1
TM
File Number 4842
CAUTION: These devices are sensitive to electrostatic discharge. Follow proper ESD Handling Procedures.
SABER© is a Copyright of Analogy Inc. PSPICE® is a registered trademark of MicroSim Corporation.
1-888-INTERSIL or 321-724-7143 |Intersil and Design is a trademark of Intersil Corporation. |Copyright © Intersil Corporation 2000
IRF540N
33A, 100V, 0.040 Ohm, N-Channel Power MOSFET
Packaging JEDEC TO-220AB
Symbol
Features
Ultra Low On-Resistance
-r
DS(ON) = 0.040Ω, VGS =10V
Simulation Models
- Temperature Compensated PSPICE™ and SABER©
Electrical Models
- Spice and SABER© Thermal Impedance Models
- www.intersil.com
Peak Current vs Pulse Width Curve
UIS Rating Curve
Ordering Information
Absolute Maximum Ratings TC= 25oC, Unless Otherwise Specified
DRAIN
(FLANGE)
DRAIN
SOURCE
GATE
D
G
S
PART NUMBER PACKAGE BRAND
IRF540N TO-220AB IRF540N
IRF540N UNITS
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS 100 V
Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDGR 100 V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS ±20 V
Drain Current
Continuous (TC= 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TC= 100oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM
33
23
Figure 4
A
A
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .UIS Figures 6, 14, 15
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
0.80 W
W/oC
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG -55 to 175 oC
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL
Package Body for 10s, See Techbrief TB334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg 300
260
oC
oC
NOTES:
1. TJ = 25oC to 150oC.
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
Data Sheet March 2000
2
Electrical Specifications TC= 25oC, Unless Otherwise Specified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V (Figure 11) 100 - - V
Zero Gate Voltage Drain Current IDSS VDS = 95V, VGS = 0V - - 1 µA
VDS = 90V, VGS = 0V, TC = 150oC - - 250 µA
Gate to Source Leakage Current IGSS VGS = ±20V - - ±100 nA
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 10) 2 - 4 V
Drain to Source On Resistance rDS(ON) ID= 33A, VGS = 10V (Figure 9) - 0.033 0.040
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Case RθJC TO-220 - - 1.25 oC/W
Thermal Resistance Junction to
Ambient RθJA --62
oC/W
SWITCHING SPECIFICATIONS (VGS = 10V)
Turn-On Time tON VDD = 50V, ID = 33A
VGS =10V,
RGS = 9.1
(Figures 18, 19)
- - 100 ns
Turn-On Delay Time td(ON) - 9.5 - ns
Rise Time tr-57-ns
Turn-Off Delay Time td(OFF) -40-ns
Fall Time tf-55-ns
Turn-Off Time tOFF - - 145 ns
GATE CHARGE SPECIFICATIONS
Total Gate Charge Qg(TOT) VGS = 0V to 20V VDD = 50V,
ID = 33A,
Ig(REF) = 1.0mA
(Figures 13, 16, 17)
-6679nC
Gate Charge at 10V Qg(10) VGS = 0V to 10V - 35 42 nC
Threshold Gate Charge Qg(TH) VGS = 0V to 2V - 2.4 2.9 nC
Gate to Source Gate Charge Qgs - 5.4 - nC
Gate to Drain "Miller" Charge Qgd -13-nC
CAPACITANCE SPECIFICATIONS
Input Capacitance CISS VDS = 25V, VGS = 0V,
f = 1MHz
(Figure 12)
- 1220 - pF
Output Capacitance COSS - 295 - pF
Reverse Transfer Capacitance CRSS - 100 - pF
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Voltage VSD ISD = 33A - - 1.25 V
ISD = 17A - - 1.00 V
