© INTEL CORPORATION, 1997 December 1997 Order Number: 272770-002
EMBEDDED IntelDX2™ PROCESSOR
Figure 1. Embedded IntelDX2™ Processor Block Diagram
Integrated Floating- Point Unit
Speed-Multiplying Technology
32-Bit RISC Technolog y Core
8-Kbyte Write-Through Cache
Fou r Intern al Write Buffers
Burst Bus Cycl es
Dynami c Bus Sizi ng for 8- and 16-bit
Data Bus Devices
SL Technology
Data Bus Parity Generation and Checking
Boundary Scan (JTAG)
3.3-Vol t Processor , 50 MHz, 25 MHz CLK
208-Lead Shrink Quad Fla t Pack (SQFP)
5-Volt Processor, 66 MHz, 33 MHz CLK
168-Pin Pi n Grid Array (PGA)
Binary Compatible with Large Software
Base
Paging
Unit
Prefetcher
32-Byte Code
Queue
2x16 Bytes
Code
Stream
Floating
Point Unit
Barrel
Shifter
24
Cache Unit
Burst Bus
Control
Bus Control
Write Buffers
4 x 32
64-Bit Interunit Transfer Bus
Register
File
ALU
Segmentation
Unit
Descriptor
Registers
Limit and
Attribute PLA
32
Base/
Index
Bus
Translation
Lookaside
Buffer
20
8 Kbyte
Cache
Clock
Multiplier
Floating
Point
Register File
Control &
Protection
Test Unit
Control
ROM
Address
Drivers
CLK
Core
Clock
32
32
Data Bus
Transceivers
32
Request
Sequencer
Bus Size
Control
Cache
Control
Parity
Generation
and Control
Boundary
Scan
Control
Bus Interface
D31-D0
A31-A2
BE3#- BE0#
ADS# W/R# D/C# M/IO#
PCD PWT RDY# LOCK#
PLOCK# BOFF# A20M#
BREQ HOLD HLDA
RESET SRESET INTR
NMI SMI# SMIACT#
FERR# IGNNE#
STPCLK#
A3223-01
BRDY# BLAST#
BS16# BS8#
KEN# FLUSH#
AHOLD EADS#
DP3-DP0 PCHK#
TCK TMS
TDI TD0
128
Instruction
Decode
32
Decoded
Instruction
Path
PCD
PWT
2
Physical
Address
32-Bit Data Bus
32-Bit Data Bus
Linear Address
Micro-
Instruction
Displacement Bus
32
Information in this document is provided in connection with Intel products. No license, express or implied, by
estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or
warra nt ies rel ating to fit ness for a parti cula r pu rpose , merc hant ab ility, or infrin gem ent of an y pate nt, co pyr ight
or other intellectual property right. Intel products are not intended for use in medical, life saving, or life
sustaining applications.
Intel may make changes to specifications and pr oduct descr iptions at any time, without notice.
Designer s must not rel y on the absence or characteristics of any features or instruc tions marked "reserved" or
"undefined." In tel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them.
The E m be dd ed In telDX2 ™ proces s or m ay c on ta in d es i gn defects or erro rs k n ow n as err a ta w hi ch m ay ca us e
the product to deviate from published specifications. Current characterized errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.
Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com.
Copyright © Intel Corporation, 1997
*Third -party brands and names ar e the property of their resp ective owners.
Contents
iii
EMBEDDED IntelDX2™ PROCESSOR
1.0 INTR OD U CTIO N ........... ............ ................... ................... ........... ................... ....................... ................... ... 1
1.1 Features .............................................................................................................................................1
1.2 Family Members .................................................................................................................................2
2.0 HOW TO USE THIS DOCUMENT .............................................................................................................3
3.0 PIN DESCR IP TIO NS .... .... .... ................... ........... .................... ................... ........... ................... .... .... .......... 3
3.1 Pin Assignme nts .......................................................................................................... .......................3
3.2 Pin Quick Reference .........................................................................................................................16
4.0 ARCHITECTURAL AND FUNCTIONAL OVERVIEW .............................................................................25
4.1 CPUID Instru c tio n .. ............ ................... ........... ................... ................... ............ ............... .... ............25
4.1.1 Operation of the CPUID Instruction .......................................................................................25
4.2 Identification Afte r Reset ..................................................................................................................26
4.3 Bound a ry Scan (JT AG ) . .... ................... ........... ................... ................... ............ ................... .... .... ... .26
4.3.1 Device Identification ...............................................................................................................26
4.3.2 Boundary Scan Register Bits and Bit Order ...........................................................................27
5.0 ELECTRICAL SPECIFICATIONS ........................................................................................................... 28
5.1 Maxi mum Ratings .............................................................................................................................28
5.2 DC Specifications .............................................................................................................................28
5.3 AC Specifications .............................................................................................................................33
5.4 Capacitive Derating Curves ..............................................................................................................39
6.0 MECHANICAL DATA ..............................................................................................................................41
6.1 Pack ag e Dimen si on s ............. ................... ........... ................... ................... ............ ....................... ....41
6.2 Pack ag e Ther mal Spec if ic ati on s .. .... ........... .................... ................... ........... ................... ............ ... . 44
FIGURES
Figu r e 1. Embedded IntelDX2™ Processor Block Diagram ...................................................................... i
Figure 2. Package Diagram for 208-Lead SQFP Embedded IntelDX2™ Processor ................................4
Figure 3. Package Diagram for 168-Pin PGA Embedded IntelDX2™ Processor ...................................10
Figu re 4. CL K Wav e form .. .... .... .... ........... ................... ............ ................... ................... ........... .... .... .... ...35
Figu re 5. I np ut Set up and Hold Tim in g ........ ................... ........... ................... .................... ........... ...........3 5
Figu re 6. I np ut Set up and Hold Tim in g ........ ................... ........... ................... .................... ........... ...........3 6
Figu re 7. P CH K# Val id Delay Tim ing ... .... ................... ............ ................... ................... ........... ...............3 6
Figu re 8. Ou tp ut Val id Delay Timin g ................... ............ ................... ................... ............ ............... .......3 7
Figure 9. Maximum Float Delay Timing ..................................................................................................37
Figu re 10 . TC K Wav ef orm .. .... .... ................... ........... ................... ................... ............ ..............................38
Figure 11. Test Signal Timing Diagram ....................................................................................................38
Contents
iv
Figure 12. Typical Loading Delay versu s Load Capacitance under Worst-Case Co nditions
for a Low-to-High Transi tion, 3.3 V Processor .........................................................................39
Figure 13. Typical Loading Delay versu s Load Capacitance under Worst-Case Co nditions
for a High-to-Low Transition, 3.3 V Processor .........................................................................39
Figure 14. Typical Loading Delay versu s Load Capacitance under
Worst-Case Conditions for a Low-to-Hi gh Transition, 5 V Processor ......................................40
Figure 15. Typical Loading Delay versu s Load Capacitance under
Worst-Case Condi tions for a High-to-Low Transition, 5 V Processo r ......................................40
Figure 16 . 208-Lead SQFP Package Dimensions .................................................................................... 41
Figure 17. Principal Dimensions and Data for 168-Pin Pin Grid Array Package .......................................42
TABLES
Table 1. The Embedded IntelD X2 Process or Fa mily ... .... .... .... ........... ............ ................... ...................2
Table 2. Pinout Di fferences for 208-Lead SQFP Package ......................................................................5
Tab le 3. Pin Ass ignm en t for 20 8-L ea d SQFP Pac k age .. ............ ................... ................... ........... ............6
Table 4. Pin Cross Reference for 208-Lead SQFP Packa ge ...................................................................8
Table 5. Pinout Di fferences for 168-Pin PGA Package .........................................................................11
Tab le 6. Pin Ass ignm en t for 16 8-P in PG A Pac kage ... .... ............ ................... ................... ........... ..........12
Table 7. Pin Cross Reference for 168-Pin PGA Package ......................................................................14
Table 8. Embe dd ed Inte lDX2 ™ Proc e ssor Pin De scri pti on s .. .... ........... ................... ................... ..........16
Table 9. Output Pins ..............................................................................................................................23
Table 10 . Input/Output Pins .....................................................................................................................23
Table 11 . Test Pins ..................................................................................................................................23
Table 12 . Input Pins .................................................................................................................................24
Tab le 13. CPUID In str uc tio n Des c rip tio n ....... .... .... ................... ................... ........... .................... ....... .... ..25
Table 14 . Boundary Scan Component Identification Code (3.3 Volt Processor) .....................................26
Table 15 . Boundary Scan Component Identification Code (5 Volt Processor) ........................................27
Table 16 . Absolute Maximum Ratings .....................................................................................................28
Table 17 . Operating Supply Voltages ......................................................................................................28
Table 18 . 3.3 V DC Specifications ...........................................................................................................29
Ta ble 19. 3 .3V ICC Values ......................................................................................................................30
Table 20 . 5 V DC Specifications ..............................................................................................................31
Table 21. 5 V ICC Values .........................................................................................................................32
Table 22 . AC Characteristics ...................................................................................................................33
Table 23 . AC Specifications for the Test Access Port .............................................................................34
Table 24 . 168-Pin Ceramic PGA Package Dimensions ...........................................................................42
Table 25 . Ceramic PGA Packa ge Di mension Symb ols ...........................................................................43
Table 26. Therm al R esista nce, θJA (°C/W) ............................................................................................. 44
Table 27. Therm al R esista nce, θJC (°C/W) ........... ................... ........................... ................... .................44
Table 28. Maxi m um Tambient, TA max (°C) . .... .... ........... .................... ................... ........... ................... ......44
Embedd ed IntelDX2™ Processor
1
1.0 INTRODUCTION
The embedded IntelDX2™ processor provides high
performance to 32-bit, embedded applications.
Designed for applications that need a floating-point
unit, the processor is ideal for embedded designs
ru nnin g DOS *, Micr osoft W ind ows*, O S/2*, or UNIX*
applications written for the Intel architecture.
Projects can be completed quickly by utilizing the
wide range of software tools, utilities, assemblers
and compilers that are available for desktop
computer systems. Also, developers can find
advantages in using existing chipsets and peripheral
components in their em bedded designs .
The embedded IntelDX2 processor is binary
compatible with the Intel386™ and earlier Intel
proce ssors. Compared with the Intel386 proces sor, it
provides faster execution of many commonly-used
instructions. It also provides the benefits of an
integrated, 8-Kbyte, write-through cache for code
and data. Its data bus can operate in burst mode
which provides up to 106-Mbyte-per-second
transfers for cache-line fills and instruction
prefetches.
Intel’s SL technology is incorporated in the
embedded IntelDX2 processor. Utilizing Intel’s
System Management Mode (SMM), it enables
des igner s to de ve lo p energ y- eff ic ient sys tem s .
Two component packages are available. A 168-pin
Pin Grid Array (PGA) is available for 5-Volt designs
and a 208-lead Shrink Quad Flat Pack (SQFP) is
available for 3.3-Volt designs.
The processor operates at twice the external-bus
frequency. The 5 V processor operates up to 66
MHz (33-MHz CLK). The 3.3 V processor operates
up to 50 MHz (25- MH z CLK).
