2007 Microchip Technology Inc. DS21754H-page 1
24AA512/24LC512/24FC512
Device Selection Table
Features:
Single Supply with Operation Down to 1.7V for
24AA512 and 24FC512 Devices, 2.5V for
24LC512 Devices
Low-Power CMOS Technology:
- Active current 400 uA, typical
- Standby current 100 nA, typical
2-Wire Serial Interface, I2C Compatible
Cascadable for up to Eight Devices
Schmitt Trigger Inputs for Noise Suppression
Output Slope Control to Eliminate Ground Bounce
100 kHz and 400 kHz Clock Compatibility
Page Write Time 5 ms max.
Self-Timed Erase/Write Cycle
128-Byte Page Write Buffer
Hardware Write-Protect
ESD Protection >4000V
More than 1 Million Erase/Write Cycles
Data Retention > 200 years
Packages Include 8-lead PDIP, SOIJ and DFN
Pb-Free and RoHS Compliant
Temperature Ranges:
- Industrial (I): -40C to +85C
- Automotive (E):-40C to +125C
Description:
The Microchip Technology Inc. 24AA512/24LC512/
24FC512 (24XX512*) is a 64K x 8 (512 Kbit) Serial
Electrically Erasable PROM, capable of operation
across a broad voltage range (1.7V to 5.5V). It has
been developed for advanced, low-power applications
such as personal communications and data acquisi-
tion. This device also has a page write capability of up
to 128 bytes of data. This device is capable of both
random and sequential reads up to the 512K boundary.
Functional address lines allow up to eight devices on
the same bus, for up to 4 Mbit address space. This
device is available in the standard 8-pin plastic DIP,
SOIJ and DFN packages.
Block Diagram
Package Type
Part
Number
VCC
Range
Max. Clock
Frequency
Temp.
Ranges
24AA512 1.7-5.5V 400 kHz(1) I
24LC512 2.5-5.5V 400 kHz I, E
24FC512 1.7-5.5V(2) 1MHz I
Note 1: 100 kHz for VCC < 2.5V
2: 400 kHz for VCC < 2.5V
HV Generator
EEPROM
Array
Page Latches
YDEC
XDEC
Sense Amp.
R/W Control
Memory
Control
Logic
I/O
Control
Logic
I/O
A0 A1 A2
SDA
SCL
VCC
VSS
WP
A0
A1
A2
VSS
VCC
WP
SCL
SDA
1
2
3
4
8
7
6
5
24XX512
PDIP SOIJ
A0
A1
A2
VSS
1
2
3
4
8
7
6
5
VCC
WP
SCL
SDA
24XX512
DFN
A0
A1
A2
VSS
WP
SCL
SDA
24XX512
5
6
7
8
4
3
2
1VCC
512K I2C CMOS Serial EEPROM
* 24XX512 is used in this document as a generic part
number for the 24AA512/24LC512/24FC512 devices.
24AA512/24LC512/24FC512
DS21754H-page 2 2007 Microchip Technology Inc.
1.0 ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings (†)
VCC.............................................................................................................................................................................6.5V
All inputs and outputs w.r.t. VSS ......................................................................................................... -0.6V to VCC +1.0V
Storage temperature ...............................................................................................................................-65°C to +150°C
Ambient temperature with power applied................................................................................................-40°C to +125°C
ESD protection on all pins  4kV
TABLE 1-1: DC CHARACTERISTICS
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
DC CHARACTERISTICS
Electrical Characteristics:
Industrial (I): VCC = +1.7V to 5.5V TA = -40°C to +85°C
Automotive (E): VCC = +2.5V to 5.5V TA = -40°C to +125°C
Param.
No. Sym. Characteristic Min. Max. Units Conditions
D1 A0, A1, A2, SCL, SDA
and WP pins:
——
D2 VIH High-level input voltage 0.7 VCC —V
D3 VIL Low-level input voltage 0.3 VCC
0.2 VCC
V
V
VCC 2.5V
VCC < 2.5V
D4 VHYS Hysteresis of Schmitt
Trigger inputs
(SDA, SCL pins)
0.05 VCC —VVCC 2.5V (Note)
D5 VOL Low-level output voltage 0.40 V IOL = 3.0 ma @ VCC = 4.5V
IOL = 2.1 ma @ VCC = 2.5V
D6 ILI Input leakage current ±1 AVIN = VSS or VCC, WP = VSS
VIN = VSS or VCC, WP = VCC
D7 ILO Output leakage current ±1 AVOUT = VSS or VCC
D8 CIN,
COUT
Pin capacitance
(all inputs/outputs)
—10pFVCC = 5.0V (Note)
T
A = 25°C, FCLK = 1 MHz
D9 ICC Read Operating current 400 AVCC = 5.5V, SCL = 400 kHz
ICC Write 5 mA VCC = 5.5V
D10 ICCS Standby current 1 ATA = -40°C to +85°C
SCL = SDA = VCC = 5.5V
A0, A1, A2, WP = VSS
—5ATA = -40°C to +125°C
SCL = SDA = VCC = 5.5V
A0, A1, A2, WP = VSS
Note: This parameter is periodically sampled and not 100% tested.
