.4 0.8 -
Other trimming are a
multiple of 32 (not
including multiple of 64
and 128)
0.6 0.25 -
DuCy(HSI) Duty Cycle - 45 - 55 %
ΔVDD (HSI)
HSI oscillator frequency drift over
VDD (reference is 3.3 V) VDD=1.62 to 3.6 V 0.12 - 0.03 %
ΔTEMP (HSI)
HSI oscillator frequency drift over
temperature (reference is 64 MHz)
TJ=-20 to 105 °C 1(3) -1
(3)
%
TJ=40 to TJmax °C 2(3) -1
(3)
tsu(HSI) HSI oscillator start-up time - - 1.4 2 µs
tstab(HSI) HSI oscillator stabilization time at 1% of target frequency - 4 8 µs
IDD(HSI) HSI oscillator power consumption - - 300 400 µA
1. Guaranteed by design unless otherwise specified.
2. Guaranteed by test in production.
3. Guaranteed by characterization.
Table 56. CSI oscillator characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fCSI CSI frequency VDD=3.3 V, TJ=30 °C 3.96(2) 44.04
(2) MHz
TRIM Trimming step - - 0.35 - %
DuCy(CSI) Duty Cycle - 45 - 55 %
TEMP (CSI) CSI oscillator frequency drift over
temperature
TJ = 0 to 85 °C - 3.7(3) 4.5(3)
%
TJ = 40 to 125 °C - 11(3) 7.5(3)
DVDD (CSI) CSI oscillator frequency drift over
VDD
VDD = 1.62 to 3.6 V - 0.06 0.06 %
DS12930 Rev 1 135/242
STM32H747xI/G Electrical characteristics
221
Low-speed internal (LSI) RC oscillator
tsu(CSI) CSI oscillator startup time - - 1 2 µs
tstab(CSI)
CSI oscillator stabilization time
(to reach ±3% of fCSI)- - - 4 cycle
IDD(CSI) CSI oscillator power consumption - - 23 30 µA
1. Guaranteed by design.
2. Guaranteed by test in production.
3. Guaranteed by characterization.
Table 56. CSI oscillator characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 57. LSI oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSI LSI frequency
VDD = 3.3 V, TJ = 25 °C 31.4(1)
1. Guaranteed by test in production.
32 32.6(1)
kHz
TJ = –40 to 110 °C, VDD = 1.62 to
3.6 V 29.76(2)
2. Guaranteed by characterization results.
- 33.6(2)
TJ = –40 to 125 °C, VDD = 1.62 to
3.6 V 29.4 - 33.6
tsu(LSI)(3)
3. Guaranteed by design.
LSI oscillator
startup time - - 80 130
µs
tstab(LSI)(3)
LSI oscillator
stabilization
time (5% of
final value)
- - 120 170
IDD(LSI)(3)
LSI oscillator
power
consumption
- - 130 280 nA
Electrical characteristics STM32H747xI/G
136/242 DS12930 Rev 1
6.3.11 PLL characteristics
The parameters given in Table 58 are derived from tests performed under temperature and
VDD supply voltage conditions summarized in Table 22: General operating conditions.
Table 58. PLL characteristics (wide VCO frequency range)(1)
Symbol Parameter Conditions Min Typ Max Unit
fPLL_IN
PLL input clock - 2 - 16 MHz
PLL input clock duty cycle - 10 - 90 %
fPLL_P_OUT PLL multiplier output clock P
VOS0 1.5 - 480(2)
MHz
VOS1 1.5 - 400(2)
VOS2 1.5 - 300(2)
VOS3 1.5 - 200(2)
fVCO_OUT PLL VCO output - 192 - 960
tLOCK PLL lock time
Normal mode - 50(3) 150(3)
µs
Sigma-delta mode
(CKIN 8 MHz) -58
(3) 166(3)
Jitter
Cycle-to-cycle jitter(4) -
VCO =
192 MHz -134 -
±ps
VCO =
200 MHz -134 -
VCO =
400 MHz -76 -
VCO =
800 MHz -39 -
Long term jitter
Normal mode VCO =
800 MHz -±0.7 -
%
Sigma-delta
mode (CKIN =
16 MHz)
VCO =
800 MHz -±0.8 -
IDD(PLL)(3) PLL power consumption on VDD
VCO freq =
836 MHz
VDDA - 590 1500
µA
VCORE -720 -
VCO freq =
192 MHz
VDDA -180600
VCORE -280 -
1. Guaranteed by design unless otherwise specified.
2. This value must be limited to the maximum frequency due to the product limitation (480 MHz for VOS0, 400 MHz for VOS1,
300 MHz for VOS2, 200 MHz for VOS3).
3. Guaranteed by characterization results.
4. Integer mode only.
DS12930 Rev 1 137/242
STM32H747xI/G Electrical characteristics
221
6.3.12 MIPI D-PHY characteristics
The parameters given in Table 60 and Table 61 are derived from tests performed under
temperature and VDD supply voltage conditions summarized in Table 22: General operating
conditions.
Table 59. PLL characteristics (medium VCO frequency range)(1)
Symbol Parameter Conditions Min Typ Max Unit
fPLL_IN
PLL input clock - 1 - 2 MHz
PLL input clock duty cycle - 10 - 90 %
fPLL_OUT
PLL multiplier output clock P, Q,
R
VOS1 1.17 - 210
MHz
VOS2 1.17 - 210
VOS3 1.17 - 200
fVCO_OUT PLL VCO output - 150 - 420
tLOCK PLL lock time
Normal mode - 60(2) 100(2)
µs
Sigma-delta mode forbidden
Jitter
Cycle-to-cycle jitter(3) -
VCO =
150 MHz -145-
±ps
VCO =
300 MHz -91-
VCO =
400 MHz -64-
VCO =
420 MHz -63-
Period jitter fPLL_OUT =
50 MHz
VCO =
150 MHz -55-
±-ps
VCO =
400 MHz -30-
Long term jitter Normal mode VCO =
400 MHz 0.3-%
I(PLL)(2) PLL power consumption on VDD
VCO freq =
420MHz
VDD - 440 1150
µA
VCORE - 530 -
VCO freq =
150MHz
VDD - 180 500
VCORE - 200 -
1. Guaranteed by design unless otherwise specified.
2. Guaranteed by characterization results.
3. Integer mode only.
Table 60. MIPI D-PHY characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
Hi-Speed Input/Output Characteristics
UINST UI instantaneous - 2 - 12.5 ns
Electrical characteristics STM32H747xI/G
138/242 DS12930 Rev 1
VCMTX
HS transmit common mode
voltage - 150 200 250
mV
|VCMTX|VCMTX mismatch when output
is Differential-1 or Differential-0 ---5
|VOD| HS transmit differential voltage - 140 200 270
|VOD|VOD mismatch when output is
Differential-1 or Differential-0 ---14
VOHHS HS output high voltage - - - 360
ZOS
Single ended output
impedance -405062.5
ZOS
Single ended output
impedance mismatch ---10%
tHSr & tHSf 20%-80% rise and fall time - 100 - 0.35*UI ps
LP Receiver Input Characteristics
VIL
Logic 0 input voltage (not in
ULP State) ---550
mV
VIL-ULPS
Logic 0 input voltage in ULP
State ---300
VIH Input high level voltage - 880 - -
Vhys Voltage hysteresis - 25 - -
LP Emitter Output Characteristics
VIL Output low level voltage - 1.1 1.2 1.2 V
VIL-ULPS Output high level voltage - -50 - 50 mV
VIH
Output impedance of LP
transmitter -110--
Vhys 15%-85% rise and fall time - - - 25 ns
LP Contention Detector Characteristics
VILCD Logic 0 contention threshold - - - 200
mV
VIHCD Logic 0 contention threshold - 450 - -
1. Guaranteed based on test during characterization.
Table 60. MIPI D-PHY characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
DS12930 Rev 1 139/242
STM32H747xI/G Electrical characteristics
221
Table 61. MIPI D-PHY AC characteristics LP mode and HS/LP
transitions(1)
1. Guaranteed based on test during characterization.
Symbol Parameter Conditions Min Typ Max Unit
TLPX
Transmitted length of any Low-
Power state period -50--
ns
TCLK-PREPARE
Time that the transmitter drives
the Clock Lane LP-00 Line
state immediately before the
HS-0 Line state starting the HS
transmission.
-38-95
TCLK-PREPARE
+
TCLK-ZERO
Time that the transmitter drives
the HS-0 state prior to starting
the clock.
- 300 - -
TCLK-PRE
Time that the HS clock shall be
driven by the transmitter prior to
any associated Data Lane
beginning the transition from
LP to HS mode.
-8--UI
TCLK-POST
Time that the transmitter
continues to send HS clock
after the last associated Data
Lane has transitioned to LP
Mode.
-62+52*UI--
ns
TCLK-TRAIL
Time that the transmitter drives
the HS-0 state after the last
payload clock bit of an HS
transmission burst.
-60--
THS-PREPARE
Time that the transmitter drives
the Data Lane LP-00 Line state
immediately before the HS-0
Line state starting the HS
transmission.
- 40+4*UI - 85+6*UI
THS-PREPARE
+
THS-ZERO
THS-PREPARE+ Time that the
transmitter drives the HS-0
state prior to transmitting the
Sync sequence.
- 145+10*UI - -
THS-TRAIL
Time that the transmitter drives
the flipped differential state
after last payload data bit of a
HS transmission burst.
-
Max
(n*8*UI,
60+n*4*UI)
--
THS-EXIT
Time that the transmitter drives
LP-11 following a HS burst. - 100 - -
TREOT 30%-85% rise time and fall time - - - 35
TEOT
Transmitted time interval from
the start of THS-TRAIL or
TCLK-TRAIL, to the start of the
LP-11 state following a HS
burst.
---
105+
n*12UI
Electrical characteristics STM32H747xI/G
140/242 DS12930 Rev 1
Figure 25. MIPI D-PHY HS/LP clock lane transition timing diagram
Figure 26. MIPI D-PHY HS/LP data lane transition timing diagram
6.3.13 MIPI D-PHY regulator characteristics
The parameters given in Table 62 are derived from tests performed under temperature and
VDD supply voltage conditions summarized in Table 22: General operating conditions.
MS38282V1
Clock
Lane
Data
Lane
TLPX THS-PREPARE
TCLK-PRE
TCLK-ZERO
TCLK-PREPARE
TLPX
THS-EXIT
TCLK-TRAIL
TCLK-POST
VIL
VIL
TEOT
MS38283V1
Clock
Lane
THS-PREPARE
TLPX
THS-TRAIL THS-EXIT
LP-01 LP-00LP-11
Data
Lane VIL
TREOT
TEOT
THS-ZERO
Table 62. DSI regulator characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
VDDDSI Regulator output voltage on VDDDSI -1.62--
V
VDD12DSI 1.2 V internal voltage on VDD12DSI - 1.15 1.20 1.26
CEXT External capacitor on VCAPDSI -0.52.2
(2) 3.3 F
ESR External serial resistor - 0 25 600 m
ILOAD Static load current - - - 50 mA
IDDDSIREG Regulator power consumption on VDDDSI
ILOAD = 0 mA 110 170 220 µA
ILOAD = 50 mA 140 200 260
DS12930 Rev 1 141/242
STM32H747xI/G Electrical characteristics
221
6.3.14 Memory characteristics
Flash memory
The characteristics are given at TJ = –40 to 125 °C unless otherwise specified.
The devices are shipped to customers with the Flash memory erased.
tWAKEUP Startup delay CEXT = 2.2 µF - 80 - µs
CEXT = 3.3 µF - - 160
IINRUSH Inrush current on VDDDSI External capacitor load at start - 60 250 mA
1. Based on test during characterization.
2. CEXT recommended value is 2.2 F to achieve a better dynamic performance of the regulator. A 1 F capacitor can be
used only if the minimum value does not drop below 0.5 F.
Table 62. DSI regulator characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 63. Flash memory characteristics
Symbol Parameter Conditions Min Typ Max Unit
IDD Supply current
Write / Erase 8-bit mode - 6.5 -
mA
Write / Erase 16-bit mode - 11.5 -
Write / Erase 32-bit mode - 20 -
Write / Erase 64-bit mode - 35 -
Table 64. Flash memory programming (single bank configuration nDBANK=1)
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
tprog
Word (266 bits) programming
time
Program/erase parallelism x 8 - 290 580(2)
µs
Program/erase parallelism x 16 - 180 360
Program/erase parallelism x 32 - 130 260
Program/erase parallelism x 64 - 100 200
tERASE128KB Sector (128 KB) erase time
Program/erase parallelism x 8 - 2 4
s
Program/erase parallelism x 16 - 1.8 3.6
Program/erase parallelism x 32 -
tME Mass erase time
Program/erase parallelism x 8 - 13 26
Program/erase parallelism x 16 - 8 16
Program/erase parallelism x 32 - 6 12
Program/erase parallelism x 64 - 5 10
Electrical characteristics STM32H747xI/G
142/242 DS12930 Rev 1
6.3.15 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant
with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 66. They are based on the EMS levels and classes
defined in application note AN1709.
Vprog Programming voltage
Program parallelism x 8
1.62 - 3.6
V
Program parallelism x 16
Program parallelism x 32
Program parallelism x 64 1.8 - 3.6
1. Guaranteed by characterization results.
2. The maximum programming time is measured after 10K erase operations.
Table 64. Flash memory programming (single bank configuration nDBANK=1) (continued)
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
Table 65. Flash memory endurance and data retention
Symbol Parameter Conditions
Value
Unit
Min(1)
NEND Endurance TJ = –40 to +125 °C (6 suffix versions) 10 kcycles
tRET
Data retention 1 kcycle at TA = 85 °C 30
Years
10 kcycles at TA = 55 °C 20
1. Guaranteed by characterization results.
Table 66. EMS characteristics
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin to induce
a functional disturbance VDD = 3.3 V, TA = +25 °C,
UFBGA240, frcc_c_ck =
400 MHz, conforms to
IEC 61000-4-2
3B
VFTB
Fast transient voltage burst limits to be applied
through 100 pF on VDD and VSS pins to induce a
functional disturbance
5A
DS12930 Rev 1 143/242
STM32H747xI/G Electrical characteristics
221
As a consequence, it is recommended to add a serial resistor (1 kΏ) located as close as
possible to the MCU to the pins exposed to noise (connected to tracks longer than 50 mm
on PCB).
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application,
executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2
standard which specifies the test board and the pin loading.
Table 67. EMI characteristics
Symbol Parameter Conditions Monitored
frequency band
Max vs.
[fHSE/fCPU]Unit
8/400 MHz
SEMI Peak level VDD = 3.6 V, TA = 25 °C, UFBGA240 package,
conforming to IEC61967-2
0.1 to 30 MHz 11
dBµV
30 to 130 MHz 6
130 MHz to 1 GHz 12
1 GHz to 2 GHz 7
EMI Level 2.5 -
Electrical characteristics STM32H747xI/G
144/242 DS12930 Rev 1
6.3.16 Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse) are applied to the pins of each
sample according to each pin combination. This test conforms to the ANSI/ESDA/JEDEC
JS-001 and ANSI/ESDA/JEDEC JS-002 standards.
Static latchup
Two complementary static tests are required on six parts to assess the latchup
performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with JESD78 IC latchup standard.
Table 68. ESD absolute maximum ratings
Symbol Ratings Conditions Packages Class Maximum
value(1) Unit
VESD(HBM)
Electrostatic discharge
voltage (human body
model)
TA = +25 °C conforming to
ANSI/ESDA/JEDEC JS-
001
All 1C 1000
V
VESD(CDM)
Electrostatic discharge
voltage (charge device
model)
TA = +25 °C conforming to
ANSI/ESDA/JEDEC JS-
002
All C1 250
1. Guaranteed by characterization results.
Table 69. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latchup class TA = +25 °C conforming to JESD78 II level A
DS12930 Rev 1 145/242
STM32H747xI/G Electrical characteristics
221
6.3.17 I/O current injection characteristics
As a general rule, a current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3.3 V-capable I/O pins) should be avoided during the normal
product operation. However, in order to give an indication of the robustness of the
microcontroller in cases when an abnormal injection accidentally happens, susceptibility
tests are performed on a sample basis during the device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of –5 µA/+0 µA range), or other functional failure (for example reset, oscillator frequency
deviation).
The following tables are the compilation of the SIC1/SIC2 and functional ESD results.
Negative induced A negative induced leakage current is caused by negative injection and
positive induced leakage current by positive injection.
Table 70. I/O current injection susceptibility(1)
Symbol Description
Functional susceptibility
Unit
Negative
injection
Positive
injection
IINJ
PA7, PC5, PG1, PB14, PJ7, PA11, PA12, PA13, PA14, PA15,
PJ12, PB4 50
mA
PA2, PH2, PH3, PE8, PA6, PA7, PC4, PE7, PE10, PE11 0 NA
PA0, PA_C, PA1, PA1_C, PC2, PC2_C, PC3, PC3_C, PA4,
PA5, PH4, PH5, BOOT0 00
All other I/Os 5 NA
1. Guaranteed by characterization.
Electrical characteristics STM32H747xI/G
146/242 DS12930 Rev 1
6.3.18 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 71: I/O static characteristics are
derived from tests performed under the conditions summarized in Table 22: General
operating conditions. All I/Os are CMOS and TTL compliant (except for BOOT0).
Table 71. I/O static characteristics
Symbol Parameter Condition Min Typ Max Unit
VIL
I/O input low level voltage except
BOOT0
1.62 V<VDDIOx<3.6 V
--0.3V
DD(1)
V
I/O input low level voltage except
BOOT0 --
0.4VDD0.
1(2)
BOOT0 I/O input low level voltage - - 0.19VDD+
0.1(2)
VIH
I/O input high level voltage except
BOOT0
1.62 V<VDDIOx<3.6 V
0.7VDD(1) --
V
I/O input high level voltage except
BOOT0(3)
0.47VDD+0.
25(2) --
BOOT0 I/O input high level
voltage(3)
0.17VDD+0.