1.1 Features
The embedded IntelDX2 processor offers these
features:
32-bit RISC-Technology Core — The embedded
IntelDX2 processor performs a complete set of
arithmetic and logical operations on 8-, 16-, and
32-bit data types using a full-width ALU and eight
general purpose registers.
Single Cycle Execution — Many instructions
ex ecut e in a single clock cycle.
* Other brands and names are the property of their
respective owners.
Instr u cti on Pipe lin ing — Overl apped instruction
fetching, decoding, address translation and
execution.
On-Chip Floating-Point Unit — Intel486
processors support the 32-, 64-, and 80-bit formats
specified in I EEE standard 754. The unit is binary
compatib le with the 8087, Intel287™, Intel387™
coprocessors, and Intel OverDrive® processor.
On-Chip Cache with Cache Consistency
Support An 8-Kbyte, write-through, internal
cache is used for bo th data and instructions.
Cache hits provide zero wait-state ac cess times
for data within the cache. Bus activity is tracked to
detect alterations in the memory represe nted by
the internal cache. The internal cache can be
invalida ted or flushed so that an ext ernal cache
controller can maintain cache consistency.
External Cache Control — Write-back and flush
controls for an extern al cache are p rovi ded so the
proce ssor can maintain c ache consistency.
On-Chip Memory Management UnitAddress
managemen t and memo ry space protection
mechanisms maintain the integrity of memory in a
mult ita sking an d virtua l memory e nviro nment . Bot h
memory segmentation and paging are supported.
Burst Cycl esBurst transfers allow a new
double-w ord to be read fro m memor y on ea ch bus
clock cycle. This capability is especially useful for
instruction prefetch and for filling the internal
cache.
Write BuffersThe processor contains four
write buffers to enhance the performance of
consecutive writes to memory. The processor can
continue internal operations after a write to these
buffers, without waiting for the write to be
completed on the external bus.
Bus Backoff — When anot her b us mast er n eeds
control of the bus during a processor in itiated bus
cy cle, the em bedded Inte lDX2 processor floa ts its
bus signals, then restarts the cycle when the b us
be c om e s av ai la ble a ga in .
In structi on Res t art — Programs can conti nue
ex ecution fol lowing an ex ception generated by an
unsuccessful attempt to acc ess memory. This
feature is important for supporting demand-paged
virtual memory applications.
Dynamic Bus Sizing — Exte rnal cont rollers can
dy namically alter the effectiv e w idth of the dat a
bus. Bu s widths of 8, 16, or 32 bits can be used.
2
Embedded IntelDX2™ Processor
Boundary Sc an (JTAG) — Boundary Scan
provides in-circuit t esting of components on
printed circu it boards. Th e Intel Boundary Scan
implementation conforms with the IEEE Standard
Test Access Po rt and Boundary Scan Archi tecture.
Intel’s SL technology provides these features:
Intel Syste m Management Mode (SMM) — A
unique Intel architecture operating mode provides
a dedicated special purpose interrupt and address
space that can be used to implement intelligent
power management and other enhanced functions
in a manner that is completely transparent to the
operating system and ap plicat ions softw are.
I/O Restart An I/O instruction interrupted by a
System Management Interrupt (SMI#) can
automatically be restarted following the execution
of the RSM instruction.
St o p Cl oc k The embedde d IntelDX2 proc essor
has a stop c lock con trol mechanism that prov ides
two low -powe r sta tes: a Stop Grant state (2 0–45
mA typical, depending on input clock frequency)
and a Stop Clock state (~100-200 µA typical, with
input clock frequency of 0 MHz).
Auto HALT Power Down — After the execution of
a HA LT ins truction, the embedded In telDX2
proc essor issues a normal Halt bus cycle and t he
clock input to the processor core is automatically
stopped, causing the proces sor to enter the Auto
HALT Power Do wn state (20–45 mA typical,
depending on input clock frequency).
Auto Idle Powe r Down — Th is f un ct io n al lo w s th e
processor to red uce the core freq uency to the bus
frequency when both the core and bus are idle.
Auto Idle Power Down is software transparent and
does not affect proc essor performa nce. Auto Idle
Power Down p rovi des an average power savings
of 10% and is only applicable to clock multiplied
processors.
1.2 Family Members
Table 1 shows the embedded IntelDX2 processors
and briefly describes their characteristics.
Table 1. The Embedded IntelDX2 Processor Family
Product Suppl y Volta ge
VCC
Maximu m
Processor
Frequency
Maximu m
External Bus
Frequency Package
SB80486DX2SC50 3.3 V 50 MHz 25 MHz 208-Lead S QFP
A80486DX2SA66 5.0 V 66 MHz 33 MHz 168-Pin PGA
Embedd ed IntelDX2™ Processor
3
2.0 HO W TO USE THIS DOCUMENT
For a complete set of documentation related to the
embedded IntelDX2 processor, use this document in
con ju nc t io n with t he follo win g r ef erence do cu m en t s :
Embedded Intel 486 Processor Family
Developer’s Manual
— O rde r No. 273021
Emb edde d Intel48 6™ Processor Hardware
Referenc e Manual
— Order No. 273025
Intel486 Microprocessor Family Programmer’s
Referenc e Manual
— Ord er N o. 24 04 86
Intel Application Note AP-485
Intel Processor
Identification with the CPUID Instruction
Order No. 24 16 18
The information in the reference documents for the
IntelDX2 processor applies to the embedded
IntelDX2 processor. Some of the IntelDX2 processor
information is duplicated in this document to
minimize the dependence on the reference
documents.
3.0 PIN DESCRIPTIONS
3.1 Pin Assignments
The following figures and tables show the pin assign-
ments of each package type for the embedded
IntelDX2 processor. Tables are provided showing
the pin di fference s b etwee n the e m be dd ed IntelD X 2
processor and other embedded Intel486 processor
products.
208-Lead SQFP - Quad Flat Pack
Fig ure 2, Package Diag ram for 208-Lead SQFP
Embedded IntelDX 2™ Processor (pg. 4)
Table 2, Pinout Differe nces for 208- Lead SQF P
Package (pg. 5)
Table 3, Pin Assignment for 208-Lead SQFP
Package (pg. 6)
Table 4, Pin Cross Reference for 208-Lead SQFP
Package (pg. 8)
168-Pin PGA - Pin Grid Array
Fig ure 3, Package Diag ram for 168-Pin PGA
Embedded IntelDX 2™ Processor (pg. 10)
Table 5, Pinout Differences for 168-Pin PGA
Pac kage (pg. 11)
Table 6, Pin Assignment for 168-Pin PGA
Pac kage (pg. 12)
Table 7, Pin Cross Reference for 168-Pin PGA
Pac kage (pg. 14)
Embedded IntelDX2™ Processor
4
Figure 2. P ackage Diagram for 208-Lead SQFP Embedded IntelDX2Processor
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
208-Lead SQFP
Embedded IntelDX2™ Processor
Top View
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
208
207
206
205
204
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
V
SS
LOCK#
PLOCK#
V
CC
BLAST#
ADS#
A2
V
SS
V
CC
V
SS
V
CC
A3
A4
A5
RESERVED#
A6
A7
V
CC
A8
V
SS
V
CC
A9
A10
V
CC
V
SS
V
CC
A11
V
SS
A12
V
CC
A13
A14
V
CC
V
SS
A15
A16
V
CC
A17
V
SS
V
CC
TDI
TMS
A18
A19
A20
V
CC
V
CC
A21
A22
A23
A24
V
SS
V
SS
V
CC
V
CC
PCHK#
BRDY#
BOFF#
BS16#
BS8#
V
CC
V
SS
INC
RDY#
KEN#
V
CC
V
SS
HOLD
AHOLD
TCK
V
CC
V
CC
V
SS
V
CC
V
CC
CLK
V
CC
HLDA
W/R#
V
SS
V
CC
BREQ
BE0#
BE1#
BE2#
BE3#
V
CC
V
SS
M/IO#
V
CC
D/C#
PWT
PCD
V
CC
V
SS
V
CC
V
CC
EADS#
A20M#
RESET
FLUSH#
INTR
NMI
V
SS
V
SS
V
CC
A25
A26
A27
A28
V
CC
A29
A30
A31
V
SS
DP0
D0
D1
D2
D3
D4
V
CC
V
SS
V
CC
V
CC
V
SS
V
CC
V
CC
V
SS
V
CC
D5
D6
V
CC
NC
D7
DP1
D8
D9
V
SS
V
CC
V
SS
D10
D11
D12
D13
V
SS
V
CC
D14
D15
V
CC
V
SS
DP2
D16
V
SS
V
CC
V
SS
V
SS
V
CC
V
SS
V
CC
V
SS
SRESET
SMIACT#
V
CC
V
SS
V
CC
INC
INC
SMI#
FERR#
NC
TDO
V
CC
INC
INC
IGNNE#
STPCLK#
D31
D30
V
SS
V
CC
D29
D28
V
CC
V
SS
V
CC
D27
D26
D25
V
CC
D24
V
SS
V
CC
DP3
D23
D22
D21
V
SS
V
CC
NC
V
SS
V
CC
D20
D19
D18
V
CC
D17
V
SS
A3227-01
Embedd ed IntelDX2™ Processor
5
Table 2. Pinout Differences for 208-Lead SQFP Package
P in # Embedded
Intel486™ SX
Processor
Embedded
IntelDX2™
Processor
Embedded Write-Back
Enha nce d Inte lD X4
Processor
3VCC1VCC VCC5
11 INC2INC CLKMUL
63 INC INC HITM#
64 INC INC WB/WT#
66 INC FERR# FERR#
70 INC INC CACHE#
71 INC INC INV
72 INC IGNNE# IGNNE#
NOTES:
1. This pin location is for the VCC5 pin on the embedded IntelDX4 processor. For compatibility with 3.3V processors that
have 5V-tolerant input buffers (i.e., embedded IntelDX4 processors), this pin should be connected to a VCC trac e, not to
the VCC plane.
2. INC. Internal No Connect. These pins are not connected to any internal pad in the embedded IntelDX2 processor. How-
ever, new signals are defined for the location of the INC pins in the embedded IntelDX4 processor. One system design
can accommodate any one of these processors provided the purpose of each INC pin is understood before it is used.
