October 2010 Doc ID 10880 Rev 3 1/28
1
VND810SP-E
Double channel high-side driver
Features
ECOPACK®: lead free and RoHS compliant
Automotive Grade: compliance with AEC
guidelines
Very low standby current
CMOS compatible input
On-state open-load detection
Off-state open-load detection
Thermal shutdown protection and diagnosis
Undervoltage shutdown
Overvoltage clamp
Output stuck to VCC detection
Load current limitation
Reverse battery protection
Electrostatic discharge protection
Description
The VND810SP-E is a monolithic device made by
using STMicroelectronics™ VIPower™ M0-3
technology, intended for driving any kind of load
with one side connected to ground.
Active VCC pin voltage clamp protects the device
against low energy spikes (see ISO7637 transient
compatibility table).
Active current limitation combined with thermal
shutdown and automatic restart protects the
device against overload. The device detects
open-load condition both in on-state and
off-state. Output shorted to VCC is detected in the
off-state. Device automatically turns-off in case of
ground pin disconnection.
Type RDS(on) Iout VCC
VND810SP-E 160 mΩ (1)
1. Per each channel.
3.5 A(1) 36 V
1
10
PowerSO-10™
Table 1. Order codes
Package
Order code
Tube Tape and reel
PowerSO-10™ VND810SP-E VND810SPTR-E
www.st.com
Contents VND810SP-E
2/28 Doc ID 10880 Rev 3
Contents
1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 GND protection network against reverse battery . . . . . . . . . . . . . . . . . . . 17
3.1.1 Solution 1: a resistor in the ground line (RGND only) . . . . . . . . . . . . . . 17
3.1.2 Solution 2: a diode (DGND) in the ground line . . . . . . . . . . . . . . . . . . . . 18
3.1.3 Load dump protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 MCU I/O protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 Open-load detection in off-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Maximum demagnetization energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4 Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 PowerSO-10 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5 Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1 ECOPACK® packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 PowerSO-10 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 PowerSO-10 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
VND810SP-E List of tables
Doc ID 10880 Rev 3 3/28
List of tables
Table 1. Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 3. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 4. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 5. Power output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 7. VCC output diode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 8. Status pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 6. Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 9. Switching (VCC = 13 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 10. Open-load detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 11. Logic input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 12. Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 13. Electrical transient requirements on VCC pin (part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 14. Electrical transient requirements on VCC pin (part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 15. Electrical transient requirements on VCC pin (part 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 16. Thermal parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 17. PowerSO-10 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 18. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
List of figures VND810SP-E
4/28 Doc ID 10880 Rev 3
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 3. Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 4. Status timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 5. Switching time waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 6. Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 7. Off-state output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 8. High level input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 9. Input clamp voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 10. Status leakage current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 11. Status low output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 12. Status clamp voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 13. On-state resistance vs Tcase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 14. On-state resistance vs VCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 15. Open-load on-state detection threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 16. Open-load off-state detection threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 17. Input high level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 18. Input low level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 19. Input hysteresis voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 20. Overvoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 21. Turn-on voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 22. Turn-off voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 23. ILIM vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 24. Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 25. Open-load detection in off-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 26. Maximum turn-off current versus load inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 27. PowerSO-10 PC board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 28. PowerSO-10 Rthj-amb vs PCB copper area in open box free air condition . . . . . . . . . . . . 21
Figure 29. PowerSO-10 thermal impedance junction ambient single pulse. . . . . . . . . . . . . . . . . . . . . 22
Figure 30. Thermal fitting model of a double channel HSD in PowerSO-10 . . . . . . . . . . . . . . . . . . . . 22
Figure 31. PowerSO-10 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 32. PowerSO-10 suggested pad layout and tube shipment (no suffix). . . . . . . . . . . . . . . . . . . 26
Figure 33. Tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
VND810SP-E Block diagram and pin description
Doc ID 10880 Rev 3 5/28
1 Block diagram and pin description
Figure 1. Block diagram
Figure 2. Configuration diagram (top view)
Table 2. Suggested connections for unused and not connected pins
Connection / pin Status N.C. Output Input
Floating X X X X
To ground X Through 10 KΩ resistor
OVERTEMP. 1
Vcc
GND
INPUT1 OUTPUT1
OVERVOLTAGE
LOGIC
DRIVER 1
STATUS1
Vcc
CLAMP
UNDERVOLTAGE
CLAMP 1
OPEN-LOAD ON 1
CURRENT LIMITER 1
OPEN-LOAD OFF 1
OUTPUT2
DRIVER 2
CLAMP 2
OPEN-LOAD ON 2
OPEN-LOAD OFF 2
OVERTEMP. 2
INPUT2
STATUS2
CURRENT LIMITER 2
1
2
3
4
5
6
7
8
9
10
11
OUTPUT 1
OUTPUT 1
N.C.