6(2) --
VHYS(2)
TT_xx, FT_xxx and NRST I/O
input hysteresis 1.62 V< VDDIOx <3.6 V
- 250 -
mV
BOOT0 I/O input hysteresis - 200 -
Ileak(4)
FT_xx Input leakage current(2)
0< VIN Max(VDDXXX)(9) --+/-250
nA
Max(VDDXXX) < VIN 5.5 V
(5)(6)(9) - - 1500
FT_u IO
0< VIN Max(VDDXXX)(9) --+/- 350
Max(VDDXXX) < VIN 5.5 V
(5)(6)(9) - - 5000(7)
TT_xx Input leakage current 0< VIN Max(VDDXXX) (9) --+/-250
VPP (BOOT0 alternate function)
0< VIN VDDIOX --15
VDDIOX < VIN 9 V 35
RPU
Weak pull-up equivalent
resistor(8) VIN=VSS 30 40 50
k
RPD
Weak pull-down equivalent
resistor(8) VIN=VDD(9) 30 40 50
CIO I/O pin capacitance - - 5 - pF
1. Compliant with CMOS requirements.
2. Guaranteed by design.
3. VDDIOx represents VDDIO1, VDDIO2 or VDDIO3. VDDIOx= VDD.
4. This parameter represents the pad leakage of the I/O itself. The total product pad leakage is provided by the following
formula: ITotal_Ileak_max = 10 A + [number of I/Os where VIN is applied on the pad] Ilkg(Max).
5. All FT_xx IO except FT_lu, FT_u and PC3.
DS12930 Rev 1 147/242
STM32H747xI/G Electrical characteristics
221
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements for FT I/Os is shown in Figure 27.
Figure 27. VIL/VIH for all I/Os except BOOT0
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA (with a relaxed VOL/VOH).
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2. In particular:
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD (see Table 20).
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
IVSS (see Table 20).
6. VIN must be less than Max(VDDXXX) + 3.6 V.
7. To sustain a voltage higher than MIN(VDD, VDDA, VDD33USB) +0.3 V, the internal pull-up and pull-down resistors must be
disabled.
8. The pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
PMOS/NMOS contribution to the series resistance is minimal (~10% order).
9. Max(VDDXXX) is the maximum value of all the I/O supplies.
MSv46121V3
0
0.5
1
1.5
2
2.5
3
1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
Voltage
TLL requirement: VIHmin = 2 V
TLL requirement: VILmin = 0.8 V
CMOS requirement: V
IHmin
=0.7V
DD
CMOS requirement: V
ILmax
=0.3V
DD
Based on simulation V
IHmin
=0.47V
DD
+0.25
Based on simulation V
ILmax
=0.4V
DD
-0.1
Electrical characteristics STM32H747xI/G
148/242 DS12930 Rev 1
Output voltage levels
Unless otherwise specified, the parameters given in Table 72: Output voltage characteristics
for all I/Os except PC13, PC14, PC15 and PI8 and Table 73: Output voltage characteristics
for PC13, PC14, PC15 and PI8 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 22: General operating
conditions. All I/Os are CMOS and TTL compliant.
Table 72. Output voltage characteristics for all I/Os except PC13, PC14, PC15 and PI8(1)
Symbol Parameter Conditions(3) Min Max Unit
VOL Output low level voltage
CMOS port(2)
IIO=8 mA
2.7 V VDD 3.6 V
-0.4
V
VOH Output high level voltage
CMOS port(2)
IIO=-8 mA
2.7 V VDD 3.6 V
VDD0.4 -
VOL(3) Output low level voltage
TTL port(2)
IIO=8 mA
2.7 V VDD 3.6 V
-0.4
VOH(3) Output high level voltage
TTL port(2)
IIO=-8 mA
2.7 V VDD 3.6 V
2.4 -
VOL(3) Output low level voltage IIO=20 mA
2.7 V VDD 3.6 V -1.3
VOH(3) Output high level voltage IIO=-20 mA
2.7 V VDD 3.6 V VDD1.3 -
VOL(3) Output low level voltage IIO=4 mA
1.62 V VDD 3.6 V -0.4
VOH (3) Output high level voltage IIO=-4 mA
1.62 VVDD<3.6 V VDD-0.4 -
VOLFM+(3) Output low level voltage for an FTf
I/O pin in FM+ mode
IIO= 20 mA
2.3 V VDD3.6 V -0.4
IIO= 10 mA
1.62 V VDD 3.6 V -0.4
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 19:
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always
respect the absolute maximum ratings IIO.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. Guaranteed by design.
DS12930 Rev 1 149/242
STM32H747xI/G Electrical characteristics
221
Table 73. Output voltage characteristics for PC13, PC14, PC15 and PI8(1)
Symbol Parameter Conditions(3) Min Max Unit
VOL Output low level voltage
CMOS port(2)
IIO=3 mA
2.7 V VDD 3.6 V
-0.4
V
VOH Output high level voltage
CMOS port(2)
IIO=-3 mA
2.7 V VDD 3.6 V
VDD0.4 -
VOL(3) Output low level voltage
TTL port(2)
IIO=3 mA
2.7 V VDD 3.6 V
-0.4
VOH(2) Output high level voltage
TTL port(2)
IIO=-3 mA
2.7 V VDD 3.6 V
2.4 -
VOL(2) Output low level voltage IIO=1.5 mA
1.62 V VDD 3.6 V -0.4
VOH(2) Output high level voltage IIO=-1.5 mA
1.62 V VDD 3.6 V VDD0.4 -
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 19:
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always
respect the absolute maximum ratings IIO.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. Guaranteed by design.
Electrical characteristics STM32H747xI/G
150/242 DS12930 Rev 1
Output buffer timing characteristics (HSLV option disabled)
The HSLV bit of SYSCFG_CCCSR register can be used to optimize the I/O speed when the
product voltage is below 2.7 V.
Table 74. Output timing characteristics (HSLV OFF)(1)(2)
Speed Symbol Parameter conditions Min Max Unit
00
Fmax(3) Maximum frequency
C=50 pF, 2.7 V VDD3.6 V - 12
MHz
C=50 pF, 1.62 VVDD2.7 V - 3
C=30 pF, 2.7 VVDD3.6 V - 12
C=30 pF, 1.62 VVDD2.7 V - 3
C=10 pF, 2.7 VVDD3.6 V - 16
C=10 pF, 1.62 VVDD2.7 V - 4
tr/tf(4)
Output high to low level
fall time and output low
to high level rise time
C=50 pF, 2.7 V VDD3.6 V - 16.6
ns
C=50 pF, 1.62 VVDD2.7 V - 33.3
C=30 pF, 2.7 VVDD3.6 V - 13.3
C=30 pF, 1.62 VVDD2.7 V - 25
C=10 pF, 2.7 VVDD3.6 V - 10
C=10 pF, 1.62 VVDD2.7 V - 20
01
Fmax(3) Maximum frequency
C=50 pF, 2.7 V VDD3.6 V - 60
MHz
C=50 pF, 1.62 VVDD2.7 V - 15
C=30 pF, 2.7 VVDD3.6 V - 80
C=30 pF, 1.62 VVDD2.7 V - 15
C=10 pF, 2.7 VVDD3.6 V - 110
C=10 pF, 1.62 VVDD2.7 V - 20
tr/tf(4)
Output high to low level
fall time and output low
to high level rise time
C=50 pF, 2.7 V VDD3.6 V - 5.2
ns
C=50 pF, 1.62 VVDD2.7 V - 10
C=30 pF, 2.7 VVDD3.6 V - 4.2
C=30 pF, 1.62 VVDD2.7 V - 7.5
C=10 pF, 2.7 VVDD3.6 V - 2.8
C=10 pF, 1.62 VVDD2.7 V - 5.2
DS12930 Rev 1 151/242
STM32H747xI/G Electrical characteristics
221
10
Fmax(3) Maximum frequency
C=50 pF, 2.7 VVDD3.6 V(5) -85
MHz
C=50 pF, 1.62 VVDD2.7 V(5) -35
C=30 pF, 2.7 VVDD3.6 V(5) -110
C=30 pF, 1.62 VVDD2.7 V(5) -40
C=10 pF, 2.7 VVDD3.6 V(5) - 166
C=10 pF, 1.62 VVDD2.7 V(5) - 100
tr/tf(4)
Output high to low level
fall time and output low
to high level rise time
C=50 pF, 2.7 VVDD3.6 V(5) -3.8
ns
C=50 pF, 1.62 VVDD2.7 V(5) -6.9
C=30 pF, 2.7 VVDD3.6 V(5) -2.8
C=30 pF, 1.62 VVDD2.7 V(5) -5.2
C=10 pF, 2.7 VVDD3.6 V(5) -1.8
C=10 pF, 1.62 VVDD2.7 Vv-3.3
11
Fmax(3) Maximum frequency
C=50 pF, 2.7 VVDD3.6 Vv- 100
MHz
C=50 pF, 1.62 VVDD2.7 V(5) -50
C=30 pF, 2.7 VVDD3.6 Vv- 133
C=30 pF, 1.62 VVDD2.7 V(5) -66
C=10 pF, 2.7 VVDD3.6 V(5) - 220
C=10 pF, 1.62 VVDD2.7 V(5) -85
tr/tf(4)
Output high to low level
fall time and output low
to high level rise time
C=50 pF, 2.7 VVDD3.6 V(5) -3.3
ns
C=50 pF, 1.62 VVDD2.7 V(5) -6.6
C=30 pF, 2.7 VVDD3.6 V(5) -2.4
C=30 pF, 1.62 VVDD2.7 V(5) -4.5
C=10 pF, 2.7 VVDD3.6 V(5) -1.5
C=10 pF, 1.62 VVDD2.7 V(5) -2.7
1. Guaranteed by design.
2. The frequency of the GPIOs that can be supplied in VBAT mode (PC13, PC14, PC15 and PI8) is limited to 2 MHz
3. The maximum frequency is defined with the following conditions:
(tr+tf) 2/3 T
Skew 1/20 T
45%<Duty cycle<55%
4. The fall and rise times are defined between 90% and 10% and between 10% and 90% of the output waveform, respectively.
5. Compensation system enabled.
Table 74. Output timing characteristics (HSLV OFF)(1)(2) (continued)
Speed Symbol Parameter conditions Min Max Unit
Electrical characteristics STM32H747xI/G
152/242 DS12930 Rev 1
Output buffer timing characteristics (HSLV option enabled)
Table 75. Output timing characteristics (HSLV ON)(1)
Speed Symbol Parameter conditions Min Max Unit
00
Fmax(2) Maximum frequency
C=50 pF, 1.62 VVDD2.7 V - 10
MHzC=30 pF, 1.62 VVDD2.7 V - 10
C=10 pF, 1.62 VVDD2.7 V - 10
tr/tf(3)
Output high to low level
fall time and output low
to high level rise time
C=50 pF, 1.62 VVDD2.7 V - 11
nsC=30 pF, 1.62 VVDD2.7 V - 9
C=10 pF, 1.62 VVDD2.7 V - 6.6
01
Fmax(2) Maximum frequency
C=50 pF, 1.62 VVDD2.7 V - 50
MHzC=30 pF, 1.62 VVDD2.7 V - 58
C=10 pF, 1.62 VVDD2.7 V - 66
tr/tf(3)
Output high to low level
fall time and output low
to high level rise time
C=50 pF, 1.62 VVDD2.7 V - 6.6
nsC=30 pF, 1.62 VVDD2.7 V - 4.8
C=10 pF, 1.62 VVDD2.7 V - 3
10
Fmax(2) Maximum frequency
C=50 pF, 1.62 VVDD2.7 V(4) -55
MHzC=30 pF, 1.62 VVDD2.7 V(4) -80
C=10 pF, 1.62 VVDD2.7 V(4) - 133
tr/tf(3)
Output high to low level
fall time and output low
to high level rise time
C=30 pF, 1.62 VVDD2.7 V(4) -5.8
nsC=30 pF, 1.62 VVDD2.7 V(4) -4
C=30 pF, 1.62 VVDD2.7 V(4) -2.4
11
Fmax(2) Maximum frequency
C=30 pF, 1.62 VVDD2.7 V(4) -60
MHzC=30 pF, 1.62 VVDD2.7 V(4) -90
C=30 pF, 1.62 VVDD2.7 V(4) - 175
tr/tf(3)
Output high to low level
fall time and output low
to high level rise time
C=30 pF, 1.62 VVDD2.7 V(4) -5.3
nsC=30 pF, 1.62 VVDD2.7 V(4) -3.6
C=30 pF, 1.62 VVDD2.7 V(4) -1.9
1. Guaranteed by design.
2. The maximum frequency is defined with the following conditions:
(tr+tf) 2/3 T
Skew 1/20 T
45%<Duty cycle<55%
3. The fall and rise times are defined between 90% and 10% and between 10% and 90% of the output waveform, respectively.
4. Compensation system enabled.
DS12930 Rev 1 153/242
STM32H747xI/G Electrical characteristics
221
6.3.19 NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 71: I/O static characteristics).
Unless otherwise specified, the parameters given in Table 76 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 22: General operating conditions.
Figure 28. Recommended NRST pin protection
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 71. Otherwise the reset is not taken into account by the device.
6.3.20 FMC characteristics
Unless otherwise specified, the parameters given in Table 77 to Table 90 for the FMC
interface are derived from tests performed under the ambient temperature, fHCLK frequency
and VDD supply voltage conditions summarized in Table 22: General operating conditions,
with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Measurement points are done at CMOS levels: 0.5VDD
IO Compensation cell activated.
HSLV activated when VDD 2.7 V
VOS level set to VOS1.
Table 76. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
RPU(2) Weak pull-up equivalent
resistor(1)
1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution
to the series resistance must be minimum (~10% order).
VIN = VSS 30 40 50
VF(NRST)(2)
2. Guaranteed by design.
NRST Input filtered pulse 1.71 V < VDD < 3.6 V - - 50
ns
VNF(NRST)(2) NRST Input not filtered pulse
1.71 V < VDD < 3.6 V 300 - -
1.62 V < VDD < 3.6 V 1000 - -
ai14132d
STM32
RPU
NRST
(2)
VDD
Filter
Internal Reset
0.1 μF
External
reset circuit (1)
Electrical characteristics STM32H747xI/G
154/242 DS12930 Rev 1
Refer to Section 6.3.18: I/O port characteristics for more details on the input/output alternate
function characteristics.
Asynchronous waveforms and timings
Figure 29 through Figure 31 represent asynchronous waveforms and Table 77 through
Table 84 provide the corresponding timings. The results shown in these tables are obtained
with the following FMC configuration:
AddressSetupTime = 0x1
AddressHoldTime = 0x1
DataSetupTime = 0x1 (except for asynchronous NWAIT mode , DataSetupTime = 0x5)
BusTurnAroundDuration = 0x0
Capacitive load CL = 30 pF
In all timing tables, the TKERCK is the fmc_ker_ck clock period.
Figure 29. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.
Data
FMC_NE
FMC_NBL[1:0]
FMC_D[15:0]
t
v(BL_NE)
th(Data_NE)
FMC_NOE
Address
FMC_A[25:0]
t
v(A_NE)
FMC_NWE
tsu(Data_NE)
tw(NE)
MS32753V1
w(NOE)
ttv(NOE_NE) th(NE_NOE)
th(Data_NOE)
th(A_NOE)
th(BL_NOE)
tsu(Data_NOE)
FMC_NADV (1)
tv(NADV_NE)
tw(NADV)
FMC_NWAIT
tsu(NWAIT_NE)
th(NE_NWAIT)
DS12930 Rev 1 155/242
STM32H747xI/G Electrical characteristics
221
Table 77. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 3Tfmc_ker_ck–1 3Tfmc_ker_ck+1
ns
tv(NOE_NE) FMC_NEx low to FMC_NOE low 0 0.5
tw(NOE) FMC_NOE low time 2Tfmc_ker_ck –1 2Tfmc_ker_ck+1
th(NE_NOE)
FMC_NOE high to FMC_NE high
hold time 0-
tv(A_NE) FMC_NEx low to FMC_A valid - 0.5
th(A_NOE)
Address hold time after
FMC_NOE high 0-
tsu(Data_NE)
Data to FMC_NEx high setup
time 11 -
tsu(Data_NOE)
Data to FMC_NOEx high setup
time 11 -
th(Data_NOE)
Data hold time after FMC_NOE
high 0-
th(Data_NE)
Data hold time after FMC_NEx
high 0-
tv(NADV_NE) FMC_NEx low to FMC_NADV low - 0
tw(NADV) FMC_NADV low time - Tfmc_ker_ck+1
Table 78. Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT
timings(1)(2)
1. Guaranteed by characterization results.
2. NWAIT pulse width is equal to 1 AHB cycle.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 7Tfmc_ker_ck+1 7Tfmc_ker_ck+1
ns
tw(NOE) FMC_NOE low time 5Tfmc_ker_ck–1 5Tfmc_ker_ck +1
tw(NWAIT) FMC_NWAIT low time Tfmc_ker_ck– 0.5 -
tsu(NWAIT_NE)
FMC_NWAIT valid before FMC_NEx
high 4Tfmc_ker_ck +11 -
th(NE_NWAIT)
FMC_NEx hold time after
FMC_NWAIT invalid 3Tfmc_ker_ck+11.5 -
Electrical characteristics STM32H747xI/G
156/242 DS12930 Rev 1
Figure 30. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.