Embedded IntelDX2™ Processor
6
Table 3. Pin Assignment for 208-Lead SQFP Pack age (Sheet 1 of 2)
Pin# Description Pin# Description Pin# Description Pin# Description
1V
SS 53 VSS 105 VSS 157 VSS
2V
CC 54 VCC 106 VCC 158 A24
3V
CC155 VSS 107 VSS 159 A23
4 PCHK# 56 VCC 108 D16 160 A22
5 BRDY#57V
SS 109 DP2 161 A21
6 BOFF# 58 SRESET 110 VSS 162 VCC
7 BS16# 59 SMIACT# 111 VCC 163 VCC
8BS8#60
VCC 112 D15 164 A20
9V
CC 61 VSS 113 D14 165 A19
10 VSS 62 VCC 114 VCC 166 A18
11 INC263 INC2115 VSS 167 TMS
12 RDY# 64 INC2116 D13 168 TDI
13 KEN# 65 SMI# 117 D12 169 VCC
14 VCC 66 FERR# 118 D11 170 VSS
15 VSS 67 NC3119 D10 171 A17
16 HOLD 68 TDO 120 VSS 172 VCC
17 AHOLD 69 VCC 121 VCC 173 A16
18 TCK 70 INC2122 VSS 174 A15
19 VCC 71 INC2123D9175V
SS
20 VCC 72 IGNNE# 124 D8 176 VCC
21 VSS 73 STPCLK# 125 DP1 177 A14
22 VCC 74 D31 126 D7 178 A13
23 VCC 75 D30 127 NC3179 VCC
24 CLK 76 VSS 128 VCC 180 A12
25 VCC 77 VCC 129D6181V
SS
26 HLDA 78 D29 130 D5 182 A11
27 W/R# 79 D28 131 VCC 183 VCC
28 VSS 80 VCC 132 VSS 184 VSS
29 VCC 81 VSS 133 VCC 185 VCC
30 BREQ 82 VCC 134 VCC 186 A10
31 BE0# 83 D27 135 VSS 187 A9
32 BE1# 84 D26 136 VCC 188 VCC
33 BE2# 85 D25 137 VCC 189 VSS
34 BE3# 86 VCC 138 VSS 190 A8
35 VCC 87 D24 139 VCC 191 VCC
Embedd ed IntelDX2™ Processor
7
36 VSS 88 VSS 140 D4 192 A7
37 M/IO# 89 VCC 141 D3 193 A6
38 VCC 90 DP3 142 D2 194 RESERVED#
39 D/C# 91 D23 143 D1 195 A5
40 PWT 92 D22 144 D0 196 A4
41 PCD 93 D21 145 DP0 197 A3
42 VCC 94 VSS 146 VSS 198 VCC
43 VSS 95 VCC 147 A31 199 VSS
44 VCC 96 NC3148 A30 200 VCC
45 VCC 97 VSS 149 A29 201 VSS
46 EADS# 98 VCC 150 VCC 202 A2
47 A20M# 99 D20 151 A28 203 ADS#
48 RESET 100 D19 152 A27 204 BLAST#
49 FLUSH# 101 D18 153 A26 205 VCC
50 INTR 102 VCC 154 A25 206 PLOCK#
51 NMI 103 D17 155 VCC 207 LOCK#
52 VSS 104 VSS 156 VSS 208 VSS
NOTES:
1. This pin location is for the VCC5 pin on the embedded IntelDX4 processor. For compatibility with 3.3V processors that have
5V-tolerant input buffers (i.e., embedded IntelDX4 processors), this pin s hould be connected to a VCC trace, not to the VCC
plane.
2. INC. Internal No Connect. These pins are not connected to any internal pad in the embedded IntelDX2 processors. How-
ever, signals are defined for the location of the INC pins in the IntelDX4 processor. O ne system design can accommodate
any one of these processors provided the purpose of each INC pin is unders tood before it is used.
3. NC. Do Not Connect. These pins should always remain unconnected. Connec tion of NC pins to VCC, or VSS or to any other
signal can result in component malfunction or incompatibility with future steppings of the Intel486 proces sors.
Table 3. Pin Assignment for 208-Lead SQFP Package (Sheet 2 of 2)
Pin# Description Pin# Description Pin# Description Pin# Description
Embedded IntelDX2™ Processor
8
Table 4. Pin Cross Reference for 208-Lead SQFP Package (Sheet 1 of 2)
Address Pin # Data Pin # Control Pin # NC INC VCC VSS
A2 202 D0 144 A20M# 47 67 11 2 1
A3 197 D1 143 ADS# 203 96 63 3 10
A4 196 D2 142 AHOLD 17 127 64 9 15
A5 195 D3 141 BE0# 31 70 14 21
A6 193 D4 140 BE1# 32 71 19 28
A7 192 D5 130 BE2# 33 20 36
A8 190 D6 129 BE3# 34 22 43
A9 187 D7 126 BLAST# 204 23 52
A10 186 D8 124 BOFF# 6 25 53
A11 182 D9 123 BRDY# 5 29 55
A12 180 D10 119 BREQ 30 35 57
A13 178 D11 118 BS16# 7 38 61
A14 177 D12 117 BS8# 8 42 76
A15 174 D13 116 CLK 24 44 81
A16 173 D14 113 D/C# 39 45 88
A17 171 D15 112 DP0 145 54 94
A18 166 D16 108 DP1 125 56 97
A19 165 D17 103 DP2 109 60 104
A20 164 D18 101 DP3 90 62 105
A21 161 D19 100 EADS# 46 69 107
A22 160 D20 99 FERR# 66 77 110
A23159D2193 FLUSH# 49 80 115
A24158D2292 HLDA 26 82 120
A25154D2391 HOLD 16 86 122
A26153D2487 IGNNE# 72 89 132
A27152D2585 INTR 50 95 135
A28151D2684 KEN# 13 98 138
A29149D2783 LOCK# 207 102146
A30148D2879 M/IO# 37 106156
A31147D2978 NMI 51 111157
D30 75 PCD 41 114 170
D31 74 PCHK# 4 121 175
PLOCK# 206 128 181
PWT 40 131 184
RDY# 12 133 189
RESERVED# 194
RESET 48
SMI# 65 134 199
SMIACT# 59 136 201
Embedd ed IntelDX2™ Processor
9
SRESET 58 137 208
STPCLK# 73 139
TCK 18 150
TDI 168 155
TDO 68 162
TMS 167 163
W/R# 27 169
172
176
179
183
185
188
191
198
200
205
Table 4. Pin Cross Reference for 208-Lead SQFP Package (Sheet 2 of 2)
Address Pin # Data Pin # Control Pin # NC INC VCC VSS
Embedded IntelDX2™ Processor
10
Figure 3. Package Diagram for 16 8-Pin PGA Embedded IntelDX2™ Processor
A3226-01
D20
A
D19
B
D11
C
D22 D21 D18
D9
D
V
SS
E
D13 V
CC
DP1
F
V
SS
G
D8 V
CC
V
SS
H
V
CC
J
D3 D5
V
SS
K
V
SS
L
V
CC
D6
V
SS
M
D2
N
V
CC
D1
D0
P
A31
Q
A29 V
SS
A28
R
A27
S
A25 A26
1
2
1
2
TCK V
SS
CLK D17 D10 D15 D12 DP2 D16 D14 D7 D4 DP0 A30 A17
V
CC
A23
33
D23 V
SS
V
CC
A19
V
SS
NC
4
5
4
5
6 6
7
8
7
8
99
10
11
10
11
12 12
13 13
14 14
15
16
15
16
17 17
DP3 V
SS
V
CC
D24 D25 D27
V
SS
V
CC
D26
A21 A18 A14
A24 V
CC
V
SS
A22 A15 A12
A20
A16
A13
A9
A5 A11 V
SS
A7 A8 A10
A2 V
CC
V
SS
D29 D31 D28
V
SS
V
CC
D30
INC SMI# SRESET
RESERVED#
INC INC SMIACT#
INC INC NC
TDI TMS FERR#
IGNNE# NMI FLUSH# A20M# HOLD KEN# STPCLK# BRDY# BE2# BE0# PWT D/C# LOCK# HLDA BREQ A3 A6
INTR TDO RESET BS8# RDY# BE1# M/IO# PLOCK# BLAST# A4
AHOLD EADS# BS16# BOFF# BE3# PCD W/R# PCHK# INC ADS#
ABCDEFGHJKLMNPQRS
V
CC
V
SS
V
CC
V
SS
V
CC
V
SS
V
CC
V
SS
V
SS
V
CC
V
CC
V
CC
V
CC
V
CC
V
CC
V
CC
V
CC
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
168-Pin PGA
Embedded IntelDX2™ Processor
Pin Side View
Embedd ed IntelDX2™ Processor
11
Table 5. Pinout Differences for 168-Pin PGA Package
Pin # Embedded IntelDX2™ Processor Embedded Write-Back Enhanced
IntelDX4™ Processo r
A10 INC INV
A12 INC HITM#
B12 INC CACHE#
B13 INC WB/WT#
J1 VCC VCC5
R17 INC CLKMUL
S4 NC VOLDET
Embedded IntelDX2™ Processor
12
Table 6. Pin Assignment for 168-Pin PGA Package (Sheet 1 of 2)
Pin # Description Pin # Description Pin # Description
A1 D20 D17 BOFF# P2 A29
A2 D22 E1 VSS P3 A30
A3 TCK E2 VCC P15 HLDA
A4D23E3D10P16
VCC
A5 DP3 E15 HOLD P17 VSS
A6 D24 E16 VCC Q1 A31
A7 VSS E17 VSS Q2 VSS
A8 D29 F1 DP1 Q3 A17
A9 VSS F2 D8 Q4 A19
A10 INC1F3D15Q5A21
A11 VSS F15 KEN# Q6 A24
A12 INC1F16 RDY# Q7 A22
A13 INC1F17 BE3# Q8 A20
A14 TDI G1 VSS Q9 A16
A15 IGNNE# G2 VCC Q10 A13
A16 INTR G3 D12 Q11 A9
A17 AHOLD G15 STPCLK# Q12 A5
B1 D19 G16 VCC Q13 A7
B2 D21 G17 VSS Q14 A2
B3 VSS H1 VSS Q15 BREQ
B4 VSS H2 D3 Q16 PLOCK#
B5 VSS H3 DP2 Q17 PCHK#
B6 D25 H15 BRDY# R1 A28
B7 VCC H16 VCC R2 A25
B8 D31 H17 VSS R3 VCC
B9 VCC J1 VCC R4 VSS
B10 SMI# J2 D5 R5 A18
B11 VCC J3 D16 R6 VCC
B12 INC1J15 BE2# R7 A15
B13 INC1J16 BE1# R8 VCC
B14 TMS J17 PCD R9 VCC
B15 NMI K1 VSS R10 VCC
B16 TDO K2 VCC R11 VCC
Embedd ed IntelDX2™ Processor
13
B17 EADS# K3 D14 R12 A11
C1 D11 K15 BE0# R13 A8
C2 D18 K16 VCC R14 VCC
C3 CLK K17 VSS R15 A3
C4 VCC L1 VSS R16 BLAST#
C5 VCC L2 D6 R17 INC1
C6 D27 L3 D7 S1 A27
C7 D26 L15 PWT S2 A26
C8 D28 L16 VCC S3 A23
C9 D30 L17 VSS S4 NC2
C10 SRESET M1 VSS S5 A14
C11 RESERVED# M2 VCC S6 VSS
C12 SMIACT# M3 D4 S7 A12
C13 NC2M15 D/C# S8 VSS
C14 FERR# M16 VCC S9 VSS
C15 FLUSH# M17 VSS S10 VSS
C16 RESET N1 D2 S11 VSS
C17 BS16# N2 D1 S12 VSS
D1 D9 N3 DP0 S13 A10
D2 D13 N15 LOCK# S14 VSS
D3 D17 N16 M/IO# S15 A6
D15 A20M# N17 W/R# S16 A4
D16 BS8# P1 D0 S17 ADS#
NOTES:
1. INC. Internal No Connect. These pins are not connected to any internal pad in the embedded
IntelDX2 processors . However, signals are defined for the location of the INC pins in the IntelDX4
processor. One system design can accommodate any one of these proc essors provided the pur-
pose of each INC pin is understood before it is used.