OUTPUT 2
OUTPUT 2
GROUND
INPUT 1
STATUS 1
STATUS 2
INPUT 2
V
CC
PowerSO-10
Electrical specifications VND810SP-E
6/28 Doc ID 10880 Rev 3
2 Electrical specifications
Figure 3. Current and voltage conventions
1) VFn = VCCn - VOUTn during reverse battery condition.
2.1 Absolute maximum ratings
Stressing the device above the rating listed in Ta bl e 3 may cause permanent damage to the
device. These are stress ratings only and operation of the device at these or any other
conditions above those indicated in the operating sections of this specification is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect device
reliability. Refer also to the STMicroelectronics sure program and other relevant quality
document.
I
S
I
GND
OUTPUT 2
V
CC
GND
STATUS 2
INPUT 2 I
OUT2
I
IN2
I
STAT2
V
STAT2
V
IN2
V
CC
V
OUT2
OUTPUT 1
I
OUT1
V
OUT1
INPUT 1
I
IN1
STATUS 1
I
STAT1
V
IN1
V
STAT1
V
F1 (1)
Table 3. Absolute maximum ratings
Symbol Parameter Value Unit
VCC DC supply voltage 41 V
- VCC Reverse DC supply voltage -0.3 V
- IGND DC reverse ground pin current -200 mA
IOUT DC output current Internally Limited A
- IOUT Reverse DC output current -6 A
IIN DC input current +/- 10 mA
Istat DC status current +/- 10 mA
VESD
Electrostatic discharge (Human Body Model:
R=1.5KΩ; C=100pF)
INPUT
–STATUS
–OUTPUT
–V
CC
4000
4000
5000
5000
V
V
V
V
VND810SP-E Electrical specifications
Doc ID 10880 Rev 3 7/28
2.2 Thermal data
2.3 Electrical characteristics
Values specified in this section are for 8 V < VCC < 36 V; -40 °C < Tj < 150 °C, unless
otherwise stated.
(Per each channel)
)
EMAX
Maximum switching energy
(L = 1.4 mH; RL=0Ω; Vbat =13.5V;
Tjstart = 150 °C; IL=5A)
24 mJ
Ptot Power dissipation TC=2C 52 W
TjJunction operating temperature Internally Limited °C
TcCase operating temperature -40 to 150 °C
Tstg Storage temperature -55 to 150 °C
Table 3. Absolute maximum ratings (continued)
Symbol Parameter Value Unit
Table 4. Thermal data
Symbol Parameter Value Unit
Rthj-case Thermal resistance junction-case 2.4 °C/W
Rthj-amb Thermal resistance junction-ambient 52.4 (1)
1. When mounted on a standard single-sided FR-4 board with 0.5 cm2 of Cu (at least 35 μm thick). Horizontal
mounting and no artificial air flow.
