PGA112
PGA113
PGA117
PGA116
PGA116
1
FEATURES APPLICATIONS
DESCRIPTION
10kW
ADC
G=1 RF
RI
Output
Stage
SPI
Interface
SCLK
DIO
CS
7
VOUT
5
DVDD
10
AVDD
1
GND
6
VREF
4
3
8
9
MSP430
Microcontroller
+3V
+5V
VREF
PGA112
PGA113
V /CH0
CAL 2
CH1
CAL3
CAL4
CAL1
CAL2
0.1VCAL
0.9VCAL
10kW
80kW
MUX
CAL2/3
C
0.1 F
BYPASS
m
C
0.1 F
BYPASS
m
C
0.1 F
BYPASS
m
PGA112
, ,
PGA113PGA116
,
PGA117
www.ti.com
............................................................................................................................................ SBOS424B MARCH 2008 REVISED SEPTEMBER 2008
Zer ø -DriftPROGRAMMABLE GAIN AMPLIFIER with MUX
Remote e-Meter Reading23
Rail-to-Rail Input/Output
Automatic Gain ControlOffset: 25 µV (typ), 100 µV (max)
Portable Data AcquisitionZer ø Drift: 0.35 µV/ ° C (typ), 1.2 µV/ ° C (max)
PC-Based Signal Acquisition SystemsLow Noise: 12nV/ Hz
Test and MeasurementInput Offset Current: ± 5nA max (+25 ° C)
Programmable Logic ControllersGain Error: 0.1% max (G 32),
Battery-Powered Instruments0.3% max (G > 32)
Handheld Test EquipmentBinary Gains: 1, 2, 4, 8, 16, 32, 64, 128(PGA112, PGA116)Scope Gains: 1, 2, 5, 10, 20, 50, 100, 200
The PGA112 and PGA113 (binary/scope gains) offer(PGA113, PGA117)
two analog inputs, a three-pin SPI interface, andGain Switching Time: 200ns
software shutdown in an MSOP-10 package. TheTwo Channel MUX: PGA112, PGA113
PGA116 and PGA117 (binary/scope gains) offer 1010 Channel MUX: PGA116, PGA117
analog inputs, a four-pin SPI interface withdaisy-chain capability, and hardware and softwareFour Internal Calibration Channels
shutdown in a TSSOP-20 package.Amplifier Optimized for Driving CDAC ADCs
All versions provide internal calibration channels forOutput Swing: 50mV to Supply Rails
system-level calibration. The channels are tied toAV
DD
and DV
DD
for Mixed Voltage Systems
GND, 0.9V
CAL
, 0.1V
CAL
, and V
REF
, respectively. V
CAL
,I
Q
= 1.1mA (typ)
an external voltage connected to Channel 0, is usedas the system calibration reference. Binary gains are:Software/Hardware Shutdown: I
Q
4µA (typ)
1, 2, 4, 8, 16, 32, 64, and 128; scope gains are: 1, 2,Temperature Range: 40 ° C to +125 ° C
5, 10, 20, 50, 100, and 200.SPI™ Interface (10MHz) with Daisy-ChainCapability
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
2SPI is a trademark of Motorola.3All other trademarks are the property of their respective owners.
PRODUCTION DATA information is current as of publication date.
Copyright © 2008, Texas Instruments IncorporatedProducts conform to specifications per the terms of the TexasInstruments standard warranty. Production processing does notnecessarily include testing of all parameters.
ABSOLUTE MAXIMUM RATINGS
(1)
PGA112 , , PGA113PGA116 , PGA117
SBOS424B MARCH 2008 REVISED SEPTEMBER 2008 ............................................................................................................................................
www.ti.com
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled withappropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be moresusceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
PACKAGE AND MODEL COMPARISON
SHUTDOWN# OF MUX GAINS SPIDEVICE INPUTS (Eight Each) DAISY-CHAIN HARDWARE SOFTWARE PACKAGE
PGA112 Two Binary No No üMSOP-10PGA113 Two Scope No No üMSOP-10PGA116 10 Binary üüüTSSOP-20PGA117 10 Scope üüüTSSOP-20
ORDERING INFORMATION
(1)
DESCRIPTION PACKAGE PACKAGEPRODUCT (Gains/Channels) PACKAGE-LEAD DESIGNATOR MARKING
PGA112 Binary
(2)
/2 Channels MSOP-10 DGS P112PGA113 Scope
(3)
/2 Channels MSOP-10 DGS P113PGA116 Binary
(2)
/10 Channels TSSOP-20 PW PGA116PGA117 Scope
(3)
/10 Channels TSSOP-20 PW PGA117
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TIweb site at www.ti.com .(2) Binary gains: 1, 2, 4, 8, 16, 32, 64, and 128.(3) Scope gains: 1, 2, 5, 10, 20, 50, 100, and 200.
Over operating free-air temperature range, unless otherwise noted.
PGA112, PGA113, PGA116, PGA117 UNIT
Supply Voltage +7 VSignal Input Terminals, Voltage
(2)
GND 0.5 to (AV
DD
) + 0.5 VSignal Input Terminals, Current
(2)
± 10 mAOutput Short-Circuit ContinuousOperating Temperature 40 to +125 ° CStorage Temperature 65 to +150 ° CJunction Temperature +150 ° CHuman Body Model (HBM) 3000 VESD Ratings: Charged Device Model (CDM) 1000 VMachine Model (MM) 300 V
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods maydegrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyondthose specified is not implied.(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5V beyond the supply rails shouldbe current limited to 10mA or less.
2Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
ELECTRICAL CHARACTERISTICS: V
S
= AV
DD
= DV
DD
= +5V
PGA112 , , PGA113PGA116 , PGA117
www.ti.com
............................................................................................................................................ SBOS424B MARCH 2008 REVISED SEPTEMBER 2008
Boldface limits apply over the specified temperature range, T
A
= 40 ° C to +125 ° C.At T
A
= +25 ° C, R
L
= 10k //C
L
= 100pF connected to DV
DD
/2, and V
REF
= GND, unless otherwise noted.
PGA112, PGA113, PGA116, PGA117
PARAMETER CONDITIONS MIN TYP MAX UNIT
OFFSET VOLTAGE
Input Offset Voltage V
OS
AV
DD
= DV
DD
= +5V, V
REF
= V
IN
= AV
DD
/2, V
CM
= 2.5V ± 25 ± 100 µV
AV
DD
= DV
DD
= +5V, V
REF
= V
IN
= AV
DD
/2, V
CM
= 4.5V ± 75 ± 325 µV
vs Temperature, 40 ° C to +125 ° C dV
OS
/dT AV
DD
= DV
DD
= +5V, V
CM
= 2.5V 0.35 1.2 µV/ ° C
vs Temperature, 40 ° C to +85 ° C AV
DD
= DV
DD
= +5V, V
CM
= 2.5V 0.15 0.9 µV/ ° C
vs Temperature, 40 ° C to +125 ° C AV
DD
= DV
DD
= +5V, V
CM
= 4.5V 0.6 1.8 µV/ ° C
vs Temperature, 40 ° C to +85 ° C AV
DD
= DV
DD
= +5V, V
CM
= 4.5V 0.3 1.3 µV/ ° C
AV
DD
= DV
DD
= +2.2V to +5.5V, V
CM
= 0.5V,vs Power Supply PSRR 5 20 µV/VV
REF
= V
IN
= AV
DD
/2
AV
DD
= DV
DD
= +2.2V to +5.5V, V
CM
= 0.5V,Over Temperature, 40 ° C to +125 ° C 5 40 µV/VV
REF
= V
IN
= AV
DD
/2
INPUT ON-CHANNEL CURRENT
Input On-Channel Current (Ch0, Ch1) I
IN
V
REF
= V
IN
= AV
DD
/2 ± 1.5 ± 5 nA
Over Temperature, 40 ° C to +125 ° C V
REF
= V
IN
= AV
DD
/2 See Typical Characteristics nA
INPUT VOLTAGE RANGE
Input Voltage Range
(1)
I
VR
GND 0.1 AV
DD
+ 0.1 V
Overvoltage Input Range No Output Phase Reversal
(2)
GND 0.3 AV
DD
+ 0.3 V
INPUT IMPEDANCE (Channel On)
(3)
Channel Input Capacitance C
CH
2 pF
Channel Switch Resistance R
SW
150
Amplifier Input Capacitance C
AMP
3 pF
Amplifier Input Resistance R
AMP
Input Resistance to GND 10 G
V
CAL
/CH0 R
IN
CAL1 or CAL2 Selected 100 k
GAIN SELECTIONS
Nominal Gains Binary gains: 1, 2, 4, 8, 16, 32, 64, 128 1 128
Scope gains: 1, 2, 5, 10, 20, 50, 100, 200 1 200
DC Gain Error G = 1 V
OUT
= GND + 85mV to DV
DD
85mV 0.006 0.1 %
1 < G 32 V
OUT
= GND + 85mV to DV
DD
85mV 0.1 %
G50 V
OUT
= GND + 85mV to DV
DD
85mV 0.3 %
DC Gain Drift G = 1 V
OUT
= GND + 85mV to DV
DD
85mV 0.5 ppm/ ° C
1 < G 32 V
OUT
= GND + 85mV to DV
DD
85mV 2 ppm/ ° C
G50 V
OUT
= GND + 85mV to DV
DD
85mV 6 ppm/ ° C
Op Amp + Input = 0.9V
CAL
,CAL2 DC Gain Error
(4)
0.02 %V
REF
= V
CAL
= AV
DD
/2, G = 1
Op Amp + Input = 0.9V
CAL
,CAL2 DC Gain Drift
(4)
2 ppm/ ° CV
REF
= V
CAL
= AV
DD
/2, G = 1
Op Amp + Input = 0.1V
CAL
,CAL3 DC Gain Error
(4)
0.02 %V
REF
= V
CAL
= AV
DD
/2, G = 1
Op Amp + Input = 0.1V
CAL
,CAL3 DC Gain Drift
(4)
2 ppm/ ° CV
REF
= V
CAL
= AV
DD
/2, G = 1
INPUT IMPEDANCE (Channel Off)
(3)
Input Impedance C
CH
See Figure 1 2 pF
INPUT OFF-CHANNEL CURRENT
V
REF
= GND, V
OFF-CHANNEL
= AV
DD
/2,Input Off-Channel Current (Ch0, Ch1)
(5)
I
LKG
± 0.05 ± 1 nAV
ON-CHANNEL
= AV
DD
/2 0.1V
V
REF
= GND, V
OFF-CHANNEL
= AV
DD
/2,Over Temperature, 40 ° C to +125 ° C See Typical CharacteristicsV
ON-CHANNEL
= AV
DD
/2 0.1V
Channel-to-Channel Crosstalk 130 dB
(1) Gain error is a function of the input voltage. Gain error outside of the range (GND + 85mV V
OUT
DV
DD
85mV) increases to 0.5%(typical).
(2) Input voltages beyond this range must be current limited to < |10mA| through the input protection diodes on each channel to preventpermanent destruction of the device.(3) See Figure 1 .(4) Total V
OUT
error must be computed using input offset voltage error multiplied by gain. Includes op amp G = 1 error.(5) Maximum specification limitation limited by final test time and capability.
Copyright © 2008, Texas Instruments Incorporated Submit Documentation Feedback 3
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
PGA112 , , PGA113PGA116 , PGA117
SBOS424B MARCH 2008 REVISED SEPTEMBER 2008 ............................................................................................................................................
www.ti.com
ELECTRICAL CHARACTERISTICS: V
S
= AV
DD
= DV
DD
= +5V (continued)Boldface limits apply over the specified temperature range, T
A
= 40 ° C to +125 ° C.At T
A
= +25 ° C, R
L
= 10k //C
L
= 100pF connected to DV
DD
/2, and V
REF
= GND, unless otherwise noted.