NBL
Data
FMC_NEx
FMC_NBL[1:0]
FMC_D[15:0]
t
v(BL_NE)
th(Data_NWE)
FMC_NOE
Address
FMC_A[25:0]
t
v(A_NE)
tw(NWE)
FMC_NWE
tv(NWE_NE) th(NE_NWE)
th(A_NWE)
th(BL_NWE)
tv(Data_NE)
tw(NE)
MS32754V1
FMC_NADV (1)
tv(NADV_NE)
tw(NADV)
FMC_NWAIT
tsu(NWAIT_NE)
th(NE_NWAIT)
DS12930 Rev 1 157/242
STM32H747xI/G Electrical characteristics
221
Table 79. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 3Tfmc_ker_ck –1 3Tfmc_ker_ck
ns
tv(NWE_NE) FMC_NEx low to FMC_NWE low Tfmc_ker_ck Tfmc_ker_ck+1
tw(NWE) FMC_NWE low time Tfmc_ker_ck –0.5 Tfmc_ker_ck+0.5
th(NE_NWE)
FMC_NWE high to FMC_NE high
hold time Tfmc_ker_ck -
tv(A_NE) FMC_NEx low to FMC_A valid - 2
th(A_NWE)
Address hold time after FMC_NWE
high Tfmc_ker_ck –0.5 -
tv(BL_NE) FMC_NEx low to FMC_BL valid - 0.5
th(BL_NWE)
FMC_BL hold time after FMC_NWE
high Tfmc_ker_ck –0.5 -
tv(Data_NE) Data to FMC_NEx low to Data valid - Tfmc_ker_ck+ 2.5
th(Data_NWE) Data hold time after FMC_NWE high Tfmc_ker_ck+0.5 -
tv(NADV_NE) FMC_NEx low to FMC_NADV low - 0
tw(NADV) FMC_NADV low time - Tfmc_ker_ck+ 1
Table 80. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT
timings(1)(2)
1. Guaranteed by characterization results.
2. NWAIT pulse width is equal to 1 AHB cycle.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 8Tfmc_ker_ck –1 8Tfmc_ker_ck+1
ns
tw(NWE) FMC_NWE low time 6Tfmc_ker_ck –1.5 6Tfmc_ker_ck+0.5
tsu(NWAIT_NE)
FMC_NWAIT valid before FMC_NEx
high 5Tfmc_ker_ck+13 -
th(NE_NWAIT)
FMC_NEx hold time after
FMC_NWAIT invalid 4Tfmc_ker_ck+13 -
Electrical characteristics STM32H747xI/G
158/242 DS12930 Rev 1
Figure 31. Asynchronous multiplexed PSRAM/NOR read waveforms
NBL
Data
FMC_ NBL[1:0]
FMC_ AD[15:0]
t
v(BL_NE)
th(Data_NE)
Address
FMC_ A[25:16]
t
v(A_NE)
FMC_NWE
tv(A_NE)
MS32755V1
Address
FMC_NADV
tv(NADV_NE)
tw(NADV)
tsu(Data_NE)
t
h(AD_NADV)
FMC_ NE
FMC_NOE
tw(NE)
tw(NOE)
tv(NOE_NE) th(NE_NOE)
th(A_NOE)
th(BL_NOE)
tsu(Data_NOE) th(Data_NOE)
FMC_NWAIT
tsu(NWAIT_NE)
th(NE_NWAIT)
DS12930 Rev 1 159/242
STM32H747xI/G Electrical characteristics
221
Table 81. Asynchronous multiplexed PSRAM/NOR read timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 4Tfmc_ker_ck –1 4Tfmc_ker_ck +1
ns
tv(NOE_NE) FMC_NEx low to FMC_NOE low 2Tfmc_ker_ck
2Tfmc_ker_ck
+0.5
ttw(NOE) FMC_NOE low time Tfmc_ker_ck –1 Tfmc_ker_ck +1
th(NE_NOE)
FMC_NOE high to FMC_NE high hold
time 0 -
tv(A_NE) FMC_NEx low to FMC_A valid - 0.5
tv(NADV_NE) FMC_NEx low to FMC_NADV low 0 0.5
tw(NADV) FMC_NADV low time Tfmc_ker_ck –0.5 Tfmc_ker_ck +1
th(AD_NADV)
FMC_AD(address) valid hold time
after FMC_NADV high) Tfmc_ker_ck +0.5 -
th(A_NOE)
Address hold time after FMC_NOE
high Tfmc_ker_ck –0.5 -
tsu(Data_NE) Data to FMC_NEx high setup time 11 -
tsu(Data_NOE) Data to FMC_NOE high setup time 11 -
th(Data_NE) Data hold time after FMC_NEx high 0 -
th(Data_NOE) Data hold time after FMC_NOE high 0 -
Table 82. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings(1)(2)
1. Guaranteed by characterization results.
2. NWAIT pulse width is equal to 1 AHB cycle.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 8Tfmc_ker_ck –1 8Tfmc_ker_ck
ns
tw(NOE) FMC_NWE low time 5Tfmc_ker_ck –1.5 5Tfmc_ker_ck +0.5
tsu(NWAIT_NE)
FMC_NWAIT valid before
FMC_NEx high 4Tfmc_ker_ck +11 -
th(NE_NWAIT)
FMC_NEx hold time after
FMC_NWAIT invalid 3Tfmc_ker_ck +11.5 -
Electrical characteristics STM32H747xI/G
160/242 DS12930 Rev 1
Synchronous waveforms and timings
Figure 32 through Figure 35 represent synchronous waveforms and Table 85 through
Table 88 provide the corresponding timings. The results shown in these tables are obtained
with the following FMC configuration:
BurstAccessMode = FMC_BurstAccessMode_Enable
MemoryType = FMC_MemoryType_CRAM
WriteBurst = FMC_WriteBurst_Enable
CLKDivision = 1
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM
Table 83. Asynchronous multiplexed PSRAM/NOR write timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 4Tfmc_ker_ck –1 4Tfmc_ker_ck
ns
tv(NWE_NE) FMC_NEx low to FMC_NWE low Tfmc_ker_ck –1 Tfmc_ker_ck +0.5
tw(NWE) FMC_NWE low time 2Tfmc_ker_ck –0.5 2Tfmc_ker_ck +0.5
th(NE_NWE)
FMC_NWE high to FMC_NE high hold
time Tfmc_ker_ck –0.5 -
tv(A_NE) FMC_NEx low to FMC_A valid - 0
tv(NADV_NE) FMC_NEx low to FMC_NADV low 0 0.5
tw(NADV) FMC_NADV low time Tfmc_ker_ck Tfmc_ker_ck + 1
th(AD_NADV)
FMC_AD(adress) valid hold time after
FMC_NADV high) Tfmc_ker_ck +0.5 -
th(A_NWE)
Address hold time after FMC_NWE
high Tfmc_ker_ck +0.5 -
th(BL_NWE)
FMC_BL hold time after FMC_NWE
high Tfmc_ker_ck – 0.5 -
tv(BL_NE) FMC_NEx low to FMC_BL valid - 0.5
tv(Data_NADV) FMC_NADV high to Data valid - Tfmc_ker_ck +2
th(Data_NWE) Data hold time after FMC_NWE high Tfmc_ker_ck +0.5 -
Table 84. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings(1)(2)
1. Guaranteed by characterization results.
2. NWAIT pulse width is equal to 1 AHB cycle.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 9Tfmc_ker_ck –1 9Tfmc_ker_ck
ns
tw(NWE) FMC_NWE low time 7Tfmc_ker_ck –0.5 7Tfmc_ker_ck +0.5
tsu(NWAIT_NE)
FMC_NWAIT valid before FMC_NEx
high 5Tfmc_ker_ck +11 -
th(NE_NWAIT)
FMC_NEx hold time after
FMC_NWAIT invalid 4Tfmc_ker_ck +11.5 -
DS12930 Rev 1 161/242
STM32H747xI/G Electrical characteristics
221
In all the timing tables, the Tfmc_ker_ck is the fmc_ker_ck clock period, with the following
FMC_CLK maximum values:
For 2.7 V<VDD<3.6 V, FMC_CLK = 125 MHz at 20 pF
For 1.8 V<VDD<1.9 V, FMC_CLK = 100 MHz at 20 pF
For 1.62 V<VDD<1.8 V, FMC_CLK = 100 MHz at 15 pF
Figure 32. Synchronous multiplexed NOR/PSRAM read timings
FMC_CLK
FMC_NEx
FMC_NADV
FMC_A[25:16]
FMC_NOE
FMC_AD[15:0] AD[15:0] D1 D2
FMC_NWAIT
(WAITCFG = 1b,
WAITPOL + 0b)
FMC_NWAIT
(WAITCFG = 0b,
WAITPOL + 0b)
tw(CLK) tw(CLK)
Data latency = 0
BUSTURN = 0
td(CLKL-NExL) td(CLKH-NExH)
td(CLKL-NADVL)
td(CLKL-AV)
td(CLKL-NADVH)
td(CLKH-AIV)
td(CLKL-NOEL) td(CLKH-NOEH)
td(CLKL-ADV)
td(CLKL-ADIV)
tsu(ADV-CLKH)
th(CLKH-ADV)
tsu(ADV-CLKH) th(CLKH-ADV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
MS32757V1
Electrical characteristics STM32H747xI/G
162/242 DS12930 Rev 1
Table 85. Synchronous multiplexed NOR/PSRAM read timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(CLK) FMC_CLK period 2Tfmc_ker_ck –1 -
ns
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) - 1
td(CLKH_NExH) FMC_CLK high to FMC_NEx high (x= 0…2) Tfmc_ker_ck+0.5 -
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 1
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 -
td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 2.5
td(CLKH-AIV)
FMC_CLK high to FMC_Ax invalid
(x=16…25) Tfmc_ker_ck -
td(CLKL-NOEL) FMC_CLK low to FMC_NOE low - 1.5
td(CLKH-NOEH) FMC_CLK high to FMC_NOE high Tfmc_ker_ck –0.5 -
td(CLKL-ADV) FMC_CLK low to FMC_AD[15:0] valid - 3
td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid 0 -
tsu(ADV-CLKH)
FMC_A/D[15:0] valid data before FMC_CLK
high 2 -
th(CLKH-ADV)
FMC_A/D[15:0] valid data after FMC_CLK
high 1 -
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 2 -
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 2 -
DS12930 Rev 1 163/242
STM32H747xI/G Electrical characteristics
221
Figure 33. Synchronous multiplexed PSRAM write timings
FMC_CLK
FMC_NEx
FMC_NADV
FMC_A[25:16]
FMC_NWE
FMC_AD[15:0] AD[15:0] D1 D2
FMC_NWAIT
(WAITCFG = 0b,
WAITPOL + 0b)
tw(CLK) tw(CLK)
Data latency = 0
BUSTURN = 0
td(CLKL-NExL) td(CLKH-NExH)
td(CLKL-NADVL)
td(CLKL-AV)
td(CLKL-NADVH)
td(CLKH-AIV)
td(CLKH-NWEH)
td(CLKL-NWEL)
td(CLKH-NBLH)
td(CLKL-ADV)
td(CLKL-ADIV) td(CLKL-Data)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
MS32758V1
td(CLKL-Data)
FMC_NBL
Electrical characteristics STM32H747xI/G
164/242 DS12930 Rev 1
Table 86. Synchronous multiplexed PSRAM write timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(CLK) FMC_CLK period, VDD = 2.7 to 3.6 V 2Tfmc_ker_ck –1
1 -
Ns
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x =0..2) - 1
td(CLKH-NExH)
FMC_CLK high to FMC_NEx high
(x = 0…2) Tfmc_ker_ck +0.5 -
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 1.5
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 -
td(CLKL-AV)
FMC_CLK low to FMC_Ax valid
(x =16…25) -2
td(CLKH-AIV)
FMC_CLK high to FMC_Ax invalid
(x =16…25) Tfmc_ker_ck -
td(CLKL-NWEL) FMC_CLK low to FMC_NWE low - 1.5
t(CLKH-NWEH) FMC_CLK high to FMC_NWE high Tfmc_ker_ck +0.5 -
td(CLKL-ADV) FMC_CLK low to to FMC_AD[15:0] valid - 2.5
td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid 0 -
td(CLKL-DATA)
FMC_A/D[15:0] valid data after FMC_CLK
low -2.5
td(CLKL-NBLL) FMC_CLK low to FMC_NBL low - 2
td(CLKH-NBLH) FMC_CLK high to FMC_NBL high Tfmc_ker_ck +0.5 -
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 2 -
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 2 -
DS12930 Rev 1 165/242
STM32H747xI/G Electrical characteristics
221
Figure 34. Synchronous non-multiplexed NOR/PSRAM read timings
FMC_CLK
FMC_NEx
FMC_A[25:0]
FMC_NOE
FMC_D[15:0] D1 D2
FMC_NWAIT
(WAITCFG = 1b,
WAITPOL + 0b)
FMC_NWAIT
(WAITCFG = 0b,
WAITPOL + 0b)
tw(CLK) tw(CLK)
Data latency = 0
td(CLKL-NExL) td(CLKH-NExH)
td(CLKL-AV) td(CLKH-AIV)
td(CLKL-NOEL) td(CLKH-NOEH)
tsu(DV-CLKH) th(CLKH-DV)
tsu(DV-CLKH) th(CLKH-DV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
MS32759V1
FMC_NADV
td(CLKL-NADVL) td(CLKL-NADVH)
Electrical characteristics STM32H747xI/G
166/242 DS12930 Rev 1
Table 87. Synchronous non-multiplexed NOR/PSRAM read timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(CLK) FMC_CLK period 2Tfmc_ker_ck –1 -
ns
t(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) - 1
td(CLKH-NExH)
FMC_CLK high to FMC_NEx high
(x= 0…2) 2Tfmc_ker_ck+0.5 -
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 0.5
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 -
td(CLKL-AV)
FMC_CLK low to FMC_Ax valid
(x=16…25) - 2
td(CLKH-AIV)
FMC_CLK high to FMC_Ax invalid
(x=16…25) 2Tfmc_ker_ck -
td(CLKL-NOEL) FMC_CLK low to FMC_NOE low - 1.5
td(CLKH-NOEH) FMC_CLK high to FMC_NOE high 2Tfmc_ker_ck-0.5 -
tsu(DV-CLKH)
FMC_D[15:0] valid data before FMC_CLK
high 2 -
th(CLKH-DV)
FMC_D[15:0] valid data after FMC_CLK
high 1 -
t(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 2 -
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 2 -
DS12930 Rev 1 167/242
STM32H747xI/G Electrical characteristics
221
Figure 35. Synchronous non-multiplexed PSRAM write timings
MS32760V1
FMC_CLK
FMC_NEx
FMC_A[25:0]
FMC_NWE
FMC_D[15:0] D1 D2
FMC_NWAIT
(WAITCFG = 0b, WAITPOL + 0b)
tw(CLK) tw(CLK)
Data latency = 0
td(CLKL-NExL) td(CLKH-NExH)
td(CLKL-AV) td(CLKH-AIV)
td(CLKH-NWEH)
td(CLKL-NWEL)
td(CLKL-Data)
tsu(NWAITV-CLKH)
th(CLKH-NWAITV)
FMC_NADV
td(CLKL-NADVL) td(CLKL-NADVH)
td(CLKL-Data)
FMC_NBL
td(CLKH-NBLH)
Electrical characteristics STM32H747xI/G
168/242 DS12930 Rev 1
Table 88. Synchronous non-multiplexed PSRAM write timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
t(CLK) FMC_CLK period 2Tfmc_ker_ck –1 -
ns
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) - 2
t(CLKH-NExH)
FMC_CLK high to FMC_NEx high
(x= 0…2) Tfmc_ker_ck+0.5 -
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 0.5
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 -
td(CLKL-AV)
FMC_CLK low to FMC_Ax valid
(x=16…25) - 2.
td(CLKH-AIV)
FMC_CLK high to FMC_Ax invalid
(x=16…25) Tfmc_ker_ck -
td(CLKL-NWEL) FMC_CLK low to FMC_NWE low - 1.5
td(CLKH-NWEH) FMC_CLK high to FMC_NWE high Tfmc_ker_ck+1 -
td(CLKL-Data)
FMC_D[15:0] valid data after FMC_CLK
low -3.5
td(CLKL-NBLL) FMC_CLK low to FMC_NBL low - 2
td(CLKH-NBLH) FMC_CLK high to FMC_NBL high Tfmc_ker_ck+1 -
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 2 -
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 2 -
DS12930 Rev 1 169/242
STM32H747xI/G Electrical characteristics
221
NAND controller waveforms and timings
Figure 36 through Figure 39 represent synchronous waveforms, and Table 89 and Table 90
provide the corresponding timings. The results shown in this table are obtained with the
following FMC configuration:
COM.FMC_SetupTime = 0x01
COM.FMC_WaitSetupTime = 0x03
COM.FMC_HoldSetupTime = 0x02
COM.FMC_HiZSetupTime = 0x01
ATT.FMC_SetupTime = 0x01
ATT.FMC_WaitSetupTime = 0x03
ATT.FMC_HoldSetupTime = 0x02
ATT.FMC_HiZSetupTime = 0x01
Bank = FMC_Bank_NAND
MemoryDataWidth = FMC_MemoryDataWidth_16b
ECC = FMC_ECC_Enable
ECCPageSize = FMC_ECCPageSize_512Bytes
TCLRSetupTime = 0
TARSetupTime = 0
Capacitive load CL = 30 pF
In all timing tables, the Tfmc_ker_ck is the fmc_ker_ck clock period.