37 (2)
2. When mounted on a standard single-sided FR-4 board with 6 cm2 of Cu (at least 35 μm thick). Horizontal
mounting and no artificial air flow
°C/W
Table 5. Power output
Symbol Parameter Test conditions Min. Typ. Max. Unit
VCC(1) Operating supply
voltage 5.5 13 36 V
VUSD(1) Undervoltage shutdown 3 4 5.5 V
VOV(1) Overvoltage shutdown 36 V
RON On-state resistance IOUT =1A; T
j=2C
IOUT =1A; V
CC >8V
160
320
mΩ
mΩ
IS(1) Supply current
Off-state; VCC =13V;
VIN =V
OUT =0V
Off-state; VCC =13V;
VIN =V
OUT =0V; Tj=25°C
On-state; VCC =13V; V
IN =5V;
IOUT =0A
12
12
5
40
25
7
μA
μA
mA
IL(off1) Off-state output current VIN =V
OUT =0V 0 50 μA
Electrical specifications VND810SP-E
8/28 Doc ID 10880 Rev 3
IL(off2) Off-state output current VIN =0V; V
OUT =3.5V -75 0 μA
IL(off3) Off-state output current VIN =V
OUT =0V; V
CC =13V;
Tj =125 °C 5μA
IL(off4) Off-state output current VIN =V
OUT =0V; V
CC =13V;
Tj =2C 3μA
1. Per device.
Table 6. Protection(1)
Symbol Parameter Test conditions Min. Typ. Max. Unit
TTSD Shutdown temperature 150 175 200 °C
TRReset temperature 135 °C
Thyst Thermal hysteresis 7 15 °C
tsdl
Status delay in
overload conditions Tj>TTSD 20 μs
Ilim Current limitation VCC =13V
5.5 V < VCC <36V
3.5 5 7.5
7.5
A
A
Vdemag
Turn-off output clamp
voltage IOUT =1A; L=6mH V
CC-41 VCC-48 VCC-55 V
1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related
diagnostic signals must be used together with a proper software strategy. If the device is subjected to
abnormal conditions, this software must limit the duration and number of activation cycles
Table 7. VCC output diode
Symbol Parameter Test conditions Min Typ Max Unit
VFForward on voltage -IOUT = 0.5 A; Tj= 150 °C - - 0.6 V
Table 8. Status pin
Symbol Parameter Test conditions Min Typ Max Unit
VSTAT
Status low output
voltage ISTAT = 1.6 mA 0.5 V
ILSTAT
Status leakage
current Normal operation; VSTAT = 5 V 10 μA
CSTAT
Status pin input
capacitance Normal operation; VSTAT = 5 V 100 pF
VSCL Status clamp voltage ISTAT = 1 mA
ISTAT = -1 mA
66.8
-0.7
8V
V
Table 5. Power output (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
VND810SP-E Electrical specifications
Doc ID 10880 Rev 3 9/28
x
Table 9. Switching (VCC =13V)
Symbol Parameter Test conditions Min Typ Max Unit
td(on) Turn-on delay time RL=13Ω from VIN rising edge
to VOUT =1.3V -30-μs
td(off) Turn-off delay time RL=13Ω from VIN falling edge
to VOUT =11.7V -30-μs
dVOUT/dt(on)
Turn-on voltage
slope
RL=13Ω from VOUT = 1.3 V to
VOUT = 10.4 V -See
Ta bl e 2 1 -V/μs
dVOUT/dt(off)
Turn-off voltage
slope
RL=13Ω from VOUT =11.7V
to VOUT =1.3V -See
Ta bl e 2 2 -V/μs
Table 10. Open-load detection
Symbol Parameter Test conditions Min Typ Max Unit
IOL
Open-load on-state
detection threshold VIN = 5V 20 40 80 mA
tDOL(on)
Open-load on-state
detection delay IOUT = 0 A 200 μs
VOL
Open-load off-state
voltage detection
threshold
VIN = 0 V 1.5 2.5 3.5 V
tDOL(off) Open-load detection
delay at turn-off 1000 μs
Table 11. Logic input
Symbol Parameter Test conditions Min Typ Max Unit
VIL Input low level 1.25 V
IIL Low level input current VIN = 1.25 V 1 μA
VIH Input high level 3.25 V
IIH
High level input
current VIN = 3.25 V 10 μA
Vhyst
Input hysteresis
voltage 0.5 V
VICL Input clamp voltage IIN = 1 mA
IIN = -1 mA