2007 Microchip Technology Inc. DS21754H-page 3
24AA512/24LC512/24FC512
TABLE 1-2: AC CHARACTERISTICS
AC CHARACTERISTICS
Electrical Characteristics:
Industrial (I): VCC = +1.7V to 5.5V TA = -40°C to +85°C
Automotive (E): VCC = +2.5V to 5.5V TA = -40°C to +125°C
Param.
No. Sym. Characteristic Min. Max. Units Conditions
1FCLK Clock frequency
100
400
1000
kHz 1.7V VCC 2.5V
2.5V VCC 5.5V
2.5V VCC 5.5V 24FC512
2THIGH Clock high time 4000
600
500
ns 1.7V VCC 2.5V
2.5V VCC 5.5V
2.5V VCC 5.5V 24FC512
3TLOW Clock low time 4700
1300
500
ns 1.7V VCC 2.5V
2.5V VCC 5.5V
2.5V VCC 5.5V 24FC512
4TRSDA and SCL rise time (Note 1)
1000
300
300
ns 1.7V VCC< 2.5V
2.5V VCC 5.5V
2.5V VCC 5.5V 24FC512
5TFSDA and SCL fall time (Note 1)
300
100
ns All except, 24FC512
2.5V VCC 5.5V 24FC512
6THD:STA Start condition hold time 4000
600
250
ns 1.7V VCC 2.5V
2.5V VCC 5.5V
2.5V VCC 5.5V 24FC512
7TSU:STA Start condition setup time 4700
600
250
ns 1.7V VCC 2.5V
2.5V VCC 5.5V
2.5V VCC 5.5V 24FC512
8THD:DAT Data input hold time 0 ns (Note 2)
9TSU:DAT Data input setup time 250
100
100
ns 1.7V VCC 2.5V
2.5V VCC 5.5V
2.5V VCC 5.5V 24FC512
10 TSU:STO Stop condition setup time 4000
600
250
ns 1.7V VCC 2.5V
2.5V VCC 5.5V
2.5V VCC 5.5V 24FC512
11 TSU:WP WP setup time 4000
600
600
ns 1.7V VCC 2.5V
2.5V VCC 5.5V
2.5V VCC 5.5V 24FC512
12 THD:WP WP hold time 4700
1300
1300
ns 1.7V VCC 2.5V
2.5V VCC 5.5V
2.5V VCC 5.5V 24FC512
13 TAA Output valid from clock (Note 2)
3500
900
400
ns 1.7V VCC 2.5V
2.5V VCC 5.5V
2.5V VCC 5.5V 24FC512
14 TBUF Bus free time: Time the bus
must be free before a new trans-
mission can start
4700
1300
500
ns 1.7V VCC 2.5V
2.5V VCC 5.5V
2.5V VCC 5.5V 24FC512
16 TSP Input filter spike suppression
(SDA and SCL pins)
50 ns All except, 24FC512 (Notes 1 and 3)
17 TWC Write cycle time (byte or page) 5 ms
18 Endurance 1,000,000 cycles 25°C (Note 4)
Note 1: Not 100% tested. CB = total capacitance of one bus line in pF.
2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum
300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.
3: The combined TSP and VHYS specifications are due to new Schmitt Trigger inputs which provide improved noise spike
suppression. This eliminates the need for a TI specification for standard operation.
4: This parameter is not tested but ensured by characterization. For endurance estimates in a specific application, please
consult the Total Endurance™ Model which can be obtained from Microchip’s web site at www.microchip.com.
24AA512/24LC512/24FC512
DS21754H-page 4 2007 Microchip Technology Inc.