Reverse Recovery Time trr ISD = 33A, dISD/dt = 100A/µs - - 112 ns
Reverse Recovered Charge QRR ISD = 33A, dISD/dt = 100A/µs - - 400 nC
IRF540N
3
Typical Performance Curves
FIGURE 1. NORMALIZED POWER DISSIPATION vs
CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
FIGURE 4. PEAK CURRENT CAPABILITY
TC, CASE TEMPERATURE (oC)
POWER DISSIPATION MULTIPLIER
00 25 50 75 100 175
0.2
0.4
0.6
0.8
1.0
1.2
125 150
20
30
40
50 75 100 125 150
025
I
D
, DRAIN CURRENT (A)
T
C
, CASE TEMPERATURE (
o
C)
V
GS
= 10V
175
10
0.1
1
2
10-4 10-3 10-2 10-1 100101
0.0110-5
t, RECTANGULAR PULSE DURATION (s)
ZθJC, NORMALIZED
THERMAL IMPEDANCE
SINGLE PULSE NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
PDM
t1t2
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.01
0.02
100
600
20
10-4 10-3 10-2 10-1 100101
10-5
IDM, PEAK CURRENT (A)
t, PULSE WIDTH (s)
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
TC = 25oC
I = I25 175 - TC
150
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
VGS = 10V
IRF540N
4
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
CAPABILITY
FIGURE 7. TRANSFER CHARACTERISTICS FIGURE 8. SATURATION CHARACTERISTICS
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
Typical Performance Curves (Continued)
10
100
10 300
300
11
100µs
10ms
1ms
VDS, DRAIN TO SOURCE VOLTAGE (V)
ID, DRAIN CURRENT (A)
LIMITED BY rDS(ON)
AREA MAY BE
OPERATION IN THIS
TJ = MAX RATED
TC = 25oC
SINGLE PULSE
100
100
200
0.001 0.01 0.1 1
I
AS
, AVALANCHE CURRENT (A)
t
AV
, TIME IN AVALANCHE (ms)
t
AV
= (L)(I
AS
)/(1.3*RATED BV
DSS
- V
DD
)
If R = 0
If R 0
t
AV
= (L/R)ln[(I
AS
*R)/(1.3*RATED BV
DSS
- V
DD
) +1]
STARTING T
J
= 25
o
C
STARTING T
J
= 150
o
C
10
0
20
40
60
234 6
ID, DRAIN CURRENT (A)
VGS, GATE TO SOURCE VOLTAGE (V)
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
TJ = 175oC
TJ = 25oC
TJ = -55oC
5
0
20
40
60
01 2 3 4
I
D
, DRAIN CURRENT (A)
V
DS
, DRAIN TO SOURCE VOLTAGE (V)
V
GS
=5V
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
T
C
= 25
o
C
V
GS
= 7V
V
GS
= 6V
V
GS
= 20V
V
GS
= 10V
0.5
1.0
1.5
2.0
3.0
-80 -40 0 40 80 120 200
NORMALIZED DRAIN TO SOURCE
TJ, JUNCTION TEMPERATURE (oC)
ON RESISTANCE
VGS = 10V, ID = 33A
PULSE DURATION =
80µs
DUTY CYCLE = 0.5% MAX
160
2.5
0.6
0.8
1.0
1.2
-80 -40 0 40 80 120 200
NORMALIZED GATE
T
J
, JUNCTION TEMPERATURE (
o
C)
V
GS
= V
DS
, I
D
= 250µA
THRESHOLD VOLTAGE
160
IRF540N
5
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
Typical Performance Curves (Continued)
0.9
1.0
1.1
1.2
-80 -40 0 40 80 120 200
T
J
, JUNCTION TEMPERATURE (
o
C)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
I
D
= 250µA
160160
20
100
1000
4000
0.1 1.0 10 100
C, CAPACITANCE (pF)
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS = 0V, f = 1MHz
CISS =CGS + CGD
CRSS =CGD
COSS CDS + CGD
0
2
4
6
8
10
010 20 30 40
V
GS
, GATE TO SOURCE VOLTAGE (V)
V
DD
= 50V
Q
g
, GATE CHARGE (nC)
I
D
= 33A
I
D
= 17A
WAVEFORMS IN
DESCENDING ORDER:
IRF540N
6
Test Circuits and Waveforms
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORMS
FIGURE 18. SWITCHING TIME TEST CIRCUIT FIGURE 19. SWITCHING TIME WAVEFORM
tP
VGS
0.01
L
IAS
+
-
VDS
VDD
RG
DUT
VARY tP TO OBTAIN
REQUIRED PEAK IAS
0V
VDD
VDS
BVDSS
tP
IAS
tAV
0
RL
VGS +
-
VDS
VDD
DUT
Ig(REF)
VDD
Qg(TH)