PGA112, PGA113, PGA116, PGA117
PARAMETER CONDITIONS MIN TYP MAX UNIT
OUTPUT
Voltage Output Swing from Rail I
OUT
= ± 0.25mA, AV
DD
DV
DD
(6)
GND + 0.05 DV
DD
0.05 V
I
OUT
= ± 5mA, AV
DD
DV
DD
(6)
GND + 0.25 DV
DD
0.25 V
DC Output Nonlinearity V
OUT
= GND + 85mV to DV
DD
85mV
(7)
0.0015 %FSR
Short-Circuit Current I
SC
30/+60 mA
Capacitive Load Drive C
LOAD
See Typical Characteristics
NOISE
Input Voltage Noise Density e
n
f > 10kHz, C
L
= 100pF, V
S
= 5V 12 nV/ Hz
f > 10kHz, C
L
= 100pF, V
S
= 2.2V 22 nV/ Hz
Input Voltage Noise e
n
f = 0.1Hz to 10Hz, C
L
= 100pF, V
S
= 5V 0.362 µV
PP
f = 0.1Hz to 10Hz, C
L
= 100pF, V
S
= 2.2V 0.736 µV
PP
Input Current Density I
n
f = 10kHz, C
L
= 100pF 400 fA/ Hz
SLEW RATE
Slew Rate SR See Table 1 V/ µs
SETTLING TIME
Settling Time t
S
See Table 1 µs
FREQUENCY RESPONSE
Frequency Response See Table 1 MHz
THD + NOISE
G = 1, f = 1kHz, V
OUT
= 4V
PP
at 2.5V
DC
, C
L
= 100pF 0.003 %
G = 10, f = 1kHz, V
OUT
= 4V
PP
at 2.5V
DC
, C
L
= 100pF 0.005 %
G = 50, f = 1kHz, V
OUT
= 4V
PP
at 2.5V
DC
, C
L
= 100pF 0.03 %
G = 128, f = 1kHz, V
OUT
= 4V
PP
at 2.5V
DC
, C
L
= 100pF 0.08 %
G = 200, f = 1kHz, V
OUT
= 4V
PP
at 2.5V
DC
, C
L
= 100pF 0.1 %
G = 1, f = 20kHz, V
OUT
= 4V
PP
at 2.5V
DC
, C
L
= 100pF 0.02 %
G = 10, f = 20kHz, V
OUT
= 4V
PP
at 2.5V
DC
, C
L
= 100pF 0.01 %
G = 50, f = 20kHz, V
OUT
= 4V
PP
at 2.5V
DC
, C
L
= 100pF 0.03 %
G = 128, f = 20kHz, V
OUT
= 4V
PP
at 2.5V
DC
, C
L
= 100pF 0.08 %
G = 200, f = 20kHz, V
OUT
= 4V
PP
at 2.5V
DC
, C
L
= 100pF 0.11 %
POWER SUPPLY
Operating Voltage Range
(6)
AV
DD
2.2 5.5 V
DV
DD
2.2 5.5 V
Quiescent Current Analog I
QA
I
O
= 0, G = 1, V
OUT
= V
REF
0.33 0.45 mA
Over Temperature, 40 ° C to +125 ° C 0.45 mA
I
O
= 0, G = 1, V
OUT
= V
REF
, SCLK at 10MHz,Quiescent Current Digital
(8) (9) (10)
I
QD
0.75 1.2 mACS = Logic 0, DIO or DIN = Logic 0
I
O
= 0, G = 1, V
OUT
= V
REF
, SCLK at 10MHz,Over Temperature, 40 ° C to +125 ° C
(8) (9) (10)
1.2 mACS = Logic 0, DIO or DIN = Logic 0
Shutdown Current Analog + Digital
(8) (9)
I
SDA
+ I
SDD
I
O
= 0, V
OUT
= V
REF
, G = 1, SCLK Idle 4 µA
I
O
= 0, V
OUT
= 0, G = 1, SCLK at 10MHz,
245 µACS = Logic 0, DIO or DIN = Logic 0
POWER-ON RESET (POR)
Digital interface disabled and Command Register set to PORPOR Trip Voltage 1.6 Vvalues for DV
DD
< POR Trip Voltage
(6) When AV
DD
is less than DV
DD
, the output is clamped to AV
DD
+ 300mV.(7) Measurement limited by noise in test equipment and test time.(8) Does not include current into or out of the V
REF
pin. Internal R
F
and R
I
are always connected between V
OUT
and V
REF
.(9) Digital logic levels: DIO or DIN = logic 0. 10 µA internal pull-down current source.(10) Includes current from op amp output structure.
4Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
RSW
RAMP
RF
RI
Mux
Switch
CCH CAMP VOUT
CHx
(Input)
VREF
Break-Before-Make
PGA112 , , PGA113PGA116 , PGA117
www.ti.com
............................................................................................................................................ SBOS424B MARCH 2008 REVISED SEPTEMBER 2008
ELECTRICAL CHARACTERISTICS: V
S
= AV
DD
= DV
DD
= +5V (continued)Boldface limits apply over the specified temperature range, T
A
= 40 ° C to +125 ° C.At T
A
= +25 ° C, R
L
= 10k //C
L
= 100pF connected to DV
DD
/2, and V
REF
= GND, unless otherwise noted.
PGA112, PGA113, PGA116, PGA117
PARAMETER CONDITIONS MIN TYP MAX UNIT
TEMPERATURE RANGE
Specified Range 40 +125 ° C
Operating Range 40 +125 ° C
Thermal Resistance θ
JA
MSOP-10 164 ° C/W
DIGITAL INPUTS (SCLK, CS, DIO, DIN)
Logic Low 0 0.3DV
DD
V
Input Leakage Current (SCLK and CS only) 1 +1 µA
Weak Pull-Down Current (DIO, DIN only) 10 µA
Logic High 0.7DV
DD
DV
DD
V
Hysteresis 700 mV
DIGITAL OUTPUT (DIO, DOUT)
Logic High I
OH
= 3mA (sourcing) DV
DD
0.4 DV
DD
V
Logic Low I
OL
= +3mA (sinking) GND GND + 0.4 V
CHANNEL AND GAIN TIMING
Channel Select Time 0.2 µs
Gain Select Time 0.2 µs
SHUTDOWN MODE TIMING
Enable Time 4.0 µs
V
OUT
goes high-impedance, R
F
and R
I
remain connectedDisable Time 2.0 µsbetween V
OUT
and V
REF
POWER-ON-RESET (POR) TIMING
POR Power-Up Time DV
DD
2V 40 µs
POR Power-Down Time DV
DD
1.5V 5 µs
Table 1. Frequency Response versus Gain (C
L
= 100pF, R
L
= 10k )0.1% 0.01% 0.1% 0.01%TYPICAL SLEW SLEW SETTLING SETTLING TYPICAL SLEW SLEW SETTLING SETTLING 3dB RATE- RATE- TIME: TIME: SCOPE 3dB RATE- RATE- TIME: TIME:BINARY FREQUENCY FALL RISE 4V
PP
4V
PP
GAIN FREQUENCY FALL RISE 4V
PP
4V
PPGAIN (V/V) (MHz) (V/ µs) (V/ µs) ( µs) ( µs) (V/V) (MHz) (V/ µs) (V/ µs) ( µs) ( µs)
1 10 8 3 2 2.55 1 10 8 3 2 2.55
2 3.8 9 6.4 2 2.6 2 3.8 9 6.4 2 2.6
4 2 12.8 10.6 2 2.6 5 1.8 12.8 10.6 2 2.6
8 1.8 12.8 10.6 2 2.6 10 1.8 12.8 10.6 2.2 2.6
16 1.6 12.8 12.8 2.3 2.6 20 1.3 12.8 9.1 2.3 2.8
32 1.8 12.8 13.3 2.3 3 50 0.9 9.1 7.1 2.4 3.8
64 0.6 4 3.5 3 6 100 0.38 4 3.5 4.4 7
128 0.35 2.5 2.5 4.8 8 200 0.23 2.3 2 6.9 10
Figure 1. Equivalent Input Circuit
Copyright © 2008, Texas Instruments Incorporated Submit Documentation Feedback 5
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
SPI TIMING: V
S
= AV
DD
= DV
DD
= +2.2V to +5V
PGA112 , , PGA113PGA116 , PGA117
SBOS424B MARCH 2008 REVISED SEPTEMBER 2008 ............................................................................................................................................
www.ti.com
Boldface limits apply over the specified temperature range, T
A
= 40 ° C to +125 ° C.At T
A
= +25 ° C, R
L
= 10k //C
L
= 100pF connected to DV
DD
/2, and V
REF
= GND, unless otherwise noted.
PGA112, PGA113,PGA116, PGA117
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Input Capacitance (SCLK, CS, and DIO pins) 1 pFInput Rise/Fall Time
(1)
t
RFI
2µs( CS, SCLK, and DIO pins)Output Rise/Fall Time (DIO pin)
(1)
t
RFO
C
LOAD
= 60pF 10 nsCS High Time ( CS pin)
(1)
t
CSH
40 nsSCLK Edge to CS Fall Setup Time
(1)
t
CSO
10 nsCS Fall to First SCLK Edge Setup Time t
CSSC
10 nsSCLK Frequency
(2)
f
SCLK
10 MHzSCLK High Time
(3)
t
HI
40 nsSCLK Low Time
(3)
t
LO
40 nsSCLK Last Edge to CS Rise Setup Time
(1)
t
SCCS
10 nsCS Rise to SCLK Edge Setup Time
(1)
t
CS1
10 nsDIN Setup Time t
SU
10 nsDIN Hold Time t
HD
10 nsSCLK to DOUT Valid Propagation Delay
(1)
t
DO
25 nsCS Rise to DOUT Forced to Hi-Z
(1)
t
SOZ
20 ns
(1) Ensured by design; not production tested.(2) When using devices in daisy-chain mode, the maximum clock frequency for SCLK is limited by SCLK rise/fall time, DIN setup time, andDOUT propagation delay. See Figure 63 . Based on this limitation, the maximum SCLK frequency for daisy-chain mode is 9.09MHz.(3) t
HI
and t
LO
must not be less than 1/SCLK (max).
6Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
SPI TIMING DIAGRAMS
CS
SCLK
DIN
DOUT
Hi-Z Hi-Z
tCSH
tSCCS
tLO
tCSSC
tSU tHD
tDO tSOZ
tHI
tCS1 tCS0
1/fSCLK
CS
SCLK
DIN
DOUT
tCSSC
tHI tLO
tSCCS tCS1
tSOZ
tDO
tCS0
tSU tHD
1/fSCLK
Hi-Z Hi-Z
tCSH
PGA112 , , PGA113PGA116 , PGA117
www.ti.com
............................................................................................................................................ SBOS424B MARCH 2008 REVISED SEPTEMBER 2008
Figure 2. SPI Mode 0, 0
Figure 3. SPI Mode 1, 1
Copyright © 2008, Texas Instruments Incorporated Submit Documentation Feedback 7
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
PIN CONFIGURATIONS
1
2
3
4
5
10
9
8
7
6
DVDD
CS
DIO
SCLK
GND
AVDD
CH1
V /CH0
CAL
VREF
VOUT
PGA112
PGA113
PGA112 , , PGA113PGA116 , PGA117
SBOS424B MARCH 2008 REVISED SEPTEMBER 2008 ............................................................................................................................................
www.ti.com
MSOP-10
DGS PACKAGE
(TOP VIEW)
PGA112, PGA113 TERMINAL FUNCTIONS
MSOP
PACKAGE
PIN # NAME DESCRIPTION
1 AV
DD
Analog supply voltage (+2.2V to +5.5V)2 CH1 Input MUX channel 1Input MUX channel 0 and V
CAL
input. For system calibration purposes, connect this pin to alow-impedance external reference voltage to use internal calibration channels. The four internal3 V
CAL
/CH0 calibration channels are connected to GND, 0.9V
CAL
, 0.1V
CAL
, and V
REF
, respectively. V
CAL
is loadedwith 100k (typical) when internal calibration channels CAL2 or CAL3 are selected. Otherwise,V
CAL
/CH0 appears as high impedance.Reference input pin. Connect external reference for V
OUT
offset shift or to midsupply for midsupply4 V
REF
referenced systems. V
REF
must be connected to a low-impedance reference capable of sourcing andsinking at least 2mA or V
REF
must be connected to GND.5 V
OUT
Analog voltage output. When AV
DD
< DV
DD
, V
OUT
is clamped to AV
DD
+ 300mV.6 GND Ground pin7 SCLK Clock input for SPI serial interface8 DIO Data input/output for SPI serial interface. DIO contains a weak, 10 µA internal pull-down current source.9 CS Chip select line for SPI serial interfaceDigital and op amp output stage supply voltage (+2.2V to +5.5V). Useful in multi-supply systems toprevent overvoltage/lockup condition on an analog-to-digital (ADC) input (for example, a microcontroller10 DV
DD
with an ADC running on +3V and the PGA powered from +5V). Digital I/O levels to be relative to DV
DD
.DV
DD
should be bypassed with a 0.1 µF ceramic capacitor, and DV
DD
must supply the current for thedigital portion of the PGA as well as the load current for the op amp output stage.
8Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
AVDD
CH5
CH4
CH3
CH2
CH1
V /CH0
CAL
VREF
VOUT
CH7
CH6
DVDD
CS
DOUT
DIN
SCLK
GND
ENABLE
CH9
CH8
1
2
3
4
5
6
7
8
9
10
20
19
18
17
16
15
14
13
12
11
PGA116
PGA117
PGA112 , , PGA113PGA116 , PGA117
www.ti.com
............................................................................................................................................ SBOS424B MARCH 2008 REVISED SEPTEMBER 2008
TSSOP-20
PW PACKAGE
(TOP VIEW)
PGA116, PGA117 TERMINAL FUNCTIONS
TSSOP
PACKAGE
PIN # NAME DESCRIPTION
1 AV
DD
Analog supply voltage (+2.2V to +5.5V)2 CH5 Input MUX channel 53 CH4 Input MUX channel 44 CH3 Input MUX channel 35 CH2 Input MUX channel 26 CH1 Input MUX channel 1Input MUX channel 0 and V
CAL
input. For system calibration purposes, connect this pin to alow-impedance external reference voltage to use internal calibration channels. The four internal7 V
CAL
/CH0 calibration channels are connected to GND, 0.9V
CAL
, 0.1V
CAL
, and V
REF
, respectively. V
CAL
is loadedwith 100k (typical) when internal calibration channels CAL2 or CAL3 are selected. Otherwise,V
CAL
/CH0 appears as high impedance.Reference input pin. Connect external reference for V
OUT
offset shift or to midsupply for midsupply8 V
REF
referenced systems. V
REF
must be connected to a low-impedance reference capable of sourcing andsinking at least 2mA or to GND.9 V
OUT
Analog voltage output. When AV
DD
< DV
DD
, V
OUT
is clamped to AV
DD
+ 300mV.10 CH7 Input MUX channel 711 CH8 Input MUX channel 812 CH9 Input MUX channel 913 ENABLE Hardware enable pin. Logic low puts the part into Shutdown mode (I
Q
< 1 µA).14 GND Ground pin15 SCLK Clock input for SPI serial interfaceData input for SPI serial interface. DIN contains a weak, 10 µA internal pull-down current source to16 DIN
allow for ease of daisy-chain configurations.Data output for SPI serial interface. DOUT goes to high-Z state when CS goes high for standard SPI17 DOUT
interface.18 CS Chip select line for SPI serial interfaceDigital and op amp output stage supply voltage (+2.2V to +5.5V). Useful in multi-supply systems toprevent overvoltage/lockup condition on an ADC input (for example, a microcontroller with an ADC19 DV
DD
running on +3V and the PGA powered from +5V). Digital I/O levels to be relative to DV
DD
. DV
DD
shouldbe bypassed with a 0.1 µF ceramic capacitor, and DV
DD
must supply the current for the digital portion ofthe PGA as well as the load current for the op amp output stage.20 CH6 Input MUX channel 6
Copyright © 2008, Texas Instruments Incorporated Submit Documentation Feedback 9
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
TYPICAL APPLICATION CIRCUITS
10kW
ADC
G=1 RF
RI
Output
Stage
SPI
Interface
SCLK
DIO
CS
7
VOUT
5
DVDD
10
AVDD
1
GND
6
VREF
4
3
8
9
MSP430
Microcontroller
+3V
+5V
VREF
PGA112
PGA113
V /CH0
CAL 2
CH1
CAL3
CAL4
CAL1
CAL2
0.1VCAL
0.9VCAL
10kW
80kW
MUX
CAL2/3
C
0.1 F
BYPASS
m
C
0.1 F
BYPASS
m
C
0.1 F
BYPASS
m
PGA112 , , PGA113PGA116 , PGA117
SBOS424B MARCH 2008 REVISED SEPTEMBER 2008 ............................................................................................................................................
www.ti.com
Figure 4. PGA112, PGA113 (MSOP-10)
Figure 5. PGA116, PGA117 (TSSOP-20)
10 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
TYPICAL CHARACTERISTICS
-80
OffsetVoltage( V)m
Population
-90
-100
-70
-60
-10
-20
-30
-40
-50
0
10
90
100
80
20
30
40
70
60
50
V =2.5V
CM
-260.0
OffsetVoltage( V)m
Population
-325.0
-227.5
-195.0
-32.5
-65.0
-97.5
-130.0
-162.5
0
32.5
292.5
260.0
65.0
97.5
130.0
227.5
195.0
162.5
V =4.5V
CM
325.0
-292.5
-0.72
OffsetVoltageDrift( V/ C)m °
Population
-0.81
-0.90
-0.63
-0.54
-0.09
-0.18
-0.27
-0.36
-0.45
0
0.09
0.81
0.90
0.72
0.18
0.27
0.36
0.63
0.54
0.45
V =2.5V
CM
-1.04
OffsetVoltageDrift( V/ C)m °
Population
-1.30
-0.91
-0.78
-0.13
-0.26
-0.39
-0.52
-0.65
0
0.13
1.17
1.04
0.26
0.39
0.52
0.91
0.78
0.65
1.30
V =4.5V
CM
-1.17
-1.44
OffsetVoltageDrift( V/ C)m °
Population
-1.80
-1.26
-1.08
-0.18
-0.36
-0.54
-0.72
-0.90
0
0.18
1.62
1.44
0.36
0.54
0.72
1.26
1.08
0.90
1.80
V =4.5V
CM
-1.62
-0.96
OffsetVoltageDrift( V/ C)m °
Population
-1.08
-1.20
-0.84
-0.72
-0.12
-0.24
-0.36
-0.48
-0.60
0
0.12
1.08
1.20
0.96
0.24
0.36
0.48
0.84
0.72
0.60
V =2.5V
CM
PGA112 , , PGA113PGA116 , PGA117
www.ti.com
............................................................................................................................................ SBOS424B MARCH 2008 REVISED SEPTEMBER 2008
At T
A
= +25 ° C, AV
DD
= DV
DD
= 5V, R
L
= 10k connected to DV
DD
/2, V
REF
= GND, and C
L
= 100pF, unless otherwise noted.
OFFSET VOLTAGE OFFSET VOLTAGE
Figure 6. Figure 7.
OFFSET VOLTAGE DRIFT OFFSET VOLTAGE DRIFT( 40 ° C to +85 ° C) ( 40 ° C TO +85 ° C)
Figure 8. Figure 9.
OFFSET VOLTAGE DRIFT OFFSET VOLTAGE DRIFT( 40 ° C to +125 ° C) ( 40 ° C TO +125 ° C)
Figure 10. Figure 11.
Copyright © 2008, Texas Instruments Incorporated Submit Documentation Feedback 11
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
0 1 5
InputVoltage(V)
100
80
60
40
20
0
20
40
60
80
100
-
-
-
-
-
InputOffsetVoltage( V)m
32 4
V (V)
OUT
DCOutputNonlinearityError(%FSR)
0.0010
0.0008
0.0006
0.0004
0.0002
0
0.0002
0.0004
0.0006
0.0008
0.0010
-
-
-
-
-
0.50 5.01.0 1.5
G=128
G=16
G=2
G=1
2.0 2.5 3.0 3.5 4.0 4.5
AV =DV =+5V
DD DD
-0.08
GainError(%)
Population
-0.09
-0.10
-0.07
-0.06
-0.01
-0.02
-0.03
-0.04
-0.05
0
0.01
0.09
0.08
0.02
0.03
0.04
0.07
0.06
0.05
0.10
-0.08
GainError(%)
Population
-0.09
-0.10
-0.07
-0.06
-0.01
-0.02
-0.03
-0.04
-0.05
0
0.01
0.09
0.08
0.02
0.03
0.04
0.07
0.06
0.05
0.10
GainErrorDrift( )ppm/ C°
Population
G=1
0.10
0.05
0
0.15
0.20
0.45
0.40
0.35
0.30
0.25
0.50
0.55
0.95
0.90
0.60
0.65
0.70
0.85
0.80
0.75
1.00
-0.240
GainError(%)
Population
-0.270
-0.300
-0.210
-0.180
-0.030
-0.060
-0.090
-0.120
-0.150
0
0.030
0.270
0.240
0.060
0.090
0.120
0.210
0.180
0.150
0.300
PGA112 , , PGA113PGA116 , PGA117
SBOS424B MARCH 2008 REVISED SEPTEMBER 2008 ............................................................................................................................................
www.ti.com
TYPICAL CHARACTERISTICS (continued)At T
A
= +25 ° C, AV
DD
= DV
DD
= 5V, R
L
= 10k connected to DV
DD
/2, V
REF
= GND, and C
L
= 100pF, unless otherwise noted.
INPUT OFFSET VOLTAGE vs INPUT VOLTAGE PGA112/PGA116 NONLINEARITY
Figure 12. Figure 13.
GAIN ERROR (G = 1) GAIN ERROR (1 < G 32)
Figure 14. Figure 15.
GAIN ERROR DRIFTGAIN ERROR (G 50) ( 40 ° C to +125 ° C)
Figure 16. Figure 17.
12 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
1.0
GainErrorDrift(ppm/ C)°
Population
0.5
0
1.5
2.0
4.5
4.0
3.5
3.0
2.5
5.0
5.5
9.5
9.0
6.0
6.5
7.0
8.5
8.0
7.5
10.0
G 50³
0.50
GainErrorDrift(ppm/ C)°
Population
0.25
0
0.75
1.00
2.25
2.00
1.75
1.50
1.25
2.50
2.75
4.75
4.50
3.00
3.25
3.50
4.25
4.00
3.75
5.00
1 G 32< £
-0.08
GainError(%)
Population
-0.10
-0.07
-0.06
-0.01
-0.02
-0.03
-0.04
-0.05
0
0.01
0.09
0.08
0.02
0.03
0.04
0.07
0.06
0.05
0.10
-0.09
-0.08
GainError(%)
Population
-0.10
-0.07
-0.06
-0.01
-0.02
-0.03
-0.04
-0.05
0
0.01
0.09
0.08
0.02
0.03
0.04
0.07
0.06
0.05
0.10
-0.09
-1.6
GainErrorDrift(ppm/ C)°
Population
-2.0
-1.4
-1.2
-0.2
-0.4
-0.6
-0.8
-1.0
0
0.2
1.8
1.6
0.4
0.6
0.8
1.4
1.2
1.0
2.0
-1.8
-1.6
GainErrorDrift(ppm/ C)°
Population
-2.0
-1.4
-1.2
-0.2
-0.4
-0.6
-0.8
-1.0
0
0.2
1.8
1.6
0.4
0.6
0.8
1.4
1.2
1.0
>2.0
-1.8
2.0
PGA112 , , PGA113PGA116 , PGA117
www.ti.com
............................................................................................................................................ SBOS424B MARCH 2008 REVISED SEPTEMBER 2008
TYPICAL CHARACTERISTICS (continued)At T
A
= +25 ° C, AV
DD
= DV
DD
= 5V, R
L
= 10k connected to DV
DD
/2, V
REF
= GND, and C
L
= 100pF, unless otherwise noted.
GAIN ERROR DRIFT GAIN ERROR DRIFT( 40 ° C to +125 ° C) ( 40 ° C to +125 ° C)
Figure 18. Figure 19.
CAL2 GAIN ERROR CAL3 GAIN ERROR
Figure 20. Figure 21.
CAL2 GAIN ERROR DRIFT CAL3 GAIN ERROR DRIFT( 40 ° C to +125 ° C) ( 40 ° C to +125 ° C)
Figure 22. Figure 23.
Copyright © 2008, Texas Instruments Incorporated Submit Documentation Feedback 13
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
2.5s/div
250nV/div
V =2.2V
S
2.5s/div
100nV/div
V =5V
S
1 10 100 1k 100k
Frequency(Hz)
100
10
VoltageNoise(nV/ )ÖHz
10k
1k
100
CurrentNoise(fA/ )ÖHz
VoltageNoise,V =5V
S
VoltageNoise,V =2.2V
S
CurrentNoise,V =5V
S
50
20
500
200
Frequency(Hz)
THD+N(%)
1
0.1
0.01
0.001
0.0001
10010 100k1k 10k
G=128
G=64 G=32 G=16
G=8
G=2
G=1 G=4
Frequency(Hz)
THD+N(%)
1
0.1
0.01
0.001
0.0001
10010 100k1k 10k
G=128
G=64 G=32 G=16
G=8
G=4
G=2
G=1
Frequency(Hz)
THD+N(%)
1
0.1
0.01
0.001
0.0001
10010 100k1k 10k
G=1
G=200 G=100 G=50 G=20
G=10
G=2 G=5
PGA112 , , PGA113PGA116 , PGA117
SBOS424B MARCH 2008 REVISED SEPTEMBER 2008 ............................................................................................................................................
www.ti.com
TYPICAL CHARACTERISTICS (continued)At T
A
= +25 ° C, AV
DD
= DV
DD
= 5V, R
L
= 10k connected to DV
DD
/2, V
REF
= GND, and C
L
= 100pF, unless otherwise noted.
0.1Hz TO 10Hz NOISE 0.1Hz TO 10Hz NOISE
Figure 24. Figure 25.
PGA112, PGA116 THD + NOISE vs FREQUENCYSPECTRAL NOISE DENSITY (V
OUT
= 2V
PP
)
Figure 26. Figure 27.
PGA112, PGA116 THD + NOISE vs FREQUENCY PGA113, PGA117 THD + NOISE vs FREQUENCY(V
OUT
= 4V
PP
) (V
OUT
= 2V
PP
)
Figure 28. Figure 29.