FIGURE 1-1: BUS TIMING DATA
(unprotected)
(protected)
SCL
SDA
IN
SDA
OUT
WP
5
7
6
16
3
2
89
13
D4 4
10
11 12
14
2007 Microchip Technology Inc. DS21754H-page 5
24AA512/24LC512/24FC512
2.0 PIN DESCRIPTIONS
The descriptions of the pins are listed in Table 2-1.
TABLE 2-1: PIN FUNCTION TABLE
2.1 A0, A1 and A2 Chip Address
Inputs
The A0, A1 and A2 inputs are used by the 24XX512 for
multiple device operations. The logic levels on these
inputs are compared with the corresponding bits in the
slave address. The chip is selected if the compare is
true.
Up to eight devices may be connected to the same bus
by using different Chip Select bit combinations. These
inputs must be connected to either VCC or VSS.
In most applications, the chip address inputs A0, A1
and A2 are hard-wired to logic0’ or logic ‘1’. For
applications in which these pins are controlled by a
microcontroller or other programmable logic device,
the chip address pins must be driven to logic ‘0’ or logic
1’ before normal device operation can proceed.
2.2 Serial Data (SDA)
This is a bidirectional pin used to transfer addresses
and data into and data out of the device. It is an open-
drain terminal, therefore, the SDA bus requires a pull-
up resistor to VCC (typical 10 k for 100 kHz, 2 kfor
400kHz and 1MHz).
For normal data transfer, SDA is allowed to change
only during SCL low. Changes during SCL high are
reserved for indicating the Start and Stop conditions.
2.3 Serial Clock (SCL)
This input is used to synchronize the data transfer from
and to the device.
2.4 Write-Protect (WP)
This pin must be connected to either VSS or VCC. If tied
to VSS, write operations are enabled. If tied to VCC,
write operations are inhibited but read operations are
not affected.
3.0 FUNCTIONAL DESCRIPTION
The 24XX512 supports a bidirectional 2-wire bus and
data transmission protocol. A device that sends data
onto the bus is defined as a transmitter and a device
receiving data as a receiver. The bus must be
controlled by a master device which generates the
Serial Clock (SCL), controls the bus access and
generates the Start and Stop conditions, while the
24XX512 works as a slave. Both master and slave
can operate as a transmitter or receiver, but the
master device determines which mode is activated.
Name PDIP SOIJ DFN Function
A0 1 1 1 User Configured Chip Select
A1 2 2 2 User Configured Chip Select
(NC) Not Connected
A2 3 3 3 User Configured Chip Select
VSS 4 4 4 Ground
SDA 5 5 5 Serial Data
SCL 6 6 6 Serial Clock
(NC) Not Connected
WP 7 7 7 Write-Protect Input
VCC 8 8 8 +1.7V to 5.5V (24AA512)
+2.5V to 5.5V (24LC512)
+1.7V to 5.5V (24FC512)
24AA512/24LC512/24FC512
DS21754H-page 6 2007 Microchip Technology Inc.
4.0 BUS CHARACTERISTICS
The following bus protocol has been defined:
Data transfer may be initiated only when the bus
is not busy.
During data transfer, the data line must remain
stable whenever the clock line is high. Changes in
the data line, while the clock line is high, will be
interpreted as a Start or Stop condition.
Accordingly, the following bus conditions have been
defined (Figure 4-1).
4.1 Bus Not Busy (A)
Both data and clock lines remain high.
4.2 Start Data Transfer (B)
A high-to-low transition of the SDA line while the clock
(SCL) is high determines a Start condition. All
commands must be preceded by a Start condition.
4.3 Stop Data Transfer (C)
A low-to-high transition of the SDA line while the clock
(SCL) is high determines a Stop condition. All
operations must end with a Stop condition.
4.4 Data Valid (D)
The state of the data line represents valid data when,
after a Start condition, the data line is stable for the
duration of the high period of the clock signal.
The data on the line must be changed during the low
period of the clock signal. There is one bit of data per
clock pulse.
Each data transfer is initiated with a Start condition and
terminated with a Stop condition. The number of the
data bytes transferred between the Start and Stop
conditions is determined by the master device.
4.5 Acknowledge
Each receiving device, when addressed, is obliged to
generate an Acknowledge signal after the reception of
each byte. The master device must generate an extra
clock pulse which is associated with this Acknowledge
bit. See Figure 4-2 for acknowledge timing.
A device that acknowledges must pull down the SDA
line during the Acknowledge clock pulse in such a way
that the SDA line is stable low during the high period of
the acknowledge related clock pulse. Of course, setup
and hold times must be taken into account. During
reads, a master must signal an end of data to the slave
by NOT generating an Acknowledge bit on the last byte
that has been clocked out of the slave. In this case, the
slave (24XX512) will leave the data line high to enable
the master to generate the Stop condition.
