  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
DLow Supply-Voltage Range, 1.8 V . . . 3.6 V
DUltralow-Power Consumption:
− Active Mode: 280 µA at 1 MHz, 2.2V
− Standby Mode: 1.6 µA
− Off Mode (RAM Retention): 0.1 µA
DFive Power-Saving Modes
DWake-Up From Standby Mode in less
than 6 µs
D16-Bit RISC Architecture,
125-ns Instruction Cycle Time
D12-Bit A/D Converter With Internal
Reference, Sample-and-Hold and Autoscan
Feature
D16-Bit Timer_B With Seven
Capture/Compare-With-Shadow Registers
D16-Bit Timer_A With Three
Capture/Compare Registers
DOn-Chip Comparator
DSerial Onboard Programming,
No External Programming Voltage Needed
Programmable Code Protection by Security
Fuse
DSerial Communication Interface (USART),
Functions as Asynchronous UART or
Synchronous SPI Interface
− Two USARTs (USART0, USART1) —
MSP430x14x(1) Devices
− One USART (USART0) — MSP430x13x
Devices
DFamily Members Include:
− MSP430F133:
8KB+256B Flash Memory,
256B RAM
− MSP430F135:
16KB+256B Flash Memory,
512B RAM
− MSP430F147, MSP430F1471:
32KB+256B Flash Memory,
1KB RAM
− MSP430F148, MSP430F1481:
48KB+256B Flash Memory,
2KB RAM
− MSP430F149, MSP430F1491:
60KB+256B Flash Memory,
2KB RAM
DAvailable in 64-Pin Quad Flat Pack (QFP)
and 64-pin QFN
DFor Complete Module Descriptions, See the
MSP430x1xx Family User’s Guide,
Literature Number SLAU049
The MSP430F14x1 devices are identical to the MSP430F14x
devices with the exception that the ADC12 module is not
implemented.
description
The Texas Instruments MSP430 family of ultralow-power microcontrollers consist of several devices featuring
different sets of peripherals targeted for various applications. The architecture, combined with five low power
modes is optimized to achieve extended battery life in portable measurement applications. The device features
a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency.
The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6 µs.
The MSP430x13x and the MSP430x14x(1) series are microcontroller configurations with two built-in 16-bit
timers, a fast 12-bit A/D converter (not implemented on the MSP430F14x1 devices), one or two universal serial
synchronous/asynchronous communication interfaces (USART), and 48 I/O pins.
Typical applications include sensor systems that capture analog signals, convert them to digital values, and
process and transmit the data to a host system. The timers make the configurations ideal for industrial control
applications such as ripple counters, digital motor control, EE-meters, hand-held meters, etc. The hardware
multiplier enhances the performance and offers a broad code and hardware-compatible family solution.
Copyright 2000 − 2004, Texas Instruments Incorporated
    !"#   $"%&! '#(
'"! !  $#!! $# )# #  # "#
'' *+( '"! $!#, '#  #!#&+ !&"'#
#,  && $##(
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
2POST OFFICE BOX 655303 DALLAS, TEXAS 75265
AVAILABLE OPTIONS
PACKAGED DEVICES
TAPLASTIC 64-PIN QFP
(PM) PLASTIC 64-PIN QFP
(PAG) PLASTIC 64-PIN QFN
(RTD)
−40°C to 85°C
MSP430F133IPM
MSP430F135IPM
MSP430F147IPM
MSP430F1471IPM
MSP430F148IPM
MSP430F1481IPM
MSP430F149IPM
MSP430F1491IPM
MSP430F133IPAG
MSP430F135IPAG
MSP430F147IPAG
MSP430F148IPAG
MSP430F149IPAG
MSP430F133IRTD
MSP430F135IRTD
MSP430F147IRTD
MSP430F1471IRTD
MSP430F148IRTD
MSP430F1481IRTD
MSP430F149IRTD
MSP430F1491IRTD
pin designation, MSP430F133, MSP430F135
17 18 19
P5.4/MCLK
P5.3
P5.2
P5.1
P5.0
P4.7/TBCLK
P4.6
P4.5
P4.4
P4.3
P4.2/TB2
P4.1/TB1
P4.0/TB0
P3.7
P3.6
P3.5/URXD0
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
DVCC
P6.3/A3
P6.4/A4
P6.5/A5
P6.6/A6
P6.7/A7
VREF+
XIN
XOUT
VeREF+
VREF−/VeREF−
P1.0/TACLK
P1.1/TA0
P1.2/TA1
P1.3/TA2
P1.4/SMCLK 21 22 23 24
P5.6/ACLK
TDO/TDI
63 62 61 60 5964 58
AV
P6.2/A2
P6.1/A1
P6.0/A0
RST/NMI
TCK
TMS
P2.6/ADC12CLK
P2.7/TA0
P3.0/STE0
P3.1/SIMO0
P1.7/TA2
P2.1/TAINCLK
P2.2/CAOUT/TA0
P2.3/CA0/TA1
P2.4/CA1/TA2
P2.5/Rosc
56 55 5457
25 26 27 28 29
53 52
P1.5/TA0
XT2IN
XT2OUT
51 50 49
30 31 32
P3.2/SOMI0
P3.3/UCLK0
P3.4/UTXD0
P5.7/TBOUTH
TDI/TCLK
P5.5/SMCLK
AV
DV
PM, PAG, RTD PACKAGE
(TOP VIEW)
P1.6/TA1
P2.0/ACLK
CC
SS
SS
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
pin designation, MSP430F147, MSP430F148, MSP430F149
17 18 19
P5.4/MCLK
P5.3/UCLK1
P5.2/SOMI1
P5.1/SIMO1
P5.0/STE1
P4.7/TBCLK
P4.6/TB6
P4.5/TB5
P4.4/TB4
P4.3/TB3
P4.2/TB2
P4.1/TB1
P4.0/TB0
P3.7/URXD1
P3.6/UTXD1
P3.5/URXD0
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
DVCC
P6.3/A3
P6.4/A4
P6.5/A5
P6.6/A6
P6.7/A7
VREF+
XIN
XOUT
VeREF+
VREF−/VeREF−
P1.0/TACLK
P1.1/TA0
P1.2/TA1
P1.3/TA2
P1.4/SMCLK 21 22 23 24
P5.6/ACLK
TDO/TDI
63 62 61 60 5964 58
AV
P6.2/A2
P6.1/A1
P6.0/A0
RST/NMI
TCK
TMS
P2.6/ADC12CLK
P2.7/TA0
P3.0/STE0
P3.1/SIMO0
P1.7/TA2
P2.1/TAINCLK
P2.2/CAOUT/TA0
P2.3/CA0/TA1
P2.4/CA1/TA2
P2.5/Rosc
56 55 5457
25 26 27 28 29
53 52
P1.5/TA0
XT2IN
XT2OUT
51 50 49
30 31 32
P3.2/SOMI0
P3.3/UCLK0
P3.4/UTXD0
P5.7/TBOUTH
TDI/TCLK
P5.5/SMCLK
AV
DV
PM, PAG, RTD PACKAGE
(TOP VIEW)
P1.6/TA1
P2.0/ACLK
CC
SS
SS
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
4POST OFFICE BOX 655303 DALLAS, TEXAS 75265
pin designation, MSP430F1471, MSP430F1481, MSP430F1491
17 18 19
P5.4/MCLK
P5.3/UCLK1
P5.2/SOMI1
P5.1/SIMO1
P5.0/STE1
P4.7/TBCLK
P4.6/TB6
P4.5/TB5
P4.4/TB4
P4.3/TB3
P4.2/TB2
P4.1/TB1
P4.0/TB0
P3.7/URXD1
P3.6/UTXD1
P3.5/URXD0
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
DVCC
P6.3
P6.4
P6.5
P6.6
P6.7
Reserved
XIN
XOUT
DVSS
DVSS
P1.0/TACLK
P1.1/TA0
P1.2/TA1
P1.3/TA2
P1.4/SMCLK 21 22 23 24
P5.6/ACLK
TDO/TDI
63 62 61 60 5964 58
AV
P6.2
P6.1
P6.0
RST/NMI
TCK
TMS
P2.6
P2.7/TA0
P3.0/STE0
P3.1/SIMO0
P1.7/TA2
P2.1/TAINCLK
P2.2/CAOUT/TA0
P2.3/CA0/TA1
P2.4/CA1/TA2
P2.5/Rosc
56 55 5457
25 26 27 28 29
53 52
P1.5/TA0
XT2IN
XT2OUT
51 50 49
30 31 32
P3.2/SOMI0
P3.3/UCLK0
P3.4/UTXD0
P5.7/TBOUTH
TDI/TCLK
P5.5/SMCLK
AV
DV
PM, RTD PACKAGE
(TOP VIEW)
P1.6/TA1
P2.0/ACLK
CC
SS
SS
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
functional block diagrams
MSP430x13x
Oscillator ACLK
SMCLK
CPU
Incl. 16 Reg.
Bus
Conv
MCB
XIN XOUT P3 P4P2
XT2IN
XT2OUT
TMS
TCK
MDB, 16 Bit
MAB, 16 Bit
MCLK
4
TDI/TCLK
TDO/TDI
P5 P6
MAB,
4 Bit
DVCC DVSS AVCC AVSS RST/NMI
System
Clock
ROSC
P1
16KB Flash
8KB Flash
512B RAM
256B RAM
ADC12
12-Bit
8 Channels
<10µs Conv.
Watchdog
Timer
15/16-Bit
Timer_B3
3 CC Reg
Shadow
Reg
Timer_A3
3 CC Reg
Test
JTAG
Emulation
Module
I/O Port 1/2
16 I/Os,
with
Interrupt
Capability
I/O Port 3/4
16 I/Os
POR Comparator
AUSART0
UART Mode
SPI Mode
I/O Port 5/6
16 I/Os
MDB, 8 Bit
MDB, 16-Bit
MAB, 16-Bit
8 8 8 8 8 8
MSP430x14x
Oscillator ACLK
SMCLK
CPU
Incl. 16 Reg.
Bus
Conv
MCB
XIN XOUT P3 P4P2
XT2IN
XT2OUT
TMS
TCK
MDB, 16 Bit
MAB, 16 Bit
MCLK
4
TDI/TCLK
TDO/TDI
P5 P6
MAB,
4 Bit
DVCC DVSS AVCC AVSS RST/NMI
System
Clock
ROSC
P1
Hardware
Multiplier
MPY, MPYS
MAC,MACS
60KB Flash
48KB Flash
32KB Flash
2KB RAM
2KB RAM
1KB RAM
ADC12
12-Bit
8 Channels
<10µs Conv.
Watchdog
Timer
15/16-Bit
Timer_B7
7 CC Reg
Shadow
Reg
Timer_A3
3 CC Reg
Test
JTAG
Emulation
Module
I/O Port 1/2
16 I/Os,
with
Interrupt
Capability
I/O Port 3/4
16 I/Os
POR Comparator
AUSART0
UART Mode
SPI Mode
USART1
UART Mode
SPI Mode
I/O Port 5/6
16 I/Os
MDB, 8 Bit
MDB, 16-Bit
MAB, 16-Bit
8 8 8 8 8 8
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
6POST OFFICE BOX 655303 DALLAS, TEXAS 75265
functional block diagrams (continued)
MSP430x14x1
Oscillator ACLK
SMCLK
CPU
Incl. 16 Reg.
Bus
Conv
MCB
XIN XOUT P3 P4P2
XT2IN
XT2OUT
TMS
TCK
MDB, 16 Bit
MAB, 16 Bit
MCLK
4
TDI/TCLK
TDO/TDI
P5 P6
MAB,
4 Bit
DVCC DVSS AVCC AVSS RST/NMI
System
Clock
ROSC
P1
Hardware
Multiplier
MPY, MPYS
MAC,MACS
60KB Flash
48KB Flash
32KB Flash
2KB RAM
2KB RAM
1KB RAM
Watchdog
Timer
15/16-Bit
Timer_B7
7 CC Reg
Shadow
Reg
Timer_A3
3 CC Reg
Test
JTAG
Emulation
Module
I/O Port 1/2
16 I/Os,
with
Interrupt
Capability
I/O Port 3/4
16 I/Os
POR Comparator
AUSART0
UART Mode
SPI Mode
USART1
UART Mode
SPI Mode
I/O Port 5/6
16 I/Os
MDB, 8 Bit
MDB, 16-Bit
MAB, 16-Bit
8 8 8 8 8 8
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Terminal Functions
MSP430x13x, MSP430x14x
TERMINAL
I/O
DESCRIPTION
NAME NO.
I/O
DESCRIPTION
AVCC 64 Analog supply voltage, positive terminal. Supplies the analog portion of the analog-to-digital converter.
AVSS 62 Analog supply voltage, negative terminal. Supplies the analog portion of the analog-to-digital converter.
DVCC 1Digital supply voltage, positive terminal. Supplies all digital parts.
DVSS 63 Digital supply voltage, negative terminal. Supplies all digital parts.