66.8
-0.7
8V
V
Electrical specifications VND810SP-E
10/28 Doc ID 10880 Rev 3
Figure 4. Status timing
Figure 5. Switching time waveforms
V
INn
V
STAT n
t
DOL(off)
OPEN-LOAD STATUS TIMING (with external pull-up)
V
INn
V
STAT n
OVERTEMPERATURE STATUS TIMING
t
SDL
t
SDL
I
OUT
< I
OL
V
OUT
> V
OL
t
DOL(on)
T
j
> T
TSD
t
t
V
OUTn
V
INn
80%
10%
dV
OUT
/dt
(on)
t
d(off)
90%
dV
OUT
/dt
(off)
t
d(on)
VND810SP-E Electrical specifications
Doc ID 10880 Rev 3 11/28
Table 12. Truth table
Conditions Input Output Status
Normal operation L
H
L
H
H
H
Current limitation
L
H
H
L
X
X
H
(Tj < TTSD) H
(Tj > TTSD) L
Overtemperature L
H
L
L
H
L
Undervoltage L
H
L
L
X
X
Overvoltage L
H
L
L
H
H
Output voltage > VOL
L
H
H
H
L
H
Output current < IOL
L
H
L
H
H
L
Electrical specifications VND810SP-E
12/28 Doc ID 10880 Rev 3
Table 13. Electrical transient requirements on VCC pin (part 1)
ISO T/R 7637/1
Test pulse
Test levels
I II III IV Delays and
impedance
1 -25 V -50 V -75 V -100 V 2 ms, 10 Ω
2 +25 V +50 V +75 V +100 V 0.2 ms, 10 Ω
3a -25 V -50 V -100 V -150 V 0.1 μs, 50 Ω
3b +25 V +50 V +75 V +100 V 0.1 μs, 50 Ω
4 -4 V -5 V -6 V -7 V 100 ms, 0.01 Ω
5 +26.5 V +46.5 V +66.5 V +86.5 V 400 ms, 2 Ω
Table 14. Electrical transient requirements on VCC pin (part 2)
ISO T/R 7637/1
Test pulse
Test levels
I II III IV
1CCCC
2CCCC
3aCCCC
3bCCCC
4CCCC
5C E E E
Table 15. Electrical transient requirements on VCC pin (part 3)
Class Contents
CAll functions of the device are performed as designed after exposure to
disturbance.
EOne or more functions of the device is not performed as designed after exposure
and cannot be returned to proper operation without replacing the device.
VND810SP-E Electrical specifications
Doc ID 10880 Rev 3 13/28
Figure 6. Waveforms
OPEN-LOAD without external pull-up
STATUSn
INPUTn
NORMAL OPERATION
UNDERVOLTAGE
VCC
VUSD
VUSDhyst
INPUTn
OVERVOLTAGE
VCC
STATUSn
INPUTn
STATUSn
STATUSn
INPUTn
STATUSn
INPUTn
OPEN-LOAD with external pull-up
undefined
OVERTEMPERATURE
INPUTn
STATUSn
TTSD
TR
Tj
OUTPUT VOLTAGEn
VCC<VOV
OUTPUT VOLTAGEn
OUTPUT VOLTAGEn
OUTPUT VOLTAGEn
OUTPUT VOLTAGEn
OUTPUT CURRENTn
VOUT>VOL
VOL
VCC>VOV
Electrical specifications VND810SP-E
14/28 Doc ID 10880 Rev 3
2.4 Electrical characteristics curves
Figure 7. Off-state output current Figure 8. High level input current
Figure 9. Input clamp voltage Figure 10. Status leakage current
Figure 11. Status low output voltage Figure 12. Status clamp voltage
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC)
0
0.16
0.32
0.48
0.64
0.8
0.96
1.12
1.28
1.44
1.6
IL(off1) (uA)
Off state
Vcc=36V
Vin=Vout=0V
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
Iih (uA)
Vin=3.25V
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
6
6.2
6.4
6.6
6.8
7
7.2
7.4
7.6
7.8
8
Vicl (V)
Iin=1mA
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
0
0.01
0.02
0.03
0.04
0.05
Ilstat (uA)
Vstat=5V
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Vstat (V)
Istat=1.6mA
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
6
6.2
6.4
6.6
6.8
7
7.2
7.4
7.6
7.8
8
Vscl (V)
Istat=1mA
VND810SP-E Electrical specifications
Doc ID 10880 Rev 3 15/28
Figure 13. On-state resistance vs Tcase Figure 14. On-state resistance vs VCC
Figure 15. Open-load on-state detection
threshold