Note: The 24XX512 does not generate any
Acknowledge bits if an internal programming
cycle is in progress.
2007 Microchip Technology Inc. DS21754H-page 7
24AA512/24LC512/24FC512
FIGURE 4-1: DATA TRANSFER SEQUENCE ON THE SERIAL BUS
FIGURE 4-2: ACKNOWLEDGE TIMING
Address or
Acknowledge
Valid
Data
Allowed
to Change
Stop
Condition
Start
Condition
SCL
SDA
(A) (B) (D) (D) (C) (A)
SCL 987654321 123
Transmitter must release the SDA line at this point
allowing the Receiver to pull the SDA line low to
acknowledge the previous eight bits of data.
Receiver must release the SDA line
at this point so the Transmitter can
continue sending data.
Data from transmitter
SDA
Acknowledge
Bit
Data from transmitter
24AA512/24LC512/24FC512
DS21754H-page 8 2007 Microchip Technology Inc.
5.0 DEVICE ADDRESSING
A control byte is the first byte received following the
Start condition from the master device (Figure 5-1).
The control byte consists of a 4-bit control code; for the
24XX512 this is set as ‘1010 binary for read and write
operations. The next three bits of the control byte are
the Chip Select bits (A2, A1 and A0). The Chip Select
bits allow the use of up to eight 24XX512 devices on
the same bus and are used to select which device is
accessed. The Chip Select bits in the control byte must
correspond to the logic levels on the corresponding A2,
A1 and A0 pins for the device to respond. These bits
are in effect the three Most Significant bits of the word
address.
The last bit of the control byte defines the operation to
be performed. When set to a one a read operation is
selected and when set to a zero a write operation is
selected. The next two bytes received define the
address of the first data byte (Figure 5-2). Because all
A15…A0 are used, there are no upper address bits that
are “don’t care”. The upper address bits are transferred
first, followed by the Less Significant bits.
Following the Start condition, the 24XX512 monitors
the SDA bus checking the device type identifier being
transmitted. Upon receiving a ‘1010 code and appro-
priate device select bits, the slave device outputs an
Acknowledge signal on the SDA line. Depending on the
state of the R/W bit, the 24XX512 will select a read or
write operation.
FIGURE 5-1: CONTROL BYTE FORMAT
5.1 Contiguous Addressing Across
Multiple Devices
The Chip Select bits A2, A1 and A0 can be used to
expand the contiguous address space for up to 4 Mbit
by adding up to eight 24XX512 devices on the same
bus. In this case, software can use A0 of the control
byte as address bit A16; A1 as address bit A17; and A2
as address bit A18. It is not possible to sequentially
read across device boundaries.
FIGURE 5-2: ADDRESS SEQUENCE BIT ASSIGNMENTS
1010A2 A1 A0
SACKR/W
Control Code
Chip Select
Bits
Slave Address
Acknowledge Bit
Start Bit
Read/Write Bit
1 010A
2A
1A
0R/W A
11 A
10 A
9A
7A
0
A
8••••••
A
12
Control Byte Address High Byte Address Low Byte
Control
Code
Chip
Select
Bits
A
13
A
14
A
15
2007 Microchip Technology Inc. DS21754H-page 9
24AA512/24LC512/24FC512
6.0 WRITE OPERATIONS
6.1 Byte Write
Following the Start condition from the master, the
control code (four bits), the Chip Select (three bits) and
the R/W bit (which is a logic low) are clocked onto the
bus by the master transmitter. This indicates to the
addressed slave receiver that the address high byte will
follow after it has generated an Acknowledge bit during
the ninth clock cycle. Therefore, the next byte
transmitted by the master is the high-order byte of the
word address and will be written into the Address
Pointer of the 24XX512. The next byte is the Least
Significant Address Byte. After receiving another
Acknowledge signal from the 24XX512, the master
device will transmit the data word to be written into the
addressed memory location. The 24XX512 acknowl-
edges again and the master generates a Stop
condition. This initiates the internal write cycle and
during this time, the 24XX512 will not generate
Acknowledge signals (Figure 6-1). If an attempt is
made to write to the array with the WP pin held high, the
device will acknowledge the command, but no write
cycle will occur, no data will be written and the device
will immediately accept a new command. After a byte
Write command, the internal address counter will point
to the address location following the one that was just
written.