P1.0/TACLK 12 I/O General-purpose digital I/O pin/Timer_A, clock signal TACLK input
P1.1/TA0 13 I/O General-purpose digital I/O pin/Timer_A, capture: CCI0A input, compare: Out0 output/BSL transmit
P1.2/TA1 14 I/O General-purpose digital I/O pin/Timer_A, capture: CCI1A input, compare: Out1 output
P1.3/TA2 15 I/O General-purpose digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output
P1.4/SMCLK 16 I/O General-purpose digital I/O pin/SMCLK signal output
P1.5/TA0 17 I/O General-purpose digital I/O pin/Timer_A, compare: Out0 output
P1.6/TA1 18 I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output
P1.7/TA2 19 I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output/
P2.0/ACLK 20 I/O General-purpose digital I/O pin/ACLK output
P2.1/TAINCLK 21 I/O General-purpose digital I/O pin/Timer_A, clock signal at INCLK
P2.2/CAOUT/TA0 22 I/O General-purpose digital I/O pin/Timer_A, capture: CCI0B input/Comparator_A output/BSL receive
P2.3/CA0/TA1 23 I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output/Comparator_A input
P2.4/CA1/TA2 24 I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output/Comparator_A input
P2.5/ROSC 25 I/O General-purpose digital I/O pin/input for external resistor defining the DCO nominal frequency
P2.6/ADC12CLK 26 I/O General-purpose digital I/O pin/conversion clock – 12-bit ADC
P2.7/TA0 27 I/O General-purpose digital I/O pin/Timer_A, compare: Out0 output
P3.0/STE0 28 I/O General-purpose digital I/O pin/slave transmit enable – USART0/SPI mode
P3.1/SIMO0 29 I/O General-purpose digital I/O pin/slave in/master out of USART0/SPI mode
P3.2/SOMI0 30 I/O General-purpose digital I/O pin/slave out/master in of USART0/SPI mode
P3.3/UCLK0 31 I/O General-purpose digital I/O/USART0 clock: external input − UART or SPI mode, output – SPI mode
P3.4/UTXD0 32 I/O General-purpose digital I/O pin/transmit data out – USART0/UART mode
P3.5/URXD0 33 I/O General-purpose digital I/O pin/receive data in – USART0/UART mode
P3.6/UTXD134 I/O General-purpose digital I/O pin/transmit data out – USART1/UART mode
P3.7/URXD135 I/O General-purpose digital I/O pin/receive data in – USART1/UART mode
P4.0/TB0 36 I/O General-purpose digital I/O pin/Timer_B, capture: CCI0A or CCI0B input, compare: Out0 output
P4.1/TB1 37 I/O General-purpose digital I/O pin/Timer_B, capture: CCI1A or CCI1B input, compare: Out1 output
P4.2/TB2 38 I/O General-purpose digital I/O pin/Timer_B, capture: CCI2A or CCI2B input, compare: Out2 output
P4.3/TB339 I/O General-purpose digital I/O pin/Timer_B, capture: CCI3A or CCI3B input, compare: Out3 output
P4.4/TB440 I/O General-purpose digital I/O pin/Timer_B, capture: CCI4A or CCI4B input, compare: Out4 output
P4.5/TB541 I/O General-purpose digital I/O pin/Timer_B, capture: CCI5A or CCI5B input, compare: Out5 output
P4.6/TB642 I/O General-purpose digital I/O pin/Timer_B, capture: CCI6A or CCI6B input, compare: Out6 output
P4.7/TBCLK 43 I/O General-purpose digital I/O pin/Timer_B, clock signal TBCLK input
P5.0/STE144 I/O General-purpose digital I/O pin/slave transmit enable – USART1/SPI mode
P5.1/SIMO145 I/O General-purpose digital I/O pin/slave in/master out of USART1/SPI mode
P5.2/SOMI146 I/O General-purpose digital I/O pin/slave out/master in of USART1/SPI mode
P5.3/UCLK147 I/O General-purpose digital I/O pin/USART1 clock: external input − UART or SPI mode, output – SPI mode
P5.4/MCLK 48 I/O General-purpose digital I/O pin/main system clock MCLK output
P5.5/SMCLK 49 I/O General-purpose digital I/O pin/submain system clock SMCLK output
14x devices only
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
8POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Terminal Functions (Continued)
MSP430x13x, MSP430x14x (continued)
TERMINAL
I/O
DESCRIPTION
NAME NO.
I/O
DESCRIPTION
P5.6/ACLK 50 I/O General-purpose digital I/O pin/auxiliary clock ACLK output
P5.7/TBOUTH 51 I/O General-purpose digital I/O pin/switch all PWM digital output ports to high impedance − Timer_B7: TB0 to
TB6
P6.0/A0 59 I/O General-purpose digital I/O pin/analog input a0 – 12-bit ADC
P6.1/A1 60 I/O General-purpose digital I/O pin/analog input a1 – 12-bit ADC
P6.2/A2 61 I/O General-purpose digital I/O pin/analog input a2 – 12-bit ADC
P6.3/A3 2 I/O General-purpose digital I/O pin/analog input a3 – 12-bit ADC
P6.4/A4 3 I/O General-purpose digital I/O pin/analog input a4 – 12-bit ADC
P6.5/A5 4 I/O General-purpose digital I/O pin/analog input a5 – 12-bit ADC
P6.6/A6 5 I/O General-purpose digital I/O pin/analog input a6 – 12-bit ADC
P6.7/A7 6 I/O General-purpose digital I/O pin/analog input a7 – 12-bit ADC
RST/NMI 58 I Reset input, nonmaskable interrupt input port, or bootstrap loader start (in Flash devices).
TCK 57 I Test clock. TCK is the clock input port for device programming test and bootstrap loader start (in Flash
devices).
TDI/TCLK 55 I Test data input or test clock input. The device protection fuse is connected to TDI/TCLK.
TDO/TDI 54 I/O Test data output port. TDO/TDI data output or programming data input terminal
TMS 56 I Test mode select. TMS is used as an input port for device programming and test.
VeREF+ 10 I Input for an external reference voltage to the ADC
VREF+ 7 O Output of positive terminal of the reference voltage in the ADC
VREF−/VeREF− 11 INegative terminal for the ADC’s reference voltage for both sources, the internal reference voltage, or an
external applied reference voltage
XIN 8 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected.
XOUT 9 O Output terminal of crystal oscillator XT1
XT2IN 53 I Input port for crystal oscillator XT2. Only standard crystals can be connected.
XT2OUT 52 O Output terminal of crystal oscillator XT2
QFN Pad NA NA QFN package pad connection to DVSS recommended.
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Terminal Functions
MSP430x14x1
TERMINAL
I/O
DESCRIPTION
NAME NO.
I/O
DESCRIPTION
AVCC 64 Analog supply voltage, positive terminal.
AVSS 62 Analog supply voltage, negative terminal.
DVCC 1Digital supply voltage, positive terminal. Supplies all digital parts.
DVSS 63 Digital supply voltage, negative terminal. Supplies all digital parts.
P1.0/TACLK 12 I/O General-purpose digital I/O pin/Timer_A, clock signal TACLK input
P1.1/TA0 13 I/O General-purpose digital I/O pin/Timer_A, capture: CCI0A input, compare: Out0 output/BSL transmit
P1.2/TA1 14 I/O General-purpose digital I/O pin/Timer_A, capture: CCI1A input, compare: Out1 output
P1.3/TA2 15 I/O General-purpose digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output
P1.4/SMCLK 16 I/O General-purpose digital I/O pin/SMCLK signal output
P1.5/TA0 17 I/O General-purpose digital I/O pin/Timer_A, compare: Out0 output
P1.6/TA1 18 I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output
P1.7/TA2 19 I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output
P2.0/ACLK 20 I/O General-purpose digital I/O pin/ACLK output
P2.1/TAINCLK 21 I/O General-purpose digital I/O pin/Timer_A, clock signal at INCLK
P2.2/CAOUT/TA0 22 I/O General-purpose digital I/O pin/Timer_A, capture: CCI0B input/Comparator_A output/BSL receive
P2.3/CA0/TA1 23 I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output/Comparator_A input
P2.4/CA1/TA2 24 I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output/Comparator_A input
P2.5/ROSC 25 I/O General-purpose digital I/O pin/input for external resistor defining the DCO nominal frequency
P2.6 26 I/O General-purpose digital I/O pin
P2.7/TA0 27 I/O General-purpose digital I/O pin/Timer_A, compare: Out0 output
P3.0/STE0 28 I/O General-purpose digital I/O pin/slave transmit enable – USART0/SPI mode
P3.1/SIMO0 29 I/O General-purpose digital I/O pin/slave in/master out of USART0/SPI mode
P3.2/SOMI0 30 I/O General-purpose digital I/O pin/slave out/master in of USART0/SPI mode
P3.3/UCLK0 31 I/O General-purpose digital I/O/USART0 clock: external input − UART or SPI mode, output – SPI mode
P3.4/UTXD0 32 I/O General-purpose digital I/O pin/transmit data out – USART0/UART mode
P3.5/URXD0 33 I/O General-purpose digital I/O pin/receive data in – USART0/UART mode
P3.6/UTXD1 34 I/O General-purpose digital I/O pin/transmit data out – USART1/UART mode
P3.7/URXD1 35 I/O General-purpose digital I/O pin/receive data in – USART1/UART mode
P4.0/TB0 36 I/O General-purpose digital I/O pin/Timer_B, capture: CCI0A or CCI0B input, compare: Out0 output
P4.1/TB1 37 I/O General-purpose digital I/O pin/Timer_B, capture: CCI1A or CCI1B input, compare: Out1 output
P4.2/TB2 38 I/O General-purpose digital I/O pin/Timer_B, capture: CCI2A or CCI2B input, compare: Out2 output
P4.3/TB3 39 I/O General-purpose digital I/O pin/Timer_B, capture: CCI3A or CCI3B input, compare: Out3 output
P4.4/TB4 40 I/O General-purpose digital I/O pin/Timer_B, capture: CCI4A or CCI4B input, compare: Out4 output
P4.5/TB5 41 I/O General-purpose digital I/O pin/Timer_B, capture: CCI5A or CCI5B input, compare: Out5 output
P4.6/TB6 42 I/O General-purpose digital I/O pin/Timer_B, capture: CCI6A or CCI6B input, compare: Out6 output
P4.7/TBCLK 43 I/O General-purpose digital I/O pin/Timer_B, clock signal TBCLK input
P5.0/STE1 44 I/O General-purpose digital I/O pin/slave transmit enable – USART1/SPI mode
P5.1/SIMO1 45 I/O General-purpose digital I/O pin/slave in/master out of USART1/SPI mode
P5.2/SOMI1 46 I/O General-purpose digital I/O pin/slave out/master in of USART1/SPI mode
P5.3/UCLK1 47 I/O General-purpose digital I/O pin/USART1 clock: external input − UART or SPI mode, output – SPI mode
P5.4/MCLK 48 I/O General-purpose digital I/O pin/main system clock MCLK output
P5.5/SMCLK 49 I/O General-purpose digital I/O pin/submain system clock SMCLK output
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
10 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Terminal Functions (Continued)
MSP430x14x1 (continued)
TERMINAL
I/O
DESCRIPTION
NAME NO.
I/O
DESCRIPTION
P5.6/ACLK 50 I/O General-purpose digital I/O pin/auxiliary clock ACLK output
P5.7/TBOUTH 51 I/O General-purpose digital I/O pin/switch all PWM digital output ports to high impedance − Timer_B7: TB0 to
TB6
P6.0 59 I/O General-purpose digital I/O pin
P6.1 60 I/O General-purpose digital I/O pin
P6.2 61 I/O General-purpose digital I/O pin
P6.3 2 I/O General-purpose digital I/O pin
P6.4 3 I/O General-purpose digital I/O pin
P6.5 4 I/O General-purpose digital I/O pin
P6.6 5 I/O General-purpose digital I/O pin
P6.7 6 I/O General-purpose digital I/O pin
RST/NMI 58 I Reset input, nonmaskable interrupt input port, or bootstrap loader start (in Flash devices).
TCK 57 I Test clock. TCK is the clock input port for device programming test and bootstrap loader start (in Flash
devices).
TDI/TCLK 55 I Test data input or test clock input. The device protection fuse is connected to TDI/TCLK.
TDO/TDI 54 I/O Test data output port. TDO/TDI data output or programming data input terminal
TMS 56 I Test mode select. TMS is used as an input port for device programming and test.
DVSS 10 I Connect to DVSS
Reserved 7 Reserved, do not connect externally
DVSS 11 IConnect to DVSS
XIN 8 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected.
XOUT 9 O Output terminal of crystal oscillator XT1
XT2IN 53 I Input port for crystal oscillator XT2. Only standard crystals can be connected.
XT2OUT 52 O Output terminal of crystal oscillator XT2
QFN Pad NA NA QFN package pad connection to DVSS recommended.
General-Purpose Register
Program Counter
Stack Pointer
Status Register
Constant Generator
General-Purpose Register
General-Purpose Register
General-Purpose Register
PC/R0
SP/R1
SR/CG1/R2
CG2/R3
R4
R5
R12
R13
General-Purpose Register
General-Purpose Register
R6
R7
General-Purpose Register
General-Purpose Register
R8
R9
General-Purpose Register
General-Purpose Register
R10
R11
General-Purpose Register
General-Purpose Register
R14
R15
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
11
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
short-form description
CPU
The MSP430 CPU has a 16-bit RISC architecture
that is highly transparent to the application. All
operations, other than program-flow instructions,
are performed as register operations in conjunc-
tion with seven addressing modes for source
operand and four addressing modes for destina-
tion operand.
The CPU is integrated with 16 registers that
provide reduced instruction execution time. The
register-to-register operation execution time is
one cycle of the CPU clock.
Four of the registers, R0 to R3, are dedicated as
program counter, stack pointer, status register,
and constant generator respectively. The remain-
ing registers are general-purpose registers.
Peripherals are connected to the CPU using data,
address, and control buses, and can be handled
with all instructions.
instruction set
The instruction set consists of 51 instructions with
three formats and seven address modes. Each
instruction can operate on word and byte data.
Table 1 shows examples of the three types of
instruction formats; the address modes are listed
in Table 2.
Table 1. Instruction Word Formats
Dual operands, source-destination e.g. ADD R4,R5 R4 + R5 −−−> R5
Single operands, destination only e.g. CALL R8 PC −−>(TOS), R8−−> PC
Relative jump, un/conditional e.g. JNE Jump-on-equal bit = 0
Table 2. Address Mode Descriptions
ADDRESS MODE S D SYNTAX EXAMPLE OPERATION
Register F F MOV Rs,Rd MOV R10,R11 R10 −−> R11
Indexed F F MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) M(2+R5)−−> M(6+R6)
Symbolic (PC relative) F F MOV EDE,TONI M(EDE) −−> M(TONI)
Absolute F F MOV &MEM,&TCDAT M(MEM) −−> M(TCDAT)
Indirect FMOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) −−> M(Tab+R6)
Indirect
autoincrement FMOV @Rn+,Rm MOV @R10+,R11 M(R10) −−> R11
R10 + 2−−> R10
Immediate FMOV #X,TONI MOV #45,TONI #45 −−> M(TONI)
NOTE: S = source D = destination
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
12 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating modes
The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt
event can wake up the device from any of the five low-power modes, service the request and restore back to
the low-power mode on return from the interrupt program.