Figure 16. Open-load off-state detection
threshold
Figure 17. Input high level Figure 18. Input low level
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC)
0
50
100
150
200
250
300
350
400
Ron (mOhm)
Iout=1A
Vcc=8V; 13V & 36V
5 10152025303540
Vcc (V)
0
50
100
150
200
250
300
350
400
Ron (mOhm)
Iout=1A
Tc= - 40ºC
Tc= 25ºC
Tc= 125ºC
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
10
15
20
25
30
35
40
45
50
55
60
Iol (mA)
Vcc=13V
Vin=5V
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
Vol (V)
Vin=0V
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
Vih (V)
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
Vil (V)
Electrical specifications VND810SP-E
16/28 Doc ID 10880 Rev 3
Figure 19. Input hysteresis voltage Figure 20. Overvoltage shutdown
Figure 21. Turn-on voltage slope Figure 22. Turn-off voltage slope
Figure 23. ILIM vs Tcase
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
1.5
Vhyst (V)
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
30
32
34
36
38
40
42
44
46
48
50
Vov (V)
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC)
0
100
200
300
400
500
600
700
800
900
1000
dVout/dt(on) (V/ms)
Vcc=13V
Rl=13Ohm
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC)
0
50
100
150
200
250
300
350
400
450
500
dVout/dt(off) (V/ms)
Vcc=13V
Rl=13Ohm
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
0
1
2
3
4
5
6
7
8
9
10
Ilim (A)
Vcc=13V
VND810SP-E Application information
Doc ID 10880 Rev 3 17/28
3 Application information
Figure 24. Application schematic
3.1 GND protection network against reverse battery
This section provides two solutions for implementing a ground protection network against
reverse battery.
3.1.1 Solution 1: a resistor in the ground line (RGND only)
This can be used with any type of load.
The following shows how to dimension the RGND resistor:
1. RGND 600 mV / IS(on)max.
2. RGND (-VCC) / (-IGND)
where - IGND is the DC reverse ground pin current and can be found in the absolute
maximum rating section of the device’s datasheet.
Power dissipation in RGND (when VCC < 0 during reverse battery situations) is:
PD = (-VCC)2/ RGND
This resistor can be shared amongst several different HSD. Please note that the value of this
resistor should be calculated with formula (1) where IS(on)max becomes the sum of the
maximum on-state currents of the different devices.
Please note that, if the microprocessor ground is not common with the device ground, then
the RGND produces a shift (IS(on)max * RGND) in the input thresholds and the status output
values. This shift varies depending on how many devices are ON in the case of several high
side drivers sharing the same RGND.
V
CC
OUTPUT2
D
ld
+5V
R
prot
OUTPUT1
STATUS1
INPUT1
+5V
STATUS2
INPUT2
GND
+5V
μ
CR
prot
R
prot
R
prot
D
GND
R
GND
V
GND
Application information VND810SP-E
18/28 Doc ID 10880 Rev 3
If the calculated power dissipation requires the use of a large resistor, or several devices
have to share the same resistor, then ST suggests using Section 3.1.2 described below.
3.1.2 Solution 2: a diode (DGND) in the ground line
A resistor (RGND = 1 kΩ) should be inserted in parallel to DGND if the device is driving an
inductive load. This small signal diode can be safely shared amongst several different HSD.