6.2 Page Write
The write control byte, word address and the first data
byte are transmitted to the 24XX512 in the same way
as in a byte write. But instead of generating a Stop
condition, the master transmits up to 127 additional
bytes, which are temporarily stored in the on-chip page
buffer and will be written into memory after the master
has transmitted a Stop condition. After receipt of each
word, the seven lower Address Pointer bits are inter-
nally incremented by one. If the master should transmit
more than 128 bytes prior to generating the Stop con-
dition, the address counter will roll over and the previ-
ously received data will be overwritten. As with the byte
write operation, once the Stop condition is received, an
internal write cycle will begin (Figure 6-2). If an attempt
is made to write to the array with the WP pin held high,
the device will acknowledge the command, but no write
cycle will occur, no data will be written and the device
will immediately accept a new command.
6.3 Write Protection
The WP pin allows the user to write-protect the entire
array (0000-FFFF) when the pin is tied to VCC. If tied to
VSS the write protection is disabled. The WP pin is
sampled at the Stop bit for every Write command
(Figure 1-1). Toggling the WP pin after the Stop bit will
have no effect on the execution of the write cycle.
Note: Page write operations are limited to writing
bytes within a single physical page,
regardless of the number of bytes
actually being written. Physical page
boundaries start at addresses that are
integer multiples of the page buffer size (or
‘page size’) and end at addresses that are
integer multiples of [page size – 1]. If a
Page Write command attempts to write
across a physical page boundary, the
result is that the data wraps around to the
beginning of the current page (overwriting
data previously stored there), instead of
being written to the next page as might be
expected. It is therefore necessary for the
application software to prevent page write
operations that would attempt to cross a
page boundary.
24AA512/24LC512/24FC512
DS21754H-page 10 2007 Microchip Technology Inc.
FIGURE 6-1: BYTE WRITE
FIGURE 6-2: PAGE WRITE
Bus Activity
Master
SDA Line
Bus Activity
S
T
A
R
T
Control
Byte
Address
High Byte
Address
Low Byte Data
S
T
O
P
A
C
K
A
C
K
A
C
K
A
C
K
S1010 0
A
2A
1A
0P
Bus Activity
Master
SDA Line
Bus Activity
S
T
A
R
T
Control
Byte
Address
High Byte
Address
Low Byte Data Byte 0
S
T
O
P
A
C
K
A
C
K
A
C
K
A
C
K
Data Byte 127
A
C
K
S1010 0
A
2A
1A
0P
2007 Microchip Technology Inc. DS21754H-page 11
24AA512/24LC512/24FC512
7.0 ACKNOWLEDGE POLLING
Since the device will not acknowledge during a write
cycle, this can be used to determine when the cycle is
complete (this feature can be used to maximize bus
throughput). Once the Stop condition for a Write
command has been issued from the master, the device
initiates the internally timed write cycle. ACK polling
can be initiated immediately. This involves the master
sending a Start condition, followed by the control byte
for a Write command (R/W = 0). If the device is still
busy with the write cycle, then no ACK will be returned.
If no ACK is returned, then the Start bit and control byte
must be re-sent. If the cycle is complete, then the
device will return the ACK and the master can then
proceed with the next Read or Write command. See
Figure 7-1 for flow diagram.
FIGURE 7-1: ACKNOWLEDGE POLLING
FLOW
Send
Write Command
Send Stop
Condition to
Initiate Write Cycle
Send Start
Send Control Byte
with R/W = 0
Did Device
Acknowledge
(ACK = 0)?
Next
Operation
No
Yes
24AA512/24LC512/24FC512
DS21754H-page 12 2007 Microchip Technology Inc.
8.0 READ OPERATION
Read operations are initiated in the same way as write
operations with the exception that the R/W bit of the
control byte is set to ‘1’. There are three basic types of
read operations: current address read, random read
and sequential read.
8.1 Current Address Read
The 24XX512 contains an address counter that main-
tains the address of the last word accessed, internally
incremented by ‘1’. Therefore, if the previous read
access was to address ‘n’ (n is any legal address), the
next current address read operation would access data
from address n + 1.
Upon receipt of the control byte with R/W bit set to ‘1’,
the 24XX512 issues an acknowledge and transmits the
8-bit data word. The master will not acknowledge the
transfer but does generate a Stop condition and the
24XX512 discontinues transmission (Figure 8-1).