The following six operating modes can be configured by software:
DActive mode AM;
All clocks are active
DLow-power mode 0 (LPM0);
CPU is disabled
ACLK and SMCLK remain active. MCLK is disabled
DLow-power mode 1 (LPM1);
CPU is disabled
ACLK and SMCLK remain active. MCLK is disabled
DCO’s dc-generator is disabled if DCO not used in active mode
DLow-power mode 2 (LPM2);
CPU is disabled
MCLK and SMCLK are disabled
DCO’s dc-generator remains enabled
ACLK remains active
DLow-power mode 3 (LPM3);
CPU is disabled
MCLK and SMCLK are disabled
DCO’s dc-generator is disabled
ACLK remains active
DLow-power mode 4 (LPM4);
CPU is disabled
ACLK is disabled
MCLK and SMCLK are disabled
DCO’s dc-generator is disabled
Crystal oscillator is stopped
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
13
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
interrupt vector addresses
The interrupt vectors and the power-up starting address are located in the address range 0FFFFh − 0FFE0h.
The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.
INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY
Power-up
External Reset
Watchdog
Flash memory
WDTIFG
KEYV
(see Note 1)
Reset 0FFFEh 15, highest
NMI
Oscillator Fault
Flash memory access violation
NMIIFG (see Notes 1 & 4)
OFIFG (see Notes 1 & 4)
ACCVIFG (see Notes 1 & 4)
(Non)maskable
(Non)maskable
(Non)maskable 0FFFCh 14
Timer_B7 (see Note 5) TBCCR0 CCIFG (see Note 2) Maskable 0FFFAh 13
Timer_B7 (see Note 5) TBCCR1 to 6 CCIFGs,
TBIFG (see Notes 1 & 2) Maskable 0FFF8h 12
Comparator_A CAIFG Maskable 0FFF6h 11
Watchdog timer WDTIFG Maskable 0FFF4h 10
USART0 receive URXIFG0 Maskable 0FFF2h 9
USART0 transmit UTXIFG0 Maskable 0FFF0h 8
ADC12 (see Note 6) ADC12IFG (see Notes 1 & 2) Maskable 0FFEEh 7
Timer_A3 TACCR0 CCIFG (see Note 2) Maskable 0FFECh 6
Timer_A3 TACCR1 CCIFG,
TACCR2 CCIFG,
TAIFG (see Notes 1 & 2) Maskable 0FFEAh 5
I/O port P1 (eight flags) P1IFG.0 to P1IFG.7
(see Notes 1 & 2) Maskable 0FFE8h 4
USART1 receive URXIFG1 Maskable 0FFE6h 3
USART1 transmit UTXIFG1 0FFE4h 2
I/O port P2 (eight flags) P2IFG.0 to P2IFG.7
(see Notes 1 & 2) Maskable 0FFE2h 1
0FFE0h 0, lowest
NOTES: 1. Multiple source flags
2. Interrupt flags are located in the module.
3. Nonmaskable: neither the individual nor the general interrupt-enable bit will disable an interrupt event.
4. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable can not disable
it.
5. T imer_B7 i n MSP430x14x(1) family has 7 CCRs; Timer_B3 in MSP430x13x family has 3 CCRs. In T imer_B3 there are only interrupt
flags TBCCR0, 1, and 2 CCIFGs and the interrupt-enable bits TBCCTL0, 1, and 2 CCIEs.
6. ADC12 is not implemented on the 14x1 devices.
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
14 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
special function registers
Most interrupt and module-enable bits are collected in the lowest address space. Special-function register bits
not allocated to a functional purpose are not physically present in the device. This arrangement provides simple
software access.
interrupt enable 1 and 2
7654 0
UTXIE0 OFIE WDTIE
321
rw-0 rw-0 rw-0
Address
0h URXIE0 ACCVIE NMIIE
rw-0 rw-0 rw-0
WDTIE: Watchdog-timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog
timer is configured in interval timer mode.
OFIE: Oscillator-fault-interrupt enable
NMIIE: Nonmaskable-interrupt enable
ACCVIE: Flash access violation interrupt enable
URXIE0: USART0: UART and SPI receive-interrupt enable
UTXIE0: USART0: UART and SPI transmit-interrupt enable
7654 0
UTXIE1
321
rw-0 rw-0
Address
01h URXIE1
URXIE1: USART1: UART and SPI receive-interrupt enable
UTXIE1: USART1: UART and SPI transmit-interrupt enable
interrupt flag register 1 and 2
7654 0
UTXIFG0 OFIFG WDTIFG
321
rw-0 rw-1 rw-(0)
Address
02h URXIFG0 NMIIFG
rw-1 rw-0
WDTIFG: Set on watchdog timer overflow (in watchdog mode) or security key violation. Reset on VCC
power up or a reset condition at the RST/NMI pin in reset mode.
OFIFG: Flag set on oscillator fault
NMIIFG: Set via RST/NMI pin
URXIFG0: USART0: UART and SPI receive flag
UTXIFG0: USART0: UART and SPI transmit flag
7654 0
UTXIFG1
321
rw-1 rw-0
Address
03h URXIFG1
URXIFG1: USART1: UART and SPI receive flag
UTXIFG1: USART1: UART and SPI transmit flag
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
15
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
module enable registers 1 and 2
7654 0
UTXE0 321
rw-0 rw-0
Address
04h URXE0
USPIE0
URXE0: USART0: UART receive enable
UTXE0: USART0: UART transmit enable
USPIE0: USART0: SPI (synchronous peripheral interface) transmit and receive enable
7654 0
UTXE1 321
rw-0 rw-0
Address
05h URXE1
USPIE1
URXE1: USART1: UART receive enable
UTXE1: USART1: UART transmit enable
USPIE1: USART1: SPI (synchronous peripheral interface) transmit and receive enable
rw-0:
Legend: rw: Bit Can Be Read and Written
Bit Can Be Read and Written. It Is Reset by PUC.
SFR Bit Not Present in Device
memory organization
MSP430F133 MSP430F135 MSP430F147
MSP430F1471 MSP430F148
MSP430F1481 MSP430F149
MSP430F1491
Memory
Main: interrupt vector
Main: code memory
Size
Flash
Flash
8KB
0FFFFh − 0FFE0h
0FFFFh − 0E000h
16KB
0FFFFh − 0FFE0h
0FFFFh − 0C000h
32KB
0FFFFh − 0FFE0h
0FFFFh − 08000h
48KB
0FFFFh − 0FFE0h
0FFFFh − 04000h
60KB
0FFFFh − 0FFE0h
0FFFFh − 01100h
Information memory Size
Flash 256 Byte
010FFh − 01000h 256 Byte
010FFh − 01000h 256 Byte
010FFh − 01000h 256 Byte
010FFh − 01000h 256 Byte
010FFh − 01000h
Boot memory Size
ROM 1KB
0FFFh − 0C00h 1KB
0FFFh − 0C00h 1KB
0FFFh − 0C00h 1KB
0FFFh − 0C00h 1KB
0FFFh − 0C00h
RAM Size 256 Byte
02FFh − 0200h 512 Byte
03FFh − 0200h 1KB
05FFh − 0200h 2KB
09FFh − 0200h 2KB
09FFh − 0200h
Peripherals 16-bit
8-bit
8-bit SFR
01FFh − 0100h
0FFh − 010h
0Fh − 00h
01FFh − 0100h
0FFh − 010h
0Fh − 00h
01FFh − 0100h
0FFh − 010h
0Fh − 00h
01FFh − 0100h
0FFh − 010h
0Fh − 00h
01FFh − 0100h
0FFh − 010h
0Fh − 00h
bootstrap loader (BSL)
The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial
interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete
description of the features of the BSL and its implementation, see the Application report Features of the MSP430
Bootstrap Loader, Literature Number SLAA089.
BSL Function PM, PAG & RTD Package Pins
Data Transmit 13 - P1.1
Data Receive 22 - P2.2
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
16 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
flash memory
The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The
CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:
DFlash memory has n segments of main memory and two segments of information memory (A and B) of 128
bytes each. Each segment in main memory is 512 bytes in size.
DSegments 0 to n may be erased in one step, or each segment may be individually erased.
DSegments A and B can be erased individually, or as a group with segments 0−n.
Segments A and B are also called information memory.
DNew devices may have some bytes programmed in the information memory (needed for test during
manufacturing). The user should perform an erase of the information memory prior to the first use.
Segment 0
w/ Interrupt Vectors
Segment 1
Segment 2
Segment n-1
Segment n
Segment A
Segment B
Main
Memory
Information
Memory
8 KB
0FFFFh
0FE00h
0FDFFh
0FC00h
0FBFFh
0FA00h
0F9FFh
16 KB
0FFFFh
0FE00h
0FDFFh
0FC00h
0FBFFh
0FA00h
0F9FFh
32 KB
0FFFFh
0FE00h
0FDFFh
0FC00h
0FBFFh
0FA00h
0F9FFh
48 KB
0FFFFh
0FE00h
0FDFFh
0FC00h
0FBFFh
0FA00h
0F9FFh
60 KB
0FFFFh
0FE00h
0FDFFh
0FC00h
0FBFFh
0FA00h
0F9FFh
0E400h
0E3FFh
0E200h
0E1FFh
0E000h
010FFh
01080h
0107Fh
01000h
0C400h
0C3FFh
0C200h
0C1FFh
0C000h
010FFh
01080h
0107Fh
01000h
08400h
083FFh
08200h
081FFh
08000h
010FFh
01080h
0107Fh
01000h
04400h
043FFh
04200h
041FFh
04000h
010FFh
01080h
0107Fh
01000h
01400h
013FFh
01200h
011FFh
01100h
010FFh
01080h
0107Fh
01000h
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
17
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
peripherals
Peripherals are connected to the CPU through data, address, and control busses and can be handled using
all instructions. For complete module descriptions, see the MSP430x1xx Family User’s Guide, literature number
SLAU049.
digital I/O
There are six 8-bit I/O ports implemented—ports P1 through P6:
DAll individual I/O bits are independently programmable.
DAny combination of input, output, and interrupt conditions is possible.
DEdge-selectable interrupt input capability for all the eight bits of ports P1 and P2.
DRead/write access to port-control registers is supported by all instructions.
oscillator and system clock
The clock system in the MSP430x13x and MSP43x14x(1) family of devices is supported by the basic clock
module that includes support for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator
(DCO) and a high frequency crystal oscillator. The basic clock module is designed to meet the requirements
of both low system cost and low-power consumption. The internal DCO provides a fast turn-on clock source
and stabilizes in less than 6 µs. The basic clock module provides the following clock signals:
DAuxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal.
DMain clock (MCLK), the system clock used by the CPU.
DSub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.
watchdog timer
The primary function of the watchdog timer (WDT) module is to perform a controlled system restart after a
software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog
function is not needed in an application, the module can be configured as an interval timer and can generate
interrupts at selected time intervals.
hardware multiplier (MSP430x14x and MSP430x14x1 Only)
The multiplication operation is supported by a dedicated peripheral module. The module performs 16 16,
16 8, 8 16, and 8 8 bit operations. The module is capable of supporting signed and unsigned multiplication
as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed
immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are
required.
USART0
The MSP430x13x and the MSP430x14x(1) have one hardware universal synchronous/asynchronous receive
transmit (USART0) peripheral module that is used for serial data communication. The USART supports
synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered
transmit and receive channels.
USART1 (MSP430x14x and MSP430x14x1 Only)
The MSP430x14x(1) has a second hardware universal synchronous/asynchronous receive transmit (USART1)
peripheral module that is used for serial data communication. The USART supports synchronous SPI (3 or 4
pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels.
Operation of USART1 is identical to USART0.
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
18 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
comparator_A
The primary function of the comparator_A module is to support precision slope analog−to−digital conversions,
battery−voltage supervision, and monitoring of external analog signals.
ADC12 (Not implemented in the MSP430x14x1)
The ADC12 module supports fast, 12-bit analog-to-digital conversions. The module implements a 12-bit SAR
core, sample select control, reference generator and a 16 word conversion-and-control buffer. The
conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without
any CPU intervention.
timer_A3
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple
capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities.
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare
registers.
Timer_A3 Signal Connections
Input Pin Number Device Input Signal Module Input Name Module Block Module Output Signal Output Pin Number
12 - P1.0 TACLK TACLK
ACLK ACLK
Timer
NA
SMCLK SMCLK Timer NA
21 - P2.1 TAINCLK INCLK
13 - P1.1 TA0 CCI0A 13 - P1.1
22 - P2.2 TA0 CCI0B
CCR0
TA0
17 - P1.5
DVSS GND CCR0 TA0 27 - P2.7
DVCC VCC
14 - P1.2 TA1 CCI1A 14 - P1.2
CAOUT (internal) CCI1B
CCR1
TA1
18 - P1.6
DVSS GND CCR1 TA1 23 - P2.3
DVCC VCC ADC12 (internal)
15 - P1.3 TA2 CCI2A 15 - P1.3
ACLK (internal) CCI2B
CCR2
TA2
19 - P1.7
DVSS GND CCR2 TA2 24 - P2.4
DVCC VCC
timer_B3 (MSP430x13x Only)
Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple
capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities.
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare
registers.
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
19
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
timer_B7 (MSP430x14x and MSP430x14x1 Only)
Timer_B7 is a 16-bit timer/counter with seven capture/compare registers. Timer_B7 can support multiple
capture/compares, PWM outputs, and interval timing. Timer_B7 also has extensive interrupt capabilities.
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare
registers.