2. NC. Do Not Connect. These pins should always remain unconnected. Connection of NC pins to
VCC, or VSS or to any other signal can result in component malfunction or incompatib ili ty with
future steppings of the Intel486 processors.
Ta ble 6. Pin Assignment for 168-Pin PGA Package (Sheet 2 of 2)
Pin # Description Pin # Description Pin # Description
Embedded IntelDX2™ Processor
14
Ta ble 7. Pin Cross Reference for 168-Pin PGA Package (Sheet 1 of 2)
Address Pin # Data Pin # Control Pin # NC INC Vcc Vss
A2 Q14 D0 P1 A20M# D15 C13 A10 B7 A7
A3 R15 D1 N2 ADS# S17 S4 A12 B9 A9
A4 S16 D2 N1 AHOLD A17 A13 B11 A11
A5 Q12 D3 H2 BE0# K15 B12 C4 B3
A6 S15 D4 M3 BE1# J16 B13 C5 B4
A7 Q13 D5 J2 BE2# J15 R17 E2 B5
A8 R13 D6 L2 BE3# F17 E16 E1
A9 Q11 D7 L3 BLAST# R16 G2 E17
A10 S13 D8 F2 BOFF# D17 G16 G1
A11 R12 D9 D1 BRDY# H15 H16 G17
A12 S7 D10 E3 BREQ Q15 J1 H1
A13 Q10 D11 C1 BS16# C17 K2 H17
A14 S5 D12 G3 BS8# D16 K16 K1
A15 R7 D13 D2 CLK C3 L16 K17
A16 Q9 D14 K3 D/C# M15 M2 L1
A17 Q3 D15 F3 DP0 N3 M16 L17
A18 R5 D16 J3 DP1 F1 P16 M1
A19 Q4 D17 D3 DP2 H3 R3 M17
A20 Q8 D18 C2 DP3 A5 R6 P17
A21 Q5 D19 B1 EADS# B17 R8 Q2
A22 Q7 D20 A1 FERR# C14 R9 R4
A23 S3 D21 B2 FLUSH# C15 R10 S6
A24 Q6 D22 A2 HLDA P15 R11 S8
A25 R2 D23 A4 HOLD E15 R14 S9
A26 S2 D24 A6 IGNNE# A15 S10
A27 S1 D25 B6 INTR A16 S11
A28 R1 D26 C7 KEN# F15 S12
A29 P2 D27 C6 LOCK# N15 S14
A30 P3 D28 C8 M/IO# N16
A31 Q1 D29 A8 NMI B15
D30 C9 PCD J17
D31 B8 PCHK# Q17
PLOCK# Q16
PWT L15
RDY# F16
RESERVED# C11
RESET C16
SMI# B10
SMIACT# C12
Embedd ed IntelDX2™ Processor
15
SRESET C10
STPCLK# G15
TCK A3
TDI A14
TDO B16
TMS B14
W/R# N17
Table 7. Pin Cross Reference for 168-Pin PGA Package (S he et 2 of 2)
Address Pin # Data Pin # Control Pin # NC INC Vcc Vss
Embedded IntelDX2™ Processor
16
3.2 Pin Quick Reference
The follo wing is a brief pin descripti on. For detailed sig nal descriptions refe r to Appendix A, “Signal Descrip-
tions,in the
Embedded Intel4 86 Proc essor Family Develop ers Manual,
order No. 273021.
Table 8. Embedded IntelDX2™ Processor Pin Descriptions (Sheet 1 of 7)
Symbol Type Name and Function
CLK IClock
provides the fundamental timing and internal operating frequency for the
embedded IntelDX2 processor. All external timing parameters are specified with
respect to the rising edge o f C LK.
ADDRESS BUS
A31-A4
A3–A2 I/O
OAddress Lines A31–A2, together with th e byte enable signa ls, BE3#–BE0#,
define th e physical area of memory or i nput/output space access ed. A ddress
lines A31–A4 are used to drive addresses into the embedded IntelDX2 processor
to perform cache line invalidation. Input signals must meet setup and hold times
t22 and t23. A31 –A2 ar e not driven during bus or ad dre ss hold.
BE3#
BE2#
BE1#
BE0#
O
O
O
O
Byte Enable
signals indicate active bytes during read and write cycles. During
the first cycle of a cache fill, the ex ternal sys tem shou ld assume that all byte
enables are active. BE 3#–BE0# are active LOW and are no t dr iven during bus
hold.
BE3# applies to D31–D24
BE2# applies to D23–D16
BE1# applies to D15–D8
BE0# applies to D7–D0
DATA BUS
D31–D0 I/O Data Lines. D7–D0 define th e least significant byte of the d ata bus; D31 –D2 4
define the most significant byte of the data bus. These signals must meet setup
and hold times t22 and t23 for proper operation on reads. These pins are driven
during the sec on d an d su bs eq ue nt cloc k s of wr it e cy cl es .
DATA PARITY
DP3–DP0 I/O There is one Data Parity pi n for each byte of the data bus. Data parity is
generated on all write data cycles wit h the same timin g as the data driv en by th e
embedded IntelDX2 processor. E v en parity i nformation must be driv en back into
the processor on the data parit y pins with t he same ti ming as read information t o
ensure that the correct parity check statu s is indicated by the embedded IntelDX2
processor. The signals read on thes e pins do not affect program execution.
Input signals must meet setup and hold times t22 and t23. DP3–DP0 must be
connected to VCC through a pull-up resistor in systems that do not use parity.
DP3 –DP0 are active HI GH and are driven during the second and subsequent
clocks of wr ite cycles.
PCHK# OParity Status is driven on the PCHK# pin the clock after ready for read
operat ions. The parit y status is for dat a sample d at the end of the previous c lock.
A parity error is indicated by PCHK# being LOW. Parity status is only checked for
enabled bytes as indicated by the byte enable and bus size signals. PCHK# is
valid only in the clock immediately after read data is returned to the processor. At
all other times PCHK# is inactive (HIGH). PCHK# is never floated.
Embedd ed IntelDX2™ Processor
17
BUS CYCLE DEFINITION
M/IO#
D/C#
W/R#
O
O
O
Memory/Input-Output
,
Data/Control
and Write/Read
lines ar e the prima ry bus
definition signals. These signals are driven valid as the ADS# signal is asserted.
M/IO# D/C# W/R# Bus Cycle Initiated
0 0 0 Interrupt Acknowledge
0 0 1 HALT/Special Cycle (see details below)
0 1 0 I/O Read
0 1 1 I/O Write
1 0 0 Cod e Read
1 0 1 Reserved
1 1 0 Memory Read
1 1 1 Memory Write
HALT/Special Cycle
Cycle Name BE3# - BE0# A4-A2
Shutdown 1110 000
HALT 1011 000
Stop Grant bus cycle 10 11 100
LOCK# OBus Lock
indicates that th e cur ren t bus cyc le is lo cked. The embedded In telDX2
processor does not allow a bus hold when LOCK# is asserted (address holds are
allowed) . LOC K# go es active in the first clock of th e fir st lock ed bus cycle and
goes in ac ti ve af t er t he l ast cl ock o f t he l as t l ock ed bu s c ycl e. T he la st l ock ed cycle
ends when Ready is returned. LOCK# is active LOW and not driven during bus
hold. Locked read c ycles are not transf orme d int o cache fill cycles when KEN# i s
returne d active .
PLOCK# OPseudo-Lock in dicate s that the cur re nt bus transaction requir es more than one
bus cycle to complete. For the embedded IntelDX2 processor, examples of such
opera tions are se gment table descriptor rea ds (6 4 bits) and ca che line fills (128
bi ts). For Intel4 86 proc essors with on-ch ip Floa ting-Point Unit, f loatin g-point long
reads and writes (64 bits) also require more than one bus cycle to complete.
The embedded IntelDX2 processor drives PLOCK# active until the addresses for
the last bus cycle of the transaction are driven, regardless of whether RDY# or
BR DY# have b een r eturned.
Normally PL OCK# and BLAST# are i nverse of each other . However, during th e
first bus cycle of a 64-bit floatin g-point write (for In tel486 processors with on-chip
Floating-Point Un it) both PLO CK# and BLAST# are asserted .
PLOCK# is a function of the BS8#, BS16# and KEN# inputs. PLOCK# should be
sampled only in the clock in which Ready is returned. PLOCK# is active LOW and
is not dri ve n dur in g bu s ho ld.
BUS CONTROL
ADS# OAddress Status
output indicates that a valid bus cycle definition and address are
available on the cycle definition lines and address bus. ADS# is driven active in
the same cloc k in which the addresses are driven. ADS# is active LOW and not
driven during bus hold.
Table 8. Embedded IntelDX2™ Processor Pin Descriptions (Sheet 2 of 7)
Symbol Type Name and Function
Embedded IntelDX2™ Processor
18
RDY# INon-burst Ready
input indicates that the current bus cycle is complete. RDY#
indicate s that the external system ha s presented valid data on the data pins in
respon se to a read or th at t he external s ystem has accept ed dat a from the
embedded IntelDX2 processor in response to a write. RDY# is ignored when the
bus is idle and at the end of the first clock of the bus cycle.
RDY# is active during address hold. Data can be return ed to the embedded
IntelDX2 proces sor while AH OLD is active.
RDY# is active LOW and is not pr ovided wit h an internal pull-up resistor. RDY#
must satisfy setup and hold times t16 and t17 for proper chip op erat ion.
BURST CONTROL
BRDY# IBurst Ready
input performs t he same function du ring a burst cycle that R DY#
performs d uri ng a non-bu rst cycle. BRD Y# i ndicates that the external sy stem has
presented valid data in response to a read or that the ex ternal sy stem has
accepted data in response to a write. BRDY# is ignored when the bus is idle and
at the end of the first clock in a bus cycle.
BRDY# is sampled in the second and subsequent clocks of a burst cycle. Data
presente d on the data bus i s str o bed in to the embe dded IntelD X2 proces sor
when BR DY# is sampled active. If RDY # is returned simultaneously with B RDY #,
BRDY# is ignored and the bur s t cycle is prematurely abo rted.
BRDY# is active LOW and is provided with a smal l pull-up r esisto r. BRDY# must
satisfy the setup and ho ld times t16 an d t17.
BLAST# OBu rst Last
signal indicates that the next time BRDY# is returned, the burst bus
cycle is complete. BLAST# is active for both burst and non-burst bus cycles.
BLAST# is active LOW and is not driven during bus hold.
INTERRUPTS
RESET IReset input forc es the embedded IntelDX2 processor to begin execution at a
known state . The processor ca nnot begin executing i nstr uctions until at l east
1ms after V
CC, and CLK have reached their proper DC and A C spe c ific ations .