14 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
Frequency(Hz)
THD+N(%)
1
0.1
0.01
0.001
0.0001
10010 100k1k 10k
G=200 G=100 G=50 G=20
G=10
G=2
G=1
G=5
Temperature( C)°
I (mA)
Q
0.8
0.4
0.3
0.2
0.1
0
75-25-50 100 1250 25 50
0.5
0.6
0.7
V =5.5V
S
V =2.2V
S
Digital
Analog
f =10MHz
SCLK
SupplyVoltage(V)
I +I (mA)
QA QD
1.2
1.0
0.8
0.6
0.4
0.2
0
4.52.52.0 5.0 5.53.0 3.5 4.0
SCLK=10MHz
SCLK=5MHz
SCLK=2MHz
SCLK=500kHz
-50 -25 0 125
Temperature( C)°
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
ShutdownI ( A)m
Q
25 50 75 100
Digital
Analog
0 10 20 30 40 50 60 70 80 90 100
OutputCurrent(mA)
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
OutputVoltage(V)
V =5.5V
G=1
S
+125 C°
+25 C°
- °40 C
02 4 6 8 10 12 14 16 18 24
OutputCurrent(mA)
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
OutputVoltage(V)
22
20
V =2.2V
G=1
S
+125 C°+25 C°
- °40 C
PGA112 , , PGA113PGA116 , PGA117
www.ti.com
............................................................................................................................................ SBOS424B MARCH 2008 REVISED SEPTEMBER 2008
TYPICAL CHARACTERISTICS (continued)At T
A
= +25 ° C, AV
DD
= DV
DD
= 5V, R
L
= 10k connected to DV
DD
/2, V
REF
= GND, and C
L
= 100pF, unless otherwise noted.
PGA113, PGA117 THD + NOISE vs FREQUENCY QUIESCENT CURRENT(V
OUT
= 4V
PP
) vs TEMPERATURE
Figure 30. Figure 31.
TOTAL QUIESCENT CURRENT SHUTDOWN QUIESCENT CURRENTvs SUPPLY VOLTAGE vs TEMPERATURE
Figure 32. Figure 33.
OUTPUT VOLTAGE OUTPUT VOLTAGEvs OUTPUT CURRENT vs OUTPUT CURRENT
Figure 34. Figure 35.
Copyright © 2008, Texas Instruments Incorporated Submit Documentation Feedback 15
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
1k 10k 10M
Frequency(Hz)
2.5
2.0
1.5
1.0
0.5
0
OutputVoltage(V)
100k 1M
G=1
G=8
G=4
G=2
AV =DV =2.2V
DD DD
1k 10k 10M
Frequency(Hz)
2.5
2.0
1.5
1.0
0.5
0
OutputVoltage(V)
100k 1M
G=128
G=16
G=64
G=32
AV = 2.2V
DD DV =
DD
100 1k 10k 10M
Frequency(Hz)
6
5
4
3
2
1
0
OutputVoltage(V)
100k 1M
G=1
G=8
G=4
G=2
AV =DV =5.5V
DD DD
100 1k 10k 10M
Frequency(Hz)
6
5
4
3
2
1
0
OutputVoltage(V)
100k 1M
G=128
G=16
G=64
G=32
AV =DV =5.5V
DD DD
1k 10k 100k 1M 10M
Frequency(Hz)
2.5
2.0
1.5
1.0
0.5
0
OutputVoltage(V)
G=10
G=2
G=1
G=5
AV =DV
DD DD =2.2V
1k 10k 100k 1M 10M
Frequency(Hz)
2.5
2.0
1.5
1.0
0.5
0
OutputVoltage(V)
G=100
G=20
G=200
G=50
AV =DV
DD DD =2.2V
PGA112 , , PGA113PGA116 , PGA117
SBOS424B MARCH 2008 REVISED SEPTEMBER 2008 ............................................................................................................................................
www.ti.com
TYPICAL CHARACTERISTICS (continued)At T
A
= +25 ° C, AV
DD
= DV
DD
= 5V, R
L
= 10k connected to DV
DD
/2, V
REF
= GND, and C
L
= 100pF, unless otherwise noted.
PGA112, PGA116 OUTPUT VOLTAGE SWING vs PGA112, PGA116 OUTPUT VOLTAGE SWING vsFREQUENCY FREQUENCY
Figure 36. Figure 37.
PGA112, PGA116 OUTPUT VOLTAGE SWING vs PGA112, PGA116 OUTPUT VOLTAGE SWING vsFREQUENCY FREQUENCY
Figure 38. Figure 39.
PGA113, PGA117 OUTPUT VOLTAGE SWING vs PGA113, PGA117 OUTPUT VOLTAGE SWING vsFREQUENCY FREQUENCY
Figure 40. Figure 41.
16 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
100 1k 10k 100k 1M 10M
Frequency(Hz)
6
5
4
3
2
1
0
OutputVoltage(V)
G=10
G=2
G=1
G=5
AV =DV
DD DD =5.5V
100 1k 10k 100k 1M 10M
Frequency(Hz)
6
5
4
3
2
1
0
OutputVoltage(V)
G=20
G=200
G=100
G=50
AV =DV
DD DD =5.5V
0 50 100 200
Gain
12
10
8
6
4
2
0
SettlingTime( s)m
150
0.01%
0.1%
C =100pF//R =10kW
L L
OUT PP
V =4V
0 100 200 300 400 500 600 700 800
LoadCapacitance(pF)
50
40
30
20
10
0
Overshoot(%)
G=1
G 2>
Channel1toChannel9
InputOff-ChannelCurrent(nA)
-50 -25 0 25 50 75 100 125
Temperature(°C)
25
20
15
10
5
0
5-
0.15
0.10
0.05
0
0.05
0.01
0.15
-
-
-
Channel0InputOff-ChannelCurrent(nA)
CH1to
CH9
CH0
Measurementmadewithchannelpin
connectedtomidsupply
-50 -25 0 25 50 75 100 125
Temperature(°C)
25
20
15
10
5
0
5-
InputOn-ChannelCurrent(nA)
CH1to
CH9
CH0
Measurementmadewithchannelpin
connectedtomidsupply
PGA112 , , PGA113PGA116 , PGA117
www.ti.com
............................................................................................................................................ SBOS424B MARCH 2008 REVISED SEPTEMBER 2008
TYPICAL CHARACTERISTICS (continued)At T
A
= +25 ° C, AV
DD
= DV
DD
= 5V, R
L
= 10k connected to DV
DD
/2, V
REF
= GND, and C
L
= 100pF, unless otherwise noted.
PGA113, PGA117 OUTPUT VOLTAGE SWING vs PGA113, PGA117 OUTPUT VOLTAGE SWING vsFREQUENCY FREQUENCY
Figure 42. Figure 43.
SMALL-SIGNAL OVERSHOOTvs LOAD CAPACITANCE GAIN vs SETTLING TIME
Figure 44. Figure 45.
INPUT ON-CHANNEL CURRENT INPUT OFF-CHANNEL LEAKAGE CURRENTvs TEMPERATURE vs TEMPERATURE
Figure 46. Figure 47.
Copyright © 2008, Texas Instruments Incorporated Submit Documentation Feedback 17
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
10 100 1k 10k 10M
Frequency(Hz)
140
130
120
110
100
90
80
70
60
Crosstalk(dB)
1M100k
0.1 1 10 100 10M
Frequency(Hz)
110
100
90
80
70
60
50
40
30
20
10
0
PSRR(dB)
1M100k10k1k
G=200
G=50
G=10
G=2
G=1
G 2
³
2.5 s/divm
G=20
G=10
G=1
100mV
Output
Input
0V
V /G
IN
0V
2.5 s/divm
Output
Input
G=50
G=100,200
100mV
0V
V /G
IN
0V
2.5 s/divm
2V/div
G=10
G=2
G=1
Output
Input
2.5 s/divm
2V/div
Input
G=50
G=100,200
Output
PGA112 , , PGA113PGA116 , PGA117
SBOS424B MARCH 2008 REVISED SEPTEMBER 2008 ............................................................................................................................................
www.ti.com
TYPICAL CHARACTERISTICS (continued)At T
A
= +25 ° C, AV
DD
= DV
DD
= 5V, R
L
= 10k connected to DV
DD
/2, V
REF
= GND, and C
L
= 100pF, unless otherwise noted.
POWER-SUPPLY REJECTION RATIOvs FREQUENCY CROSSTALK vs FREQUENCY
Figure 48. Figure 49.
SMALL-SIGNAL PULSE RESPONSE SMALL-SIGNAL PULSE RESPONSE
Figure 50. Figure 51.
LARGE-SIGNAL PULSE RESPONSE LARGE-SIGNAL PULSE RESPONSE
Figure 52. Figure 53.
18 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
25 s/divm
0V
0V
Output(1V/div)
Supply(5V/div)
1ms/div
1V/div
V =5V
R =10k
C =100pF
S
LW
L
VIN
VOUT
5V
0V
10 s/divm
2V/div
Output
Active In
Shutdown
CS
Output
CS
In
Shutdown
Active
2V/div
10 s/divm
Output
Enable
PGA112 , , PGA113PGA116 , PGA117
www.ti.com
............................................................................................................................................ SBOS424B MARCH 2008 REVISED SEPTEMBER 2008
TYPICAL CHARACTERISTICS (continued)At T
A
= +25 ° C, AV
DD
= DV
DD
= 5V, R
L
= 10k connected to DV
DD
/2, V
REF
= GND, and C
L
= 100pF, unless otherwise noted.
POWER-UP/POWER-DOWN TIMING OUTPUT OVERDRIVE PERFORMANCE
Figure 54. Figure 55.
OUTPUT VOLTAGE vs SHUTDOWN MODE PGA116, PGA117 HARDWARE SHUTDOWN MODE
Figure 56. Figure 57.
Copyright © 2008, Texas Instruments Incorporated Submit Documentation Feedback 19
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
SERIAL INTERFACE INFORMATION
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
CS
SCLK
DIN
DOUT
SPIMode0,0(CPOL=0,CPHA=0)
CS
SCLK
DIN
DOUT
1 2 3 45 6 7 8 9 10 11 12 13 14 15 16
SPIMode1,1(CPOL=1,CPHA=1)
SERIAL DIGITAL INTERFACE: SPI MODES
10 Am
PGA116
PGA117
DOUT
DIN
PGA112 , , PGA113PGA116 , PGA117
SBOS424B MARCH 2008 REVISED SEPTEMBER 2008 ............................................................................................................................................
www.ti.com
Figure 58. SPI Mode 0,0 and Mode 1,1
Table 2. SPI Mode Setting DescriptionMODE CPOL CPHA CPOL DESCRIPTION CPHA DESCRIPTION
0, 0 0 0
(1)
Clock idles low Data are read on the rising edge of clock. Data change on the falling edge of clock.
1, 1 1 1
(2)
Clock idles high Data are read on the rising edge of clock. Data change on the falling edge of clock.
(1) CPHA = 0 means sample on first clock edge (rising or falling) after a valid CS.(2) CPHA = 1 means sample on second clock edge (rising or falling) after a valid CS.
The PGA uses a standard serial peripheral interface(SPI). Both SPI Mode 0,0 and Mode 1,1 aresupported, as shown in Figure 58 and described inTable 2 .
If there are not even-numbered increments of 16clocks (that is, 16, 32, 64, and so forth) between CSgoing low (falling edge) and CS going high (risingedge), the device takes no action. This conditionprovides reliable serial communication. Furthermore,this condition also provides a way to quickly reset theSPI interface to a known starting condition for datasynchronization. Transmitted data are latched
Figure 59. Digital I/O Structure PGA116/PGA117internally on the rising edge of CS.
On the PGA116/PGA117, CS, DIN, and SCLK areSchmitt-triggered CMOS logic inputs. DIN has a weakinternal pull-down to support daisy-chaincommunications on the PGA116/PGA117. DOUT is aCMOS logic output. When CS is high, the state ofDOUT is high-impedance. When CS is low, DOUT isdriven as illustrated in Figure 59 .