Figure 36. NAND controller waveforms for read access
FMC_NWE
FMC_NOE (NRE)
FMC_D[15:0]
tsu(D-NOE) th(NOE-D)
MS32767V1
ALE (FMC_A17)
CLE (FMC_A16)
FMC_NCEx
td(ALE-NOE) th(NOE-ALE)
Electrical characteristics STM32H747xI/G
170/242 DS12930 Rev 1
Figure 37. NAND controller waveforms for write access
Figure 38. NAND controller waveforms for common memory read access
MS32768V1
th(NWE-D)
tv(NWE-D)
FMC_NWE
FMC_NOE (NRE)
FMC_D[15:0]
ALE (FMC_A17)
CLE (FMC_A16)
FMC_NCEx
td(ALE-NWE) th(NWE-ALE)
MS32769V1
FMC_NWE
FMC_NOE
FMC_D[15:0]
tw(NOE)
tsu(D-NOE) th(NOE-D)
ALE (FMC_A17)
CLE (FMC_A16)
FMC_NCEx
td(ALE-NOE) th(NOE-ALE)
DS12930 Rev 1 171/242
STM32H747xI/G Electrical characteristics
221
Figure 39. NAND controller waveforms for common memory write access
Table 89. Switching characteristics for NAND Flash read cycles(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(N0E) FMC_NOE low width 4Tfmc_ker_ck – 0.5 4Tfmc_ker_ck+0.5
ns
tsu(D-NOE)
FMC_D[15-0] valid data before
FMC_NOE high 8-
th(NOE-D)
FMC_D[15-0] valid data after
FMC_NOE high 0-
td(ALE-NOE) FMC_ALE valid before FMC_NOE low - 3Tfmc_ker_ck +1
th(NOE-ALE) FMC_NWE high to FMC_ALE invalid 4Tfmc_ker_ck –2 -
Table 90. Switching characteristics for NAND Flash write cycles(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(NWE) FMC_NWE low width 4Tfmc_ker_ck – 0.5 4Tfmc_ker_ck +0.5
ns
tv(NWE-D)
FMC_NWE low to FMC_D[15-0]
valid 0-
th(NWE-D)
FMC_NWE high to FMC_D[15-0]
invalid 2Tfmc_ker_ck – 0.5 -
td(D-NWE)
FMC_D[15-0] valid before
FMC_NWE high 5Tfmc_ker_ck – 1 -
td(ALE-NWE)
FMC_ALE valid before FMC_NWE
low -3T
fmc_ker_ck +0.5
th(NWE-ALE)
FMC_NWE high to FMC_ALE
invalid 2Tfmc_ker_ck – 1 -
MS32770V1
tw(NWE)
th(NWE-D)
tv(NWE-D)
FMC_NWE
FMC_N
OE
FMC_D[15:0]
td(D-NWE)
ALE (FMC_A17)
CLE (FMC_A16)
FMC_NCEx
td(ALE-NOE) th(NOE-ALE)
Electrical characteristics STM32H747xI/G
172/242 DS12930 Rev 1
SDRAM waveforms and timings
In all timing tables, the TKERCK is the fmc_ker_ck clock period, with the following
FMC_SDCLK maximum values:
For 2.7 V<VDD<3.6 V: FMC_CLK =110 MHz at 20 pF
For 1.8 V<VDD<1.9 V: FMC_CLK =100 MHz at 20 pF
For 1.62 V<DD<1.8 V, FMC_CLK =100 MHz at 15 pF
Figure 40. SDRAM read access waveforms (CL = 1)
MS32751V2
Row n Col1
FMC_SDCLK
FMC_A[12:0]
FMC_SDNRAS
FMC_SDNCAS
FMC_SDNWE
FMC_D[31:0]
FMC_SDNE[1:0]
td(SDCLKL_AddR) td(SDCLKL_AddC)
th(SDCLKL_AddR)
th(SDCLKL_AddC)
td(SDCLKL_SNDE)
tsu(SDCLKH_Data) th(SDCLKH_Data)
Col2 Coli Coln
Data2 Datai DatanData1
th(SDCLKL_SNDE)
td(SDCLKL_NRAS)
td(SDCLKL_NCAS) th(SDCLKL_NCAS)
th(SDCLKL_NRAS)
DS12930 Rev 1 173/242
STM32H747xI/G Electrical characteristics
221
Table 91. SDRAM read timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(SDCLK) FMC_SDCLK period 2Tfmc_ker_ck – 1 2Tfmc_ker_ck
+0.5
ns
tsu(SDCLKH _Data) Data input setup time 2 -
th(SDCLKH_Data) Data input hold time 1 -
td(SDCLKL_Add) Address valid time - 1.5
td(SDCLKL- SDNE) Chip select valid time - 1.5
th(SDCLKL_SDNE) Chip select hold time 0.5 -
td(SDCLKL_SDNRAS) SDNRAS valid time - 1
th(SDCLKL_SDNRAS) SDNRAS hold time 0.5 -
td(SDCLKL_SDNCAS) SDNCAS valid time - 0.5
th(SDCLKL_SDNCAS) SDNCAS hold time 0 -
Table 92. LPSDR SDRAM read timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tW(SDCLK) FMC_SDCLK period 2Tfmc_ker_ck – 1 2Tfmc_ker_ck+0.5
ns
tsu(SDCLKH_Data) Data input setup time 2 -
th(SDCLKH_Data) Data input hold time 1.5 -
td(SDCLKL_Add) Address valid time - 2.5
td(SDCLKL_SDNE) Chip select valid time - 2.5
th(SDCLKL_SDNE) Chip select hold time 0 -
td(SDCLKL_SDNRAS SDNRAS valid time - 0.5
th(SDCLKL_SDNRAS) SDNRAS hold time 0 -
td(SDCLKL_SDNCAS) SDNCAS valid time - 1.5
th(SDCLKL_SDNCAS) SDNCAS hold time 0 -
Electrical characteristics STM32H747xI/G
174/242 DS12930 Rev 1
Figure 41. SDRAM write access waveforms
Table 93. SDRAM Write timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(SDCLK) FMC_SDCLK period 2Tfmc_ker_ck – 1 2Tfmc_ker_ck+0.5
ns
td(SDCLKL _Data) Data output valid time - 1
th(SDCLKL _Data) Data output hold time 0 -
td(SDCLKL_Add) Address valid time - 1.5
td(SDCLKL_SDNWE) SDNWE valid time - 1.5
th(SDCLKL_SDNWE) SDNWE hold time 0.5 -
td(SDCLKL_ SDNE) Chip select valid time - 1.5
th(SDCLKL-_SDNE) Chip select hold time 0.5 -
td(SDCLKL_SDNRAS) SDNRAS valid time - 1
th(SDCLKL_SDNRAS) SDNRAS hold time 0.5 -
td(SDCLKL_SDNCAS) SDNCAS valid time - 1
td(SDCLKL_SDNCAS) SDNCAS hold time 0.5 -
MS32752V2
Row n Col1
FMC_SDCLK
FMC_A[12:0]
FMC_SDNRAS
FMC_SDNCAS
FMC_SDNWE
FMC_D[31:0]
FMC_SDNE[1:0]
td(SDCLKL_AddR) td(SDCLKL_AddC)
th(SDCLKL_AddR)
th(SDCLKL_AddC)
td(SDCLKL_SNDE)
td(SDCLKL_Data)
th(SDCLKL_Data)
Col2 Coli Coln
Data2 Datai DatanData1
th(SDCLKL_SNDE)
td(SDCLKL_NRAS)
td(SDCLKL_NCAS) th(SDCLKL_NCAS)
th(SDCLKL_NRAS)
td(SDCLKL_NWE) th(SDCLKL_NWE)
FMC_NBL[3:0]
td(SDCLKL_NBL)
DS12930 Rev 1 175/242
STM32H747xI/G Electrical characteristics
221
6.3.21 Quad-SPI interface characteristics
Unless otherwise specified, the parameters given in Table 95 and Table 96 for QUADSPI
are derived from tests performed under the ambient temperature, fAHB frequency and VDD
supply voltage conditions summarized in Table 22: General operating conditions, with the
following configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Measurement points are done at CMOS levels: 0.5VDD
IO Compensation cell activated.
HSLV activated when VDD 2.7 V
VOS level set to VOS1
Refer to Section 6.3.18: I/O port characteristics for more details on the input/output alternate
function characteristics.
The following table summarizes the parameters measured in SDR mode.
Table 94. LPSDR SDRAM Write timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(SDCLK) FMC_SDCLK period 2Tfmc_ker_ck – 1 2Tfmc_ker_ck+0.5
ns
td(SDCLKL _Data) Data output valid time - 2.5
th(SDCLKL _Data) Data output hold time 0 -
td(SDCLKL_Add) Address valid time - 2.5
td(SDCLKL-SDNWE) SDNWE valid time - 2.5
th(SDCLKL-SDNWE) SDNWE hold time 0 -
td(SDCLKL- SDNE) Chip select valid time - 3
th(SDCLKL- SDNE) Chip select hold time 0 -
td(SDCLKL-SDNRAS) SDNRAS valid time - 1.5
th(SDCLKL-SDNRAS) SDNRAS hold time 0 -
td(SDCLKL-SDNCAS) SDNCAS valid time - 1.5
td(SDCLKL-SDNCAS) SDNCAS hold time 0 -
Table 95. QUADSPI characteristics in SDR mode(1)
Symbol Parameter Conditions Min Typ Max Unit
Fck11/TCK
QUADSPI clock
frequency
2.7<VDD<3.6 V
CL = 20 pF --133
MHz
1.62<VDD<3.6 V
CL = 15 pF --100
Electrical characteristics STM32H747xI/G
176/242 DS12930 Rev 1
The following table summarizes the parameters measured in DDR mode.
tw(CKH) QUADSPI clock high
and low time Even
division
PRESCALER[7:0] =
n = 0,1,3,5...
TCK/2–0.5 - TCK/2
ns
tw(CKL) TCK/2 - TCK/2+0.5
tw(CKH) QUADSPI clock high
and low time Odd
division
PRESCALER[7:0] =
n = 2,4,6,8...
(n/2)*TCK/(n+1)-0.5 - (n/2)*TCK/ (n+1)
tw(CKL) (n/2+1)*TCK/(n+1) - (n/2+1)*TCK/
(n+1)+0.5
ts(IN) Data input setup time
-
1--
th(IN) Data input hold time 3.5 - -
tv(OUT) Data output valid time - - 1 2
th(OUT) Data output hold time - 0 - -
1. Guaranteed by characterization results.
Table 95. QUADSPI characteristics in SDR mode(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 96. QUADSPI characteristics in DDR mode(1)
Symbol Parameter Conditions Min Typ Max Unit
Fck11/TCK QUADSPI clock frequency
2.7<VDD<3.6 V
CL = 20 pF --100
MHz
1.62<VDD<3.6 V
CL = 15 pF --100
tw(CKH) QUADSPI clock high and
low time Even division
PRESCALER[7:0] =
n = 0,1,3,5...
TCK/2–0.5 - TCK/2
ns
tw(CKL) TCK/2 - TCK/2+0.5
tw(CKH) QUADSPI clock high and
low time Odd division
PRESCALER[7:0] =
n = 2,4,6,8...
(n/2)*TCK/
(n+1)-0.5 -(n/2)*TCK/
(n+1)
tw(CKL)
(n/2+1)*TCK/
(n+1) -(n/2+1)*TCK /
(n+1)+0.5
tsr(IN), tsf(IN) Data input setup time - 1.5 - -
thr(IN),thf(IN) Data input hold time - 3.5 - -
tvr(OUT),
tvf(OUT)
Data output valid time
DHHC=0 - 5 6
DHHC=1
PRESCALER[7:0] =
1,2…
-T
CK/4+1 TCK/4+2
thr(OUT),
thf(OUT)
Data output hold time
DHHC=0 3 - -
DHHC=1
PRESCALER[7:0]=1
,2…
TCK/4 - -
1. Guaranteed by characterization results.
DS12930 Rev 1 177/242
STM32H747xI/G Electrical characteristics
221
Figure 42. Quad-SPI timing diagram - SDR mode
Figure 43. Quad-SPI timing diagram - DDR mode
6.3.22 Delay block (DLYB) characteristics
Unless otherwise specified, the parameters given in Table 97 for Delay Block are derived
from tests performed under the ambient temperature, frcc_c_ck frequency and VDD supply
voltage summarized in Table 22: General operating conditions, with the following
configuration:
MSv36878V1
Data output D0 D1 D2
Clock
Data input D0 D1 D2
t(CK) tw(CKH) tw(CKL)
tr(CK) tf(CK)
ts(IN) th(IN)
tv(OUT) th(OUT)
MSv36879V1
Data output D0 D2 D4
Clock
Data input D0 D2 D4
t(CK) tw(CKH) tw(CKL)
tr(CK) tf(CK)
tsf(IN) thf(IN)
tvf(OUT) thr(OUT)
D1 D3 D5
D1 D3 D5
tvr(OUT) thf(OUT)
tsr(IN) thr(IN)
Table 97. Delay Block characteristics
Symbol Parameter Conditions Min Typ Max Unit
tinit Initial delay - 1400 2200 2400 ps
tUnit Delay - 35 40 45 -
Electrical characteristics STM32H747xI/G
178/242 DS12930 Rev 1
6.3.23 16-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 98 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Table 22: General operating conditions.
Table 98. ADC characteristics(1)(2)
Symbol Parameter Conditions Min Typ Max Unit
VDDA
Analog supply
voltage for ADC
ON
-1.62-3.6V
VREF+
Positive reference
voltage -1.62-V
DDA V
VREF-
Negative
reference voltage -V
SSA V
fADC
ADC clock
frequency 1.62 V VDDA 3.6 V
BOOST = 11 0.12 - 50
MHz
BOOST = 10 0.12 - 25
BOOST = 01 0.12 - 12.5
BOOST = 00 - - 6.25
fs(3)
Sampling rate for
Direct channels(4)
Resolution = 16 bits,
VDDA >2.5 V TJ = 90 °C
fADC=36 MHz SMP = 1.5 - - 3.60
MSps
Resolution = 16 bits fADC=37 MHz SMP = 2.5 - - 3.35
Resolution = 14 bits
TJ = 125 °C
fADC = 50 MHz SMP = 2.5 - - 5.00
Resolution = 12 bits fADC = 50 MHz SMP = 2.5 - - 5.50
Resolution = 10 bits fADC = 50 MHz SMP = 1.5 - - 7.10
Resolution = 8 bits fADC = 50 MHz SMP = 1.5 - - 8.30
Sampling rate for
Fast channels
Resolution = 16 bits,
VDDA >2.5 V TJ = 90 °C
fADC=32 MHz SMP = 2.5 - - 2.90
Resolution = 16 bits fADC=31 MHz SMP = 2.5 - - 2.80
Resolution = 14 bits
TJ = 125 °C
fADC = 33 MHz SMP = 2.5 - - 3.30
Resolution = 12 bits fADC = 39 MHz SMP = 2.5 - - 4.30
Resolution = 10 bits fADC = 48 MHz SMP = 2.5 - - 6.00
Resolution = 8 bits fADC = 50 MHz SMP = 2.5 - - 7.10
Sampling rate for
Slow channels
Resolution = 16 bits TJ = 90 °C
fADC = 10 MHz SMP = 1.5
--
1.00
resolution = 14 bits
TJ = 125 °C
--
resolution = 12 bits - -
resolution = 10 bits - -
resolution = 8 bits - -
tTRIG
External trigger
period Resolution = 16 bits - - 10 1/
fADC
VAIN(5) Conversion
voltage range -0-V
REF+ V
VCMIV
Common mode
input voltage -VREF/2
10%
VREF/
2
VREF/2
+ 10% V
DS12930 Rev 1 179/242
STM32H747xI/G Electrical characteristics
221
RAIN(6) External input
impedance
Resolution = 16 bits, TJ = 125 °C - - - - 170
Resolution = 14 bits, TJ = 125 °C - - - - 435
Resolution = 12 bits, TJ =125 °C - - - - 1150
Resolution = 10 bits, TJ = 125 °C - - - - 5650
Resolution = 8 bits, TJ = 125 °C - - - - 26500
CADC
Internal sample
and hold
capacitor
--4-pF
tADCVREG
_STUP
ADC LDO startup
time --510us
tSTAB
ADC Power-up
time LDO already started 1 - -
conver
sion
cycle
tCAL
Offset and
linearity
calibration time
- 165010 - - 1/fADC
tOFF_
CAL
Offset calibration
time -1280--1/f
ADC
tLATR
Trigger
conversion
latency regular
and injected
channels without
conversion abort
CKMODE = 00 1.5 2 2.5
1/fADC
CKMODE = 01 - - 2.5
CKMODE = 10 - - 2.5
CKMODE = 11 - - 2.25
tLATRINJ
Trigger
conversion
latency regular
injected channels
aborting a regular
conversion
CKMODE = 00 2.5 3 3.5
1/fADC
CKMODE = 01 - - 3.5
CKMODE = 10 - - 3.5
CKMODE = 11 - - 3.25
tSSampling time - 1.5 - 810.5 1/fADC
tCONV
Total conversion
time (including
sampling time)
Resolution = N bits ts + 0.5
+ N/2 --1/f
ADC
Table 98. ADC characteristics(1)(2) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32H747xI/G
180/242 DS12930 Rev 1
IDDA_D
(ADC)
ADC consumption
on VDDA,
BOOST=11,
Differential mode
Resolution = 16 bits, fADC=25 MHz - - - 1440 -
µA
Resolution = 14 bits, fADC=30 MHz - - - 1350 -
Resolution = 12 bits, fADC=40 MHz - - - 990 -
ADC consumption
on VDDA
BOOST=10,
Differential mode
fADC=25 MHz
Resolution = 16 bits - - - 1080 -
Resolution = 14 bits - - - 810 -
Resolution = 12 bits - - - 585 -
ADC consumption
on VDDA
BOOST=01,
Differential mode
fADC=12.5 MHz
Resolution = 16 bits - - - 630 -
Resolution = 14 bits - - - 432 -
Resolution = 12 bits - - - 315 -
ADC consumption
on VDDA
BOOST=00,
Differential mode
fADC=6.25 MHz
Resolution = 16 bits - - - 360 -
Resolution = 14 bits - - - 270 -
Resolution = 12 bits - - - 225 -
IDDA_SE(
ADC)
ADC consumption
on VDDA
BOOST=11,
Single-ended
mode
Resolution = 16 bits, fADC=25 MHz - - - 720 -
Resolution = 14 bits, fADC=30 MHz - - - 675 -
Resolution = 12 bits, fADC=40 MHz - - - 495 -
ADC consumption
on VDDA
BOOST=10,
Singl-ended mode
fADC=25 MHz
Resolution = 16 bits - - - 540 -
Resolution = 14 bits - - - 405 -
Resolution = 12 bits - - - 292.5 -
ADC consumption
on VDDA
BOOST=01,
Single-ended
mode
fADC=12.5 MHz
Resolution = 16 bits - - - 315 -
Resolution = 14 bits - - - 216 -
Resolution = 12 bits - - - 157.5 -
ADC consumption
on VDDA
BOOST=00,
Single-ended
mode
fADC=6.25 MHz
Resolution = 16 bits - - - 180 -
Resolution = 14 bits - - - 135 -
Resolution = 12 bits - - - 112.5 -
IDD
(ADC)
ADC consumption
on VDD
fADC=50 MHz - - - 400 -
fADC=25 MHz - - - 220 -
fADC=12.5 MHz - - - 180 -
fADC=6.25 MHz - - - 120 -
fADC=3.125 MHz - - - 80 -
1. Guaranteed by design.
2. The voltage booster on ADC switches must be used for VDDA < 2.4 V (embedded I/O switches).
3. These values are valid for UFBGA169 and one ADC. The values for other packages and multiple ADCs may be different.
4. Direct channels are connected to analog I/Os (PA0_C, PA1_C, PC2_C and PC3_C) to optimize ADC performance.
5. Depending on the package, VREF+ can be internally connected to VDDA and VREF- to VSSA.
6. The tolerance is 10 LSBs for 16-bit resolution, 4 LSBs for 14-bit resolution, and 2 LSBs for 12-bit, 10-bit and 8-bit resolutions.