Timer_B3/B7 Signal Connections
Input Pin Number Device Input Signal Module Input Name Module Block Module Output Signal Output Pin Number
43 - P4.7 TBCLK TBCLK
ACLK ACLK
Timer
NA
SMCLK SMCLK Timer NA
43 - P4.7 TBCLK INCLK
36 - P4.0 TB0 CCI0A 36 - P4.0
36 - P4.0 TB0 CCI0B
CCR0
TB0
ADC12 (internal)
DVSS GND CCR0 TB0
DVCC VCC
37 - P4.1 TB1 CCI1A 37 - P4.1
37 - P4.1 TB1 CCI1B
CCR1
TB1
ADC12 (internal)
DVSS GND CCR1 TB1
DVCC VCC
38 - P4.2 TB2 CCI2A 38 - P4.2
38 - P4.2 TB2 CCI2B
CCR2
TB2
DVSS GND CCR2 TB2
DVCC VCC
39 - P4.3 TB3 CCI3A 39 - P4.3
39 - P4.3 TB3 CCI3B
CCR3
TB3
DVSS GND CCR3 TB3
DVCC VCC
40 - P4.4 TB4 CCI4A 40 - P4.4
40 - P4.4 TB4 CCI4B
CCR4
TB4
DVSS GND CCR4 TB4
DVCC VCC
41 - P4.5 TB5 CCI5A 41 - P4.5
41 - P4.5 TB5 CCI5B
CCR5
TB5
DVSS GND CCR5 TB5
DVCC VCC
42 - P4.6 TB6 CCI6A 42 - P4.6
ACLK (internal) CCI6B
CCR6
TB6
DVSS GND CCR6 TB6
DVCC VCC
Timer_B3 implements three capture/compare blocks (CCR0, CCR1 and CCR2 only).
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
20 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
peripheral file map
PERIPHERALS WITH WORD ACCESS
Watchdog Watchdog Timer control WDTCTL 0120h
Timer_B7/
Timer_B3
Timer_B interrupt vector TBIV 011Eh
Timer_B7/
Timer_B3
(see Note 1)
Timer_B control TBCTL 0180h
(see Note 1)
Capture/compare control 0 TBCCTL0 0182h
Capture/compare control 1 TBCCTL1 0184h
Capture/compare control 2 TBCCTL2 0186h
Capture/compare control 3 TBCCTL3 0188h
Capture/compare control 4 TBCCTL4 018Ah
Capture/compare control 5 TBCCTL5 018Ch
Capture/compare control 6 TBCCTL6 018Eh
Timer_B register TBR 0190h
Capture/compare register 0 TBCCR0 0192h
Capture/compare register 1 TBCCR1 0194h
Capture/compare register 2 TBCCR2 0196h
Capture/compare register 3 TBCCR3 0198h
Capture/compare register 4 TBCCR4 019Ah
Capture/compare register 5 TBCCR5 019Ch
Capture/compare register 6 TBCCR6 019Eh
Timer_A3 Timer_A interrupt vector TAIV 012Eh
Timer_A3
Timer_A control TACTL 0160h
Capture/compare control 0 TACCTL0 0162h
Capture/compare control 1 TACCTL1 0164h
Capture/compare control 2 TACCTL2 0166h
Reserved 0168h
Reserved 016Ah
Reserved 016Ch
Reserved 016Eh
Timer_A register TAR 0170h
Capture/compare register 0 TACCR0 0172h
Capture/compare register 1 TACCR1 0174h
Capture/compare register 2 TACCR2 0176h
Reserved 0178h
Reserved 017Ah
Reserved 017Ch
Reserved 017Eh
Hardware
Multiplier
Sum extend SUMEXT 013Eh
Hardware
Multiplier
(MSP430x14x and
Result high word RESHI 013Ch
(MSP430x14x and
MSP430x14x1
Result low word RESLO 013Ah
MSP430x14x1
only) Second operand OP2 0138h
only)
Multiply signed +accumulate/operand1 MACS 0136h
Multiply+accumulate/operand1 MAC 0134h
Multiply signed/operand1 MPYS 0132h
Multiply unsigned/operand1 MPY 0130h
NOTE 1: Timer_B7 in MSP430x14x(1) family has 7 CCRs, Timer_B3 in MSP430x13x family has 3 CCRs.
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
21
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
peripheral file map (continued)
PERIPHERALS WITH WORD ACCESS (CONTINUED)
Flash Flash control 3 FCTL3 012Ch
Flash
Flash control 2 FCTL2 012Ah
Flash control 1 FCTL1 0128h
ADC12
(Not implemented in
Conversion memory 15 ADC12MEM15 015Eh
ADC12
(Not implemented in
the MSP430x14x1)
Conversion memory 14 ADC12MEM14 015Ch
the MSP430x14x1)
Conversion memory 13 ADC12MEM13 015Ah
Conversion memory 12 ADC12MEM12 0158h
Conversion memory 11 ADC12MEM11 0156h
Conversion memory 10 ADC12MEM10 0154h
Conversion memory 9 ADC12MEM9 0152h
Conversion memory 8 ADC12MEM8 0150h
Conversion memory 7 ADC12MEM7 014Eh
Conversion memory 6 ADC12MEM6 014Ch
Conversion memory 5 ADC12MEM5 014Ah
Conversion memory 4 ADC12MEM4 0148h
Conversion memory 3 ADC12MEM3 0146h
Conversion memory 2 ADC12MEM2 0144h
Conversion memory 1 ADC12MEM1 0142h
Conversion memory 0 ADC12MEM0 0140h
Interrupt-vector-word register ADC12IV 01A8h
Inerrupt-enable register ADC12IE 01A6h
Inerrupt-flag register ADC12IFG 01A4h
Control register 1 ADC12CTL1 01A2h
Control register 0 ADC12CTL0 01A0h
ADC memory-control register15 ADC12MCTL15 08Fh
ADC memory-control register14 ADC12MCTL14 08Eh
ADC memory-control register13 ADC12MCTL13 08Dh
ADC memory-control register12 ADC12MCTL12 08Ch
ADC memory-control register11 ADC12MCTL11 08Bh
ADC memory-control register10 ADC12MCTL10 08Ah
ADC memory-control register9 ADC12MCTL9 089h
ADC memory-control register8 ADC12MCTL8 088h
ADC memory-control register7 ADC12MCTL7 087h
ADC memory-control register6 ADC12MCTL6 086h
ADC memory-control register5 ADC12MCTL5 085h
ADC memory-control register4 ADC12MCTL4 084h
ADC memory-control register3 ADC12MCTL3 083h
ADC memory-control register2 ADC12MCTL2 082h
ADC memory-control register1 ADC12MCTL1 081h
ADC memory-control register0 ADC12MCTL0 080h
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
22 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
peripheral file map (continued)
PERIPHERALS WITH BYTE ACCESS
USART1
(MSP430x14x and
Transmit buffer U1TXBUF 07Fh
USART1
(MSP430x14x and
MSP430x14x1 only)
Receive buffer U1RXBUF 07Eh
MSP430x14x1 only)
Baud rate U1BR1 07Dh
Baud rate U1BR0 07Ch
Modulation control U1MCTL 07Bh
Receive control U1RCTL 07Ah
Transmit control U1TCTL 079h
USART control U1CTL 078h
USART0 Transmit buffer U0TXBUF 077h
USART0
Receive buffer U0RXBUF 076h
Baud rate U0BR1 075h
Baud rate U0BR0 074h
Modulation control U0MCTL 073h
Receive control U0RCTL 072h
Transmit control U0TCTL 071h
USART control U0CTL 070h
Comparator_A Comparator_A port disable CAPD 05Bh
Comparator_A
Comparator_A control2 CACTL2 05Ah
Comparator_A control1 CACTL1 059h
Basic Clock Basic clock system control2 BCSCTL2 058h
Basic Clock
Basic clock system control1 BCSCTL1 057h
DCO clock frequency control DCOCTL 056h
Port P6 Port P6 selection P6SEL 037h
Port P6
Port P6 direction P6DIR 036h
Port P6 output P6OUT 035h
Port P6 input P6IN 034h
Port P5 Port P5 selection P5SEL 033h
Port P5
Port P5 direction P5DIR 032h
Port P5 output P5OUT 031h
Port P5 input P5IN 030h
Port P4 Port P4 selection P4SEL 01Fh
Port P4
Port P4 direction P4DIR 01Eh
Port P4 output P4OUT 01Dh
Port P4 input P4IN 01Ch
Port P3 Port P3 selection P3SEL 01Bh
Port P3
Port P3 direction P3DIR 01Ah
Port P3 output P3OUT 019h
Port P3 input P3IN 018h
Port P2 Port P2 selection P2SEL 02Eh
Port P2
Port P2 interrupt enable P2IE 02Dh
Port P2 interrupt-edge select P2IES 02Ch
Port P2 interrupt flag P2IFG 02Bh
Port P2 direction P2DIR 02Ah
Port P2 output P2OUT 029h
Port P2 input P2IN 028h
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
23
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
peripheral file map (continued)
PERIPHERALS WITH BYTE ACCESS (CONTINUED)
Port P1 Port P1 selection P1SEL 026h
Port P1
Port P1 interrupt enable P1IE 025h
Port P1 interrupt-edge select P1IES 024h
Port P1 interrupt flag P1IFG 023h
Port P1 direction P1DIR 022h
Port P1 output P1OUT 021h
Port P1 input P1IN 020h
Special Functions SFR module enable 2 ME2 005h
Special Functions
SFR module enable 1 ME1 004h
SFR interrupt flag2 IFG2 003h
SFR interrupt flag1 IFG1 002h
SFR interrupt enable2 IE2 001h
SFR interrupt enable1 IE1 000h
absolute maximum ratings over operating free-air temperature (unless otherwise noted)
Voltage applied at VCC to VSS −0.3 V to + 4.1 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage applied to any pin (see Note) −0.3 V to VCC+0.3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diode current at any device terminal . ±2 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature (unprogrammed device) 55°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature (programmed device) 40°C to 85°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE: All voltages referenced to V SS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied
to the TDI/TCLK pin when blowing the JTAG fuse.
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
24 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
recommended operating conditions
PARAMETER MIN NOM MAX UNITS
Supply voltage during program execution, VCC (AVCC = DVCC = VCC)MSP430F13x,
MSP430F14x(1) 1.8 3.6 V
Supply voltage during flash memory programming, VCC
(AVCC = DVCC = VCC)MSP430F13x,
MSP430F14x(1) 2.7 3.6 V
Supply voltage, VSS (AVSS = DVSS = VSS) 0.0 0.0 V
Operating free-air temperature range, TAMSP430x13x
MSP430x14x(1) −40 85 °C
LFXT1 crystal frequency, f(LFXT1)
LF selected, XTS=0 Watch crystal 32768 Hz
LFXT1 crystal frequency, f(LFXT1)
(see Notes 1 and 2)
XT1 selected, XTS=1 Ceramic resonator 450 8000 kHz
(see Notes 1 and 2)
XT1 selected, XTS=1 Crystal 1000 8000 kHz
Ceramic resonator 450 8000
kHz
XT2 crystal frequency, f(XT2) Crystal 1000 8000 kHz
VCC = 1.8 V DC 4.15
MHz
Processor frequency (signal MCLK), f(System) VCC = 3.6 V DC 8 MHz
NOTES: 1. In LF mode, the LFXT1 oscillator requires a watch crystal. A 5.1M resistor from XOUT to VSS is recommended when VCC <
2.5 V. In XT1 mode, the LFXT1 and XT2 oscillators accept a ceramic resonator or crystal up to 4.15MHz at VCC 2.2 V. In XT1 mode,
the LFXT1 and XT2 oscillators accept a ceramic resonator or crystal up to 8MHz at VCC 2.8 V.
2. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, LFXT1 accepts a ceramic resonator or a crystal.
f (MHz)
1.8 V 3.6 V
2.7 V 3 V
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
4.15 MHz
8.0 MHz
Supply Voltage − V
Supply voltage range, ’F13x/’F14x(1),
during flash memory programming
Supply voltage range,
’F13x/’F14x(1), during
program execution
Figure 1. Frequency vs Supply Voltage, MSP430F13x or MSP430F14x(1)
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
25
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted)
supply current into AVCC + DVCC excluding external current
PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
I(AM)
Active mode, (see Note 1)
f(MCLK) = f(SMCLK) = 1 MHz,
TA = −40°C to 85°C
VCC = 2.2 V 280 350
A
I(AM)
f(MCLK) = f(SMCLK) = 1 MHz,
f(ACLK) = 32,768 Hz
XTS=0, SELM=(0,1)
TA = −40°C to 85°CVCC = 3 V 420 560 µA
I(AM)
Active mode, (see Note 1)
f(MCLK) = f(SMCLK) = 4 096 Hz,
f(ACLK) = 4,096 Hz
TA = −40°C to 85°C
VCC = 2.2 V 2.5 7
A
I(AM)
(MCLK) (SMCLK)
f
(ACLK)
= 4,096 Hz
XTS=0, SELM=(0,1)
XTS=0, SELM=3
TA = −40°C to 85°CVCC = 3 V 9 20
µA
I(LPM0)
Low-power mode, (LPM0)
TA = −40°C to 85°C
VCC = 2.2 V 32 45
A
I(LPM0
)
Low-power mode, (LPM0)
(see Note 1) TA = −40°C to 85°CVCC = 3 V 55 70 µA
I(LPM2)
Low-power mode, (LPM2),
f(MCLK) = f (SMCLK) = 0 MHz,
TA = −40°C to 85°C
VCC = 2.2 V 11 14
A
I(LPM2
)
f(MCLK) = f (SMCLK) = 0 MHz,
f(ACLK) = 32.768 Hz, SCG0 = 0 TA = −40°C to 85°CVCC = 3 V 17 22 µA
TA = −40°C 0.8 1.5
Low-power mode, (LPM3)
TA = 25°CV
CC
= 2.2 V 0.9 1.5 µA
I(LPM3)
Low-power mode, (LPM3)
f(MCLK) = f(SMCLK) = 0 MHz,
TA = 85°C
VCC = 2.2 V
1.6 2.8
µA
I(LPM3
)
f
(MCLK)
= f
(SMCLK)
= 0 MHz,
f(ACLK) = 32,768 Hz, SCG0 = 1 (see Note 2)
TA = −40°C 1.8 2.2
f(ACLK) = 32,768 Hz, SCG0 = 1 (see Note 2)
TA = 25°CV
CC
= 3 V 1.6 1.9 µA
TA = 85°C
VCC = 3 V
2.3 3.9
µA
TA = −40°C 0.1 0.5
Low-power mode, (LPM4)
TA = 25°CV
CC
= 2.2 V 0.1 0.5 µA
I(LPM4)
Low-power mode, (LPM4)
f(MCLK) = 0 MHz, f(SMCLK) = 0 MHz,
TA = 85°C
VCC = 2.2 V
0.8 2.5
µA
I(LPM4
)
f
(MCLK)
= 0 MHz, f
(SMCLK)
= 0 MHz,
f(ACLK) = 0 Hz, SCG0 = 1
TA = −40°C 0.1 0.5
f(ACLK) = 0 Hz, SCG0 = 1
TA = 25°CV
CC
= 3 V 0.1 0.5 µA
TA = 85°C
VCC = 3 V
0.8 2.5
µA
NOTES: 1. Timer_B is clocked by f(DCOCLK) = 1 MHz. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
2. T imer_B i s clocked by f(ACLK) = 32,768 Hz. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The current
consumption in LPM2 and LPM3 are measured with ACLK selected.