20 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
CS
DOUT
SCLK
DIN
MSP430
CS
SCLK
DIN1 DOUT1
U1 CS
SCLK
DIN2 DOUT2
U2
PGA116/PGA117 PGA116/PGA117
10 Am
PGA112
PGA113
DOUT
DIO
DIN
SERIAL DIGITAL INTERFACE: SPI
CS
DOUT
SCLK
DIN
MSP430
CS
SCLK
DIN1 DOUT1
U1 CS
SCLK
DIO
U2
PGA116/PGA117 PGA112/PGA113
PGA112 , , PGA113PGA116 , PGA117
www.ti.com
............................................................................................................................................ SBOS424B MARCH 2008 REVISED SEPTEMBER 2008
On the PGA112/PGA113, there are digital output and used (see Table 4 ) to ensure that data are written ordigital input gates both internally connected to the read in the proper sequence. There is a specialDIO pin. DIN is an input-only gate and DOUT is a daisy-chain NOP command (No OPeration) which,digital output that can give a 3-state output. The DIO when presented to the desired device in thepin has a weak 10 µA pull-down current source to daisy-chain, causes no changes in that respectiveprevent the pin from floating in systems with a device. Detailed timing diagrams for daisy-chainhigh-impedance SPI DOUT line. When CS is high, operation are shown in Figure 65 through Figure 67 .the state of the internal DOUT gate ishigh-impedance. When CS is low, the state of DIOdepends on the previous valid SPI communication;either DIO becomes an output to clock out data or itremains an input to receive data. This structure isshown in Figure 60 .
Figure 61. Daisy-Chain Read/Write Configuration
The PGA112/PGA113 can be used as the last devicein a daisy-chain as shown in Figure 62 if write-onlycommunication is acceptable, because thePGA112/PGA113 have no separate DOUT pin toconnect back to the microcontroller DIN pin in orderto read back data in this configuration.
Figure 60. Digital I/O Structure PGA112/PGA113
DAISY-CHAIN COMMUNICATIONS
To reduce the number of I/O port pins used on amicrocontroller, the PGA116/PGA117 support SPI
Figure 62. Daisy-Chain Write-Only Configurationdaisy-chain communications with full read/writecapability. A two-device daisy-chain configuration isshown in Figure 61 , although any number of devicescan be daisy-chained. The SPI daisy-chaincommunication uses a common SCLK and CS linefor all devices in the daisy chain, rather than eachdevice requiring a separate CS line. The daisy-chainmode of communication routes data serially througheach device in the chain by using its respective DINand DOUT pins as shown. Special commands are
Copyright © 2008, Texas Instruments Incorporated Submit Documentation Feedback 21
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
SCLK
DOUT1
DIN2
tRFI
tSU
tMIN =55ns
SCLKMAX =9.09MHz
tMIN =55ns
tDO
tRFI
10ns
10ns
25ns
10ns
PGA112 , , PGA113PGA116 , PGA117
SBOS424B MARCH 2008 REVISED SEPTEMBER 2008 ............................................................................................................................................
www.ti.com
The maximum SCLK frequency that can be used indaisy-chain operation is directly related to SCLKrise/fall times, DIN setup time, and DOUTpropagation delay. Any number of two or moredevices have the same limitations because it is thetiming considerations between adjacent devices thatlimit the clock speed.
Figure 63 analyzes the maximum SCLK frequency fordaisy-chain mode based on the circuit of Figure 61 . Aclock rise and fall time of 10ns is assumed to allowfor extra bus capacitance that could occur as a resultof multiple devices in the daisy-chain.
Figure 63. Daisy-Chain Maximum SCLKFrequency
22 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
SPI SERIAL INTERFACE
Hi-Z
CS
SCLK
DIN
DOUT
SPIRead,Mode=1,1
12345678910 11 12 13 14 15 16
0110101
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
00000000
Hi-Z
000000000
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
D7 D0
D6 D5 D4 D3 D2 D1
G3 G2 G1 G0 CH3 CH2 CH1 CH0
D15 D14 D13 D12 D11 D10 D9 D8
DIO
Pin
12345678910 11 12 13 14 15 16
D15 D7 D0
Hi-Z
CS
SCLK
DIN
DOUT
SPIWrite,Mode=0,0
D14 D13 D12 D11 D10 D9 D8 D6 D5 D4 D3 D2 D1
DIO
Pin
Hi-Z
CS
SCLK
DIN
DOUT
SPIWrite,Mode=1,1
12345678910 11 12 13 14 15 16
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
DIO
Pin
12345678910 11 12 13 14 15 16
0
Hi-Z
CS
SCLK
DIN
DOUT
SPIRead,Mode=0,0
110101
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
D7 D0
00000000Hi-Z
000000000
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
D6 D5 D4 D3 D2 D1
G3 G2 G1 G0 CH3 CH2 CH1 CH0
D15 D14 D13 D12 D11 D10 D9 D8
DIO
Pin
PGA112 , , PGA113PGA116 , PGA117
www.ti.com
............................................................................................................................................ SBOS424B MARCH 2008 REVISED SEPTEMBER 2008
Figure 64. SPI Serial Interface Timing Diagrams
Copyright © 2008, Texas Instruments Incorporated Submit Documentation Feedback 23
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
12 3 456 7 8 9 10 11 12 13 14 15 16
Command U2
CS
CS
SCLK
SCLK
DOUT
DIN1
DOUT
DIN1
DOUT1
DIN2
DOUT1
DIN2
Daisy-Chain SPI Write, Mode = 0,0
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Command U1
DOUT Hi-Z Pulled Low by DIN Weak Pull-Down
Command U2
Command U2
12 3 45 6 7 8 9 10 11 12 13 14 15 16
Command U1
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
DOUT Hi-Z Pulled Low by DIN Weak Pull-Down Command U2
Daisy-ChainSPIWrite,Mode=1,1
CS
DOUT
SCLK
DIN
MSP430
CS
SCLK
DIN1 DOUT1
U1 CS
SCLK
DIN2
U2
PGA116/PGA117 PGA116/PGA117
DOUT2
D7 D0
D14D13 D12 D11 D10 D9 D8D6 D5 D4 D3 D2 D1
D15
D7 D0
D15 D14 D13 D12 D11 D10 D9 D8 D6 D5 D4 D3 D2 D1
D7 D0
D15 D14 D13 D12 D11 D10 D9 D8 D6 D5 D4 D3 D2 D1
D7D0
D15 D14 D13 D12 D11 D10 D9 D8 D6 D5 D4 D3 D2 D1 D7 D0
D15 D14 D13 D12 D11 D10 D9 D8 D6 D5 D4 D3 D2 D1
D7 D0
D15 D14 D13 D12 D11 D10 D9 D8 D6 D5 D4 D3 D2 D1
PGA112 , , PGA113PGA116 , PGA117
SBOS424B MARCH 2008 REVISED SEPTEMBER 2008 ............................................................................................................................................
www.ti.com
Figure 65. SPI Daisy-Chain Write Timing Diagrams
24 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
12 3 45 6 7 8 9 10 11 12 13 14 15 16
Command U2
CS
SCLK
DOUT
DIN1
DOUT1
DIN2
Daisy-Chain SPI Read, Mode = 0,0
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Command U1
DOUT Hi-Z Pulled Low by DIN Weak Pull-Down
Command U2
CS
SCLK
DOUT1
DIN2
DOUT2
DIN
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
DataByteU1
12345678910 11 12 13 14 15 16
DataByteU2
DataByteU1
CS
DOUT
SCLK
DIN
MSP430
CS
SCLK
DIN1 DOUT1
U1
Hi-Z
CS
SCLK
DIN2
U2
PGA116/PGA117 PGA116/PGA117
DOUT2
011111
0000000000011111
0000000000
011111
0000000000
G3 CH0
00000000G2 G1 G0 CH3 CH2 CH1
00000000G3 G2 G1 G0 CH3 CH2 CH1 00000000G3 CH0
G2 G1 G0 CH3 CH2 CH1
CH0
PGA112 , , PGA113PGA116 , PGA117
www.ti.com
............................................................................................................................................ SBOS424B MARCH 2008 REVISED SEPTEMBER 2008
Figure 66. SPI Daisy-Chain Read Timing Diagram (Mode 0,0)
Copyright © 2008, Texas Instruments Incorporated Submit Documentation Feedback 25
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
1 2 3 456 7 8 9 10 11 12 13 14 15 16
Command U2
CS
SCLK
DOUT
DIN1
DOUT1
DIN2
Daisy-Chain SPI Read, Mode = 1,1
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Command U1
DOUT Hi-Z Pulled Low by DIN Weak Pull-Down
Command U2
CS
SCLK
DOUT1
DIN2
DOUT2
DIN
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
DataByteU1
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
DataByteU2
DataByteU1
CS
DOUT
SCLK
DIN
MSP430
CS
SCLK
DIN1 DOUT1
U1
Hi-Z
CS
SCLK
DIN2
U2
PGA116/PGA117 PGA116/PGA117
DOUT2
011111
0000000000011111
0000000000
011111
0000000000
G3 CH0
00000000G2 G1 G0 CH3 CH2 CH1
00000000
00000000G3 CH0
G2 G1 G0 CH3 CH2 CH1 G3 CH0
G2 G1 G0 CH3 CH2 CH1
PGA112 , , PGA113PGA116 , PGA117
SBOS424B MARCH 2008 REVISED SEPTEMBER 2008 ............................................................................................................................................
www.ti.com
Figure 67. SPI Daisy-Chain Read Timing Diagram (Mode 1,1)
26 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
SPI COMMANDS
PGA112 , , PGA113PGA116 , PGA117
www.ti.com
............................................................................................................................................ SBOS424B MARCH 2008 REVISED SEPTEMBER 2008
Table 3. SPI Commands (PGA112/PGA113)
(1) (2)
THREE-WIRED15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 SPI COMMAND
01101010 00000000READ
0 0 1 0 1 0 1 0 G3 G2 G1 G0 CH3 CH2 CH1 CH0 WRITE
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NOP WRITE
SDN_DIS11100001 00000000
WRITE
1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 SDN_EN WRITE
(1) SDN = Shutdown mode. Enter Shutdown mode by issuing an SDN_EN command. Shutdown mode is cleared (returned to the last validwrite configuration) by a SDN_DIS command or by any valid Write command.(2) POR (Power-on-Reset) value of internal Gain/Channel Select Register is all 0s; this value sets Gain = 1, and Channel = V
CAL
/CH0.
Table 4. SPI Daisy-Chain Commands
(1) (2)
DAISY-CHAIND15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 COMMAND
00010000 00000000NOP
11110001 00000000SDN_DIS
11110001 11110001SDN_EN
01111010 00000000READ
0 0 1 1 1 0 1 0 G3 G2 G1 G0 CH3 CH2 CH1 CH0 WRITE
(1) SDN = Shutdown Mode. Shutdown Mode is entered by an SDN_EN command. Shutdown Mode is cleared (returned to the last validwrite configuration) by a SDN_DIS command or by any valid Write command.(2) POR (Power-on-Reset) value of internal Gain/Channel Register is all 0s; this value sets Gain = 1, V
CAL
/CH0 selected.
Table 5. Gain Selection Bits (PGA112/PGA113)
G3 G2 G1 G0 BINARY GAIN SCOPE GAIN
0 0 0 0 1 10 0 0 1 2 20 0 1 0 4 50 0 1 1 8 100 1 0 0 16 200 1 0 1 32 500 1 1 0 64 1000 1 1 1 128 200
Copyright © 2008, Texas Instruments Incorporated Submit Documentation Feedback 27
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
PGA112 , , PGA113PGA116 , PGA117
SBOS424B MARCH 2008 REVISED SEPTEMBER 2008 ............................................................................................................................................
www.ti.com
Table 6. Mux Channel Selection Bits
CH3 CH2 CH1 CH0 PGA112, PGA113 PGA116, PGA117
0 0 0 0 VCAL/CH0 VCAL/CH00 0 0 1 CH1 CH10 0 1 0 X
(1)
CH20 0 1 1 X CH30 1 0 0 X CH40 1 0 1 X CH50 1 1 0 X CH60 1 1 1 X CH71 0 0 0 X CH81 0 0 1 X CH91 0 1 0 X X
(1)
1 0 1 1 Factory Reserved Factory Reserved1 1 0 0 CAL1
(2)
CAL1
(2)
1 1 0 1 CAL2
(3)
CAL2
(3)
1 1 1 0 CAL3
(4)
CAL3
(4)
1 1 1 1 CAL4
(5)
CAL4
(5)
(1) X = channel is not used.(2) CAL1: connects to GND.(3) CAL2: connects to 0.9V
CAL
.(4) CAL3: connects to 0.1V
CAL
.(5) CAL4: connects to V
REF
.