VGS = 2V
Qg(10)
VGS = 10V
Qg(TOT)
VGS = 20V
VDS
VGS
Ig(REF)
0
0
Qgs Qgd
VGS
RL
RGS DUT
+
-VDD
VDS
VGS
tON
td(ON)
tr
90%
10%
VDS 90%
10%
tf
td(OFF)
tOFF
90%
50%
50%
10% PULSE WIDTH
VGS
0
0
IRF540N
7
PSPICE Electrical Model
.SUBCKT IRF540N 2 1 3 ; rev 19 July 1999
CA 12 8 1.95e-9
CB 15 14 1.90e-9
CIN 6 8 1.12e-9
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 112.8
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
IT 8 17 1
LDRAIN 2 5 1.0e-9
LGATE 1 9 6.19e-9
LSOURCE 3 7 2.18e-9
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 2.00e-2
RGATE 9 20 1.77
RLDRAIN 2 5 10
RLGATE 1 9 26
RLSOURCE 3 7 11
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 6.5e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A 6 12 13 8 S1AMOD
S1B 13 12 13 8 S1BMOD
S2A 6 15 14 13 S2AMOD
S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*71),3.5))}
.MODEL DBODYMOD D (IS = 1.20e-12 RS = 4.2e-3 XTI = 5 TRS1 = 1.3e-3 TRS2 = 8.0e-6 CJO = 1.50e-9 TT = 7.47e-8 M = 0.63)
.MODEL DBREAKMOD D (RS = 4.2e-1 TRS1 = 8e-4 TRS2 = 3e-6)
.MODEL DPLCAPMOD D (CJO = 1.45e-9 IS = 1e-30 M = 0.82)
.MODEL MMEDMOD NMOS (VTO = 3.11 KP = 5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.77)
.MODEL MSTROMOD NMOS (VTO = 3.57 KP = 33.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 2.68 KP = 0.09 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 17.7 )
.MODEL RBREAKMOD RES (TC1 =1.05e-3 TC2 = -5e-7)
.MODEL RDRAINMOD RES (TC1 = 9.40e-3 TC2 = 2.93e-5)
.MODEL RSLCMOD RES (TC1 = 3.5e-3 TC2 = 2.0e-6)
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6)
.MODEL RVTHRESMOD RES (TC1 = -1.8e-3 TC2 = -8.6e-6)
.MODEL RVTEMPMOD RES (TC1 = -3.0e-3 TC2 =1.5e-7)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -6.2 VOFF= -3.1)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.1 VOFF= -6.2)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.0 VOFF= 0.5)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.5 VOFF= -1.0)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
18
22
+-
6
8
+
-
5
51
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
814
13
MWEAK
EBREAK DBODY
RSOURCE
SOURCE
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ESLC
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE EVTEMP
9
ESG
LGATE
RLGATE 20
+
-
+
-
+
-
6
IRF540N
8
SABER Electrical Model
REV 19 July 1999
template IRF540N n2,n1,n3
electrical n2,n1,n3
{
var i iscl
d..model dbodymod = (is = 1.20e-12, cjo = 1.50e-9, tt = 7.47e-8, xti = 5, m = 0.63)
d..model dbreakmod = ()
d..model dplcapmod = (cjo = 1.45e-9, is = 1e-30, m = 0.82)
m..model mmedmod = (type=_n, vto = 3.11, kp = 5, is = 1e-30, tox = 1)
m..model mstrongmod = (type=_n, vto = 3.57, kp = 33.5, is = 1e-30, tox = 1)
m..model mweakmod = (type=_n, vto = 2.68, kp = 0.09, is = 1e-30, tox = 1)
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6.2, voff = -3.1)
sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -3.1, voff = -6.2)
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1.0, voff = 0.5)
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -1.0)
c.ca n12 n8 = 1.95e-9
c.cb n15 n14 = 1.90e-9
c.cin n6 n8 = 1.12e-9
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = model=dbreakmod
d.dplcap n10 n5 = model=dplcapmod
i.it n8 n17 = 1
