Kinetis K22F Sub-Family Data
Sheet
120 MHz ARM® Cortex®-M4-based Microcontroller with FPU
The K22 product family members are optimized for cost-sensitive
applications requiring low-power, USB connectivity, processing
efficiency with floating point unit. It shares the comprehensive
enablement and scalability of the Kinetis family. This product
offers:
Up to 1 MB of flash memory with up to 128 KB of SRAM
Small package with high memory density
Run power consumption down to 279 μA/MHz. Static
power consumption down to 5.1 μA with full state retention
and 5 μs wakeup. Lowest Static mode down to 268 nA
USB LS/FS OTG 2.0 with embedded 3.3 V, 120 mA LDO
voltage regulator
Performance
Up to 120 MHz ARM Cortex-M4-based core with DSP
instructions delivering 1.25 Dhrystone MIPS per MHz
Memories and memory interfaces
Up to 1 MB program flash memory and 128 KB RAM
4 KB FlexRAM and 128 KB FlexNVM on FlexMemory
devices
FlexBus external bus interface
System peripherals
Multiple low-power modes; low leakage wakeup unit
Memory protection unit with multi-master protection
16-channel DMA controller
External watchdog monitor and software watchdog
Security and integrity modules
Hardware CRC module
128-bit unique identification (ID) number per chip
Analog modules
Two 16-bit SAR ADCs
One 12-bit DAC
Three analog comparators (CMP)
Voltage reference
Communication interfaces
USB full-/low-speed On-the-Go controller
USB Device Charger detect
Controller Area Network (CAN) module
Three SPI modules
Three I2C modules
Six UART modules
Secure Digital host controller (SDHC)
I2S module
Timers
Two 8-channel Flex-Timers (PWM/Motor Control)
Two 2-channel Flex-Timers (PWM/Quad Decoder)
Periodic interrupt timers and 16-bit low-power timer
Carrier modulator transmitter
Real-time clock
Programmable delay block
Clocks
3 to 32 MHz and 32 kHz crystal oscillator
PLL, FLL, and multiple internal oscillators
Operating Characteristics
Voltage range: 1.71 to 3.6 V
Flash write voltage range: 1.71 to 3.6 V
Temperature range (ambient): –40 to 105°C
MK22FX512AVLH12
MK22FN1M0AVLH12
64 LQFP
10 x 10 x 1.4 mm Pitch 0.5 mm
Freescale Semiconductor, Inc. K22P64M120SF5V2
Data Sheet: Technical Data Rev 5, 03/2015
Freescale reserves the right to change the detail specifications as may be required to
permit improvements in the design of its products. © 2013–2014 Freescale
Semiconductor, Inc. All rights reserved.
Ordering Information 1
Part Number Memory Maximum number of I\O's
Flash (KB) SRAM (KB)
MK22FX512AVLH12 512 KB 128 40
MK22FN1M0AVLH12 1 MB 128 40
1. To confirm current availability of ordererable part numbers, go to http://www.freescale.com and perform a part number
search.
Related Resources
Type Description Resource
Selector
Guide
The Freescale Solution Advisor is a web-based tool that features
interactive application wizards and a dynamic product selector.
Solution Advisor
Product Brief The Product Brief contains concise overview/summary information to
enable quick evaluation of a device for design suitability.
K20PB1
Reference
Manual
The Reference Manual contains a comprehensive description of the
structure and function (operation) of a device.
K22P64M50SF5V2RM1
Data Sheet The Data Sheet includes electrical characteristics and signal
connections.
K22P64M50SF5V21
Package
drawing
Package dimensions are provided in package drawings. LQFP 64-pin:
98ASS23234W1
1. To find the associated resource, go to http://www.freescale.com and perform a search using this term.
2Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
Memories and Memory Interfaces
Program
flash RAM
12-bit DAC
6-bit DAC
x3
CRC
Programmable
Analog Timers Communication InterfacesSecurity
and Integrity
SPI
x3
Carrier
modulator
transmitter
FlexMemory
Clocks
Frequency-
Core
Debug
interfaces DSP
Interrupt
controller
comparator
x3
Analog
Voltage
reference
Secure
Digital
Low power
timer
Human-Machine
Interface (HMI)
GPIO
System
protection
Memory
DMA
Internal
watchdogs
and external
Low-leakage
wakeup
locked loop
Serial
programming
interface
Phase-
locked loop
reference
Internal
clocks
delay block
timers
interrupt
Periodic
External
bus
real-time
Independent
clock
oscillators
Low/high
frequency
UART
x6
®
Cortex™-M4ARM
Available only in K21
LEGEND
Kinetis K21/22F Family
Tamper
detect
Random
Number
Generator
Hardware
Encryption
USB charger
detect
USB voltage
regulator
USB OTG
LS/FS/HS
USB LS/FS
transceiver
x1
IS
2
Floating-
point unit
x2
IC
2
Timers
x4 (20ch)
CAN
x1
16-bit ADC
x2
Figure 1. K20 block diagram
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 3
Freescale Semiconductor, Inc.
Table of Contents
1 Ratings....................................................................................5
1.1 Thermal handling ratings................................................. 5
1.2 Moisture handling ratings................................................ 5
1.3 ESD handling ratings.......................................................5
1.4 Voltage and current operating ratings............................. 5
2 General................................................................................... 6
2.1 AC electrical characteristics.............................................6
2.2 Nonswitching electrical specifications..............................7
2.2.1 Voltage and current operating requirements....... 7
2.2.2 LVD and POR operating requirements................8
2.2.3 Voltage and current operating behaviors.............8
2.2.4 Power mode transition operating behaviors........ 10
2.2.5 Power consumption operating behaviors............ 10
2.2.6 EMC radiated emissions operating behaviors.....14
2.2.7 Designing with radiated emissions in mind..........15
2.2.8 Capacitance attributes.........................................15
2.3 Switching specifications...................................................15
2.3.1 Device clock specifications..................................15
2.3.2 General switching specifications......................... 16
2.4 Thermal specifications.....................................................17
2.4.1 Thermal operating requirements......................... 17
2.4.2 Thermal attributes................................................17
3 Peripheral operating requirements and behaviors.................. 18
3.1 Core modules.................................................................. 18
3.1.1 Debug trace timing specifications........................19
3.1.2 JTAG electricals.................................................. 19
3.2 System modules.............................................................. 22
3.3 Clock modules................................................................. 22
3.3.1 MCG specifications..............................................22
3.3.2 Oscillator electrical specifications........................25
3.3.3 32 kHz oscillator electrical characteristics...........27
3.4 Memories and memory interfaces................................... 27
3.4.1 Flash (FTFE) electrical specifications..................27
3.4.2 EzPort switching specifications........................... 32
3.4.3 Flexbus switching specifications..........................33
3.5 Security and integrity modules........................................ 36
3.6 Analog............................................................................. 36
3.6.1 ADC electrical specifications............................... 37
3.6.2 CMP and 6-bit DAC electrical specifications....... 41
3.6.3 12-bit DAC electrical characteristics....................43
3.6.4 Voltage reference electrical specifications.......... 46
3.7 Timers..............................................................................47
3.8 Communication interfaces............................................... 47
3.8.1 USB electrical specifications............................... 47
3.8.2 USB DCD electrical specifications.......................48
3.8.3 USB VREG electrical specifications.................... 48
3.8.4 CAN switching specifications...............................49
3.8.5 DSPI switching specifications (limited voltage
range).................................................................. 49
3.8.6 DSPI switching specifications (full voltage
range).................................................................. 51
3.8.7 I2C switching specifications.................................52
3.8.8 UART switching specifications............................ 53
3.8.9 I2S switching specifications.................................53
4 Dimensions............................................................................. 65
4.1 Obtaining package dimensions....................................... 65
5 Pinout......................................................................................66
5.1 K22 Signal Multiplexing and Pin Assignments.................66
5.2 K22 Pinouts..................................................................... 69
6 Revision History...................................................................... 70
7 Copyright................................................................................. 0
8 Legal....................................................................................... 0
4Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
1 Ratings
1.1 Thermal handling ratings
Symbol Description Min. Max. Unit Notes
TSTG Storage temperature –55 150 °C 1
TSDR Solder temperature, lead-free 260 °C 2
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
1.2 Moisture handling ratings
Symbol Description Min. Max. Unit Notes
MSL Moisture sensitivity level 3 1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
1.3 ESD handling ratings
Symbol Description Min. Max. Unit Notes
VHBM Electrostatic discharge voltage, human body model -2000 +2000 V 1
VCDM Electrostatic discharge voltage, charged-device
model
-500 +500 V 2
ILAT Latch-up current at ambient temperature of 105°C -100 +100 mA 3
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human
Body Model (HBM).
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.
1.4 Voltage and current operating ratings
Ratings
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 5
Freescale Semiconductor, Inc.
Symbol Description Min. Max. Unit
VDD Digital supply voltage –0.3 3.8 V
IDD Digital supply current 185 mA
VDIO Digital input voltage (except RESET, EXTAL, and XTAL) –0.3 5.5 V
VAIO Analog1, RESET, EXTAL, and XTAL input voltage –0.3 VDD + 0.3 V
IDMaximum current single pin limit (applies to all digital pins) –25 25 mA
VDDA Analog supply voltage VDD – 0.3 VDD + 0.3 V
VUSB0_DP USB0_DP input voltage –0.3 3.63 V
VUSB0_DM USB0_DM input voltage –0.3 3.63 V
VBAT RTC battery supply voltage –0.3 3.8 V
1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.
2 General
2.1 AC electrical characteristics
Unless otherwise specified, propagation delays are measured from the 50% to the 50%
point, and rise and fall times are measured at the 20% and 80% points, as shown in the
following figure.
80%
20%
50%
VIL
Input Signal
VIH
Fall Time
High
Low
Rise Time
Midpoint1
The midpoint is VIL + (VIH - VIL) / 2
Figure 2. Input signal measurement reference
All digital I/O switching characteristics assume:
1. output pins
have CL=30pF loads,
are configured for fast slew rate (PORTx_PCRn[SRE]=0), and
are configured for high drive strength (PORTx_PCRn[DSE]=1)
2. input pins
have their passive filter disabled (PORTx_PCRn[PFE]=0)
General
6Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
2.2 Nonswitching electrical specifications
2.2.1 Voltage and current operating requirements
Table 1. Voltage and current operating requirements
Symbol Description Min. Max. Unit Notes
VDD Supply voltage 1.71 3.6 V
VDDA Analog supply voltage 1.71 3.6 V
VDD – VDDA VDD-to-VDDA differential voltage –0.1 0.1 V
VSS – VSSA VSS-to-VSSA differential voltage –0.1 0.1 V
VBAT RTC battery supply voltage 1.71 3.6 V
VIH Input high voltage
2.7 V ≤ VDD ≤ 3.6 V
1.71 V ≤ VDD ≤ 2.7 V
0.7 × VDD
0.75 × VDD
V
V
VIL Input low voltage
2.7 V ≤ VDD ≤ 3.6 V
1.71 V ≤ VDD ≤ 2.7 V
0.35 × VDD
0.3 × VDD
V
V
VHYS Input hysteresis 0.06 × VDD V
IICDIO Digital pin negative DC injection current — single pin
VIN < VSS-0.3V -5 mA
1
IICAIO Analog2, EXTAL, and XTAL pin DC injection current
— single pin
VIN < VSS-0.3V (Negative current injection)
VIN > VDD+0.3V (Positive current injection)
-5
+5
mA
3
IICcont Contiguous pin DC injection current —regional limit,
includes sum of negative injection currents or sum of
positive injection currents of 16 contiguous pins
Negative current injection
Positive current injection
-25
+25
mA
VODPU Open drain pullup voltage level VDD VDD V4
VRAM VDD voltage required to retain RAM 1.2 V
VRFVBAT VBAT voltage required to retain the VBAT register file VPOR_VBAT V
1. All 5 V tolerant digital I/O pins are internally clamped to VSS through an ESD protection diode. There is no diode
connection to VDD. If VIN is less than VDIO_MIN, a current limiting resistor is required. If VIN greater than VDIO_MIN
(=VSS-0.3V) is observed, then there is no need to provide current limiting resistors at the pads. The negative DC
injection current limiting resistor is calculated as R=(VDIO_MIN-VIN)/|IICDIO|.
2. Analog pins are defined as pins that do not have an associated general purpose I/O port function. Additionally, EXTAL
and XTAL are analog pins.
General
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 7
Freescale Semiconductor, Inc.
3. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is less than VAIO_MIN or
greater than VAIO_MAX, a current limiting resistor is required. The negative DC injection current limiting resistor is
calculated as R=(VAIO_MIN-VIN)/|IICAIO|. The positive injection current limiting resistor is calculated as R=(VIN-VAIO_MAX)/|
IICAIO|. Select the larger of these two calculated resistances if the pin is exposed to positive and negative injection
currents.