28 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
APPLICATION INFORMATION
FUNCTIONAL DESCRIPTION
VIN+
AVDD
GND
VIN-
Reference
Current
OP AMP: INPUT STAGE
InputVoltage(V)
InputOffsetVoltage( V)m
80
70
60
50
40
30
20
10
0
10 62 3 4 5
AV =5V
DD
PGA112 , , PGA113PGA116 , PGA117
www.ti.com
............................................................................................................................................ SBOS424B MARCH 2008 REVISED SEPTEMBER 2008
PMOS transistors. The result of this transitionappears as a small input offset voltage transition thatis reflected to the output by the selected PGA gain.The PGA112/PGA113 and PGA116/PGA117 are
This transition may be either increasing orsingle-ended input, single-supply, programmable gain
decreasing, and differs from part to part as describedamplifiers (PGAs) with an input multiplexer.
in Figure 69 and Figure 70 . These figures illustrateMultiplexer channel selection and gain selection are
possible differences in input offset voltage betweendone through a standard SPI interface. The
two different devices when used with AV
DD
= +5V.PGA112/PGA113 have a two-channel input MUX and
Because the exact transition region varies fromthe PGA116/PGA117 have a 10-channel input MUX.
device to device, the Electrical Characteristics tableThe PGA112 and PGA116 provide binary gain
specifies an input offset voltage above and below thisselections (1, 2, 4, 8, 16, 32, 64, 128) and the
input transition region.PGA113 and PGA117 provide scope gain selections(1, 2, 5, 10, 20, 50, 100, 200). All models use asplit-supply architecture with an analog supply, AV
DD
,and a digital supply, DV
DD
. This split-supplyarchitecture allows for ease of interface toanalog-to-digital converters (ADCs) andmicrocontrollers in mixed-supply voltage systems,such as where the analog supply is +5V and thedigital supply is +3V. Four internal calibrationchannels are provided for system-level calibration.The channels are tied to GND, 0.9V
CAL
, 0.1V
CAL
, andV
REF
, respectively. V
CAL
, an external voltageconnected to V
CAL
/CH0, acts as the systemcalibration reference. If V
CAL
is the system ADCreference, then gain and offset calibration on theADC are easily accomplished through the PGA usingonly one MUX input. If calibration is not used, thenV
CAL
/CH0 can be used as a standard MUX input. Allfour versions provide a V
REF
pin that can be tied to
Figure 68. PGA Rail-to-Rail Input Stageground or, for ease of scaling, to midsupply insingle-supply systems where midsupply is used as avirtual ground. The PGA112/PGA113 offer asoftware-controlled shutdown feature for low standbypower. The PGA116/PGA117 offer both hardware-and software-controlled shutdown for low standbypower. The PGA112/PGA113 have a three-wire SPIdigital interface; the PGA116/PGA117 have afour-wire SPI digital interface. The PGA116/117 alsohave daisy-chain capability.
The PGA op amp is a rail-to-rail input and output(RRIO) single-supply op amp. The input topologyuses two separate input stages in parallel to achieverail-to-rail input. As Figure 68 shows, there is aPMOS transistor on each input for operation down toground; there is also an NMOS transistor on each
Figure 69. V
OS
versus Input Voltage Case 1input in parallel for operation to the positive supplyrail. When the common-mode input voltage (that is,the single-ended input, because this PGA isconfigured internally for noninverting gain) crosses alevel that is typically about 1.5V below the positivesupply, there is a transition between the NMOS and
Copyright © 2008, Texas Instruments Incorporated Submit Documentation Feedback 29
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
RI
RF
G=1
PGA112
PGA113
VREF
V /2
S
VIN0 VIN1
VOUT
CH0
CH1 MUX
+
-
VOUT0 =G V AV /2 (G 1)´ - ´ -
IN0 DD
(2)
InputVoltage(V)
InputOffsetVoltage( V)m
50
40
30
20
10
0
10
20
30
-
-
-
10 62 3 4 5
AV =5V
DD
OP AMP: GENERAL GAIN EQUATIONS
V =G (V +AV /2) /2 (G 1)
V =G V + /2,where: /2<G V <+ /2
´ -
OUT1 IN1 DD - ´
´ - ´
AV
AV AV AV
DD
OUT1 IN1 DD DD IN1 DD
RI
RF
G=1
VREF
VIN
VOUT
CH1
V =G V´
OUT IN
(1)
PGA112 , , PGA113PGA116 , PGA117
SBOS424B MARCH 2008 REVISED SEPTEMBER 2008 ............................................................................................................................................
www.ti.com
Figure 72. PGA112/PGA113 Configuration forPositive and Negative Excursions AroundMidsupply Virtual Ground
When: G = 1Figure 70. V
OS
versus Input Voltage Case 2
Then: V
OUT0
= G × V
IN0
Figure 71 shows the basic configuration for using thePGA as a gain block. V
OUT
/V
IN
is the selected
(3)noninverting gain, depending on the model selected,
Where:for either binary or scope gains.
G = 1, 2, 4, 8, 16, 32, 64, and 128 (binary gains)G = 1, 2, 5, 10, 20, 50, 100, and 200 (scopegains)
Table 7 details the internal typical values for the opamp internal feedback resistor (R
F
) and op ampinternal input resistor (R
I
) for both binary and scopegains.
Table 7. Typical R
F
and R
I
versus Gain
Binary ScopeGain GainFigure 71. PGA Used as a Gain Block
(V/V) R
F
() R
I
() (V/V) R
F
() R
I
()
1 0 3.25k 1 0 3.25k2 3.25k 3.25k 2 3.25k 3.25kWhere:
4 9.75k 3.25k 5 13k 3.25kG = 1, 2, 4, 8, 16, 32, 64, and 128 (binary gains)
8 22.75k 3.25k 10 29.25k 3.25kG = 1, 2, 5, 10, 20, 50, 100, and 200 (scope
16 48.75k 3.25k 20 61.75k 3.25kgains)
32 100.75k 3.25k 50 159.25k 3.25kFigure 72 shows the PGA configuration and gain
64 204.75k 3.25k 100 321.75k 3.25kequations for V
REF
= AV
DD
/2. V
OUT0
is V
OUT
when
128 412.75k 3.25k 200 646.75k 3.25kCH0 is selected and V
OUT1
is V
OUT
when CH1 isselected. Notice the V
REF
pin has no effect for G = 1because the internal feedback resistor, R
F
, is shortedout. This configuration allows for positive andnegative voltage excursions around a midsupplyvirtual ground.
30 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
OP AMP: FREQUENCY RESPONSE VERSUS ANALOG MUX
SR(V/ s)=2 f V (1 10 )m p ´ ´
OP
-6
(4)
Example:
PGA112 , , PGA113PGA116 , PGA117
www.ti.com
............................................................................................................................................ SBOS424B MARCH 2008 REVISED SEPTEMBER 2008
GAIN
The analog input MUX provides two input channelsTable 8 documents how small-signal bandwidth and for the PGA112/PGA113 and 10 input channels forslew rate change correspond to changes in PGA the PGA116/PGA117. The MUX switches aregain. designed to be break-before-make and therebyeliminate any concerns about shorting the two inputFull power bandwidth (that is, the highest frequency
signal sources together.that a sine wave can pass through the PGA for agiven gain) is related to slew rate by Equation 4 : Four internal MUX CAL channels are included in theanalog MUX for ease of system calibration. TheseCAL channels allow ADC gain and offset errors to becalibrated out. This calibration does not remove theWhere:
offset and gain errors of the PGA for gains greaterSR = Slew rate in V/ µs
than 1, but most systems should see a significantf = Frequency in Hz
increase in the ADC accuracy. In addition, these CALV
OP
= Output peak voltage in volts
channels can be used by the ADC to read theminimum and maximum possible voltages from thePGA. With these minimum and maximum levelsknown, the system architecture can be designed toFor G = 8, then SR = 10.6V/ µs (slew rate rise is
indicate an out-of-range condition on the measuredminimum slew rate).
analog input signals if these levels are everFor a 5V system, choose 0.1V < V
OUT
< 4.9V or
measured.V
OUTPP
= 4.8V or V
OUTP
= 2.4V.
To use the CAL channels, V
CAL
/CH0 must beSR (V/ µs) = 2 πf × V
OP
(1 × 10
6
).
permanently connected to the system ADC reference.10.6 = 2 πf (2.4) (1 × 10
6
)f = 702.9kHz
There is a typical 100k load from V
CAL
/CH0 toThis example shows that a G = 8 configuration
ground. Table 9 illustrates how to use the CALcan produce a 4.8V
PP
sine wave with frequency
channels with V
REF
= ground. Table 10 describes howup to 702.9kHz. This computation only shows the
to use the CAL channels with V
REF
= AV
DD
/2. Thetheoretical upper limit of frequency for this
V
REF
pin must be connected to a source that isexample, but does not indicate the distortion of
low-impedance for both dc and ac in order tothe sine wave. The acceptable distortion depends
maintain gain and nonlinearity accuracy. Worst-caseon the specific application. As a general
current demand on the V
REF
pin occurs when G = 1guideline, maintain two to three times the
because there is a 3.25k resistor between V
OUT
andcalculated slew rate to minimize distortion on the
V
REF
. For a 5V system with AV
DD
/2 = 2.5V, the V
REFsine wave. For this example, the application
pin buffer must source and sink 2.5V/3.25k = 0.7mAshould only use G = 8, 4.8V
PP
, up to a frequency
minimum for a V
OUT
that can swing from ground torange of 234kHz to 351kHz, depending upon the
+5V.acceptable distortion. For a given gain and slewrate requirement, check for adequate small-signalbandwidth (typical 3dB frequency) in order toassure that the frequency of the signal can bepassed without attenuation.
Table 8. Frequency Response versus Gain (C
L
= 100pF, R
L
= 10k )0.1% 0.01% 0.1% 0.01%TYPICAL SLEW SLEW SETTLING SETTLING TYPICAL SLEW SLEW SETTLING SETTLING 3dB RATE- RATE- TIME: TIME: SCOPE 3dB RATE- RATE- TIME: TIME:BINARY FREQUENCY FALL RISE 4V
PP
4V
PP
GAIN FREQUENCY FALL RISE 4V
PP
4V
PPGAIN (V/V) (MHz) (V/ µs) (V/ µs) ( µs) ( µs) (V/V) (MHz) (V/ µs) (V/ µs) ( µs) ( µs)
1 10 8 3 2 2.55 1 10 8 3 2 2.55
2 3.8 9 6.4 2 2.6 2 3.8 9 6.4 2 2.6
4 2 12.8 10.6 2 2.6 5 1.8 12.8 10.6 2 2.6
8 1.8 12.8 10.6 2 2.6 10 1.8 12.8 10.6 2.2 2.6
16 1.6 12.8 12.8 2.3 2.6 20 1.3 12.8 9.1 2.3 2.8
32 1.8 12.8 13.3 2.3 3 50 0.9 9.1 7.1 2.4 3.8
64 0.6 4 3.5 3 6 100 0.38 4 3.5 4.4 7
128 0.35 2.5 2.5 4.8 8 200 0.23 2.3 2 6.9 10
Copyright © 2008, Texas Instruments Incorporated Submit Documentation Feedback 31
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
10kW
ADC
G=1 RF
RI
Output
Stage
SPI
Interface
REF3225
SCLK
DIO
CS
VOUT
DVDD
AVDD
GND VREF
MSP430
Microcontroller
+3V
+3V
VREF
PGA112
PGA113
V /CH0
CAL
CH1
CAL3
CAL4
CAL1
CAL2
0.1VCAL
0.9VCAL
10kW
80kW
MUX
CAL2/3
2.5V ADCRef
C
0.1 F
BYPASS
m
C
0.1 F
BYPASS
m
C
0.1 F
BYPASS
m
PGA112 , , PGA113PGA116 , PGA117
SBOS424B MARCH 2008 REVISED SEPTEMBER 2008 ............................................................................................................................................
www.ti.com
Figure 73. Using CAL Channels with V
REF
= Ground
Table 9. Using the MUX CAL Channels with V
REF
= GND(AV
DD
= 3V, DV
DD
= 3V, ADC Ref = 2.5V, and V
REF
= GND)
MUX GAIN OP AMP OP AMPFUNCTION SELECT SELECT MUX INPUT (+In) (V
OUT
) DESCRIPTION
Minimum signal level that theMUX, op amp, and ADC canMinimum Signal CAL1 1 GND GND 50mV
read. Op amp V
OUT
is limitedby negative saturation.90% ADC Ref for system0.9 ×Gain Calibration CAL2 1 2.25V 2.25V full-scale or gain calibration(V
CAL
/CH0)
of the ADC.Maximum signal level thatthe MUX, op amp, and ADCcan read. Op amp V
OUT
is0.9 ×Maximum Signal CAL2 2 2.25V 2.95V limited by positive saturation.(V
CAL
/CH0)
System is limited by ADCmax input of 2.5V (ADC Ref= 2.5V).0.1 × 10% ADC Ref for systemOffset Calibration CAL3 1 0.25V 0.25V(V
CAL
/CH0) offset calibration of the ADC.Minimum signal level that theMUX, op amp, and ADC canMinimum Signal CAL4 1 V
REF
GND 50mV
read. Op amp V
OUT
is limitedby negative saturation.