The RESET pin must remain activ e dur ing this time to ensu re proper pr ocessor
operation. However, for warm resets, RESET should remain active for at least 15
CLK periods. RESET is active HIGH. RESET is asynchronous but must meet
setup and hold times t20 and t21 for recognition in any specific clock.
INTR IMa sk ab le Inte r rupt
indicat es that an external interrupt has been genera ted.
Wh en the internal interrupt flag is set in EFLAGS, active interrupt processing is
initiated. The embedded IntelDX2 processor generates two locked interrupt
ack nowledge bus cycles in response to the INTR pin going acti ve. INTR must
remain active until the interrupt acknowledges have been performed to ensure
processor recognition of t he interr upt.
INTR is active HIG H a nd is not prov ided with a n internal pull-down re sistor. INTR
is asynchronous, but must meet setup and hold times t20 an d t 21 for recognition in
any specific clock.
NMI INon-M a sk abl e Inte rr upt
requ est signal indicates that an external non-maskable
interrupt has been generated. NMI is rising-edge sensitive and must be held LOW
for at least four CLK periods before this rising edge. NMI is not provided with an
inter nal pull-d own resi stor. NMI is asynchrono us, but must me et set up and hold
ti mes t20 and t21 for recognition in a ny specific cloc k.
Table 8. Embedded IntelDX2™ Processor Pin Descriptions (Sheet 3 of 7)
Symbol Type Name and Function
Embedd ed IntelDX2™ Processor
19
SRESET ISoft Reset pin du pl ic ate s all functio na lity of the RE S ET pi n exc e pt th at the
SMBASE registe r retains its previou s value. For soft resets, SRESET must
remain active for at least 15 CLK periods. SRESET is active HIGH. SRESET is
asynchronous but must meet setup and hold times t20 and t21 for recognition in
any specific cl ock.
SMI# ISy ste m Mana ge me nt Inte rr upt inp ut in vokes System Ma nagement Mode
(SMM). SMI# is a falling-edge triggered signal which forces the embedded
IntelDX2 processor into SMM at the completion of the current instruction. SMI# is
recognized on an instruction boundary and at each iteration for repeat string
instr uctions. SMI# does no t break LOCK ed bus cycles and cann ot interrupt a
currently executing SMM. The embedded IntelDX2 processor latches the falling
edge of one pendin g SMI # signal whi le it is ex ecuti ng an existing S MI#. The
nested SMI# is not rec ognized until after the execu tion of a Resume (RSM)
instruction.
SMIACT# OSyst em Managemen t I nte rrupt Acti ve, an active LOW output, indicates that the
em bedded IntelDX 2 pr ocessor is operating in SMM. It i s asserted when the
processor begins to execute the SMI# state save sequence and remains active
LOW until the processor executes the last state restore cycle out of SMRAM.
STPCLK# IStop Clock Request input signal indic ates a request was made to turn off or
change the CLK inpu t frequenc y. When the embedded IntelDX2 pr ocessor
recognizes a STPCLK#, it stops execution on the next instruction boundary
(unless superseded by a higher priority interrupt), empties all internal pipelines
and write buf fer s, and gene r at es a Stop Gr ant b us cycle . S TPC L K# is act iv e
LOW. Though STPCLK# has an internal pull-up resistor, an external 10-K pull-
up resistor is needed if the STP CLK# pi n is unused. STPCLK# is an
asynchronous signal, but must re main active until the embedded IntelDX2
pr oc es sor i ss ues t he St op G ra n t bus cy cl e. S T PC LK# ma y b e de -as se r ted a t
any ti me after the processo r ha s issued the Stop Gr ant bus cycle.
BUS ARBITRATION
BREQ OBus Request
signal indica tes that the embedded IntelDX2 processor has
inter nally genera ted a bus request. BREQ is generat ed whether or not th e
processor is driving the bus. BREQ is active HIGH and is never floated.
HOLD IBus Hold Request allows another bus master complete control of the embedded
IntelDX2 processor bus . In response to HOLD going active, the processor floats
most of its output and input/output pins. HLDA is asserted after completing the
current bus cycl e, bu rst cycle or seque nce of locked cycles. The embedded
IntelDX2 pro c essor rema ins in th is stat e until HOLD is de- asser ted. HOLD is
active HIGH and is not provided with an internal pull-down resistor. HOLD must
satisfy s etup and hold times t18 and t19 for p roper operation.
HLDA OHold Acknowledge
goes active in response to a hold request pres ented on the
HOLD pin. HL DA indicates that the embe dded IntelDX2 pr ocessor has give n the
bus to another local bus master. HLDA is driven active in the same clock that the
processor floats its bus. HLDA is driven inactive when leaving bus hold. HLDA is
ac tive HIGH and remain s dri v en during bu s hold.
Table 8. Embedded IntelDX2™ Processor Pin Descriptions (Sheet 4 of 7)
Symbol Type Name and Function
Embedded IntelDX2™ Processor
20
BOFF# IBackoff
input forces the embedded IntelDX2 processor to float its bus in the next
clock. The processor floats all pins normally floated during bus hold but HLDA is
not asserted in response to BOFF#. BOFF# has higher priority than RDY# or
BRDY#; if both are returned in the sam e cloc k, BOFF# takes effect. The
embedded IntelDX2 processor remains in bus hold until BOFF# is negated. If a
bus cycle is in progress when BO FF# is asserted the cycle is r estarted. BO FF# is
active LOW and must meet setu p and hold times t18 an d t19 for proper operat ion.
CACHE INVALIDATION
AHOLD IAddress H old
re qu es t al lows an oth er bus mas ter ac c es s to th e em be dd ed
IntelDX2 processor s addr ess bus for a c ache inv alidation cycle. The processor
stops driving its address bus in the clock following AHOLD going active. Only the
address bus is floa ted dur ing address hold, t he remainde r of the bus remains
active. AHOLD is active HIG H and is provided with a small internal pull-do wn
resistor. For prop er o pera tion, AHO LD must meet setup and hold times t18 and
t19.
EADS# IExternal Address - This signal indicates that a
valid
external address has been
dri ven on to t he emb edde d I nte lD X2 p roc ess or a ddre ss pi ns. T hi s a dd ress is use d
to perform an internal cache invalidation cycle. EADS# is active LOW and is
provided with an in ternal pull-up resistor. EAD S# must satis fy set up and ho ld
ti mes t12 and t13 for p rop er operati on.
CACHE CONTROL
KEN# ICache Enable
pin is used to determin e whether the curr ent cyc le is cach eable.
When the embedded IntelDX2 processor generates a cycle that can be cached
and KEN# is act ive one cl ock before RDY# or BRDY# du rin g the first transfer of
the cycle, the cycle becomes a cac he line fill cycle. Retur ning KEN# active one
clock before RDY# during the last read in the cache line fill causes the line to be
placed in the on-chip ca che. KEN# is active LOW and is pr ovided with a small
inter nal pull-u p resistor. KEN # must satisfy set up and hold times t14 and t15 fo r
proper oper ation.
FLUSH# ICa c h e Flu sh
input forces the embedded IntelDX2 processor to flush its entire
inter nal cache. FLUSH# is ac tive LO W and need only be asser ted f or on e clock.
FLUSH# is asynchronous but setup and hold times t20 and t21 mu st be met for
recognition in any specific clock.
PAGE CACHEABILITY
PWT
PCD O
OP ag e Write -Th roug h
and Pa ge Cache D isa ble pins reflect the state of the page
attribute bits, PWT and PCD, in the page table entry, page directory entry or
control register 3 (CR3) when paging is enabled. When paging is disabled, the
em bedded I nt elD X2 pro c es so r ig nores the PC D and PWT bits an d as s um e s they
are zero for the purpose of caching and driving PCD and PWT pins. PWT and
P CD ha ve th e s am e tim ing as th e c yc le de finitio n p ins (M/IO#, D/C#, an d W/R#).
PWT and PCD are active HIGH and are not driven during bus hold. PCD is
mas k ed by the cache disable bit (CD) in Control Register 0.
Table 8. Embedded IntelDX2™ Processor Pin Descriptions (Sheet 5 of 7)
Symbol Type Name and Function
Embedd ed IntelDX2™ Processor
21
BUS SIZE CONTROL
BS16#
BS8# I
IBu s Size 16
and Bus Size 8
pins (bus sizing pins) cause the embedded IntelDX2
processor to run multiple bus cycles to complete a request from devices that
cannot provide or accept 32 bits of data in a single cycle. The bus sizing pins are
sampled every clock. The processor uses the state of these pins in the clock
before Ready to determine bus size. These signals are active LOW and are
pr ov id ed w i th i nte r n al p ull - u p res is tors. T he se in pu ts m us t sati sfy s etu p and h old
times t14 a nd t15 for proper operation.
ADDRESS MASK
A20M# IAddress Bit 20 Mask pin, when asserted, causes the embedded IntelDX2
processor to mask physical address bit 20 (A20) before performing a lookup to
the internal cache or driving a memory cycle on the bus. A20M# emulates the
address wraparound at 1 Mbyte, which occurs on the 8086 processor. A20M# is
active LOW and should be asserted only when the embedded IntelDX2 processor
is in real mode. This pin is asynchronous but should meet setup and hold times
t20 and t21 for recognition in any specific clock. For proper operation, A20M#
should be sampled HIGH at the falling edge of RESET.
TEST ACCESS PORT
TCK ITest Cloc k, an in pu t to the em be dded In telDX2 proces so r , p ro vi de s the c loc k in g
function required by the JTA G Bou ndary scan feature. TCK is used to clock state
infor matio n (via TMS) and data (vi a TDI) into the compon ent on the rising edge of
TCK. Data is clocked out of the component (via TDO) on the falling ed ge of TCK.
TCK is provided with an internal pull-up resistor.
TDI ITest Data Input is the serial input used to shift JTAG inst ructions and d ata into
the processor. TDI is sampled on the rising edge of TCK, during the SHIFT-IR
and SHIFT-DR Test Access Port (TAP) controller states. During all other TAP
controller states, TDI is a “don’t care.” TDI is provided with an internal pull-up
resistor.
TDO O Test Data Output is the ser ial output used to shift JTAG instructions an d data out
of th e co m po ne nt. TD O is d riv en on the fallin g edge of TCK during the S HIFT-IR
and S HIFT-DR TAP c o ntro ller sta te s. At all o ther t im es TD O is dri v en to th e high
im pedanc e stat e.
TMS ITest Mode Select is decoded by the JTAG TAP to select test logic operation.
TMS is sampled on the rising edge of TCK. To guarantee deterministic behavior
of the TAP controller, TMS is provided with an internal pull-up resistor.
Table 8. Embedded IntelDX2™ Processor Pin Descriptions (Sheet 6 of 7)
Symbol Type Name and Function
Embedded IntelDX2™ Processor
22
NUMERIC ERROR REPORTING
FERR# OThe Floati ng P oint Error pin is driven active when a floating point error occurs.
FERR# is similar to the ERROR# pin on the Intel387™ Math CoProcessor.
FERR# is included for compatibility with systems using DOS type floating point
error re porting. FERR# will not go act ive if FP errors are masked in FPU register.
FERR# is active LOW, and is not floated during bus hold.