4. Open drain outputs must be pulled to VDD.
2.2.2 LVD and POR operating requirements
Table 2. VDD supply LVD and POR operating requirements
Symbol Description Min. Typ. Max. Unit Notes
VPOR Falling VDD POR detect voltage 0.8 1.1 1.5 V
VLVDH Falling low-voltage detect threshold — high
range (LVDV=01)
2.48 2.56 2.64 V
VLVW1H
VLVW2H
VLVW3H
VLVW4H
Low-voltage warning thresholds — high range
Level 1 falling (LVWV=00)
Level 2 falling (LVWV=01)
Level 3 falling (LVWV=10)
Level 4 falling (LVWV=11)
2.62
2.72
2.82
2.92
2.70
2.80
2.90
3.00
2.78
2.88
2.98
3.08
V
V
V
V
1
VHYSH Low-voltage inhibit reset/recover hysteresis —
high range
80 mV
VLVDL Falling low-voltage detect threshold — low
range (LVDV=00)
1.54 1.60 1.66 V
VLVW1L
VLVW2L
VLVW3L
VLVW4L
Low-voltage warning thresholds — low range
Level 1 falling (LVWV=00)
Level 2 falling (LVWV=01)
Level 3 falling (LVWV=10)
Level 4 falling (LVWV=11)
1.74
1.84
1.94
2.04
1.80
1.90
2.00
2.10
1.86
1.96
2.06
2.16
V
V
V
V
1
VHYSL Low-voltage inhibit reset/recover hysteresis —
low range
60 mV
VBG Bandgap voltage reference 0.97 1.00 1.03 V
tLPO Internal low power oscillator period — factory
trimmed
900 1000 1100 μs
1. Rising threshold is the sum of falling threshold and hysteresis voltage
Table 3. VBAT power operating requirements
Symbol Description Min. Typ. Max. Unit Notes
VPOR_VBAT Falling VBAT supply POR detect voltage 0.8 1.1 1.5 V
General
8Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
2.2.3 Voltage and current operating behaviors
Table 4. Voltage and current operating behaviors
Symbol Description Min. Typ Max. Unit Notes
VOH Output high voltage — high drive strength
2.7 V ≤ VDD ≤ 3.6 V, IOH = -8mA
1.71 V ≤ VDD ≤ 2.7 V, IOH = -3mA
VDD – 0.5
VDD – 0.5
V
V
Output high voltage — low drive strength
2.7 V ≤ VDD ≤ 3.6 V, IOH = -2mA
1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6mA
VDD – 0.5
VDD – 0.5
V
V
IOHT Output high current total for all ports 100 mA
VOL Output low voltage — high drive strength
2.7 V ≤ VDD ≤ 3.6 V, IOL = 9mA
1.71 V ≤ VDD ≤ 2.7 V, IOL = 3mA
0.5
0.5
V
V
1
Output low voltage — low drive strength
2.7 V ≤ VDD ≤ 3.6 V, IOL = 2mA
1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6mA
0.5
0.5
V
V
IOLT Output low current total for all ports 100 mA
IIND Input leakage current, digital pins
VSS ≤ VIN ≤ VIL
All digital pins
VIN = VDD
All digital pins except PTD7
PTD7
0.002
0.002
0.004
0.5
0.5
1
μA
μA
μA
2, 3
IIND Input leakage current, digital pins
VIL < VIN < VDD
VDD = 3.6 V
VDD = 3.0 V
VDD = 2.5 V
VDD = 1.7 V
18
12
8
3
26
19
13
6
μA
μA
μA
μA
2
IIND Input leakage current, digital pins
VDD < VIN < 5.5 V
1
50
μA
IOZ Hi-Z (off-state) leakage current (per pin) 0.25 μA
RPU Internal pullup resistors 20 35 50 4
RPD Internal pulldown resistors 20 35 50 5
1. Open drain outputs must be pulled to VDD.
2. Measured at VDD=3.6V
3. Internal pull-up/pull-down resistors disabled.
4. Measured at VDD supply voltage = VDD min and Vinput = VSS
General
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 9
Freescale Semiconductor, Inc.
5. Measured at VDD supply voltage = VDD min and Vinput = VDD
2.2.4 Power mode transition operating behaviors
All specifications except tPOR, and VLLSxRUN recovery times in the following table
assume this clock configuration:
CPU and system clocks = 100 MHz
Bus clock = 50 MHz
FlexBus clock = 50 MHz
Flash clock = 25 MHz
Table 5. Power mode transition operating behaviors
Symbol Description Min. Max. Unit Notes
tPOR After a POR event, amount of time from the point VDD
reaches 1.71 V to execution of the first instruction
across the operating temperature range of the chip.
300 μs
VLLS0 RUN 183 μs
VLLS1 RUN 183 μs
VLLS2 RUN 105 μs
VLLS3 RUN 105 μs
LLS RUN 5.0 μs
VLPS RUN 4.4 μs
STOP RUN 4.4 μs
2.2.5 Power consumption operating behaviors
Table 6. Power consumption operating behaviors
Symbol Description Min. Typ. Max. Unit Notes
IDDA Analog supply current See note mA 1
IDD_RUN Run mode current — all peripheral clocks
disabled, code executing from flash
33.57
33.51
36.2
36.1
mA
mA
2
Table continues on the next page...
General
10 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
Table 6. Power consumption operating behaviors (continued)
Symbol Description Min. Typ. Max. Unit Notes
@ 1.8V
@ 3.0V
IDD_RUN Run mode current — all peripheral clocks
enabled, code executing from flash
@ 1.8V
@ 3.0V
@ 25°C
@ 125°C
46.36
46.31
57.4
50.1
49.9
mA
mA
mA
3, 4
IDD_WAIT Wait mode high frequency current at 3.0 V — all
peripheral clocks disabled
18.2 mA 2
IDD_WAIT Wait mode reduced frequency current at 3.0 V
— all peripheral clocks disabled
7.2 mA 5
IDD_VLPR Very-low-power run mode current at 3.0 V — all
peripheral clocks disabled
1.21 mA 6
IDD_VLPR Very-low-power run mode current at 3.0 V — all
peripheral clocks enabled
1.88 mA 7
IDD_VLPW Very-low-power wait mode current at 3.0 V — all
peripheral clocks disabled
0.80 mA 8
IDD_STOP Stop mode current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 105°C
0.528
1.6
5.2
2.25
8
20
mA
mA
mA
IDD_VLPS Very-low-power stop mode current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 105°C
78
498
1300
700
2400
3600
μA
μA
μA
IDD_LLS Low leakage stop mode current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 105°C
5.1
28
124
15
80
300
μA
μA
μA
IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 105°C
3.1
14.5
63.5
7.5
45
195
μA
μA
μA
IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V
@ –40 to 25°C
2.0
6.9
5
32
μA
μA
Table continues on the next page...
General
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 11
Freescale Semiconductor, Inc.
Table 6. Power consumption operating behaviors (continued)
Symbol Description Min. Typ. Max. Unit Notes
@ 70°C
@ 105°C
30 112 μA
IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 105°C
1.25
6.5
37
2.1
18.5
108
μA
μA
μA
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V
with POR detect circuit enabled
@ –40 to 25°C
@ 70°C
@ 105°C
0.745
6.03
37
1.65
18
108
μA
μA
μA
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V
with POR detect circuit disabled
@ –40 to 25°C
@ 70°C
@ 105°C
0.268
3.7
22.9
1.25
15
95
μA
μA
μA
IDD_VBAT Average current with RTC and 32kHz disabled
at 3.0 V
@ –40 to 25°C
@ 70°C
@ 105°C
0.19
0.49
2.2
0.22
0.64
3.2
μA
μA
μA
IDD_VBAT Average current when CPU is not accessing
RTC registers
@ 1.8V
@ –40 to 25°C
@ 70°C
@ 105°C
@ 3.0V
@ –40 to 25°C
@ 70°C
@ 105°C
0.68
1.2
3.6
0.81
1.45
4.3
0.8
1.56
5.3
0.96
1.89
6.33
μA
μA
μA
μA
μA
μA
9
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See
each module's specification for its supply current.
2. 120 MHz core and system clock, 60 MHz bus 40 Mhz and FlexBus clock, and 24 MHz flash clock. MCG configured for
PEE mode. All peripheral clocks disabled.
3. 120 MHz core and system clock, 60 MHz bus and FlexBus clock, and 24 MHz flash clock. MCG configured for PEE
mode. All peripheral clocks enabled.
4. Max values are measured with CPU executing DSP instructions.
General
12 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
5. 25 MHz core and system clock, 25 MHz bus clock, and 12.5 MHz FlexBus and flash clock. MCG configured for FEI
mode.
6. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral
clocks disabled. Code executing from flash.
7. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral
clocks enabled but peripherals are not in active operation. Code executing from flash.
8. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral
clocks disabled.
9. Includes 32kHz oscillator current and RTC operation.
2.2.5.1 Diagram: Typical IDD_RUN operating behavior
The following data was measured under these conditions:
MCG in PEE mode at greater than 100 MHz frequencies
No GPIOs toggled
Code execution from flash with cache enabled
For the ALLOFF curve, all peripheral clocks are disabled except FTFE
Figure 3. Run mode supply current vs. core frequency
General
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 13
Freescale Semiconductor, Inc.
Figure 4. VLPR mode supply current vs. core frequency
2.2.6 EMC radiated emissions operating behaviors
Table 7. EMC radiated emissions operating behaviors
Symbol Description Frequency
band
(MHz)
Typ. Unit Notes
VRE1 Radiated emissions voltage, band 1 0.15–50 23 dBμV 1, 2
VRE2 Radiated emissions voltage, band 2 50–150 27 dBμV
VRE3 Radiated emissions voltage, band 3 150–500 28 dBμV
VRE4 Radiated emissions voltage, band 4 500–1000 14 dBμV
VRE_IEC IEC level 0.15–1000 K 2, 3
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150
kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement
of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and
Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code.
General
14 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
The reported emission level is the value of the maximum measured emission, rounded up to the next whole number,
from among the measured orientations in each frequency range.
2. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 96 MHz, fBUS = 48MHz
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and
Wideband TEM Cell Method
2.2.7 Designing with radiated emissions in mind
To find application notes that provide guidance on designing your system to minimize
interference from radiated emissions:
1. Go to www.freescale.com.
2. Perform a keyword search for “EMC design.”
2.2.8 Capacitance attributes
Table 8. Capacitance attributes
Symbol Description Min. Max. Unit
CIN_A Input capacitance: analog pins 7 pF
CIN_D Input capacitance: digital pins 7 pF
2.3 Switching specifications
2.3.1 Device clock specifications
Table 9. Device clock specifications
Symbol Description Min. Max. Unit Notes
Normal run mode
fSYS System and core clock 120 MHz
fSYS_USB System and core clock when Full Speed USB in
operation
20 MHz
fBUS Bus clock 60 MHz
FB_CLK FlexBus clock 50 MHz
fFLASH Flash clock 25 MHz
fLPTMR LPTMR clock 25 MHz
VLPR mode1
fSYS System and core clock 4 MHz
fBUS Bus clock 4 MHz
Table continues on the next page...
General
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 15
Freescale Semiconductor, Inc.
Table 9. Device clock specifications (continued)
Symbol Description Min. Max. Unit Notes
FB_CLK FlexBus clock 4 MHz
fFLASH Flash clock 0.8 MHz
fERCLK External reference clock 16 MHz
fLPTMR_pin LPTMR clock 25 MHz
fLPTMR_ERCLK LPTMR external reference clock 16 MHz
fFlexCAN_ERCLK FlexCAN external reference clock 8 MHz
fI2S_MCLK I2S master clock 12.5 MHz
fI2S_BCLK I2S bit clock 4 MHz
1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for
any other module.
2.3.2 General switching specifications
These general purpose specifications apply to all pins configured for:
GPIO signaling
Other peripheral module signaling not explicitly stated elsewhere
Table 10. General switching specifications
Symbol Description Min. Max. Unit Notes
GPIO pin interrupt pulse width (digital glitch filter
disabled) — Synchronous path
1.5 Bus clock
cycles
1, 2
GPIO pin interrupt pulse width (digital glitch filter
disabled, analog filter enabled) — Asynchronous path
100 ns 3
GPIO pin interrupt pulse width (digital glitch filter
disabled, analog filter disabled) — Asynchronous path
16 ns 3
External reset pulse width (digital glitch filter disabled) 100 ns 3
Mode select (EZP_CS) hold time after reset
deassertion
2 Bus clock
cycles
Port rise and fall time (high drive strength)
Slew disabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
Slew enabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
12
6
36
24
ns
ns
ns
ns
4
Port rise and fall time (low drive strength)
Slew disabled
5
General
16 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
Table 10. General switching specifications
Symbol Description Min. Max. Unit Notes
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
Slew enabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
12
6
36
24
ns
ns
ns
ns
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses
may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter
pulses can be recognized in that case.
