Document Number: 91232 www.vishay.com
S09-0006-Rev. B, 19-Jan-09 1
Power MOSFET
IRFP450N, SiHFP450N
Vishay Siliconix
FEATURES
Low Gate Charge Qg Results in Simple Drive
Requirement
Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
Fully Characterized Capacitance and
Avalanche Voltage and Current
Effective Coss Specified
Lead (Pb)-free
APPLICATIONS
Switch Mode Power Supply (SMPS)
Uninterruptible Power Supply
High Speed Power Switching
TYPICAL SMPS TOPOLOGIES
Two Transistor Forward
Half Bridge and Full Bridge
PFC Boost
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Starting TJ = 25 °C, L = 1.7 mH, RG = 25 Ω, IAS = 14 A (see fig. 12).
c. ISD 14 A, dI/dt 510 A/µs, VDD VDS, TJ 150 °C.
d. 1.6 mm from case.
PRODUCT SUMMARY
VDS (V) 500
RDS(on) (Max.) (Ω)V
GS = 10 V 0.37
Qg (Max.) (nC) 77
Qgs (nC) 26
Qgd (nC) 34
Configuration Single
N-
C
hannel M
OS
FET
G
D
S
TO-247
GD
S
RoHS
COMPLIANT
ORDERING INFORMATION
Package TO-247
Lead (Pb)-free IRFP450NPbF
SiHFP450N-E3
SnPb IRFP450N
SiHFP450N
ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted
PARAMETER SYMBOL LIMIT UNIT
Drain-Source Voltage VDS 500 V
Gate-Source Voltage VGS ± 30
Continuous Drain Current VGS at 10 V TC = 25 °C ID
14
ATC = 100 °C 8.8
Pulsed Drain CurrentaIDM 56
Linear Derating Factor 1.6 W/°C
Single Pulse Avalanche EnergybEAS 170 mJ
Repetitive Avalanche CurrentaIAR 14 A
Repetitive Avalanche EnergyaEAR 20 mJ
Maximum Power Dissipation TC = 25 °C PD200 W
Peak Diode Recovery dV/dtcdV/dt 5.0 V/ns
Operating Junction and Storage Temperature Range TJ, Tstg - 55 to + 150 °C
Soldering Recommendations (Peak Temperature) for 10 s 300d
Mounting Torque 6-32 or M3 screw 10 lbf · in
1.1 N · m
www.vishay.com Document Number: 91232
2S09-0006-Rev. B, 19-Jan-09
IRFP450N, SiHFP450N
Vishay Siliconix
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width 400 µs; duty cycle 2 %.
c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS.
THERMAL RESISTANCE RATINGS
PARAMETER SYMBOL TYP. MAX. UNIT
Maximum Junction-to-Ambient RthJA -40
°C/W
Case-to-Sink, Flat, Greased Surface RthCS 0.24 -
Maximum Junction-to-Case (Drain) RthJC -0.64
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT
Static
Drain-Source Breakdown Voltage VDS VGS = 0 V, ID = 250 µA 500 - - V
VDS Temperature Coefficient ΔVDS/TJ Reference to 25 °C, ID = 1 mA -0.59-
V/°C
Gate-Source Threshold Voltage VGS(th) VDS = VGS, ID = 250 µA 3.0 - 5.0 V
Gate-Source Leakage IGSS V
GS = ± 30 V - - ± 100 nA
Zero Gate Voltage Drain Current IDSS
VDS = 500 V, VGS = 0 V - - 25 µA
VDS = 400 V, VGS = 0 V, TJ = 125 °C - - 250
Drain-Source On-State Resistance RDS(on) V
GS = 10 V ID = 8.4 Ab- - 0.37 Ω
Forward Transconductance gfs VDS = 50 V, ID = 8.4 A 7.9 - - S
Dynamic
Input Capacitance Ciss VGS = 0 V,
VDS = 25 V,
f = 1.0 MHz, see fig. 5
- 2260 -
pF
Output Capacitance Coss - 210 -
Reverse Transfer Capacitance Crss -14-
Output Capacitance Coss VGS = 0 V
VDS = 1.0 V, f = 1.0 MHz - 2410 -
VDS = 400 V, f = 1.0 MHz - 59 -
Effective Output Capacitance Coss eff. VDS = 0 V to 400 Vc- 110 -
Total Gate Charge Qg
VGS = 10 V ID = 14 A, VDS = 400 V,
see fig. 6 and 13b
--77
nC Gate-Source Charge Qgs --26
Gate-Drain Charge Qgd --34
Turn-On Delay Time td(on)
VDD = 250 V, ID = 14 A
RG = 6.2 Ω,VGS = 10 V,
see fig. 10b
-20-
ns
Rise Time tr -63-
Turn-Off Delay Time td(off) -29-
Fall Time tf -25-
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current IS
MOSFET symbol
showing the
integral reverse
p - n junction diode
--14
A
Pulsed Diode Forward CurrentaISM --56
Body Diode Voltage VSD TJ = 25 °C, IS = 14 A, VGS = 0 Vb--1.4V
Body Diode Reverse Recovery Time trr TJ = 25 °C, IF = 14 A, dI/dt = 100 A/µsb- 430 650 ns
Body Diode Reverse Recovery Charge Qrr -3.75.6µC
Forward Turn-On Time ton Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
S
D
G
Document Number: 91232 www.vishay.com
S09-0006-Rev. B, 19-Jan-09 3
IRFP450N, SiHFP450N
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
Fig. 1 - Typical Output Characteristics
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
Fig. 4 - Normalized On-Resistance vs. Temperature
0.1
1
10
100
0.1 1 10 10
20μs PULSE WIDTH
T = 25 C
J°
TOP
BOTTOM
VGS
15V
12V
10V
8.0V
7.5V
7.0V
6.5V