Current consumption of active mode versus system frequency, F-version
I(AM) = I(AM) [1 MHz] × f(System) [MHz]
Current consumption of active mode versus supply voltage, F-version
I(AM) = I(AM) [3 V] + 175 µA/V × (VCC – 3 V)
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
26 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
SCHMITT-trigger inputs − Ports P1, P2, P3, P4, P5, and P6
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIT+
Positive-going input threshold voltage
VCC = 2.2 V 1.1 1.5
V
VIT+ Positive-going input threshold voltage VCC = 3 V 1.5 1.9 V
VIT−
Negative-going input threshold voltage
VCC = 2.2 V 0.4 0.9
V
VIT− Negative-going input threshold voltage VCC = 3 V 0.90 1.3 V
Vhys
Input voltage hysteresis (VIT+ − VIT−)
VCC = 2.2 V 0.3 1.1
V
V
hys
Input voltage hysteresis (V
IT+
− V
IT−
)
VCC = 3 V 0.5 1
V
standard inputs − RST/NMI; JTAG: TCK, TMS, TDI/TCLK, TDO/TDI
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIL Low-level input voltage
VCC = 2.2 V / 3 V
VSS VSS+0.6 V
VIH High-level input voltage
V
CC
= 2.2 V / 3 V
0.8×VCC VCC V
inputs Px.x, TAx, TBx
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
Port P1, P2: P1.x to P2.x, external trigger signal
2.2 V/3 V 1.5 cycle
t
(int)
External interrupt timing Port P1, P2: P1.x to P2.x, external trigger signa
l
for the interrupt flag, (see Note 1)
2.2 V 62
ns
t(int)
External interrupt timing
for the interrupt flag, (see Note 1)
3 V 50
ns
Timer_A, Timer_B capture
TA0, TA1, TA2 2.2 V 62
t(cap)
Timer_A, Timer_B capture
timing TB0, TB1, TB2, TB3, TB4, TB5, TB6 (see
Note 2) 3 V 50 ns
f(TAext) Timer_A, Timer_B clock
frequency externally applied
TACLK, TBCLK, INCLK: t(H) = t(L)
2.2 V 8
MHz
f(TBext)
frequency externally applied
to pin
TACLK, TBCLK, INCLK: t
(H)
= t
(L) 3 V 10
MHz
f(TAint) Timer_A, Timer_B clock
frequency
SMCLK or ACLK signal selected
2.2 V 8
MHz
f(TBint)
Timer_A, Timer_B clock
frequency
SMCLK or ACLK signal selected
3 V 10
MHz
NOTES: 1. The external signal sets the interrupt flag every time the minimum t(int) cycle and time parameters are met. It may be set even with
trigger signals shorter than t(int). Both the cycle and timing specifications must be met to ensure the flag is set. t(int) is measured in
MCLK cycles.
2. Seven capture/compare registers in ’x14x(1) and three capture/compare registers in ’x13x.
leakage current (see Note 1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Ilkg(P1.x)
Leakage
Port P1 V(P1.x) (see Note 2) ±50
Ilkg(P2.x)
Leakage
current (see
Note 1)
Port P2 V(P2.3) V(P2.4) (see Note 2) V
CC
= 2.2 V/3 V ±50 nA
Ilkg(P6.x)
current (see
Note 1) Port P6 V(P6.x) (see Note 2)
VCC = 2.2 V/3 V
±50
nA
NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.
2. The port pin must be selected as input and there must be no optional pullup or pulldown resistor.
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
27
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
outputs − Ports P1, P2, P3, P4, P5, and P6
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IOH(max) = −1 mA, VCC = 2.2 V, See Note 1 VCC−0.25 VCC
VOH
High-level output voltage
IOH(max) = −6 mA, VCC = 2.2 V, See Note 2 VCC−0.6 VCC
V
VOH High-level output voltage IOH(max) = −1 mA, VCC = 3 V, See Note 1 VCC−0.25 VCC V
IOH(max) = −6 mA, VCC = 3 V, See Note 2 VCC−0.6 VCC
IOL(max) = 1.5 mA, VCC = 2.2 V, See Note 1 VSS VSS+0.25
VOL
Low-level output voltage
IOL(max) = 6 mA, VCC = 2.2 V, See Note 2 VSS VSS+0.6
V
V
OL
Low-level output voltage
IOL(max) = 1.5 mA, VCC = 3 V, See Note 1 VSS VSS+0.25
V
IOL(max) = 6 mA, VCC = 3 V, See Note 2 VSS VSS+0.6
NOTES: 1. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±6 mA to satisfy the maximum
specified voltage drop.
2. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±24 mA to satisfy the maximum
specified voltage drop.
output frequency
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fTAx TA0..2, TB0−TB6,
Internal clock source, SMCLK signal
applied (see Note 1) CL = 20 pF DC fSystem
MHz
fACLK,
fMCLK,
fSMCLK P5.6/ACLK, P5.4/MCLK, P5.5/SMCLK CL = 20 pF fSystem
MHz
P2.0/ACLK
fACLK = fLFXT1 = fXT1 40% 60%
P2.0/ACLK
C
L
= 20 pF,
V = 2.2 V / 3 V
fACLK = fLFXT1 = fLF 30% 70%
CL = 20 pF,
VCC = 2.2 V / 3 V fACLK = fLFXT1/n 50%
fSMCLK = fLFXT1 = fXT1 40% 60%
tXdc Duty cycle of output frequency,
P1.4/SMCLK,
fSMCLK = fLFXT1 = fLF 35% 65%
Xdc
P1.4/SMCLK,
CL = 20 pF,
VCC = 2.2 V / 3 V
fSMCLK = fLFXT1/n 50%−
15 ns 50% 50%−
15 ns
VCC = 2.2 V / 3 V
fSMCLK = fDCOCLK 50%−
15 ns 50% 50%−
15 ns
NOTE 1: The limits of the system clock MCLK has to be met; the system (MCLK) frequency should not exceed the limits. MCLK and SMCLK
frequencies can be different.
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
28 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
outputs − Ports P1, P2, P3, P4, P5, and P6 (continued)
Figure 2
VOL − Low-Level Output Voltage − V
0
2
4
6
8
10
12
14
16
0.0 0.5 1.0 1.5 2.0 2.5
VCC = 2.2 V
P2.7
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
TA = 25°C
TA = 85°C
OL
I − Low-Level Output Current − mA
Figure 3
VOL − Low-Level Output Voltage − V
0
5
10
15
20
25
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
VCC = 3 V
P2.7
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
TA = 25°C
TA = 85°C
OL
I − Low-Level Output Current − mA
Figure 4
VOH − High-Level Output Voltage − V
−14
−12
−10
−8
−6
−4
−2
0
0.0 0.5 1.0 1.5 2.0 2.5
VCC = 2.2 V
P2.7
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
TA = 25°C
TA = 85°C
OH
I − High-Level Output Current − mA
Figure 5
VOH − High-Level Output Voltage − V
−30
−25
−20
−15
−10
−5
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
VCC = 3 V
P2.7
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
TA = 25°C
TA = 85°C
OH
I − High-Level Output Current − mA
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
29
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
wake-up LPM3
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
f = 1 MHz 6
t
(LPM3)
Delay time f = 2 MHz V
CC
= 2.2 V/3 V 6µs
t(LPM3)
Delay time
f = 3 MHz
VCC = 2.2 V/3 V
6
µs
RAM
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VRAMh CPU HALTED (see Note 1) 1.6 V
NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution
should take place during this supply voltage condition.
Comparator_A (see Note 1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
I(DD)
CAON=1, CARSEL=0, CAREF=0
VCC = 2.2 V 25 40
µA
I
(DD)
CAON=1, CARSEL=0, CAREF=0
VCC = 3 V 45 60 µ
A
I(Refladder/Refdiode)
CAON=1, CARSEL=0,
CAREF=1/2/3, no load at
VCC = 2.2 V 30 50
µA
I
(Refladder/Refdiode)
CAREF=1/2/3, no load at
P2.3/CA0/TA1 and P2.4/CA1/TA2 VCC = 3 V 45 71 µ
A
V(IC) Common-mode input
voltage CAON =1 VCC = 2.2 V/3 V 0 VCC−1 V
V(Ref025) Voltage @ 0.25 VCC node
VCC
PCA0=1, CARSEL=1, CAREF=1,
no load at P2.3/CA0/TA1 and
P2.4/CA1/TA2 VCC = 2.2 V/3 V 0.23 0.24 0.25
V(Ref050) Voltage @ 0.5VCC node
VCC
PCA0=1, CARSEL=1, CAREF=2,
no load at P2.3/CA0/TA1 and
P2.4/CA1/TA2 VCC = 2.2 V/3 V 0.47 0.48 0.5
V(RefVT)
(see Figure 6)
PCA0=1, CARSEL=1, CAREF=3,
no load at P2.3/CA0/TA1 and
VCC = 2.2 V 390 480 540
mV
V
(RefVT)
(see Figure 6)
no load at P2.3/CA0/TA1 and
P2.4/CA1/TA2 T
A
= 85°CVCC = 3 V 400 490 550
mV
V(offset) Offset voltage See Note 2 VCC = 2.2 V/3 V −30 30 mV
Vhys Input hysteresis CAON=1 VCC = 2.2 V/3 V 0 0.7 1.4 mV
TA = 25
°
C, Overdrive 10 mV,
VCC = 2.2 V 130 210 300
ns
t(response LH)
TA = 25 C, Overdrive 10 mV,
Without filter: CAF=0 VCC = 3 V 80 150 240
ns
t
(response
LH)
TA = 25
°
C, Overdrive 10 mV,
VCC = 2.2 V 1.4 1.9 3.4
µs
TA = 25 C, Overdrive 10 mV,
With filter: CAF=1 VCC = 3 V 0.9 1.5 2.6 µ
s
TA = 25
°
C, Overdrive 10 mV,
VCC = 2.2 V 130 210 300
ns
t(response HL)
TA = 25 C, Overdrive 10 mV,
Without filter: CAF=0 VCC = 3 V 80 150 240
ns
t
(response
HL)
TA = 25
°
C, Overdrive 10 mV,
VCC = 2.2 V 1.4 1.9 3.4
µs
TA = 25 C, Overdrive 10 mV,
With filter: CAF=1 VCC = 3 V 0.9 1.5 2.6 µ
s
NOTES: 1. The leakage current for the Comparator_A terminals is identical to Ilkg(Px.x) specification.
2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements.
The two successive measurements are then summed together.
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
30 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
TA − Free-Air Temperature − °C
400
450
500
550
600
650
−45 −25 −5 15 35 55 75 95
VCC = 3 V
Figure 6. V
(RefVT)
vs Temperature, V
CC
= 3 V
V(REFVT) − Reference Volts −mV
Typical
Figure 7. V
(RefVT)
vs Temperature, V
CC
= 2.2 V
TA − Free-Air Temperature − °C
400
450
500
550
600
650
−45 −25 −5 15 35 55 75 95
VCC = 2.2 V
V(REFVT) − Reference Volts −mV
Typical
_
+
CAON
0
1
V+ 0
1
CAF
Low Pass Filter
τ 2.0 µs
To Internal
Modules
Set CAIFG
Flag
CAOUT
V−
VCC
1
0 V
0
Figure 8. Block Diagram of Comparator_A Module
Overdrive VCAOUT
t(response)
V+
V−
400 mV
Figure 9. Overdrive Definition
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
31
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
PUC/POR
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
t(POR_Delay) Internal time delay to release POR 150 250 µs
VCC threshold at which POR
TA = −40°C 1.4 1.8 V
V
POR
VCC threshold at which POR
release delay time begins
(see Note 1)
TA = 25°C 1.1 1.5 V
VPOR
release delay time begins
(see Note 1) TA = 85°CVCC = 2.2 V/3 V 0.8 1.2 V
V(min) VCC threshold required to
generate a POR (see Note 2) VCC |dV/dt| 1V/ms
CC
0.2 V
t(reset) RST/NMI low time for PUC/POR Reset is accepted internally 2µs
NOTES: 1. VCC rise time dV/dt 1V/ms.
2. When driving VCC low in order to generate a POR condition, VCC should be driven to 200mV or lower with a dV/dt equal to or less
than −1V/ms. The corresponding rising VCC must also meet the dV/dt requirement equal to or greater than +1V/ms.