2. The greater synchronous and asynchronous timing must be met.
3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS,
and VLLSx modes.
4. 75 pF load
5. 15 pF load
2.4 Thermal specifications
2.4.1 Thermal operating requirements
Table 11. Thermal operating requirements
Symbol Description Min. Max. Unit
TJDie junction temperature –40 125 °C
TAAmbient temperature –40 105 °C
2.4.2 Thermal attributes
Board type Symbol Description 64 LQFP Unit Notes
Single-layer (1s) RθJA Thermal
resistance,
junction to
ambient (natural
convection)
59 °C/W 1
Four-layer (2s2p) RθJA Thermal
resistance,
junction to
ambient (natural
convection)
41 °C/W 1
Table continues on the next page...
General
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 17
Freescale Semiconductor, Inc.
Board type Symbol Description 64 LQFP Unit Notes
Single-layer (1s) RθJMA Thermal
resistance,
junction to
ambient (200 ft./
min. air speed)
48 °C/W 1
Four-layer (2s2p) RθJMA Thermal
resistance,
junction to
ambient (200 ft./
min. air speed)
35 °C/W 1
RθJB Thermal
resistance,
junction to board
23 °C/W 2
RθJC Thermal
resistance,
junction to case
11 °C/W 3
ΨJT Thermal
characterization
parameter,
junction to
package top
outside center
(natural
convection)
3 °C/W 4
Notes
1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal
Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/
JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method
Environmental Conditions—Forced Convection (Moving Air).
2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal
Test Method Environmental Conditions—Junction-to-Board.
3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard,
Microcircuits, with the cold plate temperature used for the case temperature. The
value includes the thermal resistance of the interface material between the top of
the package and the cold plate.
4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal
Test Method Environmental Conditions—Natural Convection (Still Air).
3Peripheral operating requirements and behaviors
Peripheral operating requirements and behaviors
18 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
3.1 Core modules
3.1.1 Debug trace timing specifications
Table 12. Debug trace operating behaviors
Symbol Description Min. Max. Unit
Tcyc Clock period Frequency dependent
(limited to 50 MHz)
MHz
Twl Low pulse width 2 ns
Twh High pulse width 2 ns
TrClock and data rise time 3 ns
TfClock and data fall time 3 ns
TsData setup 3 ns
ThData hold 2 ns
TRACECLK
Tr
Twh
Tf
Tcyc
Twl
Figure 5. TRACE_CLKOUT specifications
Th
Ts Ts Th
TRACE_CLKOUT
TRACE_D[3:0]
Figure 6. Trace data specifications
3.1.2 JTAG electricals
Table 13. JTAG limited voltage range electricals
Symbol Description Min. Max. Unit
Operating voltage 2.7 3.6 V
J1 TCLK frequency of operation MHz
Table continues on the next page...
Peripheral operating requirements and behaviors
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 19
Freescale Semiconductor, Inc.
Table 13. JTAG limited voltage range electricals (continued)
Symbol Description Min. Max. Unit
Boundary Scan
JTAG and CJTAG
Serial Wire Debug
0
0
0
10
25
50
J2 TCLK cycle period 1/J1 ns
J3 TCLK clock pulse width
Boundary Scan
JTAG and CJTAG
Serial Wire Debug
50
20
10
ns
ns
ns
J4 TCLK rise and fall times 3 ns
J5 Boundary scan input data setup time to TCLK rise 20 ns
J6 Boundary scan input data hold time after TCLK rise 2.6 ns
J7 TCLK low to boundary scan output data valid 25 ns
J8 TCLK low to boundary scan output high-Z 25 ns
J9 TMS, TDI input data setup time to TCLK rise 8 ns
J10 TMS, TDI input data hold time after TCLK rise 1 ns
J11 TCLK low to TDO data valid 17 ns
J12 TCLK low to TDO high-Z 17 ns
J13 TRST assert time 100 ns
J14 TRST setup time (negation) to TCLK high 8 ns
Table 14. JTAG full voltage range electricals
Symbol Description Min. Max. Unit
Operating voltage 1.71 3.6 V
J1 TCLK frequency of operation
Boundary Scan
JTAG and CJTAG
Serial Wire Debug
0
0
0
10
20
40
MHz
J2 TCLK cycle period 1/J1 ns
J3 TCLK clock pulse width
Boundary Scan
JTAG and CJTAG
Serial Wire Debug
50
25
12.5
ns
ns
ns
J4 TCLK rise and fall times 3 ns
J5 Boundary scan input data setup time to TCLK rise 20 ns
J6 Boundary scan input data hold time after TCLK rise 0 ns
Table continues on the next page...
Peripheral operating requirements and behaviors
20 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
Table 14. JTAG full voltage range electricals (continued)
Symbol Description Min. Max. Unit
J7 TCLK low to boundary scan output data valid 25 ns
J8 TCLK low to boundary scan output high-Z 25 ns
J9 TMS, TDI input data setup time to TCLK rise 8 ns
J10 TMS, TDI input data hold time after TCLK rise 1.4 ns
J11 TCLK low to TDO data valid 22.1 ns
J12 TCLK low to TDO high-Z 22.1 ns
J13 TRST assert time 100 ns
J14 TRST setup time (negation) to TCLK high 8 ns
J2
J3 J3
J4 J4
TCLK (input)
Figure 7. Test clock input timing
J7
J8
J7
J5 J6
Input data valid
Output data valid
Output data valid
TCLK
Data inputs
Data outputs
Data outputs
Data outputs
Figure 8. Boundary scan (JTAG) timing
Peripheral operating requirements and behaviors
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 21
Freescale Semiconductor, Inc.
J11
J12
J11
J9 J10
Input data valid
Output data valid
Output data valid
TCLK
TDI/TMS
TDO
TDO
TDO
Figure 9. Test Access Port timing
J14
J13
TCLK
TRST
Figure 10. TRST timing
3.2 System modules
There are no specifications necessary for the device's system modules.
3.3 Clock modules
Peripheral operating requirements and behaviors
22 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
3.3.1 MCG specifications
Table 15. MCG specifications
Symbol Description Min. Typ. Max. Unit Notes
fints_ft Internal reference frequency (slow clock) —
factory trimmed at nominal VDD and 25 °C
32.768 kHz
fints_t Internal reference frequency (slow clock) —
user trimmed
31.25 39.0625 kHz
Iints Internal reference (slow clock) current 20 µA
Δfdco_res_t Resolution of trimmed average DCO output
frequency at fixed voltage and temperature —
using SCTRIM and SCFTRIM
± 0.3 ± 0.6 %fdco 1
Δfdco_res_t Resolution of trimmed average DCO output
frequency at fixed voltage and temperature —
using SCTRIM only
± 0.2 ± 0.5 %fdco 1
Δfdco_t Total deviation of trimmed average DCO output
frequency over voltage and temperature
± 0.5 ± 2 %fdco 1 , 2
Δfdco_t Total deviation of trimmed average DCO output
frequency over fixed voltage and temperature
range of 0–70°C
± 0.3 ± 1 %fdco 1
fintf_ft Internal reference frequency (fast clock) —
factory trimmed at nominal VDD and 25°C
4 MHz
fintf_t Internal reference frequency (fast clock) —
user trimmed at nominal VDD and 25 °C
3 5 MHz
Iintf Internal reference (fast clock) current 25 µA
floc_low Loss of external clock minimum frequency —
RANGE = 00
(3/5) x
fints_t
kHz
floc_high Loss of external clock minimum frequency —
RANGE = 01, 10, or 11
(16/5) x
fints_t
kHz
FLL
ffll_ref FLL reference frequency range 31.25 39.0625 kHz
fdco DCO output
frequency range
Low range (DRS=00)
640 × ffll_ref
20 20.97 25 MHz 3, 4
Mid range (DRS=01)
1280 × ffll_ref
40 41.94 50 MHz
Mid-high range (DRS=10)
1920 × ffll_ref
60 62.91 75 MHz
High range (DRS=11)
2560 × ffll_ref
80 83.89 100 MHz
fdco_t_DMX3
2
DCO output
frequency
Low range (DRS=00)
732 × ffll_ref
23.99 MHz 5, 6
Mid range (DRS=01)
1464 × ffll_ref
47.97 MHz
Mid-high range (DRS=10) 71.99 MHz
Table continues on the next page...
Peripheral operating requirements and behaviors
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 23
Freescale Semiconductor, Inc.
Table 15. MCG specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
2197 × ffll_ref
High range (DRS=11)
2929 × ffll_ref
95.98 MHz
Jcyc_fll FLL period jitter
fDCO = 48 MHz
fDCO = 98 MHz
180
150
ps
tfll_acquire FLL target frequency acquisition time 1 ms 7
PLL
fvco VCO operating frequency 48.0 120 MHz
Ipll PLL operating current
PLL @ 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref
= 2 MHz, VDIV multiplier = 48)
1060 µA 8
Ipll PLL operating current
PLL @ 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref
= 2 MHz, VDIV multiplier = 24)
600 µA 8
fpll_ref PLL reference frequency range 2.0 4.0 MHz
Jcyc_pll PLL period jitter (RMS)
fvco = 48 MHz
fvco = 120 MHz
120
75
ps
ps
9
Jacc_pll PLL accumulated jitter over 1µs (RMS)
fvco = 48 MHz
fvco = 120 MHz
1350
600
ps
ps
9
Dlock Lock entry frequency tolerance ± 1.49 ± 2.98 %
Dunl Lock exit frequency tolerance ± 4.47 ± 5.97 %
tpll_lock Lock detector detection time 150 × 10-6
+ 1075(1/
fpll_ref)
s10
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock
mode).
2. 2 V <= VDD <= 3.6 V.
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
4. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency
deviation (Δfdco_t) over voltage and temperature should be considered.
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
8. Excludes any oscillator currents that are also consuming power while PLL is in operation.
9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of
each PCB and results will vary.
10. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL
disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this
specification assumes it is already running.
Peripheral operating requirements and behaviors
24 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
3.3.2 Oscillator electrical specifications
3.3.2.1 Oscillator DC electrical specifications
Table 16. Oscillator DC electrical specifications
Symbol Description Min. Typ. Max. Unit Notes
VDD Supply voltage 1.71 3.6 V
IDDOSC Supply current — low-power mode (HGO=0)
32 kHz
4 MHz
8 MHz (RANGE=01)
16 MHz
24 MHz
32 MHz
600
200
300
950
1.2
1.5
nA
μA
μA
μA
mA
mA
1
IDDOSC Supply current — high gain mode (HGO=1)
32 kHz
4 MHz
8 MHz (RANGE=01)
16 MHz
24 MHz
32 MHz
7.5
500
650
2.5
3.25
4
μA
μA
μA
mA
mA
mA
1
CxEXTAL load capacitance 2, 3
CyXTAL load capacitance 2, 3
RFFeedback resistor — low-frequency, low-power
mode (HGO=0)
2, 4
Feedback resistor — low-frequency, high-gain
mode (HGO=1)
10
Feedback resistor — high-frequency, low-
power mode (HGO=0)
Feedback resistor — high-frequency, high-gain
mode (HGO=1)
1
RSSeries resistor — low-frequency, low-power
mode (HGO=0)
Series resistor — low-frequency, high-gain
mode (HGO=1)
200
Series resistor — high-frequency, low-power
mode (HGO=0)
Series resistor — high-frequency, high-gain
mode (HGO=1)
Table continues on the next page...
Peripheral operating requirements and behaviors
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 25
Freescale Semiconductor, Inc.
Table 16. Oscillator DC electrical specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
0
Vpp5Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, low-power mode
(HGO=0)
0.6 V
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, high-gain mode
(HGO=1)
VDD V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, low-power mode
(HGO=0)
0.6 V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, high-gain mode
(HGO=1)
VDD V
1. VDD=3.3 V, Temperature =25 °C, Internal capacitance = 20 pf
2. See crystal or resonator manufacturer's recommendation
3. Cx,Cy can be provided by using either the integrated capacitors or by using external components.
4. When low power mode is selected, RF is integrated and must not be attached externally.
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to
any other devices.