Also in this case, the presence of the ground network produce a shift (~600 mV) in the input
threshold and the status output values if the microprocessor ground is not common with the
device ground. This shift does not vary if more than one HSD shares the same
diode/resistor network. Series resistor in INPUT and STATUS lines are also required to
prevent that, during battery voltage transient, the current exceeds the absolute maximum
rating. Safest configuration for unused INPUT and STATUS pin is to leave them
unconnected.
3.1.3 Load dump protection
Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC
max DC rating. The same applies if the device is subjected to transients on the VCC line that
are greater than the ones shown in Ta b l e 1 3 .
3.2 MCU I/O protection
If a ground protection network is used and negative transients are present on the VCC line,
the control pins is pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent
the microcontroller I/O pins from latching up.
The value of these resistors is a compromise between the leakage current of microcontroller
and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of
microcontroller I/Os:
-VCCpeak / Ilatchup Rprot (VOHμC - VIH - VGND) / IIHmax
Example
For the following conditions:
VCCpeak = -100 V
Ilatchup 20 mA
VOHμC 4.5 V
5kΩ Rprot 65 kΩ.
The recommended values are:
Rprot = 10 kΩ
3.2.1 Open-load detection in off-state
Off-state open-load detection requires an external pull-up resistor (RPU) connected between
OUTPUT pin and a positive supply voltage (VPU) like the +5 V line used to supply the
microprocessor.
The external resistor has to be selected according to the following requirements:
VND810SP-E Application information
Doc ID 10880 Rev 3 19/28
1. No false open-load indication when load is connected: in this case it needs to avoid
VOUT to be higher than VOlmin; this results in the following condition:
VOUT =(V
PU/(R
L+R
PU))RL<V
Olmin.
2. No misdetection when load is disconnected: in this case the VOUT has to be higher than
VOLmax; this results in the following condition RPU <(V
PU –V
OLmax)/ IL(off2).
Because Is(OFF) may significantly increase if Vout is pulled high (up to several mA), the
pull-up resistor RPU should be connected to a supply that is switched OFF when the module
is in standby.
The values of VOLmin, VOLmax and IL(off2) are available in Section 2.3.
Figure 25. Open-load detection in off-state
VOL
V batt. VPU
RPU
RL
R
DRIVER
+
LOGIC
+
-
INPUT
STATUS
VCC
OUT
GROUND
IL(off2)
Application information VND810SP-E
20/28 Doc ID 10880 Rev 3
3.3 Maximum demagnetization energy
Figure 26. Maximum turn-off current versus load inductance
1. Values are generated with RL=0
Ω
In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed
the temperature specified above for curves B and C.
A = Single pulse at TJstart =15C
B = Repetitive pulse at TJstart =10C
C = Repetitive pulse at TJstart =12C
Conditions:
VCC = 13.5 V
VIN, IL
t
Demagnetization Demagnetization Demagnetization
1
10
0,01 0,1 1 10 100
L( mH )
ILM AX (A)
A
B
C
VND810SP-E Package and PCB thermal data
Doc ID 10880 Rev 3 21/28
4 Package and PCB thermal data
4.1 PowerSO-10 thermal data
Figure 27. PowerSO-10 PC board
1. Layout condition of Rth and Zth measurements (PCB FR4 area= 58 mm x 58 mm, PCB
thickness = 2 mm, Cu thickness = 35
μ
m, Copper areas: from minimum pad lay-out to 8 cm2).