VCC
POR
V
t
VPOR
V
(min) POR
No POR
Figure 10. Power-On Reset (POR) vs Supply Voltage
1.2
1.5
1.8
0.8
1.2
1.4
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
−40 −20 020 40 60 80
25°C
TA − Temperature − °C
VPOR − V
Figure 11. VPOR vs Temperature
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
32 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
DCO (see Note 1)
PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
f(DCO03)
Rsel = 0, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C VCC = 2.2 V 0.08 0.12 0.15
MHz
f(DCO03) VCC = 3 V 0.08 0.13 0.16 MHz
f(DCO13)
Rsel = 1, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C VCC = 2.2 V 0.14 0.19 0.23
MHz
f(DCO13) VCC = 3 V 0.14 0.18 0.22 MHz
f(DCO23)
Rsel = 2, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C VCC = 2.2 V 0.22 0.30 0.36
MHz
f(DCO23) VCC = 3 V 0.22 0.28 0.34 MHz
f(DCO33)
Rsel = 3, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C VCC = 2.2 V 0.37 0.49 0.59
MHz
f(DCO33) VCC = 3 V 0.37 0.47 0.56 MHz
f(DCO43)
Rsel = 4, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C VCC = 2.2 V 0.61 0.77 0.93
MHz
f(DCO43) VCC = 3 V 0.61 0.75 0.90 MHz
f(DCO53)
Rsel = 5, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C VCC = 2.2 V 1 1.2 1.5
MHz
f(DCO53) VCC = 3 V 1 1.3 1.5 MHz
f(DCO63)
Rsel = 6, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C VCC = 2.2 V 1.6 1.9 2.2
MHz
f(DCO63) VCC = 3 V 1.69 2.0 2.29 MHz
f(DCO73)
Rsel = 7, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C VCC = 2.2 V 2.4 2.9 3.4
MHz
f(DCO73) VCC = 3 V 2.7 3.2 3.65 MHz
f(DCO47) Rsel = 4, DCO = 7, MOD = 0, DCOR = 0, TA = 25°C VCC = 2.2 V/3 V fDCO40
×1.7 fDCO40
×2.1 fDCO40
×2.5 MHz
f(DCO77)
Rsel = 7, DCO = 7, MOD = 0, DCOR = 0, TA = 25°C
VCC = 2.2 V 4 4.5 4.9
MHz
f(DCO77) Rsel = 7, DCO = 7, MOD = 0, DCOR = 0, TA = 25°CVCC = 3 V 4.4 4.9 5.4 MHz
S(Rsel) SR = fRsel+1 / fRsel VCC = 2.2 V/3 V 1.35 1.65 2
S(DCO) SDCO = fDCO+1 / fDCO VCC = 2.2 V/3 V 1.07 1.12 1.16
Dt
Temperature drift, Rsel = 4, DCO = 3, MOD = 0
VCC = 2.2 V −0.31 −0.36 −0.40
%/°C
Dt
Temperature drift, Rsel = 4, DCO = 3, MOD = 0
(see Note 2) VCC = 3 V −0.33 −0.38 −0.43 %/°C
DVDrift with VCC variation, Rsel = 4, DCO = 3, MOD = 0
(see Note 2) VCC = 2.2 V/3 V 0 5 10 %/V
NOTES: 1. The DCO frequency may not exceed the maximum system frequency defined by parameter processor frequency, f(System).
2. This parameter is not production tested.
2.2 3
fDCO_0Max
Min
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Max
Min
fDCO_7
DCO
0 1 2 3 4 5 6 7
fDCOCLK
1
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
VCC − V
Frequency Variance
Figure 12. DCO Characteristics
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
33
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
main DCO characteristics
DIndividual devices have a minimum and maximum operation frequency. The specified parameters for
fDCOx0 to fDCOx7 are valid for all devices.
DAll ranges selected by Rsel(n) overlap with Rsel(n+1): Rsel0 overlaps with Rsel1, ... Rsel6 overlaps with
Rsel7.
DDCO control bits DCO0, DCO1, and DCO2 have a step size as defined by parameter SDCO.
DModulation control bits MOD0 to MOD4 select how often fDCO+1 is used within the period of 32 DCOCLK
cycles. The frequency f(DCO) is used for the remaining cycles. The frequency is an average equal to
f(DCO) × (2MOD/32 ).
DCO when using ROSC (see Note 1)
PARAMETER TEST CONDITIONS VCC MIN NOM MAX UNIT
fDCO, DCO output frequency
Rsel = 4, DCO = 3, MOD = 0, DCOR = 1,
2.2 V 1.8±15% MHz
f
DCO
, DCO output frequency
Rsel = 4, DCO = 3, MOD = 0, DCOR = 1,
TA = 25°C3 V 1.95±15% MHz
Dt, Temperature drift Rsel = 4, DCO = 3, MOD = 0, DCOR = 1 2.2 V/3 V ±0.1 %/°C
Dv, Drift with VCC variation Rsel = 4, DCO = 3, MOD = 0, DCOR = 1 2.2 V/3 V 10 %/V
NOTES: 1. ROSC = 100k. Metal film resistor, type 0257. 0.6 watt with 1% tolerance and TK = ±50ppm/°C.
crystal oscillator, LFXT1 oscillator (see Note 1)
PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
CXIN
Integrated input capacitance
XTS=0; LF oscillator selected
VCC = 2.2 V/3 V 12
pF
C
XIN
Integrated input capacitance
XTS=1; XT1 oscillator selected
VCC = 2.2 V/3 V 2
pF
CXOUT
Integrated output capacitance
XTS=0; LF oscillator selected
VCC = 2.2 V/3 V 12
pF
CXOUT Integrated output capacitance XTS=1; XT1 oscillator selected
VCC = 2.2 V/3 V 2pF
VIL
Input levels at XIN
VCC = 2.2 V/3 V (see Note 2)
VSS 0.2 × VCC V
VIH
Input levels at XIN
V
CC
= 2.2 V/3 V (see Note 2)
0.8 × VCC VCC V
NOTES: 1. The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer.
2. Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator.
crystal oscillator, XT2 oscillator (see Note 1)
PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
CXT2IN Input capacitance VCC = 2.2 V/3 V 2 pF
CXT2OUT Output capacitance VCC = 2.2 V/3 V 2 pF
VIL
Input levels at XT2IN
VCC = 2.2 V/3 V (see Note 2)
VSS 0.2 × VCC V
VIH
Input levels at XT2IN
V
CC
= 2.2 V/3 V (see Note 2)
0.8 × VCC VCC V
NOTES: 1. The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer.
2. Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator.
USART0, USART1 (see Note 1)
PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
t( )
USART0/1: deglitch time
VCC = 2.2 V 200 430 800
ns
t
(τ)
USART0/1: deglitch time
VCC = 3 V 150 280 500
ns
NOTE 1: The signal applied to the USART0/1 receive signal/terminal (URXD0/1) should meet the timing requirements of t) to ensure that the
URXS flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum-timing condition of t). The operating
conditions to set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative
transitions on the URXD0/1 line.
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
34 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
12-bit ADC, power supply and input range conditions (see Note 1)
PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
AVCC Analog supply voltage AVCC and DVCC are connected together
AVSS and DVSS are connected together
V(AVSS) = V(DVSS) = 0 V 2.2 3.6 V
V(P6.x/Ax) Analog input voltage
range (see Note 2)
All P6.0/A0 to P6.7/A7 terminals. Analog inputs
selected in ADC12MCTLx register and P6Sel.x=1
0 x 7; V(AVSS) VP6.x/Ax V(AVCC) 0 VAVCC V
IADC12
Operating supply current
into AVCC terminal
fADC12CLK = 5.0 MHz
ADC12ON = 1, REFON = 0
2.2 V 0.65 1.3
mA
IADC12
into AV
CC
terminal
(see Note 3)
ADC12CLK
ADC12ON = 1, REFON = 0
SHT0=0, SHT1=0, ADC12DIV=0 3 V 0.8 1.6 mA
IREF+
Operating supply current
into AVCC terminal
fADC12CLK = 5.0 MHz
ADC12ON = 0,
REFON = 1, REF2_5V = 1 3 V 0.5 0.8 mA
IREF+ into AVCC terminal
(see Note 4) fADC12CLK = 5.0 MHz
ADC12ON = 0,
2.2 V 0.5 0.8
mA
(see Note 4)
ADC12CLK
ADC12ON = 0,
REFON = 1, REF2_5V = 0 3 V 0.5 0.8 mA
CI Input capacitance Only one terminal can be selected
at one time, P6.x/Ax 2.2 V 40 pF
RIInput MUX ON resistance 0V VAx VAVCC 3 V 2000
Not production tested, limits verified by design
NOTES: 1. The leakage current is defined in the leakage current table with P6.x/Ax parameter.
2. The analog input voltage range must be within the selected reference voltage range VR+ to VR− for valid conversion results.
3. The internal reference supply current is not included in current consumption parameter IADC12.
4. The internal reference current is supplied via terminal AVCC. Consumption is independent of the ADC12ON control bit, unless a
conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.
12-bit ADC, external reference (see Note 1)
PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
VeREF+ Positive external
reference voltage input VeREF+ > VREF−/VeREF− (see Note 2) 1.4 VAVCC V
VREF− /VeREF− Negative external
reference voltage input VeREF+ > VREF−/VeREF− (see Note 3) 0 1.2 V
(VeREF+
VREF−/VeREF−)Differential external
reference voltage input VeREF+ > VREF−/VeREF− (see Note 4) 1.4 VAVCC V
IVeREF+ Static input current 0V VeREF+ VAVCC 2.2 V/3 V ±1µA
IVREF−/VeREF− Static input current 0V VeREF− VAVCC 2.2 V/3 V ±1µA
NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, Ci, is also
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the
recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.
2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced
accuracy requirements.
3. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced
accuracy requirements.
4. The accuracy limits minimum external dif ferential reference voltage. Lower differential reference voltage levels may be applied with
reduced accuracy requirements.
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
35
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
12-bit ADC, built-in reference
PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
VREF+
Positive built-in reference
REF2_5V = 1 for 2.5 V
IVREF+ I
VREF+max 3 V 2.4 2.5 2.6
V
VREF+
Positive built-in reference
voltage output REF2_5V = 0 for 1.5 V
IVREF+ I
VREF+max 2.2 V/3 V 1.44 1.5 1.56 V
AVCC minimum voltage,
REF2_5V = 0, IVREF+ 1mA 2.2
AV
CC(min)
AVCC minimum voltage,
Positive built-in reference
active
REF2_5V = 1, IVREF+ 0.5mA VREF+ + 0.15 V
AVCC(min)
Positive built-in reference
active REF2_5V = 1, IVREF+ 1mA VREF+ + 0.15
V
IVREF+
Load current out of VREF+
2.2 V 0.01 −0.5
mA
IVREF+
Load current out of VREF+
terminal 3 V −1 mA
IVREF+ = 500 µA +/− 100 µA
Analog input voltage ~0.75 V;
2.2 V ±2
LSB
IL(VREF)+
Load-current regulation
VREF+
Analog input voltage ~0.75 V;
REF2_5V = 0 3 V ±2LSB
I
L(VREF)+
Load-current regulation
VREF+ terminal IVREF+ = 500 µA ± 100 µA
Analog input voltage ~1.25 V;
REF2_5V = 1 3 V ±2 LSB
IDL(VREF) +
Load current regulation
IVREF+ =100 µA 900 µA,
CVREF+=5 µF, ax ~0.5 x VREF+
3 V
20
ns
I
DL(VREF)
+
Load current regulation
VREF+ terminal
VREF+
C
VREF+
=5
µ
F, ax ~0.5 x V
REF+
Error of conversion result 1 LSB 3 V 20 ns
CVREF+ Capacitance a t pin VREF+
(see Note 1) REFON =1,
0 mA IVREF+ IVREF+max 2.2 V/3 V 5 10 µF
TREF+Temperature coefficient of
built-in reference IVREF+ is a constant in the range of
0 mA IVREF+ 1 mA 2.2 V/3 V ±100 ppm/°C
tREFONSettle time of internal
reference voltage (see
Figure 13 and Note 2)
IVREF+ = 0.5 mA, CVREF+ = 10 µF,
VREF+ = 1.5 V, VAVCC = 2.2 V 17 ms
Not production tested, limits characterized
Not production tested, limits verified by design
NOTES: 1. The internal buffer operational amplifier and the accuracy specifications require an external capacitor. All INL and DNL tests uses
two capacitors between pins VREF+ and AVSS and VREF−/VeREF− and AVSS: 10 µF tantalum and 100 nF ceramic.
NOTES: 2. The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB. The settling time depends on the external
capacitive load.
CVREF+
1 µF
01 ms 10 ms 100 ms tREFON
tREFON .66 x CVREF+ [ms] with CVREF+ in µF
100 µF
10 µF
Figure 13. Typical Settling Time of Internal Reference tREFON vs External Capacitor on VREF+
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
36 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
+
10 µF 100 nF AVSS
MSP430F13x
MSP430F14x
+
+
10 µF 100 nF
10 µF 100 nF
AVCC
10 µF 100 nF DVSS
DVCC
From
Power
Supply
Apply
External
Reference
+
Apply External Reference [VeREF+]
or Use Internal Reference [VREF+]VREF+ or VeREF+
VREF−/VeREF−
Figure 14. Supply Voltage and Reference Voltage Design VREF−/VeREF− External Supply
+
10 µF 100 nF AVSS
MSP430F13x
MSP430F14x
+
10 µF 100 nF
AVCC
10 µF 100 nF DVSS
DVCC
From
Power
Supply +
Apply External Reference [VeREF+]
or Use Internal Reference [VREF+]VREF+ or VeREF+
VREF−/VeREF−
Reference Is Internally
Switched to AVSS
Figure 15. Supply Voltage and Reference Voltage Design VREF−/VeREF− = AVSS, Internally Connected
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
37
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
12-bit ADC, timing parameters
PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
fADC12CLK For specified performance of ADC12
linearity parameters 2.2V/
3V 0.45 5 6.3 MHz
fADC12OSC Internal ADC12
oscillator ADC12DIV=0,
fADC12CLK=fADC12OSC 2.2 V/
3V 3.7 6.3 MHz
tCONVERT
Conversion time
CVREF+ 5 µF, Internal oscillator,
fADC12OSC = 3.7 MHz to 6.3 MHz 2.2 V/
3 V 2.06 3.51 µs
tCONVERT Conversion time External f ADC12CLK from ACLK, MCLK or SMCLK:
ADC12SSEL 0 13×ADC12DIV×
1/fADC12CLK µs
tADC12ONTurn on settling time of
the ADC (see Note 1) 100 ns
tSample
Sampling time
RS = 400 , RI = 1000 ,
CI = 30 pF
3 V 1220
ns
t
Sample
Sampling time
S I
C
I
= 30 pF
τ = [RS + RI] x CI;(see Note 2) 2.2 V 1400
ns
Not production tested, limits characterized
Not production tested, limits verified by design
NOTES: 1. The condition is that the error in a conversion started after tADC12ON is less than ±0.5 LSB. The reference and input signal are already
settled.