3.3.2.2 Oscillator frequency specifications
Table 17. Oscillator frequency specifications
Symbol Description Min. Typ. Max. Unit Notes
fosc_lo Oscillator crystal or resonator frequency — low-
frequency mode (MCG_C2[RANGE]=00)
32 40 kHz
fosc_hi_1 Oscillator crystal or resonator frequency — high-
frequency mode (low range)
(MCG_C2[RANGE]=01)
3 8 MHz
fosc_hi_2 Oscillator crystal or resonator frequency — high
frequency mode (high range)
(MCG_C2[RANGE]=1x)
8 32 MHz
fec_extal Input clock frequency (external clock mode) 50 MHz 1, 2
tdc_extal Input clock duty cycle (external clock mode) 40 50 60 %
tcst Crystal startup time — 32 kHz low-frequency,
low-power mode (HGO=0)
750 ms 3, 4
Crystal startup time — 32 kHz low-frequency,
high-gain mode (HGO=1)
250 ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), low-power mode
(HGO=0)
0.6 ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), high-gain mode
(HGO=1)
1 ms
1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
Peripheral operating requirements and behaviors
26 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by
FRDIV, it remains within the limits of the DCO input clock frequency.
3. Proper PC board layout procedures must be followed to achieve specifications.
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S
register being set.
NOTE
The 32 kHz oscillator works in low power mode by default
and cannot be moved into high power/gain mode.
3.3.3 32 kHz oscillator electrical characteristics
3.3.3.1 32 kHz oscillator DC electrical specifications
Table 18. 32kHz oscillator DC electrical specifications
Symbol Description Min. Typ. Max. Unit
VBAT Supply voltage 1.71 3.6 V
RFInternal feedback resistor 100
Cpara Parasitical capacitance of EXTAL32 and
XTAL32
5 7 pF
Vpp1Peak-to-peak amplitude of oscillation 0.6 V
1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to
required oscillator components and must not be connected to any other devices.
3.3.3.2 32 kHz oscillator frequency specifications
Table 19. 32 kHz oscillator frequency specifications
Symbol Description Min. Typ. Max. Unit Notes
fosc_lo Oscillator crystal 32.768 kHz
tstart Crystal start-up time 1000 ms 1
vec_extal32 Externally provided input clock amplitude 700 VBAT mV 2, 3
1. Proper PC board layout procedures must be followed to achieve specifications.
2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input.
The oscillator remains enabled and XTAL32 must be left unconnected.
3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the
applied clock must be within the range of VSS to VBAT.
3.4 Memories and memory interfaces
Peripheral operating requirements and behaviors
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 27
Freescale Semiconductor, Inc.
3.4.1 Flash (FTFE) electrical specifications
This section describes the electrical characteristics of the FTFE module.
3.4.1.1 Flash timing specifications — program and erase
The following specifications represent the amount of time the internal charge pumps are
active and do not include command overhead.
Table 20. NVM program/erase timing specifications
Symbol Description Min. Typ. Max. Unit Notes
thvpgm8 Program Phrase high-voltage time 7.5 18 μs
thversscr Erase Flash Sector high-voltage time 13 113 ms 1
thversblk128k Erase Flash Block high-voltage time for 128 KB 104 904 ms 1
thversblk512k Erase Flash Block high-voltage time for 512 KB 416 3616 ms 1
1. Maximum time based on expectations at cycling end-of-life.
3.4.1.2 Flash timing specifications — commands
Table 21. Flash command timing specifications
Symbol Description Min. Typ. Max. Unit Notes
trd1blk128k
trd1blk512k
Read 1s Block execution time
128 KB data flash
512 KB program flash
0.5
1.8
ms
ms
trd1sec4k Read 1s Section execution time (4 KB flash) 100 μs 1
tpgmchk Program Check execution time 95 μs 1
trdrsrc Read Resource execution time 40 μs 1
tpgm8 Program Phrase execution time 90 150 μs
tersblk128k
tersblk512k
Erase Flash Block execution time
128 KB data flash
512 KB program flash
110
435
925
3700
ms
ms
2
tersscr Erase Flash Sector execution time 15 115 ms 2
tpgmsec1k Program Section execution time (1KB flash) 5 ms
trd1allx
Read 1s All Blocks execution time
FlexNVM devices
2.2
ms
trdonce Read Once execution time 30 μs 1
tpgmonce Program Once execution time 90 μs
tersall Erase All Blocks execution time 870 7400 ms 2
tvfykey Verify Backdoor Access Key execution time 30 μs 1
Table continues on the next page...
Peripheral operating requirements and behaviors
28 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
Table 21. Flash command timing specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
tswapx01
tswapx02
tswapx04
tswapx08
Swap Control execution time
control code 0x01
control code 0x02
control code 0x04
control code 0x08
200
90
90
150
150
30
μs
μs
μs
μs
tpgmpart32k
tpgmpart128k
Program Partition for EEPROM execution time
32 KB EEPROM backup
128 KB EEPROM backup
70
75
ms
ms
tsetramff
tsetram32k
tsetram64k
tsetram128k
Set FlexRAM Function execution time:
Control Code 0xFF
32 KB EEPROM backup
64 KB EEPROM backup
128 KB EEPROM backup
70
0.8
1.3
2.4
1.2
1.9
3.1
μs
ms
ms
ms
teewr8bers Byte-write to erased FlexRAM location
execution time
175 275 μs 3
teewr8b32k
teewr8b64k
teewr8b128k
Byte-write to FlexRAM execution time:
32 KB EEPROM backup
64 KB EEPROM backup
128 KB EEPROM backup
385
475
650
1700
2000
2350
μs
μs
μs
teewr16bers 16-bit write to erased FlexRAM location
execution time
175 275 μs
teewr16b32k
teewr16b64k
teewr16b128k
16-bit write to FlexRAM execution time:
32 KB EEPROM backup
64 KB EEPROM backup
128 KB EEPROM backup
385
475
650
1700
2000
2350
μs
μs
μs
teewr32bers 32-bit write to erased FlexRAM location
execution time
360 550 μs
teewr32b32k
teewr32b64k
teewr32b128k
32-bit write to FlexRAM execution time:
32 KB EEPROM backup
64 KB EEPROM backup
128 KB EEPROM backup
630
810
1200
2000
2250
2650
μs
μs
μs
1. Assumes 25MHz or greater flash clock frequency.
2. Maximum times for erase parameters based on expectations at cycling end-of-life.
3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.
Peripheral operating requirements and behaviors
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 29
Freescale Semiconductor, Inc.
3.4.1.3 Flash high voltage current behaviors
Table 22. Flash high voltage current behaviors
Symbol Description Min. Typ. Max. Unit
IDD_PGM Average current
adder during high
voltage flash
programming
operation
3.5 7.5 mA
IDD_ERS Average current
adder during high
voltage flash erase
operation
1.5 4.0 mA
3.4.1.4 Reliability specifications
Table 23. NVM reliability specifications
Symbol Description Min. Typ.1Max. Unit Notes
Program Flash
tnvmretp10k Data retention after up to 10 K cycles 5 50 years
tnvmretp1k Data retention after up to 1 K cycles 20 100 years
nnvmcycp Cycling endurance 10 K 50 K cycles 2
Data Flash
tnvmretd10k Data retention after up to 10 K cycles 5 50 years
tnvmretd1k Data retention after up to 1 K cycles 20 100 years
nnvmcycd Cycling endurance 10 K 50 K cycles 2
FlexRAM as EEPROM
tnvmretee100 Data retention up to 100% of write endurance 5 50 years
tnvmretee10 Data retention up to 10% of write endurance 20 100 years
nnvmcycee Cycling endurance for EEPROM backup 20 K 50 K cycles 2
nnvmwree16
nnvmwree128
nnvmwree512
nnvmwree2k
nnvmwree4k
Write endurance
EEPROM backup to FlexRAM ratio = 16
EEPROM backup to FlexRAM ratio = 128
EEPROM backup to FlexRAM ratio = 512
EEPROM backup to FlexRAM ratio = 2,048
EEPROM backup to FlexRAM ratio = 4,096
70 K
630 K
2.5 M
10 M
20 M
175 K
1.6 M
6.4 M
25 M
50 M
writes
writes
writes
writes
writes
3
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a
constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in
Engineering Bulletin EB619.
2. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C.
3. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the
cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem.
Minimum and typical values assume all byte-writes to FlexRAM.
Peripheral operating requirements and behaviors
30 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
3.4.1.5 Write endurance to FlexRAM for EEPROM
When the FlexNVM partition code is not set to full data flash, the EEPROM data set
size can be set to any of several non-zero values.
The bytes not assigned to data flash via the FlexNVM partition code are used by the
FTFE to obtain an effective endurance increase for the EEPROM data. The built-in
EEPROM record management system raises the number of program/erase cycles that
can be attained prior to device wear-out by cycling the EEPROM data through a larger
EEPROM NVM storage space.
While different partitions of the FlexNVM are available, the intention is that a single
choice for the FlexNVM partition code and EEPROM data set size is used throughout
the entire lifetime of a given application. The EEPROM endurance equation and graph
shown below assume that only one configuration is ever used.
Writes_subsystem = × Write_efficiency × n
EEPROM – 2 × EEESPLIT × EEESIZE
EEESPLIT × EEESIZE nvmcycee
where
Writes_subsystem — minimum number of writes to each FlexRAM location for
subsystem (each subsystem can have different endurance)
EEPROM — allocated FlexNVM for each EEPROM subsystem based on
DEPART; entered with the Program Partition command
EEESPLIT — FlexRAM split factor for subsystem; entered with the Program
Partition command
EEESIZE — allocated FlexRAM based on DEPART; entered with the Program
Partition command
Write_efficiency —
0.25 for 8-bit writes to FlexRAM
0.50 for 16-bit or 32-bit writes to FlexRAM
nnvmcycee — EEPROM-backup cycling endurance
Peripheral operating requirements and behaviors
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 31
Freescale Semiconductor, Inc.
Figure 11. EEPROM backup writes to FlexRAM
3.4.2 EzPort switching specifications
Table 24. EzPort switching specifications
Num Description Min. Max. Unit
Operating voltage 1.71 3.6 V
EP1 EZP_CK frequency of operation (all commands except
READ)
fSYS/2 MHz
EP1a EZP_CK frequency of operation (READ command) fSYS/8 MHz
EP2 EZP_CS negation to next EZP_CS assertion 2 x tEZP_CK ns
EP3 EZP_CS input valid to EZP_CK high (setup) 5 ns
EP4 EZP_CK high to EZP_CS input invalid (hold) 5 ns
EP5 EZP_D input valid to EZP_CK high (setup) 2 ns
EP6 EZP_CK high to EZP_D input invalid (hold) 5 ns
EP7 EZP_CK low to EZP_Q output valid 18 ns
EP8 EZP_CK low to EZP_Q output invalid (hold) 0 ns
EP9 EZP_CS negation to EZP_Q tri-state 12 ns
Peripheral operating requirements and behaviors
32 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
Figure 12. EzPort Timing Diagram
3.4.3 Flexbus switching specifications
All processor bus timings are synchronous; input setup/hold and output delay are
given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK
frequency may be the same as the internal system bus frequency or an integer divider
of that frequency.
The following timing numbers indicate when data is latched or driven onto the
external bus, relative to the Flexbus output clock (FB_CLK). All other timing
relationships can be derived from these values.
Table 25. Flexbus limited voltage range switching specifications
Num Description Min. Max. Unit Notes
Operating voltage 2.7 3.6 V
Frequency of operation FB_CLK MHz
FB1 Clock period 20 ns
FB2 Address, data, and control output valid 11.5 ns 1
FB3 Address, data, and control output hold 0.5 ns 1
FB4 Data and FB_TA input setup 8.5 ns 2
FB5 Data and FB_TA input hold 0.5 ns 2
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0],
FB_ALE, and FB_TS.
Peripheral operating requirements and behaviors
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 33
Freescale Semiconductor, Inc.
2. Specification is valid for all FB_AD[31:0] and FB_TA.
Table 26. Flexbus full voltage range switching specifications
Num Description Min. Max. Unit Notes
Operating voltage 1.71 3.6 V
Frequency of operation FB_CLK MHz
FB1 Clock period 1/FB_CLK ns
FB2 Address, data, and control output valid 13.5 ns 1
FB3 Address, data, and control output hold 0 ns 1
FB4 Data and FB_TA input setup 13.7 ns 2
FB5 Data and FB_TA input hold 0.5 ns 2
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE,
and FB_TS.
2. Specification is valid for all FB_AD[31:0] and FB_TA.
Peripheral operating requirements and behaviors
34 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
Address
Address Data
TSIZ
AA=1
AA=0
AA=1
AA=0
FB1
FB3
FB5
FB4
FB4
FB5
FB2
FB_CLK
FB_A[Y]
FB_D[X]
FB_RW
FB_TS
FB_ALE
FB_CSn
FB_OEn
FB_BEn
FB_TA
FB_TSIZ[1:0]
Figure 13. FlexBus read timing diagram
Peripheral operating requirements and behaviors
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 35
Freescale Semiconductor, Inc.