Table 98. ADC characteristics(1)(2) (continued)
Symbol Parameter Conditions Min Typ Max Unit
DS12930 Rev 1 181/242
STM32H747xI/G Electrical characteristics
221
Table 99. Minimum sampling time vs RAIN(1)(2)
Resolution RAIN ()
Minimum sampling time (s)
Direct
channels(3) Fast channels(4) Slow channels(5)
16 bits 47 7.37E-08 1.14E-07 1.72E-07
14 bits
47 6.29E-08 9.74E-08 1.55E-07
68 6.84E-08 1.02E-07 1.58E-07
100 7.80E-08 1.12E-07 1.62E-07
150 9.86E-08 1.32E-07 1.80E-07
220 1.32E-07 1.61E-07 2.01E-07
12 bits
47 5.32E-08 8.00E-08 1.29E-07
68 5.74E-08 8.50E-08 1.32E-07
100 6.58E-08 9.31E-08 1.40E-07
150 8.37E-08 1.10E-07 1.51E-07
220 1.11E-07 1.34E-07 1.73E-07
330 1.56E-07 1.78E-07 2.14E-07
470 2.16E-07 2.39E-07 2.68E-07
680 3.01E-07 3.29E-07 3.54E-07
10 bits
47 4.34E-08 6.51E-08 1.08E-07
68 4.68E-08 6.89E-08 1.11E-07
100 5.35E-08 7.55E-08 1.16E-07
150 6.68E-08 8.77E-08 1.26E-07
220 8.80E-08 1.08E-07 1.40E-07
330 1.24E-07 1.43E-07 1.71E-07
470 1.69E-07 1.89E-07 2.13E-07
680 2.38E-07 2.60E-07 2.80E-07
1000 3.45E-07 3.66E-07 3.84E-07
1500 5.15E-07 5.35E-07 5.48E-07
2200 7.42E-07 7.75E-07 7.78E-07
3300 1.10E-06 1.14E-06 1.14E-06
Electrical characteristics STM32H747xI/G
182/242 DS12930 Rev 1
8 bits
47 3.32E-08 5.10E-08 8.61E-08
68 3.59E-08 5.35E-08 8.83E-08
100 4.10E-08 5.83E-08 9.22E-08
150 5.06E-08 6.76E-08 9.95E-08
220 6.61E-08 8.22E-08 1.11E-07
330 9.17E-08 1.08E-07 1.32E-07
470 1.24E-07 1.40E-07 1.63E-07
680 1.74E-07 1.91E-07 2.12E-07
1000 2.53E-07 2.70E-07 2.85E-07
1500 3.73E-07 3.93E-07 4.05E-07
2200 5.39E-07 5.67E-07 5.75E-07
3300 8.02E-07 8.36E-07 8.38E-07
4700 1.13E-06 1.18E-06 1.18E-06
6800 1.62E-06 1.69E-06 1.68E-06
10000 2.36E-06 2.47E-06 2.45E-06
15000 3.50E-06 3.69E-06 3.65E-06
1. Guaranteed by design.
2. Data valid at up to 125 °C, with a 47 pF PCB capacitor, and VDDA=1.6 V.
3. Direct channels are connected to analog I/Os (PA0_C, PA1_C, PC2_C and PC3_C) to optimize ADC performance.
4. Fast channels correspond to PF3, PF5, PF7, PF9, PA6, PC4, PB1, PF11 and PF13.
5. Slow channels correspond to all ADC inputs except for the Direct and Fast channels.
Table 99. Minimum sampling time vs RAIN(1)(2) (continued)
Resolution RAIN ()
Minimum sampling time (s)
Direct
channels(3) Fast channels(4) Slow channels(5)
DS12930 Rev 1 183/242
STM32H747xI/G Electrical characteristics
221
Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog
input pins should be avoided as this significantly reduces the accuracy of the conversion
being performed on another analog input. It is recommended to add a Schottky diode (pin to
ground) to analog pins which may potentially inject negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in
Section 6.3.17 does not affect the ADC accuracy.
Table 100. ADC accuracy(1)(2)
Symbol Parameter Conditions(3) Min Typ Max Unit
ET Total undadjusted error
Direct
channel
Single ended - +10/–20 -
LSB
Differential - ±15 -
Fast channel
Single ended - +10/–20 -
Differential - ±15 -
Slow
channel
Single ended - ±10 -
Differential ±10 -
EO Offset error - - ±10 -
EG Gain error - - ±15 -
ED Differential linearity error
Single ended - +3/–1 -
Differential - +4.5/–1 -
EL Integral linearity error
Direct
channel
Single ended - ±11 -
Differential - ±7 -
Fast channel
Single ended - ±13 -
Differential - ±7 -
Slow
channel
Single ended - ±10 -
Differential - ±6 -
ENOB Effective number of bits
Single ended - 12.2 -
Bits
Differential - 13.2 -
SINAD Signal-to-noise and
distortion ratio
Single ended - 75.2 -
dB
Differential - 81.2 -
SNR Signal-to-noise ratio
Single ended - 77.0 -
Differential - 81.0 -
THD Total harmonic distortion
Single ended - 87 -
Differential - 90 -
1. Data guaranteed by characterization for BGA packages. The values for LQFP packages might differ.
2. ADC DC accuracy values are measured after internal calibration.
3. ADC clock frequency = 25 MHz, ADC resolution = 16 bits, VDDA=VREF+=3.3 V and BOOST=11.
Electrical characteristics STM32H747xI/G
184/242 DS12930 Rev 1
Figure 44. ADC accuracy characteristics (12-bit resolution)
1. Example of an actual transfer curve.
2. Ideal transfer curve.
3. End point correlation line.
4. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset Error: deviation between the first actual transition and the first ideal one.
EG = Gain Error: deviation between the last ideal transition and the last actual one.
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point
correlation line.
Figure 45. Typical connection diagram using the ADC
1. Refer to Table 98 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,
fADC should be reduced.
ai14395c
EO
EG
1L SBIDEAL
4095
4094
4093
5
4
3
2
1
0
7
6
1 2 3 456 7 4093 4094 4095 4096
(1)
(2)
ET
ED
EL
(3)
VDDA
VSSA
VREF+
4096 (or depending on package)]
VDDA
4096
[1LSB IDEAL
=
ai17534b
STM32
VDD
AINx
IL±1 μA
0.6 V
VT
RAIN(1)
Cparasitic
VAIN
0.6 V
VT
RADC(1)
CADC(1)
12-bit
converter
Sample and hold ADC
converter
DS12930 Rev 1 185/242
STM32H747xI/G Electrical characteristics
221
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 46 or Figure 47,
depending on whether VREF+ is connected to VDDA or not. The 100 nF capacitors should be
ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 46. Power supply and reference decoupling (VREF+ not connected to VDDA)
1. VREF+ input is available on all package whereas the VREF– s available only on UFBGA176+25 and
TFBGA240+25. When VREF- is not available, it is internally connected to VDDA and VSSA.
Figure 47. Power supply and reference decoupling (VREF+ connected to VDDA)
1. VREF+ input is available on all package whereas the VREF– s available only on UFBGA176+25 and
TFBGA240+25. When VREF- is not available, it is internally connected to VDDA and VSSA.
MSv50648V1
1 μF // 100 nF
1 μF // 100 nF
STM32
VREF+(1)
VSSA/VREF+(1)
VDDA
MSv50649V1
1 μF // 100 nF
STM32
VREF+/VDDA(1)
VREF-/VSSA(1)
Electrical characteristics STM32H747xI/G
186/242 DS12930 Rev 1
6.3.24 DAC characteristics
Table 101. DAC characteristics(1)(2)
Symbol Parameter Conditions Min Typ Max Unit
VDDA Analog supply voltage - 1.8 3.3 3.6
V
VREF+ Positive reference voltage - 1.80 - VDDA
VREF-
Negative reference
voltage --V
SSA -
RLResistive Load DAC output buffer
ON
connected
to VSSA
5--
kconnected
to VDDA
25 - -
ROOutput Impedance DAC output buffer OFF 10.3 13 16
RBON
Output impedance
sample and hold mode,
output buffer ON
DAC output buffer
ON
VDD =
2.7 V --1.6
k
VDD =
2.0 V --2.6
RBOFF
Output impedance
sample and hold mode,
output buffer OFF
DAC output buffer
OFF
VDD =
2.7 V --17.8
k
VDD =
2.0 V --18.7
CLCapacitive Load
DAC output buffer OFF - - 50 pF
CSH Sample and Hold mode - 0.1 1 µF
VDAC_OUT
Voltage on DAC_OUT
output
DAC output buffer ON 0.2 - VDDA
0.2 V
DAC output buffer OFF 0 - VREF+
tSETTLING
Settling time (full scale:
for a 12-bit code transition
between the lowest and
the highest input codes
when DAC_OUT reaches
the final value of ±0.5LSB,
±1LSB, ±2LSB, ±4LSB,
±8LSB)
Normal mode, DAC
output buffer ON,
CL 50 pF,
RL 5
±0.5 LSB - 2.05 -
µs
±1 LSB - 1.97 -
±2 LSB - 1.67 -
±4 LSB - 1.66 -
±8 LSB - 1.65 -
Normal mode, DAC output buffer
OFF, ±1LSB CL=10 pF -1.72
tWAKEUP(3)
Wakeup time from off
state (setting the ENx bit
in the DAC Control
register) until the final
value of ±1LSB is reached
Normal mode, DAC output buffer
ON, CL 50 pF, RL = 5 -57.5
µs
Normal mode, DAC output buffer
OFF, CL 10 pF 25
PSRR DC VDDA supply rejection
ratio
Normal mode, DAC output buffer
ON, CL 50 pF, RL = 5 -80 28 dB
DS12930 Rev 1 187/242
STM32H747xI/G Electrical characteristics
221
tSAMP
Sampling time in Sample
and Hold mode
CL=100 nF
(code transition between
the lowest input code and
the highest input code
when DAC_OUT reaches
the ±1LSB final value)
MODE<2:0>_V12=100/101
(BUFFER ON) -0.72.6
ms
MODE<2:0>_V12=110
(BUFFER OFF) -11.518.7
MODE<2:0>_V12=111
(INTERNAL BUFFER OFF) -0.30.6µs
CIint
Internal sample and hold
capacitor -1.82.22.6pF
tTRIM
Middle code offset trim
time
Minimum time to verify the each
code 50 - - µs
Voffset
Middle code offset for 1
trim code step
VREF+ = 3.6 V - 850 -
µV
VREF+ = 1.8 V - 425 -
IDDA(DAC)
DAC quiescent
consumption from VDDA
DAC output buffer
ON
No load,
middle
code
(0x800)
- 360 -
µA
No load,
worst code
(0xF1C)
- 490 -
DAC output buffer
OFF
No load,
middle/wor
st code
(0x800)
-20-
Sample and Hold mode,
CSH=100 nF -
360*TON/
(TON+TOFF)
(4)
-
IDDV(DAC) DAC consumption from
VREF+
DAC output buffer
ON
No load,
middle
code
(0x800)
- 170 -
No load,
worst code
(0xF1C)
- 170 -
DAC output buffer
OFF
No load,
middle/wor
st code
(0x800)
- 160 -
Sample and Hold mode, Buffer
ON, CSH=100 nF (worst code) -
170*TON/
(TON+TOFF)
(4)
-
Sample and Hold mode, Buffer
OFF, CSH=100 nF (worst code) -
160*TON/
(TON+TOFF)
(4)
-
1. Guaranteed by design unless otherwise specified.
Table 101. DAC characteristics(1)(2) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32H747xI/G
188/242 DS12930 Rev 1
2. TBD stands for “to be defined”.
3. In buffered mode, the output can overshoot above the final value for low input code (starting from the minimum value).
4. TON is the refresh phase duration, while TOFF is the hold phase duration. Refer to the product reference manual for more
details.
Table 102. DAC accuracy(1)
Symbol Parameter Conditions Min Typ Max Unit
DNL Differential non
linearity(2)
DAC output buffer ON 2- 2
LSB
DAC output buffer OFF 2- 2
- Monotonicity 10 bits - - - -
INL Integral non linearity(3)
DAC output buffer ON, CL50 pF,
RL5 4- 4
LSB
DAC output buffer OFF,
CL 50 pF, no RL
4- 4
Offset Offset error at code
0x800 (3)
DAC output
buffer ON,
CL50 pF,
RL 5
VREF+ = 3.6 V - - ±15
LSB
VREF+ = 1.8 V - - ±30
DAC output buffer OFF,
CL 50 pF, no RL
--±8
Offset1 Offset error at code
0x001(4)
DAC output buffer OFF,
CL 50 pF, no RL
--±5LSB
OffsetCal
Offset error at code
0x800 after factory
calibration
DAC output
buffer ON,
CL50 pF,
RL 5
VREF+ = 3.6 V - - ±6
LSB
VREF+ = 1.8 V - - ±7
Gain Gain error(5)
DAC output buffer ON,CL50 pF,
RL 5 --±1
%
DAC output buffer OFF,
CL 50 pF, no RL
--±1
SNR Signal-to-noise ratio(6)
DAC output buffer ON,CL50 pF,
RL 5 , 1 kHz, BW = 500 KHz - 67.8 -
dB
DAC output buffer OFF,
CL 50 pF, no RL,1 kHz, BW =
500 KHz
- 67.8 -
THD Total harmonic
distortion(6)
DAC output buffer ON, CL50 pF,
RL 5 , 1 kHz -78.6 -
dB
DAC output buffer OFF,
CL 50 pF, no RL, 1 kHz -78.6 -
SINAD Signal-to-noise and
distortion ratio(6)
DAC output buffer ON, CL50 pF,
RL 5 , 1 kHz - 67.5 -
dB
DAC output buffer OFF,
CL 50 pF, no RL, 1 kHz - 67.5 -
DS12930 Rev 1 189/242
STM32H747xI/G Electrical characteristics
221
Figure 48. 12-bit buffered /non-buffered DAC
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the
DAC_CR register.
ENOB Effective number of
bits
DAC output buffer ON,
CL50 pF, RL 5 , 1 kHz - 10.9 -
bits
DAC output buffer OFF,
CL 50 pF, no RL, 1 kHz - 10.9 -
1. Guaranteed by characterization.
2. Difference between two consecutive codes minus 1 LSB.
3. Difference between the value measured at Code i and the value measured at Code i on a line drawn between Code 0 and
last Code 4095.
4. Difference between the value measured at Code (0x001) and the ideal value.
5. Difference between the ideal slope of the transfer function and the measured slope computed from code 0x000 and 0xFFF
when the buffer is OFF, and from code giving 0.2 V and (VREF+ - 0.2 V) when the buffer is ON.
6. Signal is 0.5dBFS with Fsampling=1 MHz.
Table 102. DAC accuracy(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
RL
CL
Buffered/Non-buffered DAC
DAC_OUTx
Buffer(1)
12-bit
digital to
analog
converter
ai17157V3
Electrical characteristics STM32H747xI/G
190/242 DS12930 Rev 1
6.3.25 Voltage reference buffer characteristics
Table 103. VREFBUF characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
VDDA Analog supply voltage
Normal mode
VSCALE = 000 2.8 3.3 3.6
V
VSCALE = 001 2.4 - 3.6
VSCALE = 010 2.1 - 3.6
VSCALE = 011 1.8 - 3.6
Degraded mode
VSCALE = 000 1.62 - 2.80
VSCALE = 001 1.62 - 2.40
VSCALE = 010 1.62 - 2.10
VSCALE = 011 1.62 - 1.80
VREFBUF
_OUT
Voltage Reference
Buffer Output, at 30 °C,
Iload= 100 µA
Normal mode
VSCALE = 000 2.498 2.5 2.5035
VSCALE = 001 2.046 2.049 2.052
VSCALE = 010 1.801 1.804 1.806
VSCALE = 011 1.4995 1.5015 1.504
Degraded mode(2)
VSCALE = 000 VDDA
150 mV -V
DDA
VSCALE = 001 VDDA
150 mV -V
DDA
VSCALE = 010 VDDA
150 mV -V
DDA
VSCALE = 011 VDDA
150 mV -V
DDA
TRIM Trim step resolution - - - ±0.05 ±0.1 %
CLLoad capacitor - - 0.5 1 1.50 uF
esr Equivalent Serial
Resistor of CL
----2
Iload Static load current - - - - 4 mA
Iline_reg Line regulation 2.8 V VDDA 3.6 V
Iload = 500 µA - 200 -
ppm/V
Iload = 4 mA - 100 -
Iload_reg Load regulation 500 µA ILOAD 4 mA Normal Mode - 50 - ppm/
mA
Tcoeff Temperature coefficient 40 °C < TJ < +125 °C - -
Tcoeff
VREFINT
+ 100
ppm/
°C
PSRR Power supply rejection
DC - - 60 -
dB
100KHz - - 40 -
DS12930 Rev 1 191/242
STM32H747xI/G Electrical characteristics
221
6.3.26 Temperature sensor characteristics
tSTART Start-up time
CL=0.5 µF - - 300 -
µsCL=1 µF - - 500 -
CL=1.5 µF - - 650 -
IINRUSH
Control of maximum
DC current drive on
VREFBUF_OUT during
startup phase(3)
--8-mA
IDDA(VRE
FBUF)
VREFBUF
consumption from
VDDA
ILOAD = 0 µA - - 15 25
µAILOAD = 500 µA - - 16 30
ILOAD = 4 mA - - 32 50
1. Guaranteed by design.
2. In degraded mode, the voltage reference buffer cannot accurately maintain the output voltage (VDDAdrop voltage).
3. To properly control VREFBUF IINRUSH current during the startup phase and the change of scaling, VDDA voltage should be in
the range of 1.8 V-3.6 V, 2.1 V-3.6 V, 2.4 V-3.6 V and 2.8 V-3.6 V for VSCALE = 011, 010, 001 and 000, respectively.
Table 103. VREFBUF characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 104. Temperature sensor characteristics
Symbol Parameter Min Typ Max Unit
TL(1)
1. Guaranteed by design.
VSENSE linearity with temperature - - 3 °C
Avg_Slope(2)
2. Guaranteed by characterization.
Average slope - 2 - mV/°C
V30(3)
3. Measured at VDDA = 3.3 V ± 10 mV. The V30 ADC conversion result is stored in the TS_CAL1
byte.