2. Approximately ten Tau (τ) are needed to get an error of less than ±0.5 LSB:
tSample = ln(2n+1) x (RS + RI) x CI+ 800 ns where n = ADC resolution = 12, RS = external source resistance.
12-bit ADC, linearity parameters
PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
EI
Integral linearity error
1.4 V (VeREF+ − VREF−/VeREF−) min 1.6 V
2.2 V/3 V
±2
LSB
EIIntegral linearity erro
r
1.6 V < (VeREF+ − VREF−/VeREF−) min [V(AVCC)]2.2 V/3 V ±1.7 LSB
EDDifferential linearity
error (VeREF+ − VREF−/VeREF−)min (V eREF+ − VREF−/VeREF−),
CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) 2.2 V/3 V ±1 LSB
EOOffset error (VeREF+ − VREF−/VeREF−)min (V eREF+ − VREF−/VeREF−),
Internal impedance of source RS < 100 ,
CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) 2.2 V/3 V ±2±4 LSB
EGGain error (VeREF+ − VREF−/VeREF−)min (V eREF+ − VREF−/VeREF−),
CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) 2.2 V/3 V ±1.1 ±2 LSB
ETTotal unadjusted
error (VeREF+ − VREF−/VeREF−)min (V eREF+ − VREF−/VeREF−),
CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) 2.2 V/3 V ±2±5 LSB
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
38 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
12-bit ADC, temperature sensor and built-in VMID
PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
ISENSOR
Operating supply current into
REFON = 0, INCH = 0Ah,
2.2 V 40 120
A
ISENSOR
Operating supply current into
AVCC terminal (see Note 1)
REFON = 0, INCH = 0Ah,
ADC12ON=NA, TA = 25_C3 V 60 160 µA
VSENSOR
ADC12ON = 1, INCH = 0Ah,
2.2 V 986 986±5%
mV
V
SENSOR
ADC12ON = 1, INCH = 0Ah,
TA = 0°C3 V 986 986±5% mV
TCSENSOR
ADC12ON = 1, INCH = 0Ah
2.2 V 3.55 3.55±3%
mV/°C
TC
SENSOR
ADC12ON = 1, INCH = 0Ah 3 V 3.55 3.55±3% mV/°C
tSENSOR(sample)
Sample time required if channel
ADC12ON = 1, INCH = 0Ah,
2.2 V 30
s
t
SENSOR(sample)
Sample time required if channel
10 is selected (see Note 2)
ADC12ON = 1, INCH = 0Ah,
Error of conversion result 1 LSB 3 V 30 µs
IVMID
Current into divider at channel 11
ADC12ON = 1, INCH = 0Bh
2.2 V NA
A
IVMID
Current into divider at channel 11
(see Note 3) ADC12ON = 1, INCH = 0Bh 3 V NA µA
VMID
AVCC divider at channel 11
ADC12ON = 1, INCH = 0Bh,
2.2 V 1.1 1.1±0.04
V
VMID AVCC divider at channel 11
ADC12ON = 1, INCH = 0Bh,
VMID is ~0.5 x VAVCC 3 V 1.5 1.50±0.04 V
tVMID(sample)
Sample time required if channel
ADC12ON = 1, INCH = 0Bh,
2.2 V 1400
ns
t
VMID(sample)
Sample time required if channel
11 is selected (see Note 4)
ADC12ON = 1, INCH = 0Bh,
Error of conversion result 1 LSB 3 V 1220
ns
Not production tested, limits characterized
NOTES: 1. The sensor current ISENSOR is consumed if (ADC12ON = 1 and REFON=1), or (ADC12ON=1 AND INCH=0Ah and sample signal
is high). Therefore it includes the constant current through the sensor and the reference.
2. The typical equivalent impedance of the sensor is 51 k. The sample time required includes the sensor-on time tSENSOR(on).
3. No additional current is needed. The VMID is used during sampling.
4. The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
39
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
Flash Memory
PARAMETER TEST
CONDITIONS VCC MIN NOM MAX UNIT
VCC(PGM/
ERASE) Program and Erase supply voltage 2.7 3.6 V
fFTG Flash Timing Generator frequency 257 476 kHz
IPGM Supply current from DVCC during program 2.7 V/ 3.6 V 3 5 mA
IERASE Supply current from DVCC during erase 2.7 V/ 3.6 V 3 7 mA
tCPT Cumulative program time see Note 1 2.7 V/ 3.6 V 4 ms
tCMErase Cumulative mass erase time see Note 2 2.7 V/ 3.6 V 200 ms
Program/Erase endurance 104105cycles
tRetention Data retention duration TJ = 25°C 100 years
tWord Word or byte program time 35
tBlock, 0Block program time for 1st byte or word 30
tBlock, 1-63 Block program time for each additional byte or word
see Note 3
21
tFTG
tBlock, End Block program end-sequence wait time see Note 3 6tFTG
tMass Erase Mass erase time 5297
tSeg Erase Segment erase time 4819
NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming
methods: individual word/byte write and block write modes.
2. The mass erase duration generated by the flash timing generator is at least 11.1ms ( = 5297x1/fFTG,max = 5297x1/476kHz). To
achieve the required cumulative mass erase time the Flash Controller’s mass erase operation can be repeated until this time is met.
(A worst case minimum of 19 cycles are required).
3. These values are hardwired into the Flash Controllers state machine (tFTG = 1/fFTG).
JTAG Interface
PARAMETER TEST
CONDITIONS VCC MIN NOM MAX UNIT
fTCK
TCK input frequency
see Note 1
2.2 V 0 5 MHz
fTCK TCK input frequency see Note 1 3 V 0 10 MHz
RInternal Internal pull-up resistance on TMS, TCK, TDI/TCLK see Note 2 2.2 V/ 3 V 25 60 90 k
NOTES: 1. fTCK may be restricted to meet the timing requirements of the module selected.
2. TMS, TDI/TCLK, and TCK pull-up resistors are implemented in all versions.
JTAG Fuse (see Note 1)
PARAMETER TEST
CONDITIONS VCC MIN NOM MAX UNIT
VCC(FB) Supply voltage during fuse-blow condition TA = 25°C 2.5 V
VFB Voltage level on TDI/TCLK for fuse-blow: F versions 6 7 V
IFB Supply current into TDI/TCLK during fuse blow 100 mA
tFB Time to blow fuse 1 ms
NOTES: 1. Once the fuse is blown, no further access to the MSP430 J TAG/Test and emulation features is possible. The JTAG block is switched
to bypass mode.
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
40 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
input/output schematic
port P1, P1.0 to P1.7, input/output with Schmitt-trigger
P1.0/TACLK ..
P1IN.x
Module X IN
Pad Logic
Interrupt
Flag
Edge
Select
Interrupt
P1SEL.x
P1IES.x
P1IFG.x
P1IE.xP1IRQ.x
EN
D
Set
EN
Q
P1OUT.x
P1DIR.x
P1SEL.x
Module X OUT
Direction Control
From Module
0
1
0
1P1.7/TA2
PnSel.x PnDIR.x Dir. CONTROL
FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN PnIE.x PnIFG.x PnIES.x
P1Sel.0 P1DIR.0 P1DIR.0 P1OUT.0 DVSS P1IN.0 TACLKP1IE.0 P1IFG.0 P1IES.0
P1Sel.1 P1DIR.1 P1DIR.1 P1OUT.1 Out0 signalP1IN.1 CCI0AP1IE.1 P1IFG.1 P1IES.1
P1Sel.2 P1DIR.2 P1DIR.2 P1OUT.2 Out1 signalP1IN.2 CCI1AP1IE.2 P1IFG.2 P1IES.2
P1Sel.3 P1DIR.3 P1DIR.3 P1OUT.3 Out2 signalP1IN.3 CCI2AP1IE.3 P1IFG.3 P1IES.3
P1Sel.4 P1DIR.4 P1DIR.4 P1OUT.4 SMCLK P1IN.4 unused P1IE.4 P1IFG.4 P1IES.4
P1Sel.5 P1DIR.5 P1DIR.5 P1OUT.5 Out0 signalP1IN.5 unused P1IE.5 P1IFG.5 P1IES.5
P1Sel.6 P1DIR.6 P1DIR.6 P1OUT.6 Out1 signalP1IN.6 unused P1IE.6 P1IFG.6 P1IES.6
P1Sel.7 P1DIR.7 P1DIR.7 P1OUT.7 Out2 signalP1IN.7 unused P1IE.7 P1IFG.7 P1IES.7
Signal from or to Timer_A
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
41
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
input/output schematic (continued)
port P2, P2.0 to P2.2, P2.6, and P2.7 input/output with Schmitt-trigger
P2IN.x
P2OUT.x
Pad Logic
P2DIR.x
P2SEL.x
Module X OUT
Edge
Select
Interrupt
P2SEL.x
P2IES.x
P2IFG.x
P2IE.x
P2IRQ.x
Direction Control
P2.0/ACLK
0
1
0
1
Interrupt
Flag
Set
EN
Q
Module X IN
EN
DBus Keeper
CAPD.X
P2.1/TAINCLK
P2.2/CAOUT/TA0
P2.6/ADC12CLK
P2.7/TA0
0: Input
1: Output
x: Bit Identifier 0 to 2, 6, and 7 for Port P2
From Module
PnSel.x PnDIR.x Dir. CONTROL
FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN PnIE.x PnIFG.x PnIES.x
P2Sel.0 P2DIR.0 P2DIR.0 P2OUT.0 ACLK P2IN.0 unused P2IE.0 P2IFG.0 P2IES.0
P2Sel.1 P2DIR.1 P2DIR.1 P2OUT.1 DVSS P2IN.1 INCLKP2IE.1 P2IFG.1 P2IES.1
P2Sel.2 P2DIR.2 P2DIR.2 P2OUT.2 CAOUTP2IN.2 CCI0BP2IE.2 P2IFG.2 P2IES.2
P2Sel.6 P2DIR.6 P2DIR.6 P2OUT.6 ADC12CLKP2IN.6 unused P2IE.6 P2IFG.6 P2IES.6
P2Sel.7 P2DIR.7 P2DIR.7 P2OUT.7 Out0 signal§P2IN.7 unused P2IE.7 P2IFG.7 P2IES.7
Signal from Comparator_A
Signal to Timer_A
§Signal from Timer_A
ADC12CLK signal is output of the 12-bit ADC module
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
42 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
input/output schematic (continued)
port P2, P2.3 to P2.4, input/output with Schmitt-trigger
Bus Keeper
P2IN.3
P2OUT.3
Pad Logic
P2DIR.3
P2SEL.3
Module X OUT
Edge
Select
Interrupt
P2SEL.3
P2IES.3
P2IFG.3
P2IE.3P2IRQ.3
Direction Control
From Module P2.3/CA0/TA1
0
1
0
1
Interrupt
Flag
Set
EN
Q
Module X IN
EN
D
P2IN.4
P2OUT.4
Pad Logic
P2DIR.4
P2SEL.4
Module X OUT
Edge
Select
Interrupt
P2SEL.4
P2IES.4
P2IFG.4
P2IE.4P2IRQ.4
Direction Control
From Module P2.4/CA1/TA2
0
1
0
1
Interrupt
Flag
Set
EN
Q
Module X IN
EN
D
Comparator_A
+
Reference Block
CCI1B
CAF CAREFP2CA
CAEX
CAREF
Bus Keeper
CAPD.3
CAPD.4
To Timer_A3
0: Input
1: Output
0: Input
1: Output
PnSel.x PnDIR.x DIRECTION
CONTROL
FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN PnIE.x PnIFG.x PnIES.x
P2Sel.3 P2DIR.3 P2DIR.3 P2OUT.3 Out1 signalP2IN.3 unused P2IE.3 P2IFG.3 P2IES.3
P2Sel.4 P2DIR.4 P2DIR.4 P2OUT.4 Out2 signalP2IN.4 unused P2IE.4 P2IFG.4 P2IES.4
Signal from Timer_A
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
43
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
input/output schematic (continued)
port P2, P2.5, input/output with Schmitt-trigger and Rosc function for the basic clock module
P2IN.5
P2OUT.5
Pad Logic
P2DIR.5
P2SEL.5
Module X OUT
Edge
Select
Interrupt
P2SEL.5
P2IES.5
P2IFG.5
P2IE.5P2IRQ.5
Direction Control
P2.5/Rosc
0
1
0
1
Interrupt
Flag
Set
EN
Q
DCOR
Module X IN
EN
D
to
01
DC Generator
Bus Keeper
CAPD.5
DCOR: Control Bit From Basic Clock Module
If it Is Set, P2.5 Is Disconnected From P2.5 Pad
Internal to
Basic Clock
Module
VCC
0: Input
1: Output
From Module
PnSel.x PnDIR.x DIRECTION
CONTROL
FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN PnIE.x PnIFG.x PnIES.x
P2Sel.5 P2DIR.5 P2DIR.5 P2OUT.5 DVSS P2IN.5 unused P2IE.5 P2IFG.5 P2IES.5
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
44 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
input/output schematic (continued)
port P3, P3.0 and P3.4 to P3.7, input/output with Schmitt-trigger
P3.0/STE0
P3IN.x
Module X IN
Pad Logic
EN
D
P3OUT.x
P3DIR.x
P3SEL.x
Module X OUT
Direction Control
From Module
0
1
0
1P3.4/UTXD0
P3.5/URXD0
0: Input
1: Output
x: Bit Identifier, 0 and 4 to 7 for Port P3
P3.6/UTXD1
P3.7/URXD1
PnSel.x PnDIR.x DIRECTION
CONTROL
FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN
P3Sel.0 P3DIR.0 DVSS P3OUT.0 DVSS P3IN.0 STE0
P3Sel.4 P3DIR.4 DVCC P3OUT.4 UTXD0P3IN.4 Unused
P3Sel.5 P3DIR.5 DVSS P3OUT.5 DVSS P3IN.5 URXD0§
P3Sel.6 P3DIR.6 DVCC P3OUT.6 UTXD1P3IN.6 Unused
P3Sel.7 P3DIR.7 DVSS P3OUT.7 DVSS P3IN.7 URXD1
Output from USART0 module
Output from USART1 module in x14x(1) configuration, DVSS in x13x configuration
§Input to USART0 module
Input to USART1 module in x14x(1) configuration, unused in x13x configuration
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
45
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
input/output schematic (continued)
port P3, P3.1, input/output with Schmitt-trigger
P3.1/SIMO0
P3IN.1
Pad Logic
EN
D
P3OUT1
P3DIR.1
P3SEL.1
(SI)MO0
0
1
0
1
DCM_SIMO
SYNC
MM
STE
STC
From USART0
SI(MO)0
To USART0
0: Input
1: Output
port P3, P3.2, input/output with Schmitt-trigger
P3.2/SOMI0
P3IN.2
Pad Logic
EN
D
P3OUT.2
P3DIR.2
P3SEL.2 0
1
0
1
DCM_SOMI
SYNC
MM
STE
STC
SO(MI)0
From USART0
(SO)MI0
To USART0
0: Input
1: Output
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
46 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
input/output schematic (continued)
port P3, P3.3, input/output with Schmitt-trigger
P3.3/UCLK0
P3IN.3
Pad Logic
EN
D
P3OUT.3
P3DIR.3
P3SEL.3
UCLK.0
0
1
0
1
DCM_UCLK
SYNC
MM
STE
STC
From USART0
UCLK0
To USART0
0: Input
1: Output
NOTE: UART mode: The UART clock can only be an input. If UART mode and UART function are selected, the P3.3/UCLK0 is always
an input.