FIGURE 8-1: CURRENT ADDRESS
READ
8.2 Random Read
Random read operations allow the master to access
any memory location in a random manner. To perform
this type of read operation, first the word address must
be set. This is done by sending the word address to the
24XX512 as part of a write operation (R/W bit set to
0’). After the word address is sent, the master
generates a Start condition following the acknowledge.
This terminates the write operation, but not before the
internal Address Pointer is set. Then, the master issues
the control byte again but with the R/W bit set to a one.
The 24XX512 will then issue an acknowledge and
transmit the 8-bit data word. The master will not
acknowledge the transfer but does generate a Stop
condition which causes the 24XX512 to discontinue
transmission (Figure 8-2). After a random Read
command, the internal address counter will point to the
address location following the one that was just read.
8.3 Sequential Read
Sequential reads are initiated in the same way as a
random read except that after the 24XX512 transmits
the first data byte, the master issues an acknowledge
as opposed to the Stop condition used in a random
read. This acknowledge directs the 24XX512 to
transmit the next sequentially addressed 8-bit word
(Figure 8-3). Following the final byte transmitted to the
master, the master will NOT generate an acknowledge,
but will generate a Stop condition. To provide
sequential reads, the 24XX512 contains an internal
Address Pointer which is incremented by one at the
completion of each operation. This Address Pointer
allows the entire memory contents to be serially read
during one operation. The internal Address Pointer will
automatically roll over from address FFFF to address
0000 if the master acknowledges the byte received
from the array address FFFF.
Bus Activity
Master
SDA Line
Bus Activity
PS
S
T
O
P
Control
Byte
S
T
A
R
T
Data
A
C
K
N
O
A
C
K
1100
AAA1
Byte
210
2007 Microchip Technology Inc. DS21754H-page 13
24AA512/24LC512/24FC512
FIGURE 8-2: RANDOM READ
FIGURE 8-3: SEQUENTIAL READ
Bus Activity
Master
SDA Line
Bus Activity
A
C
K
N
O
A
C
K
A
C
K
A
C
K
A
C
K
S
T
O
P
S
T
A
R
T
Control
Byte
Address
High Byte
Address
Low Byte
Control
Byte
Data
Byte
S
T
A
R
T
x = “don’t care” bit
S1010AAA0
210 S1010AAA
1
210 P
Bus Activity
Master
SDA Line
Bus Activity
Control
Byte Data (n) Data (n + 1) Data (n + 2) Data (n + x)
N
O
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
S
T
O
P
P
24AA512/24LC512/24FC512
DS21754H-page 14 2007 Microchip Technology Inc.
9.0 PACKAGING INFORMATION
9.1 Package Marking Information
XXXXXXXX
T/XXXNNN
YYWW
8-Lead PDIP (300 mil) Example:
8-Lead SOIJ (5.28 mm) Example:
24LC512
0510017
I/SM
24AA512
I/P 017
0510
XXXXXXXX
YYWWNNN
T/XXXXXX
8-Lead DFN-S Example:
XXXXXXX
T/XXXXX
YYWW
24LC512
I/MF
0510
017
NNN
*Standard device marking consists of Microchip part number, year code, week code, and traceability code. For
device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office.
Legend: XX...X Customer-specific information*
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
*This package is Pb-free. The Pb-free JEDEC designator ( )
can be found on the outer packaging for this package.
T Temperature
Blank Commercial
I Industrial
E Extended
Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
3
e
3
e
3
e
3
e
3
e
2007 Microchip Technology Inc. DS21754H-page 15
24AA512/24LC512/24FC512
/HDG3ODVWLF'XDO,Q/LQH3±PLO%RG\>3',3@
1RWHV
 3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKWKHKDWFKHGDUHD
 6LJQLILFDQW&KDUDFWHULVWLF
 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGSHUVLGH
 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0
%6&%DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV
1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
8QLWV ,1&+(6
'LPHQVLRQ/LPLWV 0,1 120 0$;
1XPEHURI3LQV 1
3LWFK H %6&
7RSWR6HDWLQJ3ODQH $ ± ± 
0ROGHG3DFNDJH7KLFNQHVV $   
%DVHWR6HDWLQJ3ODQH $  ± ±
6KRXOGHUWR6KRXOGHU:LGWK (   
0ROGHG3DFNDJH:LGWK (   
2YHUDOO/HQJWK '   
7LSWR6HDWLQJ3ODQH /   
/HDG7KLFNQHVV F   
8SSHU/HDG:LGWK E   
/RZHU/HDG:LGWK E   
2YHUDOO5RZ6SDFLQJ H% ± ± 
N
E1
NOTE 1
D
12
3
A
A1
A2
L
b1
b
e
E
eB
c
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
24AA512/24LC512/24FC512
DS21754H-page 16 2007 Microchip Technology Inc.