IGNNE# I When the Ignore Numeric Error pin is asserted the processor will ignore a
numeric error and continue executing non-control floating point instructions, but
F ER R# w i ll s t i ll b e ac tivated by the pr o ce s so r. Wh en IG N NE # i s de - a ss erted the
processor will freeze on a non-control floating point instruction, if a previous
f lo ati ng p oi nt ins tr u ct ion caus ed a n er ror. IGNNE# ha s no effect w he n th e NE bit
in control register 0 is set. IGNNE# is active LOW and is provided with a small
internal pull-up resistor. IGNNE# is asynchronous but setup and hold times t20
and t21 must be met to ensure recognition on any specific clock.
RESERVED PINS
RESERVED# IReserved i s r es erv e d fo r fu tur e use. Th is pi n M U ST be connec te d to an e xt er n al
pull- up r esistor circuit. The recommended resistor value is 1 0 kOhms. The pull-up
resistor must be connected only to the RESERVED# pin. Do not share this
resistor with other pins requiring pull-ups.
Table 8. Embedded IntelDX2™ Processor Pin Descriptions (Sheet 7 of 7)
Symbol Type Name and Function
Embedd ed IntelDX2™ Processor
23
Table 9. Output Pins
Name Active Level Outp ut Sign al
Floated During
Address Hold Floated During
Bus Hold During Stop Grant and
Stop Clock States
BREQ HIGH Previous State
HLDA HIGH As per HOL D
BE3#-BE0# LOW Previous Sta te
PWT, PCD HIGH Previous State
W/R#, M/IO#, D/C# HIGH/LOW Previous State
LOCK# LOW HIGH (inactive)
PLOCK# LOW HIGH (inactive)
ADS# LOW HIGH (inactive)
BLAST# LOW Previous State
PCHK# LO W Previous Sta te
FERR# LOW Previ ous S tate
A3-A2 HIGH Previous State
SMIACT# LOW Previous State
NOTES: The term “Previous State” means that the processor maintains the logic level applied to the signal pin just before
the processor entered the Stop Grant state. This cons erves power by preventing the signal pin fr om floating.
Table 10. Input/Output Pins
Name Active Level
Output Signal
Floated During
Address Hold Floated During
Bus Hold During Stop Grant and
S top Cloc k States
D31-D0 HIGH Floated
DP3–DP0 HIGH Floated
A31-A4 HIGH Previous Sta te
NOTES: The term “Previous S tate” means that the processor maintains the logic level applied to the signal pin just befor e the
processor entered the Stop Grant state. This conserves power by preventing the signal pin from floating.
Ta ble 11. Te st P ins
Name Input or Output Sampled/ Driven On
TCK Input N/A
TDI Input Rising Edge of TCK
TDO Ou tput Failing Edge of TCK
TMS Input Rising Edge of TCK
Embedded IntelDX2™ Processor
24
Ta ble 12. Input Pins
Name Active Level Synchronous/
Asynchronous Internal Pull-Up/
Pull-Down
CLK
RESET HIGH Asynchronous
SRESET HIGH Asynchronous Pull-Down
HOLD HIGH Synchronous
AHOLD HIGH Synchronous Pull-Down
EADS# LOW Synchronous Pull-Up
BOFF# LOW Synchronous Pull-Up
FLUSH# LOW Asynchronous Pull-Up
A20M# LOW Asynchronous Pull-Up
BS16#, BS8# LOW Synchronous Pull-Up
KEN# LOW Synchronous Pull-Up
RDY# LOW Synchronous
BRDY# LOW Synchronous Pull-Up
INTR HIGH Asynchronous
NMI HIGH Asynchronous
IGNNE# LOW Asynchronous Pull-Up
RESERVED#
SMI# LOW Asynchronous Pull-Up
STPCLK# LOW Asynchronous Pull-Up1
TCK HIGH Pull-Up
TDI HIGH Pull-Up
TMS HIGH Pull-Up
NOTES:
1. Though STPCLK# has an internal pull-up resistor, an external 10-K pull-up resistor is needed if the STPCLK# pin is
unused.
25
Embedd ed IntelDX2™ Processor
4.0 ARCHITECT URAL AND
FUNCTIONAL OVERVIEW
The embedded IntelDX2 processor architecture is
essentially the same as the IntelDX2 processor.
Refer to the Embedded Intel486™ Processor Family
Developer’s Manual for a description of the IntelDX2
processor.
Note that the embedded IntelDX2 processor has one
pin reserved for possible future use. This pin, an
input signal, is called RESERVED# and must be
connected to a 10-K pull-up resistor. The pull-up
resistor must be connected only to th e RESE RVED#
pin. Do not share this resistor with other pins
req uiri ng pull-ups.
4.1 CPUID Instruction
The embedded IntelDX2 processor supports the
CPUID instruction (see Table 13). Because not all
Intel processors support the CPUID instruction, a
simple test can determine if the instruction is
supported. The test involves the processor’s ID Flag,
which is bit 21 of the EFLAGS register. If software
can change the value of this flag, the CPUID
instruction is available. The actual state of the ID
Flag bit is irrelevant and provides no significance to
the hardware. This bit is cleare d (rese t to zero) upo n
device reset (RESET or SRESET) for compatibility
with Intel486 processor designs that do not support
the CPUID instruct ion.
CPUID-instruction details are provided here for the
embedded IntelDX2 processor. Refer to Intel Appli-
cation Note AP-485
Intel Processor Identification
with the CP UID Instru ction
(Order No. 2416 18) for a
description that covers all aspects of the CPUID
instruction and how it pertains to other Intel
processors.
4.1.1 Operation of the CPUID Instruction
The CPUID instruction requires the software
developer to pass an input parameter to the
processor in the EAX register. The processor
response is returned in registers EAX, EBX, EDX,
and ECX.
Vendor ID String - When the parameter passed in EAX is 0 (zero), the register values returned upon
instruction execut ion are shown in the fo llowing table.
The v alues in EB X, E DX an d EC X in dic a te an I nte l proces s or. Wh en tak en in th e pr o pe r or d er, th ey decode to
the string “GenuineIntel.”
Table 13. CPUID Instruction Description
OP CO DE Instr uc tio n Processor
Core Clocks
Parameter passed in
EAX
(Input Value) Description
0F A2 CPUID 9 0 Vendor (Intel) ID String
14 1 Processor Identification
9 > 1 Undefined (Do Not Use)
31-------------24 23-----------16 15--------------8 7--------------0
High Value (= 1) EAX 0000 0000 0000 0001
Vendor ID String EBX u (75) n (6E) e (65) G (47 )
(ASCII EDX I (49) e (65) n (6E) i (69)
Characters) ECX l (6C) e (65) t (74) n (6E)
Embedded IntelDX2™ Processor
26
P roces sor I dentif ica tion - When th e paramet er pas sed to EAX i s 1 (on e), the registe r va lues return ed upo n
ins t ru c tion exec ution ar e :
4.2 Identif ication After Reset
P roc es sor Ide nti fica tion - Upon reset, the EDX register contains the processor signature:
4 .3 Bou ndary Sca n (J TA G)
4.3.1 D evic e Identification
Tables 14 and 15 show the 32-bit code for the embedded IntelDX2 processor. This code is loaded into the
Device Identification Register.
31---------------------------14 13,12 11----8 7----4 3----0
Processor
Signature EAX (Do Not Use)
Intel Reserv ed 0 0
Processor
Type
0 1 0 0
Family 0 0 1 1
Model XXXX
Stepping
(Intel releases information about stepping numbers as needed)
31--------------------------------------------------------------------------------------------------0
Intel Rese rved EBX Intel Reserved
(Do Not Use) ECX Intel Reserved
31----------------------------------------------------------------------------2 1 0
Feature Flags EDX 0------------------------------------------------------------------------------0 1
VME 0
FPU
31---------------------------14 13,12 11----8 7----4 3----0
Processor
Signature EDX (Do Not Use)
Intel Reserv ed 0 0
Processor
Type
0 1 0 0
Family 0 0 1 1
Model XXXX
Stepping
(Intel releases information about stepping numbers as needed)
Table 14. Boundary Scan Component Identification Code (3.3 Volt Processor)
Version Part Number Mfg ID
009H = Intel 1
VCC
0=5 V
1=3.3 V
Intel
Architecture
Ty pe
Family
0100 = Intel486
CPU Family
Model
00101 =
embedded IntelDX2
processor
31----28 27 26-----------21 20----17 16--------12 11------------1 0
XXXX 1 000001 0100 00101 00000001001 1
(Intel releases information about version numbers as needed)
Boundary Scan Component Identification Code = x828 5013 (Hex)
Embedd ed IntelDX2™ Processor
27
4.3.2 Boundary Scan Register Bits and Bit
Order
The bo undary scan register conta ins a cell for each
pin as well as cells for control of bidirectional and
three-state pins. There are “Reserved” bits which
correspond to no-connect (N/C) signals of the
embedded IntelDX2 processor. Control registers
WRCTL, ABUSCTL, BUSCTL, and MISCCTL are
used to select the direction of bid irectional or three-
state output signal pins. A “1” in these cells
designates that the associated bus or bits are floated
if the pins are three-state, or selected as input if they
are bidirectional.
WRCTL controls D31-D0 and DP3–DP0
ABUSCTL controls A31-A2
BUSCTL cont rols ADS#, BLAST# , PLOCK#,
LOCK#, W/R#, BE0#, BE1#, BE2#, BE3#, M/IO#,
D/C# , PWT, and PCD
MISCCTL controls PCHK#, HLDA, and BREQ
The following is the bit order of the embedded
IntelDX2 processor boundary scan register:
Table 15. Boundary Scan Component Identification Code (5 Volt Processor)
Version Part Number Mfg ID
009H = Intel 1
VCC
0=5 V
1=3.3 V
Intel
Architect ure
Type
Family
0100 = Intel486
CPU Family
Model
00101 =
embedded IntelDX2
processor
31----28 27 26-----------21 20----17 16--------12 11------------1 0
XXXX 0 000001 0100 00101 00000001001 1
(Intel releases information about version numbers as needed)
Boundary Scan Component Identification Code = x028 5013 (Hex)
TDO A2, A3, A4, A5, RESERVED#, A6,
A7, A8, A9, A10, A11, A12, A13,
A14, A15, A16, A17, A18, A19,
A20, A21, A22, A23, A24, A25,
A26, A27, A28, A29, A30, A31,
DP0, D0, D1, D2, D3, D4, D5, D6,
D7, DP1, D8, D 9, D10, D11, D12,
D13, D14, D15, DP2, D16, D17,
D18, D19, D20, D21, D22, D23,
DP3, D24, D25, D26, D27, D28,
D29, D30, D31, STPCLK#,
IGNNE#, FERR#, SMI#,
SMIACT#, SRESET, NMI, INTR,
FLUSH#, RESET, A20M#,
EADS#, PCD, PWT, D/C#, M/IO#,
BE3#, BE2#, BE1#, BE0#, BREQ,
W/R#, HLDA, CL K, RESERVED#,
AHOLD, HOLD, KEN#, RDY#,
BS8#, BS16#, BOFF#, BRDY#,
PCHK#, LOCK#, PLOCK#,
BLAST#, ADS#, MISCCTL,
BUSCTL, ABUSCTL, WRCTL TDI
Embedded IntelDX2™ Processor
28
5.0 ELECTRICAL SPECIFICATIONS
5.1 Maximum Ratings
Table 16 is a stress rating only. Extended exposure
to the Maximum Ratings may affect device reliability.