6.0V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
6.0V
1
10
100
1 10 10
20μs PULSE WIDTH
T = 150 C
J°
TOP
BOTTOM
VGS
15V
12V
10V
8.0V
7.5V
7.0V
6.5V
6.0V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
6.0V
0.1
1
10
100
6.0 7.0 8.0 9.0 10.0
V = 50V
20μs PULSE WIDTH
DS
V , Gate-to-Source Voltage (V)
I , Drain-to-Source Current (A)
GS
D
T = 25 C
J°
T = 150 C
J°
-60 -40 -20 020 40 60 80 100 120 140 160
0.0
0.5
1.0
1.5
2.0
2.5
3.0
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V =
I =
GS
D
10V
14A
www.vishay.com Document Number: 91232
4S09-0006-Rev. B, 19-Jan-09
IRFP450N, SiHFP450N
Vishay Siliconix
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
Fig. 7 - Typical Source-Drain Diode Forward Voltage
Fig. 8 - Maximum Safe Operating Area
110 100 1000
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
10000
100000
C,Capacitance(pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = C
gs + C
gd, C
ds SHORTED
Crss
= C
gd
Coss
= C
ds
+ C
gd
020 40 60 80
0
4
8
12
16
20
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
FOR TEST CIRCUIT
SEE FIGURE
I =
D
13
14A
V = 100V
DS
V = 250V
DS
V = 400V
DS
0.1
1
10
100
0.2 0.4 0.6 0.8 1.0 1.2 1.4
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J°
T = 150 C
J°
1 10 100 1000 10000
VDS , Drain-toSource Voltage (V)
0.1
1
10
100
1000
ID,Drain-to-SourceCurrent(A)
Tc = 25°C
Tj = 150°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100μsec
Document Number: 91232 www.vishay.com
S09-0006-Rev. B, 19-Jan-09 5
IRFP450N, SiHFP450N
Vishay Siliconix
Fig. 9 - Maximum Drain Current vs. Case Temperature
Fig. 10a - Switching Time Test Circuit
Fig. 10b - Switching Time Waveforms
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
25 50 75 100 125 150
0
2
4
6
8
10
12
14
T , Case Temperature ( C)
I , Drain Current (A)
°
C
D
Pulse width 1 µs
Duty factor 0.1 %
RD
VGS
RG
D.U.T.
10 V
+
-
VDS
VDD
VDS
90 %
10 %
VGS
td(on) trtd(off) tf
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1
Notes:
1. Duty factor D = t / t
2. Peak T = P x Z + T
1 2
JDM thJC C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response (Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
www.vishay.com Document Number: 91232
6S09-0006-Rev. B, 19-Jan-09
IRFP450N, SiHFP450N
Vishay Siliconix
Fig. 12a - Unclamped Inductive Test Circuit Fig. 12b - Unclamped Inductive Waveforms
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
Fig. 13a - Basic Gate Charge Waveform Fig. 13b - Gate Charge Test Circuit
A
R
G
I
AS
0.01
Ω
t
p
D.U.T.
L
VDS
+
-V
DD
Driver
A
15 V
20 V
IAS
VDS
tp
25 50 75 100 125 150
0
50
100
150
200
250
300
Starting T , Junction Temperature ( C)
E , Single Pulse Avalanche Energy (mJ)
J
AS
°
ID
TOP
BOTTOM
6.3A
8.9A
14A
QGS QGD
QG
V
G
Charge
V
GS
D.U.T.
3 mA
VGS
VDS
IGID
0.3 µF
0.2 µF
50 kΩ
12 V
Current regulator
Current sampling resistors
Same type as D.U.T.
+
-
Document Number: 91232 www.vishay.com
S09-0006-Rev. B, 19-Jan-09 7
IRFP450N, SiHFP450N
Vishay Siliconix
Fig. 14 - For N-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see www.vishay.c om/ppg?91232.
P.W.Period
dI/dt
Diode recovery
dV/dt
Ripple 5 %
Body diode forward drop
Re-applied
voltage
Reverse
recovery
current
Body diode forward
current
V
GS
= 10 V*
V
DD
I
SD
Driver gate drive
D.U.T. I
SD
waveform
D.U.T. V
DS
waveform
Inductor current
D = P.W.
Period
+
-
+
+
+
-
-
-
* VGS = 5 V for logic level devices
Peak Diode Recovery dV/dt Test Circuit
VDD
dV/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by duty factor "D"
D.U.T. - device under test
D.U.T Circuit layout considerations
Low stray inductance
Ground plane
Low leakage inductance
current transformer
RG
Document Number: 91000 www.vishay.com
Revision: 18-Jul-08 1
Disclaimer
Legal Disclaimer Notice
Vishay
All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein
or in any other disclosure relating to any product.
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any
information provided herein to the maximum extent permitted by law. The product specifications do not expand or
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed
therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding
products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.