Voltage at 30°C ± 5 °C - 0.62 - V
tstart_run Startup time in Run mode (buffer startup) - - 25.2
µs
tS_temp(1) ADC sampling time when reading the temperature 9 - -
Isens(1) Sensor consumption - 0.18 0.31
µA
Isensbuf(1) Sensor buffer consumption - 3.8 6.5
Table 105. Temperature sensor calibration values
Symbol Parameter Memory address
TS_CAL1 Temperature sensor raw data acquired value at
30 °C, VDDA=3.3 V 0x1FF1 E820 -0x1FF1 E821
TS_CAL2 Temperature sensor raw data acquired value at
110 °C, VDDA=3.3 V 0x1FF1 E840 - 0x1FF1 E841
Electrical characteristics STM32H747xI/G
192/242 DS12930 Rev 1
6.3.27 Temperature and VBAT monitoring
6.3.28 Voltage booster for analog switch
Table 106. VBAT monitoring characteristics
Symbol Parameter Min Typ Max Unit
R Resistor bridge for VBAT -26-K
QRatio on VBAT measurement - 4 - -
Er(1)
1. Guaranteed by design.
Error on Q –10 - +10 %
tS_vbat(1) ADC sampling time when reading VBAT input 9 - - µs
VBAThigh High supply monitoring - 3.55 -
V
VBATlow Low supply monitoring - 1.36 -
Table 107. VBAT charging characteristics
Symbol Parameter Condition Min Typ Max Unit
RBC Battery charging resistor
VBRS in PWR_CR3= 0 - 5 -
K
VBRS in PWR_CR3= 1 1.5 -
Table 108. Temperature monitoring characteristics
Symbol Parameter Min Typ Max Unit
TEMPhigh High temperature monitoring - 117 -
°C
TEMPlow Low temperature monitoring - 25 -
Table 109. Voltage booster for analog switch characteristics(1)
1. Guaranteed by characterization results.
Symbol Parameter Condition Min Typ Max Unit
VDD Supply voltage - 1.62 2.6 3.6 V
tSU(BOOST) Booster startup time - - - 50 µs
IDD(BOOST) Booster consumption
1.62 V VDD 2.7 V - - 125
µA
2.7 V < VDD < 3.6 V - - 250
DS12930 Rev 1 193/242
STM32H747xI/G Electrical characteristics
221
6.3.29 Comparator characteristics
Table 110. COMP characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
VDDA Analog supply voltage - 1.62 3.3 3.6
VVIN
Comparator input voltage
range -0-V
DDA
VBG Scaler input voltage - (2)
VSC Scaler offset voltage - - ±5 ±10 mV
IDDA(SCALER)
Scaler static consumption
from VDDA
BRG_EN=0 (bridge disable) - 0.2 0.3
µA
BRG_EN=1 (bridge enable) - 0.8 1
tSTART_SCALER Scaler startup time - - 140 250 µs
tSTART
Comparator startup time to
reach propagation delay
specification
High-speed mode - 2 5
µsMedium mode - 5 20
Ultra-low-power mode - 15 80
tD(3)
Propagation delay for
200 mV step with 100 mV
overdrive
High-speed mode - 50 80 ns
Medium mode - 0.5 1.2
µs
Ultra-low-power mode - 2.5 7
Propagation delay for step
> 200 mV with 100 mV
overdrive only on positive
inputs
High-speed mode - 50 120 ns
Medium mode - 0.5 1.2
µs
Ultra-low-power mode - 2.5 7
Voffset Comparator offset error Full common mode range - ±5 ±20 mV
Vhys Comparator hysteresis
No hysteresis - 0 -
mV
Low hysteresis 5 10 22
Medium hysteresis 8 20 37
High hysteresis 16 30 52
IDDA(COMP) Comparator consumption
from VDDA
Ultra-low-
power mode
Static - 400 600
nA
With 50 kHz
±100 mV overdrive
square signal
- 800 -
Medium mode
Static - 5 7
µA
With 50 kHz
±100 mV overdrive
square signal
-6-
High-speed
mode
Static - 70 100
With 50 kHz
±100 mV overdrive
square signal
-75-
1. Guaranteed by design, unless otherwise specified.
2. Refer to Table 29: Embedded reference voltage.
Electrical characteristics STM32H747xI/G
194/242 DS12930 Rev 1
6.3.30 Operational amplifier characteristics
3. Guaranteed by characterization results.
Table 111. Operational amplifier characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA
Analog supply voltage
Range -23.33.6
V
CMIR Common Mode Input
Range -0-V
DDA
VIOFFSET Input offset voltage
25°C, no load on output - - ±1.5
mV
All voltages and
temperature, no load --±2.5
ΔVIOFFSET Input offset voltage drift - - ±3.0 - V/°C
TRIMOFFSETP
TRIMLPOFFSETP
Offset trim step at low
common input voltage
(0.1*VDDA)
--1.11.5
mV
TRIMOFFSETN
TRIMLPOFFSETN
Offset trim step at high
common input voltage
(0.9*VDDA)
--1.11.5
ILOAD Drive current - - - 500 A
ILOAD_PGA Drive current in PGA mode - - - 270
CLOAD Capacitive load - - - 50 pF
CMRR Common mode rejection
ratio --80-dB
PSRR Power supply rejection
ratio
CLOAD 50pf /
RLOAD 4 k(1) at 1 kHz,
Vcom=VDDA/2
50 66 - dB
GBW Gain bandwidth for high
supply range
200 mV Output dynamic
range VDDA - 200 mV 47.312.3MHz
SR Slew rate (from 10% and
90% of output voltage)
Normal mode - 3 -
V/µs
High-speed mode - 30 -
AO Open loop gain 200 mV Output dynamic
range VDDA - 200 mV 59 90 129 dB
φm Phase margin - - 55 - °
GM Gain margin - - 12 - dB
VOHSAT High saturation voltage Iload=max or RLOAD=min,
Input at VDDA
VDDA
100 mV - -
mV
VOLSAT Low saturation voltage Iload=max or RLOAD=min,
Input at 0 V - - 100
DS12930 Rev 1 195/242
STM32H747xI/G Electrical characteristics
221
tWAKEUP
Wake up time from OFF
state
Normal
mode
CLOAD 50pf,
RLOAD 4 k,
follower
configuration
-0.83.2
µs
High
speed
mode
CLOAD 50pf,
RLOAD 4 k,
follower
configuration
-0.92.8
PGA gain
Non inverting gain error
value
PGA gain = 2 1-1
%
PGA gain = 4 2-2
PGA gain = 8 2.5 - 2.5
PGA gain = 16 3-3
Inverting gain error value
PGA gain = 2 1-1
PGA gain = 4 1-1
PGA gain = 8 2-2
PGA gain = 16 3-3
External non-inverting gain
error value
PGA gain = 2 1-1
PGA gain = 4 3-3
PGA gain = 8 3.5 - 3.5
PGA gain = 16 4-4
Rnetwork
R2/R1 internal resistance
values in non-inverting
PGA mode(2)
PGA Gain=2 - 10/10 -
k/
k
PGA Gain=4 - 30/10 -
PGA Gain=8 - 70/10 -
PGA Gain=16 - 150/10 -
R2/R1 internal resistance
values in inverting PGA
mode(2)
PGA Gain = -1 - 10/10 -
PGA Gain = -3 - 30/10 -
PGA Gain = -7 - 70/10 -
PGA Gain = -15 - 150/10 -
Delta R Resistance variation (R1
or R2) -15 - 15 %
Table 111. Operational amplifier characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32H747xI/G
196/242 DS12930 Rev 1
6.3.31 Digital filter for Sigma-Delta Modulators (DFSDM) characteristics
Unless otherwise specified, the parameters given in Table 112 for DFSDM are derived from
tests performed under the ambient temperature, fPCLKx frequency and supply voltage
conditions summarized in Table 22: General operating conditions.
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load CL = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
VOS level set to VOS1
Refer to Section 6.3.18: I/O port characteristics for more details on the input/output alternate
function characteristics (DìFSDM_CKINx, DFSDM_DATINx, DFSDM_CKOUT for DFSDM).
PGA BW
PGA bandwidth for
different non inverting gain
Gain=2 - GBW/2 -
MHz
Gain=4 - GBW/4 -
Gain=8 - GBW/8 -
Gain=16 - GBW/16 -
PGA bandwidth for
different inverting gain
Gain = -1 - 5.00 -
MHz
Gain = -3 - 3.00 -
Gain = -7 - 1.50 -
Gain = -15 - 0.80 -
en Voltage noise density
at
1 KHz output loaded
with 4 k
-140-
nV/
Hz
at
10 KHz -55-
IDDA(OPAMP)
OPAMP consumption from
VDDA
Normal
mode no Load,
quiescent mode,
follower
- 570 1000
µA
High-
speed
mode
- 610 1200
1. RLOAD is the resistive load connected to VSSA or to VDDA.
2. R2 is the internal resistance between the OPAMP output and th OPAMP inverting input. R1 is the internal resistance
between the OPAMP inverting input and ground. PGA gain = 1 + R2/R1.
Table 111. Operational amplifier characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
DS12930 Rev 1 197/242
STM32H747xI/G Electrical characteristics
221
Table 112. DFSDM measured timing 1.62-3.6 V
Symbol Parameter Conditions Min Typ Max Unit
fDFSDMCLK
DFSDM
clock 1.62 < VDD < 3.6 V - - 133
MH
z
fCKIN
(1/TCKIN)
Input clock
frequency
SPI mode (SITP[1:0]=0,1),
External clock mode
(SPICKSEL[1:0]=0),
1.62 < VDD < 3.6 V
--20
SPI mode (SITP[1:0]=0,1),
External clock mode
(SPICKSEL[1:0]=0),
2.7 < VDD < 3.6 V
--20
SPI mode (SITP[1:0]=0,1),
Internal clock mode
(SPICKSEL[1:0]¹0),
1.62 < VDD < 3.6 V
--20
SPI mode (SITP[1:0]=0,1),
Internal clock mode
(SPICKSEL[1:0]¹0),
2.7 < VDD < 3.6 V
--20
fCKOUT
Output clock
frequency 1.62 < VDD < 3.6 V - - 20
DuCyCKOU
T
Output clock
frequency
duty cycle
1.62 < VDD < 3.6 V 45 50 55 %
twh(CKIN)
twl(CKIN)
Input clock
high and low
time
SPI mode (SITP[1:0]=0,1),
External clock mode
(SPICKSEL[1:0]=0),
1.62 < VDD < 3.6 V
TCKIN/2-0.5 TCKIN/2 -
ns
tsu
Data input
setup time
SPI mode (SITP[1:0]=0,1),
External clock mode
(SPICKSEL[1:0]=0),
1.62 < VDD < 3.6 V
1.5 - -
th
Data input
hold time
SPI mode (SITP[1:0]=0,1),
External clock mode
(SPICKSEL[1:0]=0),
1.62 < VDD < 3.6 V
0.5 - -
TManchester
Manchester
data period
(recovered
clock period)
Manchester mode (SITP[1:0]=2,3),
Internal clock mode
(SPICKSEL[1:0]¹0),
1.62 < VDD < 3.6 V
(CKOUTDIV+1)
* TDFSDMCLK
-(2*CKOUTDIV)
* TDFSDMCLK
Electrical characteristics STM32H747xI/G
198/242 DS12930 Rev 1
Figure 49. Channel transceiver timing diagrams
MS30766V2
SITP = 0
DFSDM_CKOUT
DFSDM_DATINy
SITP = 1
tsu th
tsu th
tftr
twl twh
SPI timing : SPICKSEL = 1, 2, 3
recovered clock
SITP = 2
DFSDM_DATINy
SITP = 3
Manchester timing
recovered data
11000
SITP = 00
DFSDM_CKINyDFSDM_DATINy
SITP = 01
tsu th
tsu th
tftr
twl twh
SPI timing : SPICKSEL = 0
SPICKSEL=2
SPICKSEL=1
(SPICKSEL=0)
SPICKSEL=3
DS12930 Rev 1 199/242
STM32H747xI/G Electrical characteristics
221
6.3.32 Camera interface (DCMI) timing specifications
Unless otherwise specified, the parameters given in Table 113 for DCMI are derived from
tests performed under the ambient temperature, fHCLK frequency and VDD supply voltage
summarized in Table 22: General operating conditions, with the following configuration:
DCMI_PIXCLK polarity: falling
DCMI_VSYNC and DCMI_HSYNC polarity: high
Data formats: 14 bits
Capacitive load CL=30 pF
Measurement points are done at CMOS levels: 0.5VDD
VOS level set to VOS1
Figure 50. DCMI timing diagram
Table 113. DCMI characteristics(1)
Symbol Parameter Min Max Unit
- Frequency ratio DCMI_PIXCLK/fHCLK -0.4 -
DCMI_PIXCLK Pixel Clock input - 80 MHz
Dpixel Pixel Clock input duty cycle 30 70 %
tsu(DATA) Data input setup time 3 -
-
th(DATA) Data hold time 1 -
tsu(HSYNC),
tsu(VSYNC) DCMI_HSYNC/ DCMI_VSYNC input setup time 2 - ns
th(HSYNC),
th(VSYNC) DCMI_HSYNC/ DCMI_VSYNC input hold time 1 - -
1. Guaranteed by characterization results.
MS32414V2
DCMI_PIXCLK
tsu(VSYNC)
tsu(HSYNC)
DCMI_HSYNC
DCMI_VSYNC
DATA[0:13]
1/DCMI_PIXCLK
th(HSYNC)
th(HSYNC)
tsu(DATA) th(DATA)
Electrical characteristics STM32H747xI/G
200/242 DS12930 Rev 1
6.3.33 LCD-TFT controller (LTDC) characteristics
Unless otherwise specified, the parameters given in Table 114 for LCD-TFT are derived
from tests performed under the ambient temperature, fHCLK frequency and VDD supply
voltage summarized in Table 22: General operating conditions, with the following
configuration:
LCD_CLK polarity: high
LCD_DE polarity: low
LCD_VSYNC and LCD_HSYNC polarity: high
Pixel formats: 24 bits
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load CL=30 pF
Measurement points are done at CMOS levels: 0.5VDD
IO Compensation cell activated.
HSLV activated when VDD 2.7 V
VOS level set to VOS1
Table 114. LTDC characteristics(1)
Symbol Parameter Min Max Unit
fCLK
LTDC clock
output
frequency
2.7<VDD<3.6 V
20pF
-
150
MHz
2.7<VDD<3.6 V 133
1.62<VDD<3.6 V 90
DCLK LTDC clock output duty cycle 45 55 %
tw(CLKH),
tw(CLKL)
Clock High time, low time tw(CLK)//2-0.5 tw(CLK)//2+0.5
-
tv(DATA) Data output valid time
2.7<VDD<3.6 V
-
0.5
th(DATA) 1.62<VDD<3.6 V 5
tv(DATA) Data output hold time 0 -
tv(HSYNC),
tv(VSYNC),
tv(DE)
HSYNC/VSYNC/DE output
valid time
2.7<VDD<3.6 V - 0.5
1.62<VDD<3.6 V - 5
th(HSYNC),
th(VSYNC),
th(DE)
HSYNC/VSYNC/DE output hold time 0 -
1. Guaranteed by characterization results.
DS12930 Rev 1 201/242
STM32H747xI/G Electrical characteristics
221
Figure 51. LCD-TFT horizontal timing diagram
Figure 52. LCD-TFT vertical timing diagram
MS32749V1
LCD_CLK
tv(HSYNC)
LCD_HSYNC
LCD_DE
LCD_R[0:7]
LCD_G[0:7]
LCD_B[0:7]
tCLK
LCD_VSYNC
tv(HSYNC)
tv(DE) th(DE)
Pixel
1
Pixel
2
tv(DATA)
th(DATA)
Pixel
N
HSYNC
width
Horizontal
back porch
Active width Horizontal
back porch
One line
MS32750V1
LCD_CLK
tv(VSYNC)
LCD_R[0:7]
LCD_G[0:7]
LCD_B[0:7]
tCLK
LCD_VSYNC
tv(VSYNC)
M lines data
VSYNC
width
Vertical
back porch
Active width Vertical
back porch
One frame
Electrical characteristics STM32H747xI/G
202/242 DS12930 Rev 1
6.3.34 Timer characteristics
The parameters given in Table 115 are guaranteed by design.
Refer to Section 6.3.18: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
6.3.35 Communication interfaces
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual revision 03 for:
Standard-mode (Sm): with a bit rate up to 100 kbit/s
Fast-mode (Fm): with a bit rate up to 400 kbit/s
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly
configured (refer to RM0399 reference manual) and when the i2c_ker_ck frequency is
greater than the minimum shown in the table below:
Table 115. TIMx characteristics(1)(2)
1. TIMx is used as a general term to refer to the TIM1 to TIM17 timers.
2. Guaranteed by design.
Symbol Parameter Conditions(3)
3. The maximum timer frequency on APB1 or APB2 is up to 240 MHz, by setting the TIMPRE bit in the
RCC_CFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = rcc_hclk1, otherwise TIMxCLK = 4x
Frcc_pclkx_d2.
Min Max Unit
tres(TIM) Timer resolution time
AHB/APBx prescaler=1
or 2 or 4, fTIMxCLK =
240 MHz
1-
tTIMxCLK
AHB/APBx
prescaler>4, fTIMxCLK =
120 MHz
1-
tTIMxCLK
fEXT Timer external clock
frequency on CH1 to CH4 fTIMxCLK = 240 MHz
0fTIMxCLK/2 MHz
ResTIM Timer resolution - 16/32 bit
tMAX_COUNT Maximum possible count
with 32-bit counter --
65536 ×
65536 tTIMxCLK
DS12930 Rev 1 203/242
STM32H747xI/G Electrical characteristics
221
The SDA and SCL I/O requirements are met with the following restrictions:
The SDA and SCL I/O pins are not “true” open-drain. When configured as open-drain,
the PMOS connected between the I/O pin and VDDIOx is disabled, but still present.
The 20 mA output drive requirement in Fast-mode Plus is not supported. This limits the
maximum load CLoad supported in Fm+, which is given by these formulas:
tr(SDA/SCL)=0.8473xRPxCLoad
RP(min)= (VDD-VOL(max))/IOL(max)
Where RP is the I2C lines pull-up. Refer to Section 6.3.18: I/O port characteristics
for
the I2C I/Os characteristics.
All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog fil-
ter characteristics:
USART interface characteristics
Unless otherwise specified, the parameters given in Table 118 for USART are derived from
tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 22: General operating conditions, with the following
configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load CL = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
IO Compensation cell activated.
VOS level set to VOS1
Table 116. Minimum i2c_ker_ck frequency in all I2C modes
Symbol Parameter Condition Min Unit
f(I2CCLK) I2CCLK
frequency
Standard-mode - 2
MHz
Fast-mode
Analog Filtre ON
DNF=0 8
Analog Filtre OFF
DNF=1 9
Fast-mode Plus
Analog Filtre ON
DNF=0 17
Analog Filtre OFF
DNF=1 16 -
Table 117. I2C analog filter characteristics(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tAF
Maximum pulse width of spikes
that are suppressed by analog
filter
50(2)
2. Spikes with widths below tAF(min) are filtered.
80(3)
3. Spikes with widths above tAF(max) are not filtered.
ns
Electrical characteristics STM32H747xI/G
204/242 DS12930 Rev 1
Refer to Section 6.3.18: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, CK, TX, RX for USART).