Furthermore, although the embedded IntelDX2
processor contains protective circuitry to resist
damage from electrostatic discharge, always take
precautions to avoid high static voltages or electric
fields.
Functional operating conditions are given in Section
5.2, DC Specifications and Se ction 5.3, AC Speci-
fications.
5.2 DC Specifications
The following tables show the operating supply
voltages, DC I/O specifications, and component
power consumption for the embedded IntelDX2
processor.
T ab le 16 . Abso lut e Ma xim um Ra t in gs
Case Temperature under
Bias -65 °C to +110 °C
Storage Temperature -65 °C to +150 °C
DC Voltage on Any Pin with
Respect to Ground -0.5 V to VCC + 0.5 V
Supply Voltage VCC with
Respect to VSS -0.5 V to +6.5 V
Table 17. Operating Supply Voltages
Product VCC
SB80486DX2SC50 3.3 V ± 0.3V
A80486DX2SA66 5.0 V ± 0.25 V
Embedd ed IntelDX2™ Processor
29
Table 18. 3.3 V DC Specifications
Functional Operating Range: VCC =3.3V±0.3V,T
CASE=0 °C to +8 5 ° C
Symbol Parameter Min. Max. Unit Notes
VIL Input LOW Voltage -0.3 +0.8 V
VIH Input HIGH Voltage 2.0 VCC +0.3 V Note 1
VIHC Input HIGH Voltage of CLK VCC -0.6 VCC +0.3 V
VOL Output LOW Voltage
IOL = 2.0 mA
IOL = 100 µA 0.4
0.2 V
V
VOH Output HIGH Voltage
IOH = -2.0 mA
IOH = -1 00 µA 2.4
VCC -0.2 V
V
ILI Input Leakage Current 15 µA Note 2
IIH Input Leakage Current
SRESET 200
300 µA
µANote 3
Note 3
IIL Input Leakage Current 400 µA Note 4
ILO Output Leakage Current 15 µA
CIN Input Capacitance 10 pF Note 5
COUT I/O or Output Capacitance 10 pF Note 5
CCLK CLK Capacitance 6 pF Note 5
NOTES:
1. All inputs except CLK.
2. This parameter is for inputs without pull-up or pull-down resistors and 0V VIN VCC.
3. This parameter is for inputs with pull-down resistors and VIH = 2.4V.
4. This parameter is for inputs with pull-up resistors and VIL = 0.4V.
5. FC=1 MHz. Not 100% tested.
Embedded IntelDX2™ Processor
30
Table 19. 3.3 V ICC Values
Functi onal Operating Range: V CC = 3.3 V ±0.3 V; TCASE = 0°C to +85°C
Parameter Operating
Frequency Typ Maximum Notes
ICC Active
(Power Supply) 40 MHz
50 MHz 450 mA
550 mA Note 1
ICC Active
(Thermal Design) 40 MHz
50 MHz 318 mA
395 mA 416 mA
507 mA Notes 2, 3, 4
ICC Stop Grant 40 MHz
50 MHz 20 mA
23 mA 40 mA
50 mA Note 5
ICC Stop Clock 0 MHz 100 µA 1 mA Note 6
NOTES:
1. This parameter is for proper power supply selection. It is measured using the worst case instruction mix at VCC = 3.6V.
2. The maximum current column is for thermal design power dissipation. It is measured using the worst case instruction mix
at VCC = 3.3V.
3. The typical current column is the typical operating current in a system. This value is measured in a system using a typical
device at VCC = 3.3V, running Microsoft Windows 3.1 at an idle conditi on. This typical value is dependent upon the specific
system configuration.
4. Typical values are not 100% tested.
5. The ICC Stop Grant specification refers to the ICC value once the embedded IntelDX2 processor enters the Stop Grant or
Auto HAL T P ower Down state.
6. The ICC Stop Clock specification refers to the ICC value once the embedded IntelDX2 processor enters the Stop Clock
state. T he VIH and VIL levels must be equal to VCC and 0 V, respectively, to meet the ICC Stop Clock specifications.
Embedd ed IntelDX2™ Processor
31
Table 20. 5 V DC Specifications
Functional operating range: VCC = 5V ± 0.2 5V; TCASE = 0°C to +85°C
Symbol Parameter Min Max Unit Notes
VIL Input LOW Voltage -0.3 +0.8 V
VIH I np ut HIG H Vo lt ag e 2. 0 VCC+0.3 V
VOL Ou tp ut LO W Vol ta ge 0.45 V Note 1
VOH Ou tp ut H IG H Voltage 2.4 V Note 2
ILI Input Leak ag e C urrent 15 µA N o te 3
IIH I np ut Le ak ag e C urr ent
SRESET 200
300 µA
µA Note 4
Note 4
IIL Input Leak ag e C urrent 400 µA No te 5
ILO Ou tp ut Le ak ag e C urr e nt 15 µA
CIN Input Capacitance 20 pF Note 6
COUT Output or I/O Capacitance 20 pF Note 6
CCLK CLK Capaci tance 20 pF Note 6
NOTES:
1. This parameter is measured at:
Address, Data, BE
n
# 4.0 mA
Definition, Control 5.0 #mA
2. This parameter is measured at:
Address, Data, BE
n
# -1.0 mA
Definition, Control -0.9 mA
3. This parameter is for inputs without pull-ups or pull-downs and 0V VIN VCC.
4. This parameter is for inputs with pull-downs and VIH = 2.4V.
5. This parameter is for inputs with pull-ups and VIL = 0.45V.
6. FC=1 MHz; Not 100% tested.
Embedded IntelDX2™ Processor
32
Table 21. 5 V ICC Values
Functional Operating Range: VCC = 5V ±0.25V; TCASE = 0°C to +85°C
Parameter Operating
Frequency Typ Maximum Notes
ICC Active
(Power Supply) 50 MHz
66 MHz 950 mA
1200 mA No te 1
ICC Active
(Thermal Design) 50 MHz
66 MHz 680 mA
901 mA 906 mA
1145 mA Notes 2, 3, 4
ICC Stop Grant 50 MHz
66 MHz 35 mA
40 mA 70 mA
90 mA No te 5
ICC Stop Clock 0 MHz 20 0 µA 2 mA Note 6
NOTES:
1. This parameter is for proper power supply selection. It is measured using the worst case instruction mix at VCC = 5.25V.
2. The maxi mum current column is for thermal design power dissipation. It i s measured using the worst case i nstruction mix
at VCC = 5V.
3. The typi cal current column is the typical operating current i n a system. This value is measur ed in a system using a typical
device at VCC = 5V, r unning Microsoft Windows 3.1 at an idle c ondition. This typical value is dependent upon the specific
system configuration.
4. Typical values are not 100% tested.
5. The ICC Stop Grant specification refers to the ICC value once the embedded IntelDX 2 processor enters the Stop Grant or
Auto HALT Power Down state.
6. The ICC Stop Clock specification refers to the ICC value once the processor enters the Stop Clock state. The VIH and VIL
levels must be equal to VCC and 0V, respectively, in order to meet the I CC Stop Clock specifications.
Embedd ed IntelDX2™ Processor
33
5.3 AC Specifications
The AC specifications for the embedded IntelDX2 processor are given in this section.
Table 22. AC Characteris tics
TCASE = 0 °C to +85°C; CL = 50pF, unless otherwise specified. (Sheet 1 of 2)
Symbol Parameter
Vcc (Package)
3.3V
(208-Lead
SQFP)
5V
(168-Pin
PGA)
Min Max Min Max Unit Figure Notes
CLK Frequency 8 25 8 33 MHz Note 1
t1CLK Period 40 12 5 30 125 ns 4
t1a CLK Period Stabil ity ±250 ±250 ps 4 Adjacent
clocks
t2CLK High Time 14 11 ns 4 at 2V
t3CLK Low Time 14 11 ns 4 at 0.8V
t4CLK Fall Time 4 3 ns 4 2V to 0.8V
t5CLK Rise Time 4 3 ns 4 0.8V to 2V
t6A31 A2, PWT, PCD, BE3–BE0#,
M/IO #, D/C#, W/R#, ADS#, L OCK# ,
BREQ, HLDA, SMIACT#, FE RR#
V ali d D el ay
3 19 3 16 ns 8
t7A31 A2, PWT, PCD, BE3–BE0#,
M/IO #, D/C#, W/R#, ADS#, L OCK# ,
BREQ, HLDA Float Delay
28 20 ns 9 Note 2
t8PCHK# Valid Delay 3 24 3 22 ns 7
t8a BLAST#, PLOCK# Valid Dela y 3 24 3 20 ns 8
t9BLAST#, PLOCK# Float Delay 28 20 ns 9 No te 2
t10 D31–D0, DP3–DP0 Write Data Valid
Delay 3 20 3 18 ns 8
t11 D31–D0, DP3DP0 Write Data Float
Delay 28 20 ns 9 Note 2
t12 EADS# Setup Time 8 5 ns 5
t13 EADS# Hold Time 3 3 ns 5
t14 KEN#, BS16#, BS8# Setup Time 8 5 ns 5
t15 KEN#, BS16#, BS8# Hold Time 3 3 ns 5
t16 RDY#, BRDY# Setup Time 8 5 ns 6
t17 RDY#, BRDY# Hold Time 3 3 ns 6
t18 HOLD, AHOLD Setup Time 10 6 ns 5
t18a BOFF# Setup Time 10 8 ns 5
t19 HOLD, AHOLD, BOFF# Hold Time 3 3 ns 5
Embedded IntelDX2™ Processor
34
t20 FLUSH#, A20M#, NMI, INTR, SMI#,
STPCL K#, SRESET, RESET,
IGNNE# Setup Time
10 5 ns 5 N o te 3
t21 FLUSH#, A20M#, NMI, INTR, SMI#,
STPCL K#, SRESET, RESET,
IGNNE# Hold Time
3 3 ns 5 N o te 3
t22 D31–D0, DP3–DP0,
A31–A4 Read Setup Time 65 ns6
5
t23 D31–D0, DP3–DP0,
A3 1– A4 R ea d Hold T im e 33 ns6
5
NOTES:
1. 0-MHz operation is guaranteed when the STPCLK# and Stop Grant bus cycle protocol is used.
2. Not 100% tes ted, guaranteed by design characterization.
3. A reset puls e width of 15 CLK cycles is required for warm resets (RESET or SRESET). Power-up resets (cold resets)
require RESET to be asserted for at least 1 ms after VCC and CLK are stable.