/HDG3ODVWLF6PDOO2XWOLQH60±0HGLXPPP%RG\>62,-@
1RWHV
 62,--(,7$(,$-6WDQGDUGIRUPHUO\FDOOHG62,&
 6LJQLILFDQW&KDUDFWHULVWLF
 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH
1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
8QLWV 0,//,0(7(56
'LPHQVLRQ/LPLWV 0,1 120 0$;
1XPEHURI3LQV 1
3LWFK H %6&
2YHUDOO+HLJKW $  ± 
0ROGHG3DFNDJH7KLFNQHVV $  ± 
6WDQGRII $  ± 
2YHUDOO:LGWK (  ± 
0ROGHG3DFNDJH:LGWK (  ± 
2YHUDOO/HQJWK '  ± 
)RRW/HQJWK /  ± 
)RRW$QJOH  ± 
/HDG7KLFNQHVV F  ± 
/HDG:LGWK E  ± 
0ROG'UDIW$QJOH7RS ± ± 
0ROG'UDIW$QJOH%RWWRP ± ± 
φ
β
α
L
c
A2
A1
A
b
12
e
E
E1
N
D
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
2007 Microchip Technology Inc. DS21754H-page 17
24AA512/24LC512/24FC512
/HDG3ODVWLF'XDO)ODW1R/HDG3DFNDJH0)±[PP%RG\>')16@
1RWHV
 3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD
 3DFNDJHPD\KDYHRQHRUPRUHH[SRVHGWLHEDUVDWHQGV
 3DFNDJHLVVDZVLQJXODWHG
 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0
%6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV
5() 5HIHUHQFH'LPHQVLRQXVXDOO\ZLWKRXWWROHUDQFHIRULQIRUPDWLRQSXUSRVHVRQO\
1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
8QLWV 0,//,0(7(56
'LPHQVLRQ/LPLWV 0,1 120 0$;
1XPEHURI3LQV 1
3LWFK H %6&
2YHUDOO+HLJKW $   
6WDQGRII $   
&RQWDFW7KLFNQHVV $ 5()
2YHUDOO/HQJWK ' %6&
2YHUDOO:LGWK ( %6&
([SRVHG3DG/HQJWK '   
([SRVHG3DG:LGWK (   
&RQWDFW:LGWK E   
&RQWDFW/HQJWK /   
&RQWDFWWR([SRVHG3DG .  ± ±
NOTE 2
A1
A
A3
NOTE 1 12
E
N
D
EXPOSED PAD
NOTE 1
21
E2
L
N
e
b
K
BOTTOM VIEW
TOP VIEW
D2
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
24AA512/24LC512/24FC512
DS21754H-page 18 2007 Microchip Technology Inc.
APPENDIX A: REVISION HISTORY
Revision D
Correction to Section 1.0, Electrical Characteristics.
Revision E
Correction to Section 1.0., Ambient Temperature
Correction to Section 6.2, Page Write
Revision F
Add E3 (Pb-free) to marking examples.
Updated Marking Legend and On-line Support.
Revision G
Revised Sections 2.1, 2.4 and 6.3.
Revision H
Revised Features section; Revised 1.8V voltage to
1.7V; Replaced Package Drawings; Revised Product
ID System; Removed 14 Lead TSSOP.
2007 Microchip Technology Inc. DS21754H-page 19
24AA512/24LC512/24FC512
THE MICROCHIP WEB SITE
Microchip provides online support via our WWW site at
www.microchip.com. This web site is used as a means
to make files and information easily available to
customers. Accessible by using your favorite Internet
browser, the web site contains the following
information:
Product Support – Data sheets and errata,
application notes and sample programs, design
resources, user’s guides and hardware support
documents, latest software releases and archived
software
General Technical Support – Frequently Asked
Questions (FAQ), technical support requests,
online discussion groups, Microchip consultant
program member listing
Business of Microchip – Product selector and
ordering guides, latest Microchip press releases,
listing of seminars and events, listings of
Microchip sales offices, distributors and factory
representatives
CUSTOMER CHANGE NOTIFICATION
SERVICE
Microchip’s customer notification service helps keep
customers current on Microchip products. Subscribers
will receive e-mail notification whenever there are
changes, updates, revisions or errata related to a
specified product family or development tool of interest.