Figure 28. PowerSO-10 Rthj-amb vs PCB copper area in open box free air condition
30
35
40
45
50
55
0246810
PCB Cu heatsink area (cm^2)
RTHj_amb (°C/W)
Tj-Tamb=50°C
Package and PCB thermal data VND810SP-E
22/28 Doc ID 10880 Rev 3
Figure 29. PowerSO-10 thermal impedance junction ambient single pulse
Figure 30. Thermal fitting model of a double channel HSD in PowerSO-10
Equation 1: pulse calculation formula
T_amb
Pd1
C1
R4
C3 C4
R3R1 R6R5R2
C5 C6C2
Pd2
R2
C1 C2
R1
Tj_1
Tj_2
ZTHδRTH δZTHtp 1δ()+=
where δtpT=
VND810SP-E Package and PCB thermal data
Doc ID 10880 Rev 3 23/28
Table 16. Thermal parameter
Area/island (cm2) Footprint 6
R1 (°C/W) 0.35
R2 (°C/W) 1.8
R3(°C/W) 1.1
R4 (°C/W) 0.8
R5 (°C/W) 12
R6 (°C/W) 37 22
C1 (W.s/°C) 0.0001
C2 (W.s/°C) 7E-04
C3 (W.s/°C) 0.008
C4 (W.s/°C) 0.3
C5 (W.s/°C) 0.75
C6 (W.s/°C) 3 5
Package and packing information VND810SP-E
24/28 Doc ID 10880 Rev 3
5 Package and packing information
5.1 ECOPACK® packages
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
5.2 PowerSO-10 mechanical data
Figure 31. PowerSO-10 package dimensions
DETAIL "A"
PLANE
SEATING
α
L
A1
F
A1
h
A
D
D1
= =
= =
E4
0.10 A
E
C
A
B
B
DETAIL "A"
SEATING
PLANE
E2
10
1
eB
HE
0.25
VND810SP-E Package and packing information
Doc ID 10880 Rev 3 25/28
Table 17. PowerSO-10 mechanical data
Symbol
Millimeters
Min Typ Max
A 3.35 3.65
A(1)
1. Muar only POA P013P
3.4 3.6
A1 0.00 0.10
B 0.40 0.60
B(1) 0.37 0.53
C 0.35 0.55
C(1) 0.23 0.32
D 9.40 9.60
D1 7.40 7.60
E 9.30 9.50
E2 7.20 7.60
E2(1) 7.30 7.50
E4 5.90 6.10
E4(1) 5.90 6.30
e1.27
F 1.25 1.35
F(1) 1.20 1.40
H 13.80 14.40
H(1) 13.85 14.35
h0.50
L 1.20 1.80
L(1) 0.80 1.10
a0° 8°
α(1)
Package and packing information VND810SP-E
26/28 Doc ID 10880 Rev 3
5.3 PowerSO-10 packing information
Figure 32. PowerSO-10 suggested pad layout and tube shipment (no suffix)
Figure 33. Tape and reel shipment (suffix “TR”)
6.30
10.8 - 11
14.6 - 14.9
9.5
1
2
3
4
5
1.27
0.67 - 0.73
0.54 - 0.6
10
9
8
7
6
B
A
C
All dimensions are in mm.
Base Q.ty Bulk Q.ty Tube length (± 0.5) A B C (± 0.1)
Casablanca 50 1000 532 10.4 16.4 0.8
Muar 50 1000 532 4.9 17.2 0.8
REEL DIMENSIONS
All dimensions are in mm.
Base Q.ty 600
Bulk Q.ty 600
A (max) 330
B (min) 1.5
C (± 0.2) 13
F20.2
G (+ 2 / -0) 24.4
N (min) 60
T (max) 30.4
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb. 1986
All dimensions are in mm.
Tape width W 24
Tape Hole Spacing P0 (± 0.1) 4
Component Spacing P 24
Hole Diameter D (± 0.1/-0) 1.5
Hole Diameter D1 (min) 1.5
Hole Position F (± 0.05) 11.5
Compartment Depth K (max) 6.5
Hole Spacing P1 (± 0.1) 2
Top
cover
tape
End
Start
No componentsNo components Components
500mm min
500mm min
Empty components pockets
saled with cover tape.
User direction of feed
VND810SP-E Revision history
Doc ID 10880 Rev 3 27/28
6 Revision history
Table 18. Document revision history
Date Revision Changes
01-Oct-2004 1 Initial release.
25-May-2010 2 Changed document template. Reformatted entire document.
Changed Features list.
08-Oct-2010 3
Updated following tables:
Table 6: Protection
Table 12: Truth table
Table 17: PowerSO-10 mechanical data
Updated Figure 26: Maximum turn-off current versus load inductance
VND810SP-E
28/28 Doc ID 10880 Rev 3
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com