Table 118. USART characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fCK USART clock frequency
Master mode
--
12.5
MHz
Slave mode 25
tsu(NSS) NSS setup time Slave mode tker+1 - -
-
th(NSS) NSS hold time Slave mode 2 - -
tw(SCKH),
tw(SCKL)
CK high and low time Master mode 1/fCK/2-2 1/fCK/2 1/fCK/2+2
tsu(RX) Data input setup time
Master mode tker+6 - -
ns
Slave mode 1.5 - -
th(RX) Data input hold time
Master mode 0 - -
Slave mode 1.5 - -
tv(TX) Data output valid time
Slave mode - 12 20
Master mode - 0.5 1
th(TX) Data output hold time
Slave mode 9 - -
Master mode 0 - -
1. Guaranteed by characterization results.
DS12930 Rev 1 205/242
STM32H747xI/G Electrical characteristics
221
Figure 53. USART timing diagram in Master mode
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.
Figure 54. USART timing diagram in Slave mode
ai14136c
SCK Output
CPHA= 0
MOSI
OUTPUT
MISO
INP UT
CPHA= 0
LSB OUT
LSB IN
CPOL=0
CPOL=1
B I T1 OUT
NSS input
tc(SCK)
tw(SCKH)
tw(SCKL)
tr(SCK)
tf(SCK)
th(MI)
High
SCK Output
CPHA=1
CPHA=1
CPOL=0
CPOL=1
tsu(MI)
tv(MO) th(MO)
MSB IN BIT6 IN
MSB OUT
MSv41658V1
NSS input
CPHA=0
CPOL=0
SCK input
CPHA=0
CPOL=1
MISO output
MOSI input
tsu(SI)
th(SI)
tw(SCKL)
tw(SCKH)
tc(SCK)
tr(SCK)
th(NSS)
tdis(SO)
tsu(NSS)
ta(SO) tv(SO)
Next bits IN
Last bit OUT
First bit IN
First bit OUT Next bits OUT
th(SO) tf(SCK)
Last bit IN
Electrical characteristics STM32H747xI/G
206/242 DS12930 Rev 1
SPI interface characteristics
Unless otherwise specified, the parameters given in Table 119 for SPI are derived from tests
performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 22: General operating conditions, with the following
configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load CL = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
IO Compensation cell activated.
HSLV activated when VDD 2.7 V
VOS level set to VOS1
Refer to Section 6.3.18: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI).
Table 119. SPI characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fSCK SPI clock frequency
Master mode
1.62<VDD<3.6 V
SPI1, 2, 3
--
80
MHz
Master mode
2.7<VDD<3.6 V
SPI1, 2, 3
100
Master mode
1.62<VDD<3.6 V
SPI4, 5, 6
50
Slave receiver mode
1.62<VDD<3.6 V 100
Slave mode transmitter/full duplex
2.7<VDD<3.6 V 31
Slave mode transmitter/full duplex
1.62 <VDD<3.6 V 29
tsu(NSS) NSS setup time Slave mode 2 - -
-
th(NSS) NSS hold time Slave mode 1 - -
tw(SCKH),
tw(SCKL)
SCK high and low time Master mode TPCLK-2 TPCLK TPCLK+2
DS12930 Rev 1 207/242
STM32H747xI/G Electrical characteristics
221
Figure 55. SPI timing diagram - slave mode and CPHA = 0
tsu(MI) Data input setup time
Master mode 1 - -
ns
tsu(SI) Slave mode 1 - -
th(MI) Data input hold time
Master mode 4 - -
th(SI) Slave mode 2 - -
ta(SO) Data output access time Slave mode 9 13 27
tdis(SO) Data output disable time Slave mode 0 1 5
tv(SO) Data output valid time
Slave mode
2.7<VDD<3.6 V -12.516
Slave mode
1.62<VDD<3.6 V -12.517
tv(MO) Master mode - 1 3
th(SO) Data output hold time
Slave mode
1.62<VDD<3.6 V 10 - -
th(MO) Master mode 0 - -
1. Guaranteed by characterization results.
Table 119. SPI characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
MSv41658V1
NSS input
CPHA=0
CPOL=0
SCK input
CPHA=0
CPOL=1
MISO output
MOSI input
tsu(SI)
th(SI)
tw(SCKL)
tw(SCKH)
tc(SCK)
tr(SCK)
th(NSS)
tdis(SO)
tsu(NSS)
ta(SO) tv(SO)
Next bits IN
Last bit OUT
First bit IN
First bit OUT Next bits OUT
th(SO) tf(SCK)
Last bit IN
Electrical characteristics STM32H747xI/G
208/242 DS12930 Rev 1
Figure 56. SPI timing diagram - slave mode and CPHA = 1(1)
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.
Figure 57. SPI timing diagram - master mode(1)
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.
MSv41659V1
NSS input
CPHA=1
CPOL=0
SCK input
CPHA=1
CPOL=1
MISO output
MOSI input
tsu(SI) th(SI)
tw(SCKL)
tw(SCKH)
tsu(NSS)
tc(SCK)
ta(SO) tv(SO)
First bit OUT Next bits OUT
Next bits IN
Last bit OUT
th(SO) tr(SCK)
tf(SCK) th(NSS)
tdis(SO)
First bit IN Last bit IN
ai14136c
SCK Output
CPHA= 0
MOSI
OUTPUT
MISO
INP UT
CPHA= 0
LSB OUT
LSB IN
CPOL=0
CPOL=1
B IT1 OUT
NSS input
tc(SCK)
tw(SCKH)
tw(SCKL)
tr(SCK)
tf(SCK)
th(MI)
High
SCK Output
CPHA=1
CPHA=1
CPOL=0
CPOL=1
tsu(MI)
tv(MO) th(MO)
MSB IN BIT6 IN
MSB OUT
DS12930 Rev 1 209/242
STM32H747xI/G Electrical characteristics
221
I2S Interface characteristics
Unless otherwise specified, the parameters given in Table 120 for I2S are derived from tests
performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 22: General operating conditions, with the following
configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load CL = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
IO Compensation cell activated.
HSLV activated when VDD 2.7 V
VOS level set to VOS1
Refer to Section 6.3.18: I/O port characteristics for more details on the input/output alternate
function characteristics (CK,SD,WS).
Table 120. I2S dynamic characteristics(1)
1. Guaranteed by characterization results.
Symbol Parameter Conditions Min Max Unit
fMCK I2S main clock output - 256x8K 256FSMHz
fCK I2S clock frequency
Master data - 64FSMHz
Slave data - 64FS
tv(WS) WS valid time Master mode - 3
ns
th(WS) WS hold time Master mode 0 -
tsu(WS) WS setup time Slave mode 1 -
th(WS) WS hold time Slave mode 1 -
tsu(SD_MR) Data input setup time
Master receiver 1 -
tsu(SD_SR) Slave receiver 1 -
th(SD_MR) Data input hold time
Master receiver 4 -
th(SD_SR) Slave receiver 2 -
tv(SD_ST)
Data output valid time
Slave transmitter (after enable
edge) -17
tv(SD_MT)
Master transmitter (after
enable edge) -3
th(SD_ST)
Data output hold time
Slave transmitter (after enable
edge) 9-
th(SD_MT)
Master transmitter (after
enable edge) 0-
Electrical characteristics STM32H747xI/G
210/242 DS12930 Rev 1
Figure 58. I2S slave timing diagram (Philips protocol)(1)
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 59. I2S master timing diagram (Philips protocol)(1)
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
DS12930 Rev 1 211/242
STM32H747xI/G Electrical characteristics
221
SAI characteristics
Unless otherwise specified, the parameters given in Table 121 for SAI are derived from tests
performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 22: General operating conditions, with the following
configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load CL = 30 pF
IO Compensation cell activated.
Measurement points are done at CMOS levels: 0.5VDD
VOS level set to VOS1.
Refer to Section 6.3.18: I/O port characteristics for more details on the input/output
alternate function characteristics (SCK,SD,WS).
Table 121. SAI characteristics(1)
Symbol Parameter Conditions Min Max Unit
fMCK SAI Main clock output - 256x8K 256xFS
MHz
fCK
SAI clock
frequency(2)
Master Data: 32 bits - 128xFS(3)
Slave Data: 32 bits - 128xFS(3)
Electrical characteristics STM32H747xI/G
212/242 DS12930 Rev 1
tv(FS) FS valid time
Master mode
2.7VDD3.6 -13
ns
Master mode
1.62VDD3.6 -20
tsu(FS) FS hold time Master mode 8 -
th(FS)
FS setup time Slave mode 1 -
FS hold time Slave mode 1 -
tsu(SD_A_MR) Data input setup time
Master receiver 0.5 -
tsu(SD_B_SR) Slave receiver 1 -
th(SD_A_MR) Data input hold time
Master receiver 3.5 -
th(SD_B_SR) Slave receiver 2 -
tv(SD_B_ST) Data output valid time
Slave transmitter (after enable
edge)
2.7VDD3.6
-14
Slave transmitter (after enable
edge)
1.62VDD3.6
-20
th(SD_B_ST) Data output hold time Slave transmitter (after enable
edge) 9-
tv(SD_A_MT) Data output valid time
Master transmitter (after enable
edge)
2.7VDD3.6
-12
Master transmitter (after enable
edge)
1.62VDD3.6
-19
th(SD_A_MT) Data output hold time Master transmitter (after enable
edge) 7.5 -
1. Guaranteed by characterization results.
2. APB clock frequency must be at least twice SAI clock frequency.
3. With FS=192 kHz.
Table 121. SAI characteristics(1) (continued)
Symbol Parameter Conditions Min Max Unit
DS12930 Rev 1 213/242
STM32H747xI/G Electrical characteristics
221
Figure 60. SAI master timing waveforms
Figure 61. SAI slave timing waveforms
MDIO characteristics
Table 122. MDIO Slave timing parameters
Symbol Parameter Min Typ Max Unit
FMDC Management Data Clock - - 30 MHz
td(MDIO) Management Data Iput/output output valid time 8 10 19
nstsu(MDIO) Management Data Iput/output setup time 1 - -
th(MDIO) Management Data Iput/output hold time 1 - -
MS32771V1
SAI_SCK_X
SAI_FS_X
(output)
1/fSCK
SAI_SD_X
(transmit)
tv(FS)
Slot n
SAI_SD_X
(receive)
th(FS)
Slot n+2
tv(SD_MT) th(SD_MT)
Slot n
tsu(SD_MR) th(SD_MR)
MS32772V1
SAI_SCK_X
SAI_FS_X
(input)
SAI_SD_X
(transmit)
tsu(FS)
Slot n
SAI_SD_X
(receive)
tw(CKH_X) th(FS)
Slot n+2
tv(SD_ST) th(SD_ST)
Slot n
tsu(SD_SR)
tw(CKL_X)
th(SD_SR)
1/fSCK
Electrical characteristics STM32H747xI/G
214/242 DS12930 Rev 1
Figure 62. MDIO Slave timing diagram
SD/SDIO MMC card host interface (SDMMC) characteristics
Unless otherwise specified, the parameters given in Table 123 and Table 124 for SDIO are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage summarized in Table 22: General operating conditions, with the following
configuration:
Output speed is set to OSPEEDRy[1:0] = 0x11
Capacitive load CL=30 pF
Measurement points are done at CMOS levels: 0.5VDD
IO Compensation cell activated.
HSLV activated when VDD 2.7 V
VOS level set to VOS1
Refer to Section 6.3.18: I/O port characteristics for more details on the input/output
characteristics.
MSv40460V1
tsu(MDIO)
tMDC)
th(MDIO)
td(MDIO)
Table 123. Dynamics characteristics: SD / MMC characteristics, VDD=2.7 to 3.6 V(1)(2)
Symbol Parameter Conditions Min Typ Max Unit
fPP Clock frequency in data transfer mode - 0 - 133 MHz
- SDIO_CK/fPCLK2 frequency ratio - - - 8/3 -
tW(CKL) Clock low time fPP =52MHz 8.5 9.5 -
ns
tW(CKH) Clock high time fPP =52MHz 8.5 9.5 -
CMD, D inputs (referenced to CK) in eMMC legacy/SDR/DDR and SD HS/SDR(3)/DDR(3) mode
tISU Input setup time HS - 1.5 - -
ns
tIH Input hold time HS - 1.5 - -
tIDW(4) Input valid window (variable window) - 3 - - -
CMD, D outputs (referenced to CK) in eMMC legacy/SDR/DDR and SD HS/SDR/DDR(3) mode
tOV Output valid time HS - - 3.5 5
ns
tOH Output hold time HS - 2 - -
DS12930 Rev 1 215/242
STM32H747xI/G Electrical characteristics
221
CMD, D inputs (referenced to CK) in SD default mode
tISUD Input setup time SD - 1.5 -
ns
tIHD Input hold time SD - 1.5 -
CMD, D outputs (referenced to CK) in SD default mode
tOVD Output valid default time SD - - 0.5 2
ns
tOHD Output hold default time SD - 0 - -
1. Guaranteed by characterization results.
2. Above 100 MHz, CL = 20 pF.
3. An external voltage converter is required to support SD 1.8 V.
4. The minimum window of time where the data needs to be stable for proper sampling in tuning mode.
Table 123. Dynamics characteristics: SD / MMC characteristics, VDD=2.7 to 3.6 V(1)(2) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 124. Dynamics characteristics: eMMC characteristics VDD=1.71V to 1.9V(1)(2)
1. Guaranteed by characterization results.
2. CL = 20 pF.
Symbol Parameter Conditions Min Typ Max Unit
fPP
Clock frequency in data transfer
mode -0-120MHz
- SDIO_CK/fPCLK2 frequency ratio - - - 8/3 -
tW(CKL) Clock low time fPP =52 MHz 8.5 9.5 -
ns
tW(CKH) Clock high time fPP =52 MHz 8.5 9.5 -
CMD, D inputs (referenced to CK) in eMMC mode
tISU Input setup time HS - 1 - -
ns
tIH Input hold time HS - 2.5 - -
tIDW(3)
3. The minimum window of time where the data needs to be stable for proper sampling in tuning mode.
Input valid window (variable
window) -3.5- -
CMD, D outputs (referenced to CK) in eMMC mode
tOVD Output valid time HS - - 5 7
ns
tOHD Output hold time HS - 3 - -
Electrical characteristics STM32H747xI/G
216/242 DS12930 Rev 1
Figure 63. SDIO high-speed mode
Figure 64. SD default mode
Figure 65. DDR mode
ai14888
CK
D, CMD
(output)
tOVD tOHD
MSv36879V1
Data output D0 D2 D4
Clock
Data input D0 D2 D4
t(CK) tw(CKH) tw(CKL)
tr(CK) tf(CK)
tsf(IN) thf(IN)
tvf(OUT) thr(OUT)
D1 D3 D5
D1 D3 D5
tvr(OUT) thf(OUT)
tsr(IN) thr(IN)
DS12930 Rev 1 217/242
STM32H747xI/G Electrical characteristics
221
USB OTG_HS characteristics
Unless otherwise specified, the parameters given in Table 125 for ULPI are derived from
tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
summarized in Table 22: General operating conditions, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load CL=20 pF
Measurement points are done at CMOS levels: 0.5VDD
IO Compensation cell activated.
VOS level set to VOS1
Refer to Section 6.3.18: I/O port characteristics for more details on the input/output
characteristics.
Figure 66. ULPI timing diagram
Table 125. Dynamics characteristics: USB ULPI(1)
1. Guaranteed by characterization results.
Symbol Parameter Condition Min Typ Max Unit
tSC
Control in (ULPI_DIR , ULPI_NXT) setup
time -2.5--
ns
tHC
Control in (ULPI_DIR, ULPI_NXT) hold
time -2--
tSD Data in setup time - 2.5 - -
tHD Data in hold time - 0 - -
tDC/tDD Control/Datal output delay
2.7<VDD<3.6 V
CL=20 pF -99.5
1.71<VDD<3.6 V
CL=15 pF -914
Clock
Control In
(ULPI_DIR,
ULPI_NXT)
data In
(8-bit)
Control out
(ULPI_STP)
data out
(8-bit)
tDD
tDC
tHD
tSD
tHC
tSC
ai17361c
tDC
Electrical characteristics STM32H747xI/G
218/242 DS12930 Rev 1
Ethernet interface characteristics
Unless otherwise specified, the parameters given in Tabl e 126, Table 127 and Table 128 for
SMI, RMII and MII are derived from tests performed under the ambient temperature,
frcc_c_ck frequency and VDD supply voltage conditions summarized in Table 22: General
operating conditions, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load CL=20 pF
Measurement points are done at CMOS levels: 0.5VDD
IO Compensation cell activated.