To register, access the Microchip web site at
www.microchip.com, click on Customer Change
Notification and follow the registration instructions.
CUSTOMER SUPPORT
Users of Microchip products can receive assistance
through several channels:
Distributor or Representative
Local Sales Office
Field Application Engineer (FAE)
Technical Support
Development Systems Information Line
Customers should contact their distributor,
representative or field application engineer (FAE) for
support. Local sales offices are also available to help
customers. A listing of sales offices and locations is
included in the back of this document.
Technical support is available through the web site
at: http://support.microchip.com
24AA512/24LC512/24FC512
DS21754H-page 20 2007 Microchip Technology Inc.
READER RESPONSE
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.
Please list the following information, and use this outline to provide us with your comments about this document.
To: Technical Publications Manager
RE: Reader Response
Total Pages Sent ________
From: Name
Company
Address
City / State / ZIP / Country
Telephone: (_______) _________ - _________
Application (optional):
Would you like a reply? Y N
Device: Literature Number:
Questions:
FAX: (______) _________ - _________
DS21754H24AA512/24LC512/24FC512
1. What are the best features of this document?
2. How does this document meet your hardware and software development needs?
3. Do you find the organization of this document easy to follow? If not, why?
4. What additions to the document do you think would enhance the structure and subject?
5. What deletions from the document could be made without affecting the overall usefulness?
6. Is there any incorrect or misleading information (what and where)?
7. How would you improve this document?
2007 Microchip Technology Inc. DS21754H-page21
24AA512/24LC512/24FC512
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
PART NO. X/XX
PackageTemperature
Range
Device
Device: 24AA512: 512 Kbit 1.8V I2C Serial
EEPROM
24AA512T: 512 Kbit 1.8V I2C Serial
EEPROM (Tape and Reel)
24LC512: 512 Kbit 2.5V I2C Serial
EEPROM
24LC512T: 512 Kbit 2.5V I2C Serial
EEPROM (Tape and Reel)
24FC512: 512 Kbit 1 MHz I2C Serial
EEPROM
24FC512T: 512 Kbit 1 MHz I2C Serial
EEPROM (Tape and Reel)
Temperature
Range:
I= -40C to +85C
E= -40C to +125C
Package: P = Plastic DIP (300 mil body), 8-lead
SM = Plastic SOIJ (5.28 mm body), 8-lead
MF = Micro Lead Frame (6x5 mm body),
8-lead
Examples:
a) 24AA512-I/P: Industrial Temp.,
1.7V, PDIP package.
b) 24AA512T-I/SM: Tape and Reel,
Industrial Temp., 1.7V, SOIJ
package.
c) 24AA512-I/MF: Industrial Temp.,
1.7V, DFN package.
d) 24LC512-E/P: Extended Temp.,
2.5V, PDIP package.
e) 24LC512-I/SM: Industrial Temp.,
2.5V, SOIJ package.
f) 24LC512T-I/SM: Tape and Reel,
Industrial Temp., 2.5V, SOIJ
package.
g) 24LC512-I/MF: Industrial Temp.,
2.5V, DFN package.
h) 24FC512-I/P: Industrial Temp.,
1.7V, High Speed, PDIP package.
i) 24FC512-I/SM: Industrial Temp.,
1.7V, High Speed, SOIJ package.
j) 24FC512T-I/SM: Tape and Reel,
Industrial Temp., 1.7V, High Speed,
SOIJ package.
24AA512/24LC512/24FC512
DS21754H-page22 2007 Microchip Technology Inc.
NOTES:
2007 Microchip Technology Inc. DS21754H-page 23
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
Trademarks
The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC,
PICmicro, PICSTART, PRO MATE, rfPIC and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.
AmpLab, FilterLab, Linear Active Thermistor, Migratable
Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The
Embedded Control Solutions Company are registered
trademarks of Microchip Technology Incorporated in the
U.S.A.
Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi,
MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit,
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select
Mode, Smart Serial, SmartTel, Total Endurance, UNI/O,
WiperLock and ZENA are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
All other trademarks mentioned herein are property of their
respective companies.
© 2007, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
Printed on recycled paper.
Note the following details of the code protection feature on Microchip devices:
Microchip products meet the specification contained in their particular Microchip Data Sheet.
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
DS21754H-page 24 2007 Microchip Technology Inc.
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509
ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
ASIA/PACIFIC
India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820
WORLDWIDE SALES AND SERVICE
10/05/07