Address
Address Data
TSIZ
AA=1
AA=0
AA=1
AA=0
FB1
FB3
FB4
FB5
FB2
FB_CLK
FB_A[Y]
FB_D[X]
FB_RW
FB_TS
FB_ALE
FB_CSn
FB_OEn
FB_BEn
FB_TA
FB_TSIZ[1:0]
Figure 14. FlexBus write timing diagram
3.5 Security and integrity modules
There are no specifications necessary for the device's security and integrity modules.
3.6 Analog
Peripheral operating requirements and behaviors
36 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
3.6.1 ADC electrical specifications
The 16-bit accuracy specifications listed in Table 27 and Table 28 are achievable on
the differential pins ADCx_DP0, ADCx_DM0.
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy
specifications.
3.6.1.1 16-bit ADC operating conditions
Table 27. 16-bit ADC operating conditions
Symbol Description Conditions Min. Typ.1Max. Unit Notes
VDDA Supply voltage Absolute 1.71 3.6 V
ΔVDDA Supply voltage Delta to VDD (VDD – VDDA) -100 0 +100 mV 2
ΔVSSA Ground voltage Delta to VSS (VSS – VSSA) -100 0 +100 mV 2
VREFH ADC reference
voltage high
1.13 VDDA VDDA V
VREFL ADC reference
voltage low
VSSA VSSA VSSA V
VADIN Input voltage 16-bit differential mode
All other modes
VREFL
VREFL
31/32 *
VREFH
VREFH
V
CADIN Input
capacitance
16-bit mode
8-bit / 10-bit / 12-bit
modes
8
4
10
5
pF
RADIN Input series
resistance
2 5
RAS Analog source
resistance
(external)
13-bit / 12-bit modes
fADCK < 4 MHz
5
3
fADCK ADC conversion
clock frequency
≤ 13-bit mode 1.0 18.0 MHz 4
fADCK ADC conversion
clock frequency
16-bit mode 2.0 12.0 MHz 4
Crate ADC conversion
rate
≤ 13-bit modes
No ADC hardware averaging
Continuous conversions
enabled, subsequent
conversion time
20.000
818.330
Ksps
5
Crate ADC conversion
rate
16-bit mode
No ADC hardware averaging
37.037
461.467
Ksps
5
Peripheral operating requirements and behaviors
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 37
Freescale Semiconductor, Inc.
Table 27. 16-bit ADC operating conditions
Symbol Description Conditions Min. Typ.1Max. Unit Notes
Continuous conversions
enabled, subsequent
conversion time
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for
reference only, and are not tested in production.
2. DC potential difference.
3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The
RAS/CAS time constant should be kept to < 1 ns.
4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.
RAS
VAS CAS
ZAS
VADIN
ZADIN
RADIN
RADIN
RADIN
RADIN
CADIN
Pad
leakage
due to
input
protection
INPUT PIN
INPUT PIN
INPUT PIN
SIMPLIFIED
INPUT PIN EQUIVALENT
CIRCUIT
SIMPLIFIED
CHANNEL SELECT
CIRCUIT
ADC SAR
ENGINE
Figure 15. ADC input impedance equivalency diagram
3.6.1.2 16-bit ADC electrical characteristics
Table 28. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA)
Symbol Description Conditions1Min. Typ.2Max. Unit Notes
IDDA_ADC Supply current 0.215 1.7 mA 3
Table continues on the next page...
Peripheral operating requirements and behaviors
38 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
Table 28. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Symbol Description Conditions1Min. Typ.2Max. Unit Notes
fADACK
ADC
asynchronous
clock source
ADLPC = 1, ADHSC = 0
ADLPC = 1, ADHSC = 1
ADLPC = 0, ADHSC = 0
ADLPC = 0, ADHSC = 1
1.2
2.4
3.0
4.4
2.4
4.0
5.2
6.2
3.9
6.1
7.3
9.5
MHz
MHz
MHz
MHz
tADACK =
1/fADACK
Sample Time See Reference Manual chapter for sample times
TUE Total
unadjusted error
12-bit modes
<12-bit modes
±4
±1.4
±6.8
±2.1
LSB45
DNL Differential non-
linearity
12-bit modes
<12-bit modes
±0.7
±0.2
–1.1 to
+1.9
–0.3 to 0.5
LSB45
INL Integral non-
linearity
12-bit modes
<12-bit modes
±1.0
±0.5
–2.7 to
+1.9
–0.7 to
+0.5
LSB45
EFS Full-scale error 12-bit modes
<12-bit modes
–4
–1.4
–5.4
–1.8
LSB4VADIN =
VDDA5
EQQuantization
error
16-bit modes
≤13-bit modes
–1 to 0
±0.5
LSB4
ENOB Effective
number of bits
16-bit differential mode
Avg = 32
Avg = 4
16-bit single-ended mode
Avg = 32
Avg = 4
12.8
11.9
12.2
11.4
14.5
13.8
13.9
13.1
bits
bits
bits
bits
6
SINAD Signal-to-noise
plus distortion
See ENOB 6.02 × ENOB + 1.76 dB
THD Total harmonic
distortion
16-bit differential mode
Avg = 32
16-bit single-ended mode
Avg = 32
-94
-85
dB
dB
7
SFDR Spurious free
dynamic range
16-bit differential mode
Avg = 32
16-bit single-ended mode
Avg = 32
82
78
95
90
dB
dB
7
Table continues on the next page...
Peripheral operating requirements and behaviors
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 39
Freescale Semiconductor, Inc.
Table 28. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Symbol Description Conditions1Min. Typ.2Max. Unit Notes
EIL Input leakage
error
IIn × RAS mV IIn =
leakage
current
(refer to
the MCU's
voltage
and
current
operating
ratings)
Temp sensor
slope
Across the full temperature range
of the device
1.55 1.62 1.69 mV/°C 8
VTEMP25 Temp sensor
voltage
25 °C 706 716 726 mV 8
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1
MHz ADC conversion clock speed.
4. 1 LSB = (VREFH - VREFL)/2N
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
8. ADC conversion clock < 3 MHz
Typical ADC 16-bit Differential ENOB vs ADC Clock
100Hz, 90% FS Sine Input
ENOB
ADC Clock Frequency (MHz)
15.00
14.70
14.40
14.10
13.80
13.50
13.20
12.90
12.60
12.30
12.00
1 2 3 4 5 6 7 8 9 10 1211
Hardware Averaging Disabled
Averaging of 4 samples
Averaging of 8 samples
Averaging of 32 samples
Figure 16. Typical ENOB vs. ADC_CLK for 16-bit differential mode
Peripheral operating requirements and behaviors
40 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
Typical ADC 16-bit Single-Ended ENOB vs ADC Clock
100Hz, 90% FS Sine Input
ENOB
ADC Clock Frequency (MHz)
14.00
13.75
13.25
13.00
12.75
12.50
12.00
11.75
11.50
11.25
11.00
1 2 3 4 5 6 7 8 9 10 1211
Averaging of 4 samples
Averaging of 32 samples
13.50
12.25
Figure 17. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode
3.6.2 CMP and 6-bit DAC electrical specifications
Table 29. Comparator and 6-bit DAC electrical specifications
Symbol Description Min. Typ. Max. Unit
VDD Supply voltage 1.71 3.6 V
IDDHS Supply current, High-speed mode (EN=1, PMODE=1) 200 μA
IDDLS Supply current, low-speed mode (EN=1, PMODE=0) 20 μA
VAIN Analog input voltage VSS – 0.3 VDD V
VAIO Analog input offset voltage 20 mV
VHAnalog comparator hysteresis1
CR0[HYSTCTR] = 00
CR0[HYSTCTR] = 01
CR0[HYSTCTR] = 10
CR0[HYSTCTR] = 11
5
10
20
30
mV
mV
mV
mV
VCMPOh Output high VDD – 0.5 V
VCMPOl Output low 0.5 V
tDHS Propagation delay, high-speed mode (EN=1, PMODE=1) 20 50 200 ns
tDLS Propagation delay, low-speed mode (EN=1, PMODE=0) 80 250 600 ns
Analog comparator initialization delay2 40 μs
IDAC6b 6-bit DAC current adder (enabled) 7 μA
INL 6-bit DAC integral non-linearity –0.5 0.5 LSB3
DNL 6-bit DAC differential non-linearity –0.3 0.3 LSB
Peripheral operating requirements and behaviors
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 41
Freescale Semiconductor, Inc.
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.
3. 1 LSB = Vreference/64
00
01
10
HYSTCTR
Setting
0.1
10
11
Vin level (V)
CMP Hystereris (V)
3.12.82.5
2.2
1.91.61.3
1
0.70.4
0.05
0
0.01
0.02
0.03
0.08
0.07
0.06
0.04
Figure 18. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)
Peripheral operating requirements and behaviors
42 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
00
01
10
HYSTCTR
Setting
10
11
0.1 3.12.82.5
2.2
1.91.61.3
1
0.70.4
0.1
0
0.02
0.04
0.06
0.18
0.14
0.12
0.08
0.16
Vin level (V)
CMP Hysteresis (V)
Figure 19. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)
3.6.3 12-bit DAC electrical characteristics
3.6.3.1 12-bit DAC operating requirements
Table 30. 12-bit DAC operating requirements
Symbol Desciption Min. Max. Unit Notes
VDDA Supply voltage 1.71 3.6 V
VDACR Reference voltage 1.13 3.6 V 1
CLOutput load capacitance 100 pF 2
ILOutput load current 1 mA
1. The DAC reference can be selected to be VDDA or VREFH.
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.
Peripheral operating requirements and behaviors
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 43
Freescale Semiconductor, Inc.
3.6.3.2 12-bit DAC operating behaviors
Table 31. 12-bit DAC operating behaviors
Symbol Description Min. Typ. Max. Unit Notes
IDDA_DACL
P
Supply current — low-power mode 150 μA
IDDA_DACH
P
Supply current — high-speed mode 700 μA
tDACLP Full-scale settling time (0x080 to 0xF7F) —
low-power mode
100 200 μs 1
tDACHP Full-scale settling time (0x080 to 0xF7F) —
high-power mode
15 30 μs 1
tCCDACLP Code-to-code settling time (0xBF8 to
0xC08) — low-power mode and high-speed
mode
0.7 1 μs 1
Vdacoutl DAC output voltage range low — high-
speed mode, no load, DAC set to 0x000
100 mV
Vdacouth DAC output voltage range high — high-
speed mode, no load, DAC set to 0xFFF
VDACR
−100
VDACR mV
INL Integral non-linearity error — high speed
mode
±8 LSB 2
DNL Differential non-linearity error — VDACR > 2
V
±1 LSB 3
DNL Differential non-linearity error — VDACR =
VREF_OUT
±1 LSB 4
VOFFSET Offset error ±0.4 ±0.8 %FSR 5
EGGain error ±0.1 ±0.6 %FSR 5
PSRR Power supply rejection ratio, VDDA ≥ 2.4 V 60 90 dB
TCO Temperature coefficient offset voltage 3.7 μV/C 6
TGE Temperature coefficient gain error 0.000421 %FSR/C
ACOffset aging coefficient 100 μV/yr
Rop Output resistance (load = 3 kΩ) 250 Ω
SR Slew rate -80hF7Fh80h
High power (SPHP)
Low power (SPLP)
1.2
0.05
1.7
0.12
V/μs
CT Channel to channel cross talk -80 dB
BW 3dB bandwidth
High power (SPHP)
Low power (SPLP)
550
40
kHz
1. Settling within ±1 LSB
2. The INL is measured for 0 + 100 mV to VDACR −100 mV
3. The DNL is measured for 0 + 100 mV to VDACR −100 mV
4. The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V
5. Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV
Peripheral operating requirements and behaviors
44 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC
set to 0x800, temperature range is across the full range of the device
Digital Code
DAC12 INL (LSB)
0
500 1000 1500 2000 2500 3000 3500 4000
2
4
6
8
-2
-4
-6
-8
0
Figure 20. Typical INL error vs. digital code
Peripheral operating requirements and behaviors
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 45
Freescale Semiconductor, Inc.
Temperature °C
DAC12 Mid Level Code Voltage
25 55 85 105 125
1.499
-40
1.4985
1.498
1.4975
1.497
1.4965
1.496
Figure 21. Offset at half scale vs. temperature
3.6.4 Voltage reference electrical specifications
Table 32. VREF full-range operating requirements
Symbol Description Min. Max. Unit Notes
VDDA Supply voltage 1.71 3.6 V
TATemperature Operating temperature
range of the device
°C
CLOutput load capacitance 100 nF 1, 2
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external
reference.
2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature range
of the device.