l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 6.19e-9
l.lsource n3 n7 = 2.18e-9
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
res.rbreak n17 n18 = 1, tc1 = 1.05e-3, tc2 = -5.0e-7
res.rdbody n71 n5 = 4.2e-3, tc1 = 1.30e-3, tc2 = 8.0e-6
res.rdbreak n72 n5 = 4.2e-1, tc1 = 8.0e-4, tc2 = 3.0e-6
res.rdrain n50 n16 = 2.00e-2, tc1 = 9.40e-3, tc2 = 2.93e-5
res.rgate n9 n20 = 1.77
res.rldrain n2 n5 = 10
res.rlgate n1 n9 = 26
res.rlsource n3 n7 = 11
res.rslc1 n5 n51 = 1e-6, tc1 = 3.5e-3, tc2 = 2.0e-6
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 6.5e-3, tc1 = 1e-3, tc2 = 1e-6
res.rvtemp n18 n19 = 1, tc1 = -3.0e-3, tc2 = 1.5e-7
res.rvthres n22 n8 = 1, tc1 = -1.8e-3, tc2 = -8.6e-6
spe.ebreak n11 n7 n17 n18 = 112.8
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/71))** 3.5))
}
}
18
22
+-
6
8
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
814
13
MWEAK
EBREAK DBODY
RSOURCE
SOURCE
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ISCL
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE EVTEMP
9
ESG
LGATE
RLGATE 20
+
-
+
-
+
-
6
RDBODY
RDBREAK
72
71
IRF540N
9
SPICE Thermal Model
REV 26 July 1999
IRF540NT
CTHERM1 th 6 2.60e-3
CTHERM2 6 5 8.85e-3
CTHERM3 5 4 7.60e-3
CTHERM4 4 3 7.65e-3
CTHERM5 3 2 1.22e-2
CTHERM6 2 tl 8.70e-2
RTHERM1 th 6 9.00e-3
RTHERM2 6 5 1.80e-2
RTHERM3 5 4 9.15e-2
RTHERM4 4 3 2.43e-1
RTHERM5 3 2 3.10e-1
RTHERM6 2 tl 3.21e-1
SABER Thermal Model
SABER thermal model IRF540NT
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 = 2.60e-3
ctherm.ctherm2 6 5 = 8.85e-3
ctherm.ctherm3 5 4 = 7.60e-3
ctherm.ctherm4 4 3 = 7.65e-3
ctherm.ctherm5 3 2 = 1.22e-2
ctherm.ctherm6 2 tl = 8.70e-2
rtherm.rtherm1 th 6 = 9.00e-3
rtherm.rtherm2 6 5 = 1.80e-2
rtherm.rtherm3 5 4 = 9.15e-2
rtherm.rtherm4 4 3 = 2.43e-1
rtherm.rtherm5 3 2 = 3.10e-1
rtherm.rtherm6 2 tl = 3.21e-1
}
RTHERM4
RTHERM6
RTHERM5
RTHERM3
RTHERM2
RTHERM1
CTHERM4
CTHERM6
CTHERM5
CTHERM3
CTHERM2
CTHERM1
tl
2
3
4
5
6
th JUNCTION
CASE
IRF540N
10
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (321) 724-7000
FAX: (321) 724-7240
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029
IRF540N
TO-220AB
3 LEAD JEDEC TO-220AB PLASTIC PACKAGE
E
ØP
Q
D
H1
E1
L
L1
60o
b1
b
123
e
e1
A
c
J1
45o
D1
A1
TERM. 4
SYMBOL
INCHES MILLIMETERS
NOTESMIN MAX MIN MAX
A 0.170 0.180 4.32 4.57 -
A10.048 0.052 1.22 1.32 -
b 0.030 0.034 0.77 0.86 3, 4
b10.045 0.055 1.15 1.39 2, 3
c 0.014 0.019 0.36 0.48 2, 3 , 4
D 0.590 0.610 14.99 15.49 -
D1- 0.160 - 4.06 -
E 0.395 0.410 10.04 10.41 -
E1- 0.030 - 0.76 -
e 0.100 TYP 2.54 TYP 5
e10.200 BSC 5.08 BSC 5
H10.235 0.255 5.97 6.47 -
J10.100 0.110 2.54 2.79 6
L 0.530 0.550 13.47 13.97 -
L10.130 0.150 3.31 3.81 2
ØP 0.149 0.153 3.79 3.88 -
Q 0.102 0.112 2.60 2.84 -
NOTES:
1. These dimensions are within allowable dimensions of Rev. J of
JEDEC TO-220AB outline dated 3-24-87.
2. Lead dimension and finish uncontrolled in L1.
3. Lead dimension (without solder).
4. Add typically 0.002 inches (0.05mm) for solder coating.
5. Position of lead to be measured 0.250 inches (6.35mm) from bot-
tom of dimension D.
6. Position of lead to be measured 0.100 inches (2.54mm) from bot-
tom of dimension D.
7. Controlling dimension: Inch.
8. Revision 2 dated 7-97.