HSLV activated when VDD 2.7 V
VOS level set to VOS1
Refer to Section 6.3.18: I/O port characteristics for more details on the input/output
characteristics:
Figure 67. Ethernet SMI timing diagram
Table 126. Dynamics characteristics: Ethernet MAC signals for SMI (1)
1. Guaranteed by characterization results.
Symbol Parameter Min Typ Max Unit
tMDC MDC cycle time( 2.5 MHz) 400 400 403
ns
Td(MDIO) Write data valid time 0.5 1.5 4
tsu(MDIO) Read data setup time 12.5 - -
th(MDIO) Read data hold time 0 - -
MS31384V1
ETH_MDC
ETH_MDIO(O)
ETH_MDIO(I)
tMDC
td(MDIO)
tsu(MDIO) th(MDIO)
DS12930 Rev 1 219/242
STM32H747xI/G Electrical characteristics
221
Figure 68. Ethernet RMII timing diagram
Table 127. Dynamics characteristics: Ethernet MAC signals for RMII (1)
1. Guaranteed by characterization results.
Symbol Parameter Min Typ Max Unit
tsu(RXD) Receive data setup time 2 - -
ns
tih(RXD) Receive data hold time 2 - -
tsu(CRS) Carrier sense setup time 1.5 - -
tih(CRS) Carrier sense hold time 1.5 - -
td(TXEN) Transmit enable valid delay time 7 8 9.5
td(TXD) Transmit data valid delay time 8 9 11
Table 128. Dynamics characteristics: Ethernet MAC signals for MII (1)
1. Guaranteed by characterization results.
Symbol Parameter Min Typ Max Unit
tsu(RXD) Receive data setup time 2 - -
ns
tih(RXD) Receive data hold time 2 - -
tsu(DV) Data valid setup time 1.5 - -
tih(DV) Data valid hold time 1.5 - -
tsu(ER) Error setup time 1.5 - -
tih(ER) Error hold time 0.5 - -
td(TXEN) Transmit enable valid delay time 9 10 11
td(TXD) Transmit data valid delay time 8.5 9.5 12.5
ai15667b
RMII_REF_CLK
RMII_TX_EN
RMII_TXD[1:0]
RMII_RXD[1:0]
RMII_CRS_DV
td(TXEN)
td(TXD)
tsu(RXD)
tsu(CRS)
tih(RXD)
tih(CRS)
Electrical characteristics STM32H747xI/G
220/242 DS12930 Rev 1
Figure 69. Ethernet MII timing diagram
JTAG/SWD interface characteristics
Unless otherwise specified, the parameters given in Table 129 and Table 130 for
JTAG/SWD are derived from tests performed under the ambient temperature, frcc_c_ck
frequency and VDD supply voltage summarized in Table 22: General operating conditions,
with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 0x10
Capacitive load CL=30 pF
Measurement points are done at CMOS levels: 0.5VDD
VOS level set to VOS1
Refer to Section 6.3.18: I/O port characteristics for more details on the input/output
characteristics:
Table 129. Dynamics JTAG characteristics
Symbol Parameter Conditions Min Typ Max Unit
Fpp TCK clock frequency
2.7V <VDD< 3.6 V - - 37
MHz
1/tc(TCK) 1.62 <VDD< 3.6 V - - 27.5
tisu(TMS) TMS input setup time - 2.5 - -
tih(TMS) TMS input hold time - 1 - -
tisu(TDI) TDI input setup time - 1.5 - - -
tih(TDI) TDI input hold time - 1 - - -
tov(TDO) TDO output valid time
2.7V <VDD< 3.6 V - 8 13.5 -
1.62 <VDD< 3.6 V - 8 18 -
toh(TDO) TDO output hold time - 7 - - -
ai15668b
MII_RX_CLK
MII_RXD[3:0]
MII_RX_DV
MII_RX_ER
td(TXEN)
td(TXD)
tsu(RXD)
tsu(ER)
tsu(DV)
tih(RXD)
tih(ER)
tih(DV)
MII_TX_CLK
MII_TX_EN
MII_TXD[3:0]
DS12930 Rev 1 221/242
STM32H747xI/G Electrical characteristics
221
Figure 70. JTAG timing diagram
Figure 71. SWD timing diagram
Table 130. Dynamics SWD characteristics:
Symbol Parameter Conditions Min Typ Max Unit
Fpp SWCLK clock frequency
2.7V <VDD< 3.6 V - - 71
MHz
1/tc(SWCLK) 1.62 <VDD< 3.6 V - - 52.5
tisu(SWDIO) SWDIO input setup time - 2.5 - - -
tih(SWDIO) SWDIO input hold time - 1 - - -
tov(SWDIO) SWDIO output valid time
2.7V <VDD< 3.6 V - 8.5 14 -
1.62 <VDD< 3.6 V -8.519 -
toh(SWDIO) SWDIO output hold time - 8 - - -
MSv40458V1
TDI/TMS
TCK
TDO
t
c(TCK)
t
w(TCKL)
t
w(TCKH)
t
h(TMS/TDI)
t
su(TMS/TDI)
t
ov(TDO)
t
oh(TDO)
MSv40459V1
SWDIO
SWCLK
SWDIO
t
c(SWCLK)
t
wSWCLKL)
t
w(SWCLKH)
t
h(SWDIO)
t
su(SWDIO)
t
ov(SWDIO)
t
oh(SWDIO)
(receive)
(transmit)
Package information STM32H747xI/G
222/242 DS12930 Rev 1
7 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at www.st.com.
ECOPACK® is an ST trademark.
7.1 WLCSP156 package information
WLCSP156 is a 156-bump, 4.96 x 4.64 mm, 0.35 mm pitch, wafer level chip scale
package.
Figure 72. WLCSP156 package outline
1. Drawing is not to scale.
A086_WLCSP156_ME_V1
eeD
E
e2
e1
G
FA1 ball location
D
E
BOTTOM VIEW TOP VIEW
A3
b
A2
A2
A
A1
bbb
Z
Detail A
A1
ccc
Z
Z
ZXY
ddd
DETAIL A
ROTATED 90 SEATING
PLANE
FRONT VIEW
SIDE
VIEW
BUMP
DS12930 Rev 1 223/242
STM32H747xI/G Package information
240
Figure 73. WLCSP156 bump recommended footprint
1. Dimensions are expressed in millimeters.
Table 131. WLCSP156 package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to the 3rd decimal digits.
Min Typ Max Min Typ Max
A- -0.58- -0.023
A1 - 0.17 - - 0.006 -
A2 - 0.38 - - 0.015 -
A3 - 0.025(2)
2. Back side coating. Nominal dimension rounded to the 3rd decimal place resulting from process capability.
--0.001-
b 0.21 0.24 0.27 0.008 0.009 0.011
D 4.94 4.96 4.98 0.193 0.195 0.196
E 4.62 4.64 4.66 0.181 0.182 0.183
e1 - 4.20 - - 0.014 -
e2 - 3.85 - - 0.165 -
e - 0.35 - - 0.152 -
F - 0.380(3)
3. Calculated dimensions are rounded to 3rd decimal place.
--0.015-
G - 0.395(3) --0.015-
aaa - - 0.10 - - 0.004
bbb - - 0.10 - - 0.004
ccc - - 0.10 - - 0.004
ddd - - 0.05 - - 0.002
eee - - 0.05 - - 0.002
A086_WLCSP156_FP_V1
Dpad
Dsm
Package information STM32H747xI/G
224/242 DS12930 Rev 1
Device marking for WLSCP156
The following figure gives an example of topside marking versus pin 1 position identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 74. WLCSP156 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not approved for use in production. ST is not responsible for any consequences
resulting from such use. In no event will ST be liable for the customer using any of these engineering
samples in production. ST’s Quality department must be contacted prior to any decision to use these
engineering samples to run a qualification activity.
Table 132. WLCSP156 bump recommended PCB design rules
Dimension Recommended values
Pitch 0.35 mm
Dpad 0.210 mm
Dsm 0.275 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening 0.235 mm
Stencil thickness 0.100 mm
MSv61385V1
Revision code
Ball A1
identifier
Product
identification(1)
Date code
ES32H747ZI6
WWY R
DS12930 Rev 1 225/242
STM32H747xI/G Package information
240
7.2 UFBGA169 package information
UFBGA169 is a 169-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package.
Figure 75. UFBGA169 package outline
1. Drawing is not in scale.
Table 133. UFBGA169 package mechanical data
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A 0.460 0.530 0.600 0.0181 0.0209 0.0236
A1 0.050 0.080 0.110 0.0020 0.0031 0.0043
A2 0.400 0.450 0.500 0.0157 0.0177 0.0197
A3 - 0.130 - - 0.0051 -
A4 0.270 0.320 0.370 0.0106 0.0126 0.0146
b 0.230 0.280 0.330 0.0091 0.0110 0.0130
D 6.950 7.000 7.050 0.2736 0.2756 0.2776
D1 5.950 6.000 6.050 0.2343 0.2362 0.2382
E 6.950 7.000 7.050 0.2736 0.2756 0.2776
E1 5.950 6.000 6.050 0.2343 0.2362 0.2382
e - 0.500 - - 0.0197 -
F 0.450 0.500 0.550 0.0177 0.0197 0.0217
A0YV_ME_V2
Seating plane
A2
A1
A
eF
F
e
N
A
BOTTOM VIEW
E
D
TOP VIEW
Øb (169 balls)
Y
X
YeeeØM
fffØM
Z
Z
X
A1 ball
identifier
A1 ball
index area
b
D1
E1
A4
A3
13 1
Z
Z
ddd
SIDE VIEW
Package information STM32H747xI/G
226/242 DS12930 Rev 1
Device marking for UFBGA169
The following figure gives an example of topside marking versus pin 1 position identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 76. UFBGA169 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not approved for use in production. ST is not responsible for any consequences
resulting from such use. In no event will ST be liable for the customer using any of these engineering
samples in production. ST’s Quality department must be contacted prior to any decision to use these
engineering samples to run a qualification activity.
ddd - - 0.100 - - 0.0039
eee - - 0.150 - - 0.0059
fff - - 0.050 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 133. UFBGA169 package mechanical data (continued)
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
MSv61387V1
Revision code
Ball A1
identifier
Product identification(1)
Date code
ES32H747
AII6
WWY
R
DS12930 Rev 1 227/242
STM32H747xI/G Package information
240
7.3 LQFP176 package information
LQFP176 is a 176-pin, 24 x 24 mm low profile quad flat package.
Figure 77. LQFP176 package outline
1. Drawing is not to scale.
1T_ME_V2
A2
A
e
EHE
D
HD
ZD
ZE
b
0.25 mm
gauge plane
A1 L
L1
k
c
IDENTIFICATION
PIN 1
Seating plane
C
A1
Table 134. LQFP176 package mechanical data
Ref.
Dimensions
Millimeters Inches(1)
Min. Typ. Max. Min. Typ. Max.
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 - 1.450 0.0531 - 0.0571
b 0.170 - 0.270 0.0067 - 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
Package information STM32H747xI/G
228/242 DS12930 Rev 1
D 23.900 - 24.100 0.9409 - 0.9488
HD 25.900 - 26.100 1.0197 - 1.0276
ZD - 1.250 - - 0.0492 -
E 23.900 - 24.100 0.9409 - 0.9488
HE 25.900 - 26.100 1.0197 - 1.0276
ZE - 1.250 - - 0.0492 -
e - 0.500 - - 0.0197 -
L(2) 0.450 - 0.750 0.0177 - 0.0295
L1 - 1.000 - - 0.0394 -
k - -
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. L dimension is measured at gauge plane at 0.25 mm above the seating plane.
Table 134. LQFP176 package mechanical data (continued)
Ref.
Dimensions
Millimeters Inches(1)
Min. Typ. Max. Min. Typ. Max.
DS12930 Rev 1 229/242
STM32H747xI/G Package information
240
Figure 78. LQFP176 package recommended footprint
1. Dimensions are expressed in millimeters.
1T_FP_V1
133
132
1.2
0.3
0.5
89
88 1.2
44
45
21.8
26.7
1176
26.7
21.8
Package information STM32H747xI/G
230/242 DS12930 Rev 1
Device marking for LQFP176
The following figure gives an example of topside marking versus pin 1 position identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 79. LQFP176 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not approved for use in production. ST is not responsible for any consequences
resulting from such use. In no event will ST be liable for the customer using any of these engineering
samples in production. ST’s Quality department must be contacted prior to any decision to use these
engineering samples to run a qualification activity.
MSv61389V1
Pin 1identifier
ES32H747IIT6
Y WW
R
Date code
Product identification(1)
Revision code
DS12930 Rev 1 231/242
STM32H747xI/G Package information
240
7.4 LQFP208 package information
LQFP208 is a 208-pin, 28 x 28 mm low-profile quad flat package.
Figure 80. LQFP208 package outline
1. Drawing is not to scale.
D
D1
D3
E3
E1
E
e
L1
GAUGE PLANE
0.25 mm
b
C
SEATING
PLANE
ccc C
IDENTIFICATION
PIN 1
152
53
104
105
156
157
208
c
L
A1
A1
A
A2
UH_ME_V2
K
Package information STM32H747xI/G
232/242 DS12930 Rev 1
Table 135. LQFP208 package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 29.800 30.000 30.200 1.1811 1.1732 1.1890
D1 27.800 28.000 28.200 1.1024 1.0945 1.1102
D3 - 25.500 - - 1.0039 -
E 29.800 30.000 30.200 1.1811 1.1732 1.1890
E1 27.800 28.000 28.200 1.1024 1.0945 1.1102
E3 - 25.500 - - 1.0039 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
DS12930 Rev 1 233/242
STM32H747xI/G Package information
240
Figure 81. LQFP208 package recommended footprint
1. Dimensions are expressed in millimeters.
UH_FP_V2
30.7
25.8
1.2
53 104
105
52
30.7
28.3
208
0.5
157
156
0.3
1.25
1
Package information STM32H747xI/G
234/242 DS12930 Rev 1
Device marking for LQFP208
The following figure gives an example of topside marking versus pin 1 position identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 82. LQFP208 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not approved for use in production. ST is not responsible for any consequences
resulting from such use. In no event will ST be liable for the customer using any of these engineering
samples in production. ST’s Quality department must be contacted prior to any decision to use these
engineering samples to run a qualification activity.
MSv61391V1
Date code
Pin 1 identifier
ES32H747BIT6
Y WW
Product identification(1)
Revision code
R
DS12930 Rev 1 235/242
STM32H747xI/G Package information
240
7.5 TFBGA240+25 package information
TFBGA240+25 is a 265 ball, 14x14 mm, 0.8 mm pitch, fine pitch ball grid array
package.
Figure 83. TFBGA240+25 package outline
1. Dimensions are expressed in millimeters.
C
SEATING
PLANE
ddd C
A
A1
A2
D1
F
E1
E
D
G
e
A
S
17 1
b (240 + 25 balls)
BOTTOM VIEW
e
A1 ball identifier
TOP VIEW
A07U_ME_V1
Package information STM32H747xI/G
236/242 DS12930 Rev 1
Figure 84. TFBGA240+25 package recommended footprint
1. Dimensions are expressed in millimeters.
Table 136. TFBG240+25 ball package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.100 - - 0.0433
A1 0.150 - - 0.0059 - -
A2 - 0.760 - - 0.0299 -
b 0.350 0.400 0.450 0.0138 0.0157 0.0177
D 13.850 14.000 14.150 0.5453 0.5512 0.5571
D1 - 12.800 - - 0.5039 -
E 13.850 14.000 14.150 0.5453 0.5512 0.5571
E1 - 12.800 - - 0.5039 -
e - 0.800 - - 0.0315 -
F - 0.600 - - 0.0236 -
G - 0.600 - - 0.0236 -
ddd - - 0.100 - - 0.0039
eee - - 0.150 - - 0.0059
fff - - 0.080 - - 0.0031
A07U_FP_V2
Dpad
Dsm
DS12930 Rev 1 237/242
STM32H747xI/G Package information
240
Device marking for TFBGA240+25
The following figure gives an example of topside marking versus pin 1 position identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 85. TFBGA240+25 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not approved for use in production. ST is not responsible for any consequences
resulting from such use. In no event will ST be liable for the customer using any of these engineering
samples in production. ST’s Quality department must be contacted prior to any decision to use these
engineering samples to run a qualification activity.
Table 137. TFBGA240+25 recommended PCB design rules (0.8 mm pitch)
Dimension Recommended values
Pitch 0.8 mm
Dpad 0.225 mm
Dsm 0.290 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening 0.250 mm
Stencil thickness 0.100 mm
MSv61393V1
Revision code
Ball
A1identifier
ES32H747XIH6
Y WW
Product
identification(1)
Date code
R
Package information STM32H747xI/G
238/242 DS12930 Rev 1
7.6 Thermal characteristics
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max × Θ
JA)
Where:
TA max is the maximum ambient temperature in °C,
•Θ
JA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 138. Thermal characteristics
Symbol Definition Parameter Value Unit
Θ
JA
Thermal resistance
junction-ambient
Thermal resistance junction-ambient
WLCSP156 - 4.96 x 4.64 mm /0.35 mm pitch 35
°C/W
Thermal resistance junction-ambient
UFBGA169 - 7 x 7 mm /0.5 mm pitch 37.7
Thermal resistance junction-ambient
LQFP176 - 24 x 24 mm /0.5 mm pitch 43.0
Thermal resistance junction-ambient
LQFP208 - 28 x 28 mm /0.5 mm pitch 42.4
Thermal resistance junction-ambient
TFBGA240+25 - 14 x 14 mm / 0.8 mm pitch 36.6
Θ
JB
Thermal resistance
junction-board
Thermal resistance junction-ambient
WLCSP156 - 4.96 x 4.64 mm /0.35 mm pitch 18.1
°C/W
Thermal resistance junction-ambient
UFBGA169 - 7 x 7 mm /0.5 mm pitch 17.3
Thermal resistance junction-ambient
LQFP176 - 24 x 24 mm /0.5 mm pitch 39.4
Thermal resistance junction-ambient
LQFP208 - 28 x 28 mm /0.5 mm pitch 40.3
Thermal resistance junction-ambient
TFBGA240+25 - 14 x 14 mm / 0.8 mm pitch 24.3
DS12930 Rev 1 239/242
STM32H747xI/G Package information
240
7.6.1 Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
For information on thermal management, refer to application note “Thermal
management guidelines for STM32 32-bit Arm Cortex MCUs applications” (AN5036)
available from www.st.com.
Θ
JC
Thermal resistance
junction-case
Thermal resistance junction-ambient
WLCSP156 - 4.96 x 4.64 mm /0.35 mm pitch 1
°C/W
Thermal resistance junction-ambient
UFBGA169 - 7 x 7 mm /0.5 mm pitch 11
Thermal resistance junction-ambient
LQFP176 - 24 x 24 mm /0.5 mm pitch 11.2
Thermal resistance junction-ambient
LQFP208 - 28 x 28 mm /0.5 mm pitch 11.1
Thermal resistance junction-ambient
TFBGA240+25 - 14 x 14 mm / 0.8 mm pitch 7.4
Table 138. Thermal characteristics (continued)
Symbol Definition Parameter Value Unit
Ordering information STM32H747xI/G
240/242 DS12930 Rev 1
8 Ordering information
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
Example: STM32 H 747 X I T 6 TR
Device family
STM32 = Arm-based 32-bit microcontroller
Product type
H = High performance
Device subfamily
747 = STM32H7x7 dual core MIPI-DSI line
Pin count
Z = 156 pins
A = 169 pins
I = 176 pins/balls
B = 208 pins
X = 240 balls
Flash memory size
G = 1 Mbytes
I = 2 Mbytes
Package
T = LQFP ECOPACK®2
I = UFBGA pitch 0.5 mm ECOPACK®2
H = TFBGA ECOPACK®2
Y = WLCSP ECOPACK®2
Temperature range
6 = –40 to 85 °C
Packing
TR = tape and reel
No character = tray or tube
DS12930 Rev 1 241/242
STM32H747xI/G Revision history
241
9 Revision history
Table 139. Document revision history
Date Revision Changes
16-May-2019 1 Initial release.
STM32H747xI/G
242/242 DS12930 Rev 1
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2019 STMicroelectronics – All rights reserved