Peripheral operating requirements and behaviors
46 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
Table 33. VREF full-range operating behaviors
Symbol Description Min. Typ. Max. Unit Notes
Vout Voltage reference output with factory trim at
nominal VDDA and temperature=25C
1.1915 1.195 1.1977 V 1
Vout Voltage reference output — factory trim 1.1584 1.2376 V 1
Vout Voltage reference output — user trim 1.193 1.197 V 1
Vstep Voltage reference trim step 0.5 mV 1
Vtdrift Temperature drift (Vmax -Vmin across the full
temperature range)
80 mV 1
Ibg Bandgap only current 80 µA 1
ΔVLOAD Load regulation
current = ± 1.0 mA
200
µV 1, 2
Tstup Buffer startup time 100 µs
Vvdrift Voltage drift (Vmax -Vmin across the full
voltage range)
2 mV 1
1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load
Table 34. VREF limited-range operating requirements
Symbol Description Min. Max. Unit Notes
TATemperature 0 50 °C
Table 35. VREF limited-range operating behaviors
Symbol Description Min. Max. Unit Notes
Vout Voltage reference output with factory trim 1.173 1.225 V
3.7 Timers
See General switching specifications.
3.8 Communication interfaces
Peripheral operating requirements and behaviors
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 47
Freescale Semiconductor, Inc.
3.8.1 USB electrical specifications
The USB electricals for the USB On-the-Go module conform to the standards
documented by the Universal Serial Bus Implementers Forum. For the most up-to-date
standards, visit usb.org.
NOTE
The MCGFLLCLK does not meet the USB jitter
specifications for certification.
3.8.2 USB DCD electrical specifications
Table 36. USB0 DCD electrical specifications
Symbol Description Min. Typ. Max. Unit
VDP_SRC USB_DP source voltage (up to 250 μA) 0.5 0.7 V
VLGC Threshold voltage for logic high 0.8 2.0 V
IDP_SRC USB_DP source current 7 10 13 μA
IDM_SINK USB_DM sink current 50 100 150 μA
RDM_DWN D- pulldown resistance for data pin contact detect 14.25 24.8
VDAT_REF Data detect voltage 0.25 0.33 0.4 V
3.8.3 USB VREG electrical specifications
Table 37. USB VREG electrical specifications
Symbol Description Min. Typ.1Max. Unit Notes
VREGIN Input supply voltage 2.7 5.5 V
IDDon Quiescent current — Run mode, load current
equal zero, input supply (VREGIN) > 3.6 V
125 186 μA
IDDstby Quiescent current — Standby mode, load
current equal zero
1.1 10 μA
IDDoff Quiescent current — Shutdown mode
VREGIN = 5.0 V and temperature=25 °C
Across operating voltage and temperature
650
4
nA
μA
ILOADrun Maximum load current — Run mode 120 mA
ILOADstby Maximum load current — Standby mode 1 mA
VReg33out Regulator output voltage — Input supply
(VREGIN) > 3.6 V
3
3.3
3.6
V
Table continues on the next page...
Peripheral operating requirements and behaviors
48 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
Table 37. USB VREG electrical specifications
(continued)
Symbol Description Min. Typ.1Max. Unit Notes
Run mode
Standby mode
2.1 2.8 3.6 V
VReg33out Regulator output voltage — Input supply
(VREGIN) < 3.6 V, pass-through mode
2.1 3.6 V 2
COUT External output capacitor 1.76 2.2 8.16 μF
ESR External output capacitor equivalent series
resistance
1 100
ILIM Short circuit current 290 mA
1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.
2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad.
3.8.4 CAN switching specifications
See General switching specifications.
3.8.5 DSPI switching specifications (limited voltage range)
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with
master and slave operations. Many of the transfer attributes are programmable. The
tables below provide DSPI timing characteristics for classic SPI timing modes. Refer
to the DSPI chapter of the Reference Manual for information on the modified transfer
formats used for communicating with slower peripheral devices.
Table 38. Master mode DSPI timing (limited voltage range)
Num Description Min. Max. Unit Notes
Operating voltage 2.7 3.6 V
Frequency of operation 30 MHz
DS1 DSPI_SCK output cycle time 2 x tBUS ns
DS2 DSPI_SCK output high/low time (tSCK/2) − 2 (tSCK/2) + 2 ns
DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) −
2
ns 1
DS4 DSPI_SCK to DSPI_PCSn invalid delay (tBUS x 2) −
2
ns 2
DS5 DSPI_SCK to DSPI_SOUT valid 8.5 ns
DS6 DSPI_SCK to DSPI_SOUT invalid −2 ns
Table continues on the next page...
Peripheral operating requirements and behaviors
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 49
Freescale Semiconductor, Inc.
Table 38. Master mode DSPI timing (limited voltage range) (continued)
Num Description Min. Max. Unit Notes
DS7 DSPI_SIN to DSPI_SCK input setup 15 ns
DS8 DSPI_SCK to DSPI_SIN input hold 0 ns
1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].
DS3 DS4
DS1
DS2
DS7 DS8
First data Last data
DS5
First data Data Last data
DS6
Data
DSPI_PCSn
DSPI_SCK
(CPOL=0)
DSPI_SIN
DSPI_SOUT
Figure 22. DSPI classic SPI timing — master mode
Table 39. Slave mode DSPI timing (limited voltage range)
Num Description Min. Max. Unit
Operating voltage 2.7 3.6 V
Frequency of operation 15 MHz
DS9 DSPI_SCK input cycle time 4 x tBUS ns
DS10 DSPI_SCK input high/low time (tSCK/2) − 2 (tSCK/2) + 2 ns
DS11 DSPI_SCK to DSPI_SOUT valid 17.4 ns
DS12 DSPI_SCK to DSPI_SOUT invalid 0 ns
DS13 DSPI_SIN to DSPI_SCK input setup 2 ns
DS14 DSPI_SCK to DSPI_SIN input hold 7 ns
DS15 DSPI_SS active to DSPI_SOUT driven 16 ns
DS16 DSPI_SS inactive to DSPI_SOUT not driven 16 ns
Peripheral operating requirements and behaviors
50 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
First data Last data
First data Data Last data
Data
DS15
DS10 DS9
DS16
DS11
DS12
DS14
DS13
DSPI_SS
DSPI_SCK
(CPOL=0)
DSPI_SOUT
DSPI_SIN
Figure 23. DSPI classic SPI timing — slave mode
3.8.6 DSPI switching specifications (full voltage range)
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with
master and slave operations. Many of the transfer attributes are programmable. The
tables below provides DSPI timing characteristics for classic SPI timing modes. Refer
to the DSPI chapter of the Reference Manual for information on the modified transfer
formats used for communicating with slower peripheral devices.
Table 40. Master mode DSPI timing (full voltage range)
Num Description Min. Max. Unit Notes
Operating voltage 1.71 3.6 V 1
Frequency of operation 15 MHz
DS1 DSPI_SCK output cycle time 4 x tBUS ns
DS2 DSPI_SCK output high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns
DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) −
4
ns 2
DS4 DSPI_SCK to DSPI_PCSn invalid delay (tBUS x 2) −
4
ns 3
DS5 DSPI_SCK to DSPI_SOUT valid 10 ns
DS6 DSPI_SCK to DSPI_SOUT invalid -4.5 ns
DS7 DSPI_SIN to DSPI_SCK input setup 20.5 ns
DS8 DSPI_SCK to DSPI_SIN input hold 0 ns
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage
range the maximum frequency of operation is reduced.
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].
Peripheral operating requirements and behaviors
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 51
Freescale Semiconductor, Inc.
DS3 DS4
DS1
DS2
DS7 DS8
First data Last data
DS5
First data Data Last data
DS6
Data
DSPI_PCSn
DSPI_SCK
(CPOL=0)
DSPI_SIN
DSPI_SOUT
Figure 24. DSPI classic SPI timing — master mode
Table 41. Slave mode DSPI timing (full voltage range)
Num Description Min. Max. Unit
Operating voltage 1.71 3.6 V
Frequency of operation 7.5 MHz
DS9 DSPI_SCK input cycle time 8 x tBUS ns
DS10 DSPI_SCK input high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns
DS11 DSPI_SCK to DSPI_SOUT valid 20 ns
DS12 DSPI_SCK to DSPI_SOUT invalid 0 ns
DS13 DSPI_SIN to DSPI_SCK input setup 2 ns
DS14 DSPI_SCK to DSPI_SIN input hold 7 ns
DS15 DSPI_SS active to DSPI_SOUT driven 19 ns
DS16 DSPI_SS inactive to DSPI_SOUT not driven 19 ns
First data Last data
First data Data Last data
Data
DS15
DS10 DS9
DS16
DS11
DS12
DS14
DS13
DSPI_SS
DSPI_SCK
(CPOL=0)
DSPI_SOUT
DSPI_SIN
Figure 25. DSPI classic SPI timing — slave mode
Peripheral operating requirements and behaviors
52 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
3.8.7 I2C switching specifications
See General switching specifications.
3.8.8 UART switching specifications
See General switching specifications.
3.8.9 I2S switching specifications
This section provides the AC timings for the I2S in master (clocks driven) and slave
modes (clocks input). All timings are given for non-inverted serial clock polarity
(TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a non-inverted frame sync (TCR[TFSI] =
0, RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been
inverted, all the timings remain valid by inverting the clock signal (I2S_BCLK) and/or
the frame sync (I2S_FS) shown in the figures below.
Table 42. I2S master mode timing
Num Description Min. Max. Unit
Operating voltage 2.7 3.6 V
S1 I2S_MCLK cycle time 40 ns
S2 I2S_MCLK pulse width high/low 45% 55% MCLK period
S3 I2S_BCLK cycle time 80 ns
S4 I2S_BCLK pulse width high/low 45% 55% BCLK period
S5 I2S_BCLK to I2S_FS output valid 15 ns
S6 I2S_BCLK to I2S_FS output invalid 0 ns
S7 I2S_BCLK to I2S_TXD valid 15 ns
S8 I2S_BCLK to I2S_TXD invalid 0 ns
S9 I2S_RXD/I2S_FS input setup before I2S_BCLK 15 ns
S10 I2S_RXD/I2S_FS input hold after I2S_BCLK 0 ns
Peripheral operating requirements and behaviors
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 53
Freescale Semiconductor, Inc.
S1 S2 S2
S3
S4
S4
S5
S9
S7
S9 S10
S7
S8
S6
S10
S8
I2S_MCLK (output)
I2S_BCLK (output)
I2S_FS (output)
I2S_FS (input)
I2S_TXD
I2S_RXD
Figure 26. I2S timing — master mode
Table 43. I2S slave mode timing
Num Description Min. Max. Unit
Operating voltage 2.7 3.6 V
S11 I2S_BCLK cycle time (input) 80 ns
S12 I2S_BCLK pulse width high/low (input) 45% 55% MCLK period
S13 I2S_FS input setup before I2S_BCLK 4.5 ns
S14 I2S_FS input hold after I2S_BCLK 2 ns
S15 I2S_BCLK to I2S_TXD/I2S_FS output valid 18 ns
S16 I2S_BCLK to I2S_TXD/I2S_FS output invalid 0 ns
S17 I2S_RXD setup before I2S_BCLK 4.5 ns
S18 I2S_RXD hold after I2S_BCLK 2 ns
S19 I2S_TX_FS input assertion to I2S_TXD output valid121 ns
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
Peripheral operating requirements and behaviors
54 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
S15
S13
S15
S17 S18
S15
S16
S16
S14
S16
S11
S12
S12
I2S_BCLK (input)
I2S_FS (output)
I2S_FS (input)
I2S_TXD
I2S_RXD
S19
Figure 27. I2S timing — slave modes
3.8.9.1 Normal Run, Wait and Stop mode performance over the full
operating voltage range
This section provides the operating performance over the full operating voltage for the
device in Normal Run, Wait and Stop modes.
Table 44. I2S/SAI master mode timing
Num. Characteristic Min. Max. Unit
Operating voltage 1.71 3.6 V
S1 I2S_MCLK cycle time 40 ns
S2 I2S_MCLK (as an input) pulse width high/low 45% 55% MCLK period
S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 80 ns
S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period
S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output valid
15 ns
S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output invalid
-1 ns
S7 I2S_TX_BCLK to I2S_TXD valid 15 ns
S8 I2S_TX_BCLK to I2S_TXD invalid 0 ns
S9 I2S_RXD/I2S_RX_FS input setup before
I2S_RX_BCLK
20.5 ns
S10 I2S_RXD/I2S_RX_FS input hold after
I2S_RX_BCLK
0 ns
Peripheral operating requirements and behaviors
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 55
Freescale Semiconductor, Inc.