SPI, slave mode: The clock applied to UCLK0 is used to shift data in and out.
SPI, master mode: The clock to shift data in and out is supplied to connected devices on pin P3.3/UCLK0 (in slave mode).
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
47
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
input/output schematic (continued)
port P4, P4.0 to P4.6, input/output with Schmitt-trigger
P4.0/TB0 ..
P4IN.x
Module X IN
Pad Logic
EN
D
x: bit identifier, 0 to 6 for Port P4
P4OUT.x
P4DIR.x
P4SEL.x
Module X OUT
Direction Control
From Module
0
1
0
1
Bus Keeper
TBOUTHiZ
P4.6/TB6
0: Input
1: Output
P5SEL.7
Module X IN w
PnSel.x PnDIR.x DIRECTION
CONTROL
FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN
P4Sel.0 P4DIR.0 P4DIR.0 P4OUT.0 Out0 signalP4IN.0 CCI0A / CCI0B
P4Sel.1 P4DIR.1 P4DIR.1 P4OUT.1 Out1 signalP4IN.1 CCI1A / CCI1B
P4Sel.2 P4DIR.2 P4DIR.2 P4OUT.2 Out2 signalP4IN.2 CCI2A / CCI2B
P4Sel.3 P4DIR.3 P4DIR.3 P4OUT.3 Out3 signalP4IN.3 CCI3A / CCI3B
P4Sel.4 P4DIR.4 P4DIR.4 P4OUT.4 Out4 signalP4IN.4 CCI4A / CCI4B
P4Sel.5 P4DIR.5 P4DIR.5 P4OUT.5 Out5 signalP4IN.5 CCI5A / CCI5B
P4Sel.6 P4DIR.6 P4DIR.6 P4OUT.6 Out6 signalP4IN.6 CCI6A
Signal from Timer_B
Signal to Timer_B
§From P5.7
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
48 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
input/output schematic (continued)
port P4, P4.7, input/output with Schmitt-trigger
P4.7/TBCLK
P4IN.7
Timer_B,
Pad Logic
EN
D
P4OUT.7
P4DIR.7
P4SEL.7 0
1
0
1
TBCLK
0: Input
1: Output
DVSS
port P5, P5.0 and P5.4 to P5.7, input/output with Schmitt-trigger
P5.0/STE1
P5IN.x
Module X IN
Pad Logic
EN
D
P5OUT.x
P5DIR.x
P5SEL.x
Module X OUT
Direction Control
From Module
0
1
0
1P5.4/MCLK
P5.5/SMCLK
P5.6/ACLK
P5.7/TBOUTH
x: Bit Identifier, 0 and 4 to 7 for Port P5
0: Input
1: Output
PnSel.x PnDIR.x Dir. CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN
P5Sel.0 P5DIR.0 DVSS P5OUT.0 DVSS P5IN.0 STE.1
P5Sel.4 P5DIR.4 DVCC P5OUT.4 MCLK P5IN.4 unused
P5Sel.5 P5DIR.5 DVCC P5OUT.5 SMCLK P5IN.5 unused
P5Sel.6 P5DIR.6 DVCC P5OUT.6 ACLK P5IN.6 unused
P5Sel.7 P5DIR.7 DVSS P5OUT.7 DVSS P5IN.7 TBOUTHiZ
NOTE: TBOUTHiZ signal is used by port module P4, pins P4.0 to P4.6. The function of TBOUTHiZ is mainly useful when used with T imer_B7.
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
49
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
input/output schematic (continued)
port P5, P5.1, input/output with Schmitt-trigger
P5.1/SIMO1
P5IN.1
Pad Logic
EN
D
P5OUT.1
P5DIR.1
P5SEL.1 0
1
0
1
DCM_SIMO
SYNC
MM
STE
STC
(SI)MO1
From USART1
SI(MO)1
To USART1
0: Input
1: Output
port P5, P5.2, input/output with Schmitt-trigger
P5.2/SOMI1
P5IN.2
Pad Logic
EN
D
P5OUT.2
P5DIR.2
P5SEL.2 0
1
0
1
DCM_SOMI
SYNC
MM
STE
STC
SO(MI)1
From USART1
(SO)MI1
To USART1
0: Input
1: Output
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
50 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
input/output schematic (continued)
port P5, P5.3, input/output with Schmitt-trigger
P5.3/UCLK1
P5IN.3
Pad Logic
EN
D
P5OUT.3
P5DIR.3
P5SEL.3 0
1
0
1
DCM_SIMO
SYNC
MM
STE
STC
UCLK1
From USART1
UCLK1
To USART1
0: Input
1: Output
NOTE: UART mode: The UART clock can only be an input. If UART mode and UART function are selected, the P5.3/UCLK1 direction
is always input.
SPI, slave mode: The clock applied to UCLK1 is used to shift data in and out.
SPI, master mode: The clock to shift data in and out is supplied to connected devices on pin P5.3/UCLK1 (in slave mode).
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
51
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
input/output schematic (continued)
port P6, P6.0 to P6.7, input/output with Schmitt-trigger
P6.0 .. P6.7
P6IN.x
Module X IN
Pad Logic
EN
D
P6OUT.x
P6DIR.x
P6SEL.x
Module X OUT
Direction Control
From Module
0
1
0
1
Bus Keeper
To ADC
From ADC
0: Input
1: Output
x: Bit Identifier, 0 to 7 for Port P6
Note: Not implemented in the MSP430x14x1 devices
NOTE: Analog signals applied to digital gates can cause current flow from the positive to the negative terminal. The throughput current flows if
the analog signal is in the range of transitions 01 or 10. The value of the throughput current depends on the driving capability of the
gate. For MSP430, it is approximately 100 µA.
Use P6SEL.x=1 to prevent throughput current. P6SEL.x should be set, even if the signal at the pin is not being used by the ADC12.
PnSel.x PnDIR.x DIR. CONTROL
FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN
P6Sel.0 P6DIR.0 P6DIR.0 P6OUT.0 DVSS P6IN.0 unused
P6Sel.1 P6DIR.1 P6DIR.1 P6OUT.1 DVSS P6IN.1 unused
P6Sel.2 P6DIR.2 P6DIR.2 P6OUT.2 DVSS P6IN.2 unused
P6Sel.3 P6DIR.3 P6DIR.3 P6OUT.3 DVSS P6IN.3 unused
P6Sel.4 P6DIR.4 P6DIR.4 P6OUT.4 DVSS P6IN.4 unused
P6Sel.5 P6DIR.5 P6DIR.5 P6OUT.5 DVSS P6IN.5 unused
P6Sel.6 P6DIR.6 P6DIR.6 P6OUT.6 DVSS P6IN.6 unused
P6Sel.7 P6DIR.7 P6DIR.7 P6OUT.7 DVSS P6IN.7 unused
NOTE: The signal at pins P6.x/Ax is used by the 12-bit ADC module.
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
52 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
JTAG pins TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt-trigger
TDI
TDO
TMS
TCK
Test
JTAG
&
Emulation
Module
Burn & Test
Fuse
Controlled by JTAG
Controlled by JTAG
Controlled
by JTAG DVCC
DVCC
DVCC During Programming Activity and
During Blowing of the Fuse, Pin
TDO/TDI Is Used to Apply the Test
Input Data for JTAG Circuitry
TDO/TDI
TDI/TCLK
TMS
TCK
Fuse
DVCC
  
  
SLAS272F − JULY 2000 − REVISED JUNE 2004
53
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
JTAG fuse check mode
MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity
of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check
current, ITF, of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TDI/TCLK pin to ground if the fuse is not burned.
Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power
consumption.
Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the
TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check
mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the
fuse check mode has the potential to be activated.
The fuse check current will only flow when the fuse check mode is active and the TMS pin is in a low state (see
Figure 16). Therefore, the additional current flow can be prevented by holding the TMS pin high (default
condition).
Time TMS Goes Low After POR
TMS
ITF
ITDI/TCLK
Figure 16. Fuse Check Mode Current: MSP430F13x, MSP430F14x(1)
PACKAGING INFORMATION
Orderable Device Status (1) Package
Type Package
Drawing Pins Package
Qty Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)
MSP430A009IPMR ACTIVE LQFP PM 64 Green (RoHS &
no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430F133IPAG ACTIVE TQFP PAG 64 160 Green (RoHS &
no Sb/Br) CU NIPDAU Level-4-260C-72 HR
MSP430F133IPM ACTIVE LQFP PM 64 160 Green (RoHS &
no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430F133IPMR ACTIVE LQFP PM 64 1000 Green (RoHS &
no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430F133IRTDR ACTIVE VQFN RTD 64 2500 Green (RoHS &
no Sb/Br) CU SN Level-3-260C-168 HR
MSP430F133IRTDT ACTIVE VQFN RTD 64 250 Green (RoHS &
no Sb/Br) CU SN Level-3-260C-168 HR
MSP430F135IPAG ACTIVE TQFP PAG 64 160 Green (RoHS &
no Sb/Br) CU NIPDAU Level-4-260C-72 HR
MSP430F135IPM ACTIVE LQFP PM 64 160 Green (RoHS &
no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430F135IPMR ACTIVE LQFP PM 64 1000 Green (RoHS &
no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430F135IRTDR ACTIVE VQFN RTD 64 2500 Green (RoHS &
no Sb/Br) CU SN Level-3-260C-168 HR
MSP430F135IRTDT ACTIVE VQFN RTD 64 250 Green (RoHS &
no Sb/Br) CU SN Level-3-260C-168 HR
MSP430F1471IPM ACTIVE LQFP PM 64 160 Green (RoHS &
no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430F1471IPMR ACTIVE LQFP PM 64 1000 Green (RoHS &
no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430F1471IPMRG ACTIVE LQFP PM 64 TBD Call TI Call TI
MSP430F1471IPMRG4 ACTIVE LQFP PM 64 1000 Green (RoHS &
no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430F1471IRTDR ACTIVE VQFN RTD 64 2500 Green (RoHS &
no Sb/Br) CU SN Level-3-260C-168 HR
MSP430F1471IRTDT ACTIVE VQFN RTD 64 250 Green (RoHS &
no Sb/Br) CU SN Level-3-260C-168 HR
MSP430F147IPAG ACTIVE TQFP PAG 64 160 Green (RoHS &
no Sb/Br) CU NIPDAU Level-4-260C-72 HR
MSP430F147IPM ACTIVE LQFP PM 64 160 Green (RoHS &
no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430F147IPMR ACTIVE LQFP PM 64 1000 Green (RoHS &
no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430F147IPMR-KAM ACTIVE LQFP PM 64 Green (RoHS &
no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430F147IPMRG4 ACTIVE LQFP PM 64 1000 Green (RoHS &
no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430F147IRTDR ACTIVE VQFN RTD 64 2500 Green (RoHS &
no Sb/Br) CU SN Level-3-260C-168 HR
MSP430F147IRTDT ACTIVE VQFN RTD 64 250 Green (RoHS &
no Sb/Br) CU SN Level-3-260C-168 HR
MSP430F1481IPM ACTIVE LQFP PM 64 160 Green (RoHS &
no Sb/Br) CU NIPDAU Level-3-260C-168 HR
PACKAGE OPTION ADDENDUM
www.ti.com 10-Mar-2010
Addendum-Page 1
Orderable Device Status (1) Package
Type Package
Drawing Pins Package
Qty Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)
MSP430F1481IPMR ACTIVE LQFP PM 64 1000 Green (RoHS &
no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430F1481IRTDR ACTIVE VQFN RTD 64 2500 Green (RoHS &
no Sb/Br) CU SN Level-3-260C-168 HR
MSP430F1481IRTDT ACTIVE VQFN RTD 64 250 Green (RoHS &
no Sb/Br) CU SN Level-3-260C-168 HR
MSP430F148IPAG ACTIVE TQFP PAG 64 160 Green (RoHS &
no Sb/Br) CU NIPDAU Level-4-260C-72 HR
MSP430F148IPM ACTIVE LQFP PM 64 160 Green (RoHS &
no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430F148IPMR ACTIVE LQFP PM 64 1000 Green (RoHS &
no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430F148IRTDR ACTIVE VQFN RTD 64 2500 Green (RoHS &
no Sb/Br) CU SN Level-3-260C-168 HR
MSP430F