Table 23. AC Specifications for the Test Access Port
(Both 3.3V SQFP and 5V PGA Process ors)
TCASE = 0°C to +85°C; CL = 50 pF
Sy mbol Para meter Min Max Unit Figure Notes
t24 TCK Frequency 8 MHz Note 1
t25 TCK Period 125 ns 10
t26 TCK Hi gh Time 40 ns 10 @ 2.0V
t27 TCK Low Time 40 ns 10 @ 0.8V
t28 TCK Rise Time 8 ns 10 Note 2
t29 TCK Fall Time 8 ns 10 Note 2
t30 T DI, TMS Setup Time 8 ns 11 Note 3
t31 T DI, TMS Hold Time 10 ns 1 1 N ote 3
t32 TDO Vali d Delay 3 30 ns 11 Note 3
t33 TDO Float Delay 36 ns 11 Note 3
t34 All Outputs (except TDO) Valid Delay 3 30 ns 11 Note 3
t35 All Outputs (except TDO) Floa t De lay 36 ns 11 Note 3
t36 All Inputs (except TDI, TMS, TCK) Setup Time 8 ns 11 Note 3
t37 All Inputs (except TDI, TMS, TCK) Hold Time 10 ns 11 Note 3
NOTES:
1. TCK period CLK period.
2. Rise/Fall times are measured between 0.8V and 2.0V. Rise/Fall times can be relaxed by 1 ns per 10-ns increase in TCK
period.
3. Parameters t30 – t37 are measured from TCK.
Table 22 . AC C haracteristics
TCASE = 0°C to +85°C; CL = 50pF, unless otherwise specified. (Sheet 2 of 2)
Symbol Parameter
Vcc (Package)
3.3V
(208 -Lead
SQFP)
5V
(168 -Pin
PGA)
Min Max Min Max Unit Figure Notes
Embedd ed IntelDX2™ Processor
35
Figure 4. CLK Waveform
Figure 5. Input Setup and Hold Timing
1.5 V
t1
t5
t2
t4t3
0.8 V
CLK 2.0 V
txty
1.5 V
tx = input setup times
ty = input hold times, output float, valid and hold times
1.5 V
0.8 V
2.0 V
TxTxTxTx
CLK
EADS#
BS8#, BS16#, KEN#
BOFF#, AHOLD, HOLD
RESET, FLUSH#,
A31-A4
(READ)
A20M#, INTR, NMI, SMI#,
STPCLK#, SRESET, IGNNE#
t12
t14
t13
t15
t18 t19
t20 t21
t22 t23
Embedded IntelDX2™ Processor
36
Figure 6. Input Setup and Hold Timing
Figure 7. PCHK# Valid Delay Timing
T2Tx
CLK
RDY#, BRDY#
D31-D0, DP3–DP 0
Tx
1.5 V
1.5 V
t16 t17
t22 t23
RDY#, BRDY#
D31-D0,
DP3-DP0
VALID
MIN MAX
t8
PCHK#
T2TxTxTx
CLK
VALID
Embedd ed IntelDX2™ Processor
37
Figure 8. Output Valid Delay Timing
Figure 9. Maximum Float Delay Timing
BLAST#,
PLOCK#
TxTxTxTx
CLK
A2-A31, PWT, PCD,
D31-D0, DP3–DP 0
VALID n+1
MAX
t6
VALID n
t10
t8a
BE0-3#, M/IO#,
D/ C#, W/R#, ADS# ,
LOCK#, BREQ, HLDA,
VALID n+1
MIN
MAX
VALID n
VALID n+1
MIN
MAX
VALID n
MIN
SMIACT#
TxTxTx
CLK
A2-A31, PWT, PCD,
D31-D0, DP3–DP0
BLAST#,
MIN
t6
VALID
BE0-3#, M/IO#, D/C#,
W/R#, ADS#, LOCK#,
BREQ, HLDA, FERR#
PLOCK#
t7
t10 t11
t8a t9
MIN
VALID
MIN
VALID
Embedded IntelDX2™ Processor
38
Figure 10. TCK Waveform
Figure 11. Test Signal Timing Diagram
0.8 V
t26
t25
2.0 V
TCK t27
t28 t29
0.8 V
2.0 V
t31
t30
TCK
TMS,
TDI
TDO
OUTPUT
INPUT
VALID
t32 t33
VALID
t35
VALIDVALID
VALID
t34
t37
t36
1.5 V
Embedd ed IntelDX2™ Processor
39
5.4 Capaciti ve Deratin g Cu rves
The following graphs are the capacitive derating c urves for the em bedded IntelDX2 processor .
Figure 12. Typical Loading Delay versus Load Capacitance under Worst-Case Conditions
for a Low-to-High Transition, 3.3 V Processor
Figure 13. Typical Loading Delay versus Load Capacitance under Worst-Case Conditions
for a High-to-Low Transition, 3.3 V Processor
nom+7
nom+6
nom+5
nom+4
nom+3
nom+2
nom+1
nom
nom-1
nom-225 50 75 100 125 150
Capacitive Load (pF)
Delay (ns)
NOTE: This graph will not be linear outs ide of the capacitive range sh own.
nom = nominal value from t he AC Characteristics table.
nom+5
nom+4
nom+3
nom+2
nom+1
nom
nom-1
nom-225 50 75 100 125 150
Capacitive Load (pF)
Delay (ns)
NOTE: This graph will not be linear outs ide of the capacitive range sh own.
nom = nominal value from t he AC Characteristics table.
Embedded IntelDX2™ Processor
40
Figure 14. Typical Loading Delay versus Load Capacitance under
Worst-Cas e Conditions for a Low-to-High Transition, 5 V Proc essor
Figure 15. Typical Loading Delay versus Load Capacitance under
Worst-Cas e Conditions for a High-to-Low Transition, 5 V Proc essor
nom+5
nom+4
nom+3
nom+2
nom+1
nom
nom-1
nom-2
Delay (ns)
Note: This graph will not be linear outside of the capacitive range shown.
nom = nominal value from the AC Characteristics table.
Capacitive Load (pF)
25 50 75 100 125 150
A3234-01
nom+5
nom+4
nom+3
nom+2
nom+1
nom
nom-1
nom-2
Delay (ns)
Note: This graph will not be linear outside of the capacitive range shown.
nom = nominal value from the AC Characteristics table.
Capacitive Load (pF)
25 50 75 100 125 150
nom+7
nom+6
A3235-01
Embedd ed IntelDX2™ Processor
41
6.0 M ECHANICA L DATA
This section describes the packaging dimensions and thermal specifications for the embedded IntelDX2
processor.
6.1 Package Dimen sion s
Figure 16. 208-Lead SQFP Package Dimensions
A3262-01
1.14
(ref)
28.0 ± 0.10
30.6 ± 0.25
25.50 (ref)
208 157
156
105
10453
52
NOTE: Length measurements same as width measurements
0.50
0.13 + 0.12-0.08
0˚ Min
7˚ Max
0.60 ± 0.10
3.37 ± 0.08
3.70 Max
0.13 Min
0.25 Max
1.76 Max
0.10 Max
Tolerance Window for
Lead Skew from Theoretical
True Position
1.30 Ref
.40 Min
1
Units: mm
Top View
Embedded IntelDX2™ Processor
42
Figure 17. Principal Dimensions and Data for 168-Pin Pi n Grid Array Package
Table 24. 168-Pin Ceramic PGA Package Dimensions
Symbol Millimeters Inches
Min Max Notes Min Max Notes
A 3.56 4.57 0.140 0.180
A10.64 1.14 S O LID LID 0.0 25 0 .0 45 SOLID LI D
A22. 8 3.5 S O LID LID 0.1 10 0 .1 40 SOLID LI D
A31.14 1.40 0.045 0.055
B 0.43 0.51 0.017 0.020
D 44.07 44.83 1.735 1.765
D140.51 40.77 1.595 1.605
e12.29 2.79 0.090 0.110
L 2.54 3.30 0.100 0.130
N168 168
S11.52 2.54 0.060 0.100
Embedd ed IntelDX2™ Processor
43
Table 25. Cera mic PGA Pac ka ge Dime ns ion Sym bo ls
Letter or Symbol Description of Dimensions
A Distance from seating plane to highest point of body
A1Distanc e between seat ing plane and base pl ane (l id)
A2Distance from base plane to highest point of body
A3Distance from seating plane to bottom of body
B Diameter of terminal lead pin
D Largest ov eral l package dimension of length
D1A body length dimension, outer lead center to outer lead center
e1Linear spaci ng between true lead po sition centerlines
L Distance from seating plane to end of lead
S1Other body dimension, outer lead center to edge of body
NOTES:
1. Controll ing dimension: millimeter.
2. Dimension “e1” (“e”) is no n-cumulative .
3. Seating plane (standoff) is defined by P.C. board hole size: 0.0415–0.0430 inch.
4. Dimensions “B”, “B1” and “C” are nominal.
5. Details of Pin 1 identifier are optional.
44
Embedded IntelDX2™ Processor
6.2 Package Thermal Specificatio ns
The embedded IntelDX2 processor is specified for
operation when the case temperature (TC) is within
the range of 0°C to 85°C. TC may be measured in
any environment to dete rmine whether the processor
is within the specified operating range.
The ambient temperature (TA) can be calculated
from θJC an d θJA from the following eq uation s :
TJ = T C + P * θJC
TA = T J - P * θJA
TC = T A + P * [θJA - θJC]
TA = TC - P * [θJA - θJC]
Where TJ, TA, TC equals Junction, Ambient and
Case Temperature respectively. θ
JC, θJA equals
Junction-to-Case and Junction-to-Ambient thermal
Resistance, respectively. P is defined as Maximum
Power Consumption.
Values for θJA and θJC are given in the following
tables for each product at its maximum operating
freq ue nc i es . Maxim um TA is shown f or each product
operating at various processor frequencies (twice
the CLK f requencies) .
Table 26. Thermal Resistance, θJA (°C/W)
θJA vs. Airflow — ft/min. (m/sec)
0
(0) 200
(1.01) 400
(2.03) 600
(3.04) 800
(4.06) 1000
(5.07)
208-Lead SQFP (3.3V) - Without Heat Sink 24.0 17.0 15.0 13.0 ––
168-Pin PGA (5V) - Without Heat Sink 17.0 14.5 12.5 11.0 10.0 9.5
168-P in PGA (5V) - With Heat Sink* 13.0 8.0 6.0 5.0 4 .5 4.25
*0.350" high omnidirecti onal heat sink.
Table 27. Thermal Resistance, θJC (°C/W)
θJC vs. Airflow — ft/min. (m/s ec)
0
(0) 200
(1.01) 400
(2.03) 600
(3.04)
0 200 400 600
2 08-Lead SQFP (3.3V) 3.5 6.0 6.0 6.0
168-Pin PGA (5V) 1.5 –––
Table 28 . Maximum Tambient, TA max ( °C)
Airflow — ft/min. (m/sec)
Freq.
(MHz) 0
(0) 200
(1.01) 400
(2.03) 600
(3.04)
Int elDX2™ Processor
208-Lead SQFP (3.3V) 40 57 70 73 75
Wi tho ut He at Sin k 50 51 67 70 73
168-Pin PGA (5V) 50 15 26 35 46
Wi tho ut He at Sin k 66 -4 11 22 36
168-Pin PGA (5V) 50 33 56 65 69
With Heat Sink 66 19 48 59 65