S1 S2 S2
S3
S4
S4
S5
S9
S7
S9 S10
S7
S8
S6
S10
S8
I2S_MCLK (output)
I2S_TX_BCLK/
I2S_RX_BCLK (output)
I2S_TX_FS/
I2S_RX_FS (output)
I2S_TX_FS/
I2S_RX_FS (input)
I2S_TXD
I2S_RXD
Figure 28. I2S/SAI timing — master modes
Table 45. I2S/SAI slave mode timing
Num. Characteristic Min. Max. Unit
Operating voltage 1.71 3.6 V
S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 80 ns
S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
(input)
45% 55% MCLK period
S13 I2S_TX_FS/I2S_RX_FS input setup before
I2S_TX_BCLK/I2S_RX_BCLK
5.8 ns
S14 I2S_TX_FS/I2S_RX_FS input hold after
I2S_TX_BCLK/I2S_RX_BCLK
2 ns
S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid 23.5 ns
S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 ns
S17 I2S_RXD setup before I2S_RX_BCLK 5.8 ns
S18 I2S_RXD hold after I2S_RX_BCLK 2 ns
S19 I2S_TX_FS input assertion to I2S_TXD output valid1 25 ns
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
Peripheral operating requirements and behaviors
56 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
S15
S13
S15
S17 S18
S15
S16
S16
S14
S16
S11
S12
S12
I2S_TX_BCLK/
I2S_RX_BCLK (input)
I2S_TX_FS/
I2S_RX_FS (output)
I2S_TXD
I2S_RXD
I2S_TX_FS/
I2S_RX_FS (input) S19
Figure 29. I2S/SAI timing — slave modes
3.8.9.2 VLPR, VLPW, and VLPS mode performance over the full
operating voltage range
This section provides the operating performance over the full operating voltage for the
device in VLPR, VLPW, and VLPS modes.
Table 46. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes
(full voltage range)
Num. Characteristic Min. Max. Unit
Operating voltage 1.71 3.6 V
S1 I2S_MCLK cycle time 62.5 ns
S2 I2S_MCLK pulse width high/low 45% 55% MCLK period
S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 250 ns
S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period
S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output valid
45 ns
S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output invalid
-1 ns
S7 I2S_TX_BCLK to I2S_TXD valid 45 ns
S8 I2S_TX_BCLK to I2S_TXD invalid 0 ns
S9 I2S_RXD/I2S_RX_FS input setup before
I2S_RX_BCLK
45 ns
S10 I2S_RXD/I2S_RX_FS input hold after
I2S_RX_BCLK
0 ns
Peripheral operating requirements and behaviors
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 57
Freescale Semiconductor, Inc.
S1 S2 S2
S3
S4
S4
S5
S9
S7
S9 S10
S7
S8
S6
S10
S8
I2S_MCLK (output)
I2S_TX_BCLK/
I2S_RX_BCLK (output)
I2S_TX_FS/
I2S_RX_FS (output)
I2S_TX_FS/
I2S_RX_FS (input)
I2S_TXD
I2S_RXD
Figure 30. I2S/SAI timing — master modes
Table 47. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full
voltage range)
Num. Characteristic Min. Max. Unit
Operating voltage 1.71 3.6 V
S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 250 ns
S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
(input)
45% 55% MCLK period
S13 I2S_TX_FS/I2S_RX_FS input setup before
I2S_TX_BCLK/I2S_RX_BCLK
30 ns
S14 I2S_TX_FS/I2S_RX_FS input hold after
I2S_TX_BCLK/I2S_RX_BCLK
3 ns
S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid 63 ns
S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 ns
S17 I2S_RXD setup before I2S_RX_BCLK 30 ns
S18 I2S_RXD hold after I2S_RX_BCLK 2 ns
S19 I2S_TX_FS input assertion to I2S_TXD output valid1 72 ns
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
Peripheral operating requirements and behaviors
58 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
S15
S13
S15
S17 S18
S15
S16
S16
S14
S16
S11
S12
S12
I2S_TX_BCLK/
I2S_RX_BCLK (input)
I2S_TX_FS/
I2S_RX_FS (output)
I2S_TXD
I2S_RXD
I2S_TX_FS/
I2S_RX_FS (input) S19
Figure 31. I2S/SAI timing — slave modes
3.8.9.3 Ordering parts
3.8.9.3.1 Determining valid orderable parts
Valid orderable part numbers are provided on the web. To determine the orderable
part numbers for this device, go to freescale.com and perform a part number search for
the following device numbers: PK22 and MK22
3.8.9.4 Part identification
3.8.9.4.1 Description
Part numbers for the chip have fields that identify the specific part. You can use the
values of these fields to determine the specific part you have received.
3.8.9.4.2 Format
Part numbers for this device have the following format:
Q K## A M FFF R T PP CC N
3.8.9.4.3 Fields
This table lists the possible values for each field in the part number (not all
combinations are valid):
Peripheral operating requirements and behaviors
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 59
Freescale Semiconductor, Inc.
Field Description Values
Q Qualification status M = Fully qualified, general market flow
P = Prequalification
K## Kinetis family K22
A Key attribute D = Cortex-M4 w/ DSP
F = Cortex-M4 w/ DSP and FPU
M Flash memory type N = Program flash only
X = Program flash and FlexMemory
FFF Program flash memory size 32 = 32 KB
64 = 64 KB
128 = 128 KB
256 = 256 KB
512 = 512 KB
1M0 = 1 MB
2M0 = 2 MB
R Silicon revision Z = Initial
(Blank) = Main
A = Revision after main
T Temperature range (°C) V = –40 to 105
C = –40 to 85
PP Package identifier FM = 32 QFN (5 mm x 5 mm)
FT = 48 QFN (7 mm x 7 mm)
LF = 48 LQFP (7 mm x 7 mm)
LH = 64 LQFP (10 mm x 10 mm)
MP = 64 MAPBGA (5 mm x 5 mm)
LK = 80 LQFP (12 mm x 12 mm)
LL = 100 LQFP (14 mm x 14 mm)
MC = 121 MAPBGA (8 mm x 8 mm)
DC = 121 XFBGA (8 mm x 8 mm x 0.5 mm)
LQ = 144 LQFP (20 mm x 20 mm)
MD = 144 MAPBGA (13 mm x 13 mm)
CC Maximum CPU frequency (MHz) 5 = 50 MHz
7 = 72 MHz
10 = 100 MHz
12 = 120 MHz
15 = 150 MHz
16 = 168 MHz
18 = 180 MHz
N Packaging type R = Tape and reel
(Blank) = Trays
3.8.9.4.4 Example
This is an example part number:
MK22FN1M0VLH10
Peripheral operating requirements and behaviors
60 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
3.8.9.4.5 Small package marking
In an effort to save space, small package devices use special marking on the chip.
These markings have the following format:
Q ## C F T PP
This table lists the possible values for each field in the part number for small packages
(not all combinations are valid):
Field Description Values
Q Qualification status M = Fully qualified, general market flow
P = Prequalification
## Kinetis family 2# = K21/K22
C Speed H = 120 MHz
F Flash memory configuration K = 512 KB + Flex
1 = 1 MB
T Temperature range (°C) V = –40 to 105
PP Package identifier LL = 100 LQFP
MC = 121 MAPBGA
LQ = 144 LQFP
MD = 144 MAPBGA
DC = 121 XFBGA
This tables lists some examples of small package marking along with the original part
numbers:
Original part number Alternate part number
MK22FX512VLH12 M22HKVLH
3.8.9.5 Terminology and guidelines
3.8.9.5.1 Definition: Operating requirement
An operating requirement is a specified value or range of values for a technical
characteristic that you must guarantee during operation to avoid incorrect operation
and possibly decreasing the useful life of the chip.
3.8.9.5.1.1 Example
This is an example of an operating requirement:
Peripheral operating requirements and behaviors
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 61
Freescale Semiconductor, Inc.
Symbol Description Min. Max. Unit
VDD 1.0 V core supply
voltage
0.9 1.1 V
3.8.9.5.2 Definition: Operating behavior
Unless otherwise specified, an operating behavior is a specified value or range of
values for a technical characteristic that are guaranteed during operation if you meet the
operating requirements and any other specified conditions.
3.8.9.5.2.1 Example
This is an example of an operating behavior:
Symbol Description Min. Max. Unit
IWP Digital I/O weak pullup/
pulldown current
10 130 µA
3.8.9.5.3 Definition: Attribute
An attribute is a specified value or range of values for a technical characteristic that are
guaranteed, regardless of whether you meet the operating requirements.
3.8.9.5.3.1 Example
This is an example of an attribute:
Symbol Description Min. Max. Unit
CIN_D Input capacitance:
digital pins
7 pF
3.8.9.5.4 Definition: Rating
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,
may cause permanent chip failure:
Operating ratings apply during operation of the chip.
Handling ratings apply when the chip is not powered.
Peripheral operating requirements and behaviors
62 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
3.8.9.5.4.1 Example
This is an example of an operating rating:
Symbol Description Min. Max. Unit
VDD 1.0 V core supply
voltage
–0.3 1.2 V
3.8.9.5.5 Result of exceeding a rating
40
30
20
10
0
Measured characteristic
Operating rating
Failures in time (ppm)
The likelihood of permanent chip failure increases rapidly as
soon as a characteristic begins to exceed one of its operating ratings.
3.8.9.5.6 Relationship between ratings and operating requirements
- No permanent failure
- Correct operation
Normal operating range
Fatal range
Expected permanent failure
Fatal range
Expected permanent failure
Operating rating (max.)
Operating requirement (max.)
Operating requirement (min.)
Operating rating (min.)
Operating (power on)
Degraded operating range Degraded operating range
No permanent failure
Handling range
Fatal range
Expected permanent failure
Fatal range
Expected permanent failure
Handling rating (max.)
Handling rating (min.)
Handling (power off)
- No permanent failure
- Possible decreased life
- Possible incorrect operation
- No permanent failure
- Possible decreased life
- Possible incorrect operation
3.8.9.5.7 Guidelines for ratings and operating requirements
Follow these guidelines for ratings and operating requirements:
Never exceed any of the chip’s ratings.
Peripheral operating requirements and behaviors
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 63
Freescale Semiconductor, Inc.
During normal operation, don’t exceed any of the chip’s operating requirements.
If you must exceed an operating requirement at times other than during normal
operation (for example, during power sequencing), limit the duration as much as
possible.
3.8.9.5.8 Definition: Typical value
A typical value is a specified value for a technical characteristic that:
Lies within the range of values specified by the operating behavior
Given the typical manufacturing process, is representative of that characteristic
during operation when you meet the typical-value conditions or other specified
conditions
Typical values are provided as design guidelines and are neither tested nor guaranteed.
3.8.9.5.8.1 Example 1
This is an example of an operating behavior that includes a typical value:
Symbol Description Min. Typ. Max. Unit
IWP Digital I/O weak
pullup/pulldown
current
10 70 130 µA
3.8.9.5.8.2 Example 2
This is an example of a chart that shows typical values for various voltage and
temperature conditions:
Peripheral operating requirements and behaviors
64 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
0.90 0.95 1.00 1.05 1.10
0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
150 °C
105 °C
25 °C
–40 °C
VDD (V)
I(μA)
DD_STOP
TJ
3.8.9.5.9 Typical value conditions
Typical values assume you meet the following conditions (or other conditions as
specified):
Symbol Description Value Unit
TAAmbient temperature 25 °C
VDD 3.3 V supply voltage 3.3 V
4 Dimensions
4.1 Obtaining package dimensions
Package dimensions are provided in package drawings.
To find a package drawing, go to freescale.com and perform a keyword search for the
drawing’s document number:
If you want the drawing for this package Then use this document number
64-pin LQFP 98ASS23234W
Table continues on the next page...
Dimensions
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 65
Freescale Semiconductor, Inc.
If you want the drawing for this package Then use this document number
64-pin MAPBGA 98ASA00420D
169-pin MAPBGA 98ASA00628D
5 Pinout
5.1 K22 Signal Multiplexing and Pin Assignments
The following table shows the signals available on each pin and the locations of these
pins on the devices supported by this document. The Port Control Module is responsible
for selecting which ALT functionality is available on each pin.
NOTE
The analog input signals ADC0_DP2 and ADC0_DM2
on PTE2 and PTE3 are available only for K21 and K22
devices and are not present on K10 and K20 devices.
The TRACE signals on PTE0, PTE1, PTE2, PTE3, and
PTE4 are available only for K11, K12, K21, and K22
devices and are not present on K10 and K20 devices.
If the VBAT pin is not used, the VBAT pin should be left
floating. Do not connect VBAT pin to VSS.
The FTM_CLKIN signals on PTB16 and PTB17 are
available only for K11, K12, K21, and K22 devices and is
not present on K10 and K20 devices. For K22D devices
this signal is on ALT7, and for K22F devices, this signal
is on ALT4.