32 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
10kW
ADC
G=1 RF
RI
Output
Stage
SPI
Interface
SCLK
DIO
CS
VOUT
DVDD
AVDD
GND VREF
MSP430
Microcontroller
+3V
+3V
VREF
PGA112
PGA113
V /CH0
CAL
CH1
CAL3
CAL4
CAL1
CAL2
0.1VCAL
0.9VCAL
10kW
80kW
MUX
CAL2/3
ADCRef
OPA364
R
10kW
F
C
2.7nF
F
+3V
CL2
0.1 Fm
0.1 Fm
RY
100kW
RX
100kW
+3V
(1.5V)
C
0.1 F
BYPASS
m
C
0.1 F
BYPASS
m
C
0.1 F
BYPASS
m
C
0.1 F
BYPASS
m
PGA112 , , PGA113PGA116 , PGA117
www.ti.com
............................................................................................................................................ SBOS424B MARCH 2008 REVISED SEPTEMBER 2008
Figure 74. Using CAL Channels with V
REF
= AV
DD
/2
Table 10. Using the MUX CAL Channels with V
REF
= AV
DD
/2(AV
DD
= 3V, DV
DD
= 3V, ADC Ref = 3V, and V
REF
= 1.5V)
MUX GAIN OP AMP OP AMPFUNCTION SELECT SELECT MUX INPUT (+In) (V
OUT
) DESCRIPTION
Minimum signal level that the MUX,Minimum Signal CAL1 1 GND GND 50mV op amp, and ADC can read. Op ampV
OUT
is limited by negative saturation.0.9 × 90% ADC Ref for system full-scale orGain Calibration CAL2 1 2.7V 2.7V(V
CAL
/CH0) gain calibration of the ADC.Maximum signal level that the MUX,0.9 ×Maximum Signal CAL2 4 or 5 2.25V 2.95V op amp, and ADC can read. Op amp(V
CAL
/CH0)
V
OUT
is limited by positive saturation.0.1 × 10% ADC Ref for system offsetOffset Calibration CAL3 1 0.3V 0.3V(V
CAL
/CH0) calibration of the ADC.V
REF
Check CAL4 1 V
REF
1.5V 1.5V Midsupply voltage used as V
REF
.
Copyright © 2008, Texas Instruments Incorporated Submit Documentation Feedback 33
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
SYSTEM CALIBRATION USING THE PGA
TransferFunction
withOffsetError+GainError
TransferFunction
withGainErrorOnly
IdealTransferFunction
GainError
VFS_ACTUAL
VFS_IDEAL
AnalogInput
DigitalOutput
V 1LSB-
REF_ADC
0V
0000h
0FFFh
OffsetError VZ_IDEAL
VZ_ACTUAL
PGA112 , , PGA113PGA116 , PGA117
SBOS424B MARCH 2008 REVISED SEPTEMBER 2008 ............................................................................................................................................
www.ti.com
In practice, the zero input (0V) or full-scale input(V
REF_ADC
1LSB) of ADCs cannot always beAnalog-to-digital converters (ADCs) contain two major
measured because of internal offset error and gainerrors that can be easily removed by calibration at a
error. However, if measurements are made very closesystem level. These errors are gain error and offset
to the full-scale input and the zero input, both zeroerror, as shown in Figure 75 .Figure 75 shows a
and full-scale can be calibrated very accurately withtypical transfer function for a 12-bit ADC. The analog
the assumption of linearity from the calibration pointsinput is on the x-axis with a range from 0V to
to the desired end points of the ADC ideal transfer(V
REF_ADC
1LSB), where V
REF_ADC
is the ADC
function. For the zero calibration, choosereference voltage. The y-axis is the hexadecimal
10%V
REF_ADC
; this value should be above the internalequivalent of the digital codes that result from ADC
offset error and sufficiently out of the noise floorconversions. The dotted red line represents an ideal
range of the ADC. For the gain calibration, choosetransfer function with 0000h representing 0V analog
90%V
REF_ADC
; this value should be less than theinput and 0FFFh representing an analog input of
internal gain error and sufficiently below the tolerance(V
REF_ADC
1LSB). The solid blue line illustrates the
of V
REF
. These key points can be summarized in thisoffset error. Although the solid blue line includes both
way:offset error and gain error, at an analog input of 0Vthe offset error voltage, V
Z_ACTUAL
, can be measured.
For zero calibration:The dashed black line represents the transfer function
The ADC cannot read the ideal zero because ofwith gain error. The dashed black line is equivalent to
offset errorthe solid blue line without the offset error, and can be
Must be far enough above ground to be abovemeasured and computed using V
Z_ACTUAL
and
noise floor and ADC offset errorV
Z_IDEAL
. The difference between the dashed black
Therefore, choose 10%V
REF_ADC
for zeroline and the dotted red line is the gain error. Gain and
calibrationoffset error can be computed by taking zero input andfull-scale input readings. Using these error
For gain calibration:calculations, compute a calibrated ADC reading to
The ADC cannot read the ideal full-scale becauseremove the ADC gain and offset error.
of gain errorMust be far enough below full-scale to be belowthe V
REF
tolerance and ADC gain errorTherefore, choose 90%V
REF_ADC
for gaincalibration
Figure 75. ADC Offset and Gain Error
34 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
V 90=0.9(V )
REF REF_ADC
(5)
V 10=0.1(V )
REF REF_ADC
(6)
V 90=ADC atV 90
MEAS MEASUREMENT REF
(7)
V 10=ADC atV 10
MEAS MEASUREMENT REF
(8)
G =
MEAS
V 90 V 10-
MEAS MEAS
V 90 V 10-
REF REF
(9)
O =V 10 (V 10 G )- ´
MEAS MEAS REF MEAS
(10)
V =AnyV ADC
AD_MEAS IN MEASUREMENT
(11)
V =
ADC_CAL
V O-
AD_MEAS MEAS
GMEAS
(12)
IdealTransferFunction
TransferFunction
withOffsetError+GainError
V =+5V
REF
OffsetError=+4LSB
GainError=+6LSB
0FFFh(4.99878V)
(4.5114751443V)
(0.5056191443V)
0000h(0V)
0V VIN
DigitalOutput(V )
AD_MEAS
0.5V
(0.1 V )´REF_ADC
4.5V
(0.9 V )´REF_ADC
4.99878V
(V 1LSB)
REF_ADC -
PGA112 , , PGA113PGA116 , PGA117
www.ti.com
............................................................................................................................................ SBOS424B MARCH 2008 REVISED SEPTEMBER 2008
The 12-bit ADC example in Figure 76 illustrates thetechnique for calibrating an ADC using a10%V
REF_ADC
and 90%V
REF_ADC
reading whereV
REF_ADC
is the ADC reference voltage. Note that the10%V
REF
reading also contains a gain error becauseit is not a V
IN
= 0 calibration point. First, use the
2. Compute the ADC measured gain. The slope of90%V
REF
and 10%V
REF
points to compute the
the curve connecting the measured 10%V
REF
andmeasured gain error. The measured gain error is then
measured 90%V
REF
point is computed andused to remove the gain error from the 10%V
REF
compared to the slope between the idealreading, giving a measured 10%V
REF
number. The
10%V
REF
and ideal 90%V
REF
. This result is themeasured 10%V
REF
number is used to compute the
measured gain.measured offset error.
3. Compute the ADC measured offset. Themeasured offset is computed by taking thedifference between the measured 10%V
REF
andthe (ideal 10%V
REF
) × (measured gain).
4. Compute the calibrated ADC readings.
Any ADC reading can therefore be calibrated byremoving the gain error and offset error. Themeasured offset is subtracted from the ADC readingand then divided by the measured gain to give aFigure 76. 12-Bit Example of ADC Calibration for
corrected reading. If this calibration is performed on aGain and Offset Error
timed basis, relative to the specific application, gainand offset error over temperature are also removedfrom the ADC reading by calibration.The gain error and offset error in ADC readings canbe calibrated by using 10%V
REF_ADC
and
For example; given:90%V
REF_ADC
calibration points. Because the
12-Bit ADCcalibration is ratiometric to V
REF_ADC
, the exact value
ADC Gain Error = +6LSBof V
REF_ADC
does not need to be known in the end
ADC Offset Error = +4LSBapplication.
ADC Reference (V
REF_ADC
) = +5VFollow these steps to compute a calibrated ADC
Temperature = +25 ° Creading:
1. Take the ADC reading at V
IN
= 90% × V
REF
and
Table 11 shows the resulting system accuracy.V
IN
= 10% × V
REF
. The ADC readings for10%V
REF
and 90%V
REF
are taken.
Table 11. Bits of System Accuracy
(1)
(to 0.5LSB)
ADC ACCURACY WITHOUT ADC ACCURACY WITH PGA112V
IN
CALIBRATION CALIBRATION
10%V
REF_ADC
8.80 Bits 12.80 Bits90%V
REF_ADC
7.77 Bits 11.06 Bits
(1) Difference in maximum input offset voltage for V
IN
= 10%V
REF_ADC
and V
IN
= 90%V
REF_ADC
is the reason for different accuracies.
Copyright © 2008, Texas Instruments Incorporated Submit Documentation Feedback 35
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
APPLICATIONS: GENERAL-PURPOSE INPUT
VOUT
CH1 DVDD
AVDD
VREF
V /2
S
(+2.5V)
VS
(+5V)
CH0
VIN0
200mVPP
MUX
RA
VREF_ADC
RB
RX
PGA112
PGA113
G=1
0
+100mV
-100mV
+2.5V
+2.6V
+2.4V
+2.5V
+4.5V
+0.5V
VOUT0
VIN0 VCH0
CA
VIN1
RA
RF
RIG=20
+
-
+4.9625V
+37.5mV
VOUT1
PGA112 , , PGA113PGA116 , PGA117
SBOS424B MARCH 2008 REVISED SEPTEMBER 2008 ............................................................................................................................................
www.ti.com
Table 12 summarizes the scaling resistor values forSCALING R
A
, R
X
, and R
B
for different ADC Ref voltages.V
REF_ADC
is the reference voltage used for the ADCFigure 77 is an example application that
connected to the PGA112/PGA113 output. It isdemonstrates the flexibility of the PGA for
assumed the ADC input range is 0V to V
REF_ADC
. Thegeneral-purpose input scaling. V
IN0
is a ± 100mV input
Bipolar Input to Single-Supply Scaling section givesthat is ac-coupled into CH0. The PGA112/PGA113 is
the algorithm to compute resistor values forpowered from a +5V supply voltage, V
S
, and
references not listed in Table 12 . As a generalconfigured with the V
REF
pin connected to V
S
/2
guideline, R
B
should be chosen such that the input(+2.5V). V
CH0
is the ± 100mV input, level-shifted and
on-channel current multiplied by R
B
is less than orcentered on V
S
/2 (+2.5V). A gain of 20 is applied to
equal to the input offset voltage. This value ensuresCH0, and because of the PGA113 configuration, the
that the scaling network contributes no more erroroutput voltage at V
OUT
is ± 2V centered on V
S
/2
than the input offset voltage. Individual applications(+2.5V).
may require other design trade-offs.CH1 is set to G = 1; through a resistive divider andscalar network, we can read ± 5V or 0V. This settingprovides bipolar to single-ended input scaling.
Figure 77. General-Purpose Input Scaling
36 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
PGA112 , , PGA113PGA116 , PGA117
www.ti.com
............................................................................................................................................ SBOS424B MARCH 2008 REVISED SEPTEMBER 2008
Table 12. Bipolar to Single-Ended Input Scaling
(1) (2)
V
REF_ADC
(V) V
IN1
(V) CH1 INPUT R
A
(k ) R
X
() R
B
(k )
2.5 5 0.047613 9.2 4.81k 100 1.2476135 2.4476132.5 10 0.050317 3.16 2.4k 100 1.25031710 2.4503173 5 0.058003 13.5 5.76k 100 1.4980035 2.9380033 10 0.059303 4.02 2.87k 100 1.49930310 2.9393034.096 5 0.082224 37 7.87k 100 2.0483045 4.0143844.096 10 0.086018 6.49 3.92k 100 2.05209810 4.0181785 5 0.093506 24 965 100 2.4935065 4.8935065 10 0.095227 9.2 4.81k 100 2.49522710 4.895227
(1) Scaling is based on 0.02(V
REF_ADC
) to 0.98(V
REF_ADC
), using standard 0.1% resistor values.(2) Assumes symmetrical V
IN
and symmetrical scaling for CH1 input minimum and maximum.