The FTM0_CH2 signal on PTC5/LLWU_P9 is available
only for K11, K12, K21, and K22 devices and is not
present on K10 and K20 devices.
The I2C0_SCL signal on PTD2/LLWU_P13 and
I2C0_SDA signal on PTD3 are available only for K11,
K12, K21, and K22 devices and are not present on K10
and K20 devices.
64
LQFP
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
1 PTE0 ADC1_SE4a ADC1_SE4a PTE0 UART1_TX TRACE_
CLKOUT
I2C1_SDA RTC_
CLKOUT
Pinout
66 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
64
LQFP
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
2 PTE1/
LLWU_P0
ADC1_SE5a ADC1_SE5a PTE1/
LLWU_P0
UART1_RX TRACE_D3 I2C1_SCL
3 VDD VDD VDD
4 VSS VSS VSS
5 USB0_DP USB0_DP USB0_DP
6 USB0_DM USB0_DM USB0_DM
7 VOUT33 VOUT33 VOUT33
8 VREGIN VREGIN VREGIN
9 ADC0_DP0/
ADC1_DP3
ADC0_DP0/
ADC1_DP3
ADC0_DP0/
ADC1_DP3
10 ADC0_DM0/
ADC1_DM3
ADC0_DM0/
ADC1_DM3
ADC0_DM0/
ADC1_DM3
11 ADC1_DP0/
ADC0_DP3
ADC1_DP0/
ADC0_DP3
ADC1_DP0/
ADC0_DP3
12 ADC1_DM0/
ADC0_DM3
ADC1_DM0/
ADC0_DM3
ADC1_DM0/
ADC0_DM3
13 VDDA VDDA VDDA
14 VREFH VREFH VREFH
15 VREFL VREFL VREFL
16 VSSA VSSA VSSA
17 VREF_OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_SE18
VREF_OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_SE18
VREF_OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_SE18
18 DAC0_OUT/
CMP1_IN3/
ADC0_SE23
DAC0_OUT/
CMP1_IN3/
ADC0_SE23
DAC0_OUT/
CMP1_IN3/
ADC0_SE23
19 XTAL32 XTAL32 XTAL32
20 EXTAL32 EXTAL32 EXTAL32
21 VBAT VBAT VBAT
22 PTA0 JTAG_TCLK/
SWD_CLK/
EZP_CLK
PTA0 UART0_CTS_
b
FTM0_CH5 JTAG_TCLK/
SWD_CLK
EZP_CLK
23 PTA1 JTAG_TDI/
EZP_DI
PTA1 UART0_RX FTM0_CH6 JTAG_TDI EZP_DI
24 PTA2 JTAG_TDO/
TRACE_
SWO/
EZP_DO
PTA2 UART0_TX FTM0_CH7 JTAG_TDO/
TRACE_SWO
EZP_DO
25 PTA3 JTAG_TMS/
SWD_DIO
PTA3 UART0_RTS_
b
FTM0_CH0 JTAG_TMS/
SWD_DIO
26 PTA4/
LLWU_P3
NMI_b/
EZP_CS_b
PTA4/
LLWU_P3
FTM0_CH1 NMI_b EZP_CS_b
27 PTA5 DISABLED PTA5 USB_CLKIN FTM0_CH2 CMP2_OUT I2S0_TX_
BCLK
JTAG_TRST_
b
Pinout
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 67
Freescale Semiconductor, Inc.
64
LQFP
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
28 PTA12 CMP2_IN0 CMP2_IN0 PTA12 CAN0_TX FTM1_CH0 I2C2_SCL I2S0_TXD0 FTM1_QD_
PHA
29 PTA13/
LLWU_P4
CMP2_IN1 CMP2_IN1 PTA13/
LLWU_P4
CAN0_RX FTM1_CH1 I2C2_SDA I2S0_TX_FS FTM1_QD_
PHB
30 VDD VDD VDD
31 VSS VSS VSS
32 PTA18 EXTAL0 EXTAL0 PTA18 FTM0_FLT2 FTM_CLKIN0
33 PTA19 XTAL0 XTAL0 PTA19 FTM1_FLT0 FTM_CLKIN1 LPTMR0_
ALT1
34 RESET_b RESET_b RESET_b
35 PTB0/
LLWU_P5
ADC0_SE8/
ADC1_SE8
ADC0_SE8/
ADC1_SE8
PTB0/
LLWU_P5
I2C0_SCL FTM1_CH0 FTM1_QD_
PHA
36 PTB1 ADC0_SE9/
ADC1_SE9
ADC0_SE9/
ADC1_SE9
PTB1 I2C0_SDA FTM1_CH1 FTM1_QD_
PHB
37 PTB2 ADC0_SE12 ADC0_SE12 PTB2 I2C0_SCL UART0_RTS_
b
FTM0_FLT3
38 PTB3 ADC0_SE13 ADC0_SE13 PTB3 I2C0_SDA UART0_CTS_
b
FTM0_FLT0
39 PTB16 DISABLED PTB16 UART0_RX FTM_CLKIN0 FB_AD17 EWM_IN
40 PTB17 DISABLED PTB17 UART0_TX FTM_CLKIN1 FB_AD16 EWM_OUT_b
41 PTB18 DISABLED PTB18 CAN0_TX FTM2_CH0 I2S0_TX_
BCLK
FB_AD15 FTM2_QD_
PHA
42 PTB19 DISABLED PTB19 CAN0_RX FTM2_CH1 I2S0_TX_FS FB_OE_b FTM2_QD_
PHB
43 PTC0 ADC0_SE14 ADC0_SE14 PTC0 SPI0_PCS4 PDB0_
EXTRG
FB_AD14 I2S0_TXD1
44 PTC1/
LLWU_P6
ADC0_SE15 ADC0_SE15 PTC1/
LLWU_P6
SPI0_PCS3 UART1_RTS_
b
FTM0_CH0 FB_AD13 I2S0_TXD0
45 PTC2 ADC0_SE4b/
CMP1_IN0
ADC0_SE4b/
CMP1_IN0
PTC2 SPI0_PCS2 UART1_CTS_
b
FTM0_CH1 FB_AD12 I2S0_TX_FS
46 PTC3/
LLWU_P7
CMP1_IN1 CMP1_IN1 PTC3/
LLWU_P7
SPI0_PCS1 UART1_RX FTM0_CH2 CLKOUT I2S0_TX_
BCLK
47 VSS VSS VSS
48 VDD VDD VDD
49 PTC4/
LLWU_P8
DISABLED PTC4/
LLWU_P8
SPI0_PCS0 UART1_TX FTM0_CH3 FB_AD11 CMP1_OUT
50 PTC5/
LLWU_P9
DISABLED PTC5/
LLWU_P9
SPI0_SCK LPTMR0_
ALT2
I2S0_RXD0 FB_AD10 CMP0_OUT FTM0_CH2
51 PTC6/
LLWU_P10
CMP0_IN0 CMP0_IN0 PTC6/
LLWU_P10
SPI0_SOUT PDB0_
EXTRG
I2S0_RX_
BCLK
FB_AD9 I2S0_MCLK
52 PTC7 CMP0_IN1 CMP0_IN1 PTC7 SPI0_SIN USB_SOF_
OUT
I2S0_RX_FS FB_AD8
53 PTC8 ADC1_SE4b/
CMP0_IN2
ADC1_SE4b/
CMP0_IN2
PTC8 FTM3_CH4 I2S0_MCLK FB_AD7
Pinout
68 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
64
LQFP
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
54 PTC9 ADC1_SE5b/
CMP0_IN3
ADC1_SE5b/
CMP0_IN3
PTC9 FTM3_CH5 I2S0_RX_
BCLK
FB_AD6 FTM2_FLT0
55 PTC10 ADC1_SE6b ADC1_SE6b PTC10 I2C1_SCL FTM3_CH6 I2S0_RX_FS FB_AD5
56 PTC11/
LLWU_P11
ADC1_SE7b ADC1_SE7b PTC11/
LLWU_P11
I2C1_SDA FTM3_CH7 I2S0_RXD1 FB_RW_b
57 PTD0/
LLWU_P12
DISABLED PTD0/
LLWU_P12
SPI0_PCS0 UART2_RTS_
b
FTM3_CH0 FB_ALE/
FB_CS1_b/
FB_TS_b
58 PTD1 ADC0_SE5b ADC0_SE5b PTD1 SPI0_SCK UART2_CTS_
b
FTM3_CH1 FB_CS0_b
59 PTD2/
LLWU_P13
DISABLED PTD2/
LLWU_P13
SPI0_SOUT UART2_RX FTM3_CH2 FB_AD4 I2C0_SCL
60 PTD3 DISABLED PTD3 SPI0_SIN UART2_TX FTM3_CH3 FB_AD3 I2C0_SDA
61 PTD4/
LLWU_P14
DISABLED PTD4/
LLWU_P14
SPI0_PCS1 UART0_RTS_
b
FTM0_CH4 FB_AD2 EWM_IN
62 PTD5 ADC0_SE6b ADC0_SE6b PTD5 SPI0_PCS2 UART0_CTS_
b
FTM0_CH5 FB_AD1 EWM_OUT_b
63 PTD6/
LLWU_P15
ADC0_SE7b ADC0_SE7b PTD6/
LLWU_P15
SPI0_PCS3 UART0_RX FTM0_CH6 FB_AD0 FTM0_FLT0
64 PTD7 DISABLED PTD7 CMT_IRO UART0_TX FTM0_CH7 FTM0_FLT1
5.2 K22 Pinouts
The below figure shows the pinout diagram for the devices supported by this
document. Many signals may be multiplexed onto a single pin. To determine what
signals can be used on which pin, see the previous section.
Pinout
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 69
Freescale Semiconductor, Inc.
EXTAL32
XTAL32
DAC0_OUT/CMP1_IN3/ADC0_SE23
VREF_OUT/CMP1_IN5/CMP0_IN5/ADC1_SE18
VSSA
VREFL
VREFH
VDDA
ADC1_DM0/ADC0_DM3
ADC1_DP0/ADC0_DP3
ADC0_DM0/ADC1_DM3
ADC0_DP0/ADC1_DP3
VREGIN
VOUT33
USB0_DM
USB0_DP
VSS
VDD
PTE1/LLWU_P0
PTE0
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
64
63
62
61
PTD7
PTD6/LLWU_P15
PTD5
PTD4/LLWU_P14
PTD3
PTD2/LLWU_P13
PTD1
PTD0/LLWU_P12
PTC11/LLWU_P11
PTC10
PTC9
PTC8
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
VDD
VSS
PTC3/LLWU_P7
PTC2
PTC1/LLWU_P6
PTC0
PTB19
PTB18
PTB17
PTB16
PTB3
PTB2
PTB1
PTB0/LLWU_P5
RESET_b
PTA19
PTA18
VSS
VDD
PTA13/LLWU_P4
PTA12
PTA5
PTA4/LLWU_P3
PTA3
PTA2
PTA1
PTA0
VBAT
Figure 32. K22 64 LQFP Pinout Diagram
6Revision History
The following table provides a revision history for this document.
Revision History
70 Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015.
Freescale Semiconductor, Inc.
Table 48. Revision History
Rev. No. Date Substantial Changes
1 11/2012 Alpha customer release
2 5/2013 Updated supported part numbers and document number
Updated section "Voltage and current operating behaviors"
Added the following figures:
Run mode supply current vs. core frequency
VLPR mode supply current vs. core frequency
Updated section "Device clock specifications"
Updated section "Power consumption operating behaviors"
Updated section "Power mode transition operating behaviors"
Updated section "JTAG limited voltage range electricals"
Updated section "MCG specifications"
Updated section "Oscillator DC electrical specifications"
Updated section "16-bit ADC operating conditions"
Updated the pinouts
Added section "Alternate part numbers for small packages"
38/2013 Updated section "Power consumption operating behaviors"
Updated the "Run mode supply current vs. core frequency" figure in section
"Diagram: Typical IDD_RUN operating behavior
4 11/2014 Updated the table "Voltage and current operating behavior"
Format changes
5 03/2015 Updated supported part numbers
Updated document number
Updated the table "I2S/SAI master mode timing in VLPR, VLPW, and VLPS
modes (full voltage range)
Updated the table "I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes
(full voltage range)"
Revision History
Kinetis K22F Sub-Family Data Sheet, Rev5, 03/2015. 71
Freescale Semiconductor, Inc.
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.
Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.
Freescale, the Freescale logo, Energy Efficient Solutions logo, and
Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat.
& Tm. Off. All other product or service names are the property of their
respective owners. ARM and Cortex are registered trademarks of ARM
Limited (or its subsidiaries) in the EU and/or elsewhere. All rights
reserved.
©2013-2015 Freescale Semiconductor, Inc.
Document Number K22P64M120SF5V2
Revision 5, 03/2015