Copyright © 2008, Texas Instruments Incorporated Submit Documentation Feedback 37
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
Bipolar Input to Single-Supply Scaling
R =
A
2 R g´ ´
B
1 g-
9.23077k =W2 10k 0.315789474´ W ´
1 0.315789474-
R =
X
R R
B A
´
R +R
B A
4.81k =W
10k 9.23077kW ´ W
10k +9.23077kW W
R
10kW
B
+
RX
4.81kW
RA
9.2kW
CH1Input
(2.447817V,
0.0474093V)
VIN1
(+5V, 5V)-
VREF_ADC
(2.5V)
APPLICATIONS: HIGH GAIN/WIDE
k =k k
0.96=0.98 0.02
-
VO VO+ VO-
-
g=
k V´
VO REF_ADC
2 |V | k- ´´ VREF_ADCIN1 VO
0.315789474= 0.96 2.5´
2 5 0.96 2.5- ´´
PGA112 , , PGA113PGA116 , PGA117
SBOS424B MARCH 2008 REVISED SEPTEMBER 2008 ............................................................................................................................................
www.ti.com
Note that this process assumes a symmetrical V
IN1and that symmetrical scaling is used for CH1 inputminimum and maximum values. The following stepsgive the algorithm to compute resistor values forreferences not listed in Table 12 .
d. R
X
can now be computed from the starting valueof R
B
and the computed value for R
A
.Step 1: Choose the following:a. V
REF_ADC
= 2.5V (ADC reference voltage)b. | V
IN1
| = 5
(magnitude of V
IN
, assuming scaling is for ± V
IN1
)c. Choose R
B
as a standard resistor value. Theinput on-channel current multiplied by R
B
shouldbe less than the input offset voltage, such that R
Bis not a major source of inaccuracy.
R
B
= 10k (select as a starting value forresistors)
d. For the most negative V
IN1
, choose thepercentage (in decimal format) of V
REF_ADCdesired at the ADC input.
k
VO
= 0.02
(CH1 input = k
VO
× V
REF_ADC
when V
IN1
= V
IN1
)e. For the most positive V
IN1
, choose the percentage Figure 78. Bipolar to Single-Ended InputAlgorithm(in decimal format) of V
REF_ADC
desired at theADC input. Since this scaling is based onsymmetry, k
VO+
must be the same percentageaway from V
REF_ADC
at the upper limit as at the BANDWIDTH CONSIDERATIONSlower limit where k
VO
is computed.
As a result of the combination of wide bandwidth andk
VO+
= 1 k
VO
high gain capability of the PGA112/PGA113 andPGA116/PGA117, there are several printed circuitk
VO+
= 1 0.02 = 0.98
board (PCB) design and system recommendations toconsider for optimum application performance.(CH1 input = k
VO+
× V
REF_ADC
when V
IN1
= +V
IN1
)
1. Power-supply bypass. Bypass eachStep 2: Compute the following:
power-supply pin separately. Use a ceramica. To simplify analysis, create one constant called
capacitor connected directly from thek
VO
.
power-supply pin to the ground pin of the IC onthe same PCB plane. Vias can then be used toconnect to ground and voltage planes. Thisconfiguration keeps parasitic inductive paths outb. A constant, g, is created to simplify resistor value
of the local bypass for the PGA. Good analogcomputations.
design practice dictates the use of a large valuetantalum bypass capacitor on the PCB for eachrespective voltage.
c. R
A
is now selected from the starting value of R
Band the g constant.
38 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
APPLICATIONS: DRIVING/INTERFACING TO
10kW
CDACSAR
ADC
G=1 RF
RI
Output
Stage
SPI
Interface
SCLK
DIO
CS
7
VOUT
5
DVDD
10
AVDD
1
GND
6
VREF
4
3
8
9
+3V
+5V
VREF
PGA112
PGA113
(MSOP-10)
V /CH0
CAL 2
CH1
CAL3
CAL4
CAL1
CAL2
0.1VCAL
0.9VCAL
10kW
80kW
MUX
CAL2/3
R
100W
FILT
CFILT
(1nF)
CSH
40pF
12-BitSettling 500kHz
16-BitSettling 300kHz
®
®
C
0.1 F
BYPASS
m
C
0.1 F
BYPASS
m
C
0.1 F
BYPASS
m
PGA112 , , PGA113PGA116 , PGA117
www.ti.com
............................................................................................................................................ SBOS424B MARCH 2008 REVISED SEPTEMBER 2008
2. Signal trace routing. Keep V
OUT
and other low Bypass capacitors greater than 100pF areimpedance traces away from MUX channel inputs recommended. Lower impedances and a bypassthat are high impedance. Poor signal routing can capacitor placed directly at the input MUXcause positive feedback, unwanted oscillations, channels keep crosstalk between channels to aor excessive overshoot and ringing on minimum as a result of parasitic capacitivestep-changing signals. If the input signals are coupling from adjacent PCB traces and pin-to-pinparticularly noisy, separate MUX input channels capacitance.with guard traces on either side of the signaltraces. Connect the guard traces to ground nearthe PGA and at the signal entry point into the
ADCSPCB. On multilayer PCBs, ensure that there are
CDAC SAR ADCs contain an input samplingno parallel traces near MUX input traces on
capacitor, C
SH
, to sample the input signal during aadjacent layers; capacitive coupling from other
sample period as shown in Figure 79 . After thelayers can be a problem. Use ground planes to
sample period, C
SH
is removed from the input signal.isolate MUX input signal traces from signal traces
Subsequent comparisons of the charge stored on C
SHon other layers.
are performed during the ADC conversion process.Additionally, group and route the digital signals
To achieve optimal op amp stability, input signalinto the PGA as far away as possible from the
settling, and the demands for charge from the inputanalog MUX input signals. Most digital signals
signal conditioning circuitry, most ADC applicationsare fast rise/fall time signals with low-impedance
are optimized by the use of a resistor (R
FILT
) anddrive capability that can easily couple into the
capacitor (C
FILT
) filter placed between the op amphigh-impedance inputs of the input MUX
output and ADC input. For the PGA112/PGA113, orchannels. This coupling can create unwanted
the PGA116/PGA117, setting C
FILT
= 1nF and R
FILT
=noise that gains up to V
OUT
.
100 yields optimum system performance forsampling converters operating at speeds up to3. Input MUX channels and source impedance.
500kHz, depending upon the application settling timeInput MUX channels are high-impedance; when
and accuracy requirements.combined with high gain, the channels can pickup unwanted noise. Keep the input signalsources low-impedance ( < 10k ). Also, considerbypassing input MUX channels with a ceramicbypass capacitor directly at the MUX input pin.
Figure 79. Driving/Interfacing to ADCs
Copyright © 2008, Texas Instruments Incorporated Submit Documentation Feedback 39
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
POWER SUPPLIES
SHUTDOWN AND POWER-ON-RESET (POR)
10kW
ADC
G=1 RF
RI
Output
Stage
SPI
Interface
SCLK
DIO
CS
7
VOUT
5
DVDD
10
AVDD
1
GND
6
VREF
4
3
8
9
MSP430
Microcontroller
+3V
+5V
VREF
PGA112
PGA113
(MSOP-10)
VCAL/CH0 2
CH1
CAL3
CAL4
CAL1
CAL2
0.1VCAL
0.9VCAL
10kW
80kW
MUX
CAL2/3
PGA112 , , PGA113PGA116 , PGA117
SBOS424B MARCH 2008 REVISED SEPTEMBER 2008 ............................................................................................................................................
www.ti.com
At initial power-on, the state of the PGA is G = 1 andChannel 0 active. CAUTION: For most applications,Figure 80 shows a typical mixed-supply voltage
set AV
DD
DV
DD
to prevent V
OUT
from drivingsystem where the analog supply, AV
DD
, is +5V and
current into AV
DD
and raising the voltage level ofthe digital supply voltage, DV
DD
, is +3V. The analog
AV
DD
.output stage of the PGA and the SPI interface digitalcircuitry are both powered from DV
DD
. Whenconsidering the power required for DV
DD
, use theElectrical Characteristics table and add any load
The PGA112/PGA113 have a software shutdowncurrent anticipated on V
OUT
; this load current must be
mode, and the PGA116/PGA117 offer both aprovided by DV
DD
. This split-supply architecture
hardware and software shutdown mode. When theensures compatible logic levels with the
PGA is shut down, it goes into a low-power standbymicrocontroller. It also ensures that the PGA output
mode. The Electrical Characteristics table details thecannot run the input for the onboard ADC into an
current draw in shutdown mode with and without theovervoltage condition; this condition could cause
SPI interface being clocked. In shutdown mode, R
Fdevice latch-up and system lock-up, and require
and R
I
remain connected between V
OUT
and V
REF
.power-supply sequencing. Each supply pin should be
When DV
DD
is less than 1.6V, the digital interface isindividually bypassed with a 0.1 µF ceramic capacitor
disabled and the channel and gain selections aredirectly at the device to ground. If there is only one
held to the respective POR states of Gain = 1 andpower supply in the system, AV
DD
and DV
DD
can both
Channel = V
CAL
/CH0. When DV
DD
is above 1.8V, thebe connected to the same supply; however, it is
digital interface is enabled and the POR gain andrecommended to use individual bypass capacitors
channel states remain unchanged until a valid SPIdirectly at each respective supply pin to a single point
communication is received.ground. V
OUT
is diode-clamped to AV
DD
(as shown inFigure 80 ); therefore, set DV
DD
less than or equal toAV
DD
+ 0.3V. DV
DD
and AV
DD
must be within theoperating voltage range of +2.2V to +5.5V.
Figure 80. Split Power-Supply Architecture: AV
DD
DV
DD
40 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated
Product Folder Link(s): PGA112 PGA113 PGA116 PGA117
PACKAGING INFORMATION
Orderable Device Status (1) Package
Type Package
Drawing Pins Package
Qty Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)
PGA112AIDGSR ACTIVE MSOP DGS 10 2500 Green (RoHS &
no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
PGA112AIDGSRG4 ACTIVE MSOP DGS 10 2500 Green (RoHS &
no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
PGA112AIDGST ACTIVE MSOP DGS 10 250 Green (RoHS &
no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
PGA112AIDGSTG4 ACTIVE MSOP DGS 10 250 Green (RoHS &
no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
PGA113AIDGSR ACTIVE MSOP DGS 10 2500 Green (RoHS &
no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
PGA113AIDGSRG4 ACTIVE MSOP DGS 10 2500 Green (RoHS &
no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
PGA113AIDGST ACTIVE MSOP DGS 10 250 Green (RoHS &
no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
PGA113AIDGSTG4 ACTIVE MSOP DGS 10 250 Green (RoHS &
no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
PGA116AIPW ACTIVE TSSOP PW 20 70 Green (RoHS &
no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
PGA116AIPWG4 ACTIVE TSSOP PW 20 70 Green (RoHS &
no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
PGA116AIPWR ACTIVE TSSOP PW 20 2000 Green (RoHS &
no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
PGA116AIPWRG4 ACTIVE TSSOP PW 20 2000 Green (RoHS &
no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
PGA117AIPW ACTIVE TSSOP PW 20 70 Green (RoHS &
no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
PGA117AIPWG4 ACTIVE TSSOP PW 20 70 Green (RoHS &
no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
PGA117AIPWR ACTIVE TSSOP PW 20 2000 Green (RoHS &
no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
PGA117AIPWRG4 ACTIVE TSSOP PW 20 2000 Green (RoHS &
no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
PACKAGE OPTION ADDENDUM
www.ti.com 13-Nov-2008
Addendum-Page 1
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
PACKAGE OPTION ADDENDUM
www.ti.com 13-Nov-2008
Addendum-Page 2
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
PGA112AIDGSR MSOP DGS 10 2500 330.0 12.4 5.3 3.3 1.3 8.0 12.0 Q1
PGA112AIDGST MSOP DGS 10 250 180.0 12.4 5.3 3.3 1.3 8.0 12.0 Q1
PGA113AIDGSR MSOP DGS 10 2500 330.0 12.4 5.3 3.3 1.3 8.0 12.0 Q1
PGA113AIDGST MSOP DGS 10 250 180.0 12.4 5.3 3.3 1.3 8.0 12.0 Q1
PGA116AIPWR TSSOP PW 20 2000 330.0 16.4 6.95 7.1 1.6 8.0 16.0 Q1
PGA117AIPWR TSSOP PW 20 2000 330.0 16.4 6.95 7.1 1.6 8.0 16.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 5-May-2011
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
PGA112AIDGSR MSOP DGS 10 2500 370.0 355.0 55.0
PGA112AIDGST MSOP DGS 10 250 195.0 200.0 45.0
PGA113AIDGSR MSOP DGS 10 2500 370.0 355.0 55.0
PGA113AIDGST MSOP DGS 10 250 195.0 200.0 45.0
PGA116AIPWR TSSOP PW 20 2000 346.0 346.0 33.0
PGA117AIPWR TSSOP PW 20 2000 346.0 346.0 33.0
PACKAGE MATERIALS INFORMATION
www.ti.com 5-May-2011
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Audio www.ti.com/audio Communications and Telecom www.ti.com/communications
Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers
Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps
DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy
DSP dsp.ti.com Industrial www.ti.com/industrial
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Security www.ti.com/security
Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Power Mgmt power.ti.com Transportation and www.ti.com/automotive
Automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com Wireless www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions www.ti.com/lprfTI E2E Community Home Page e2e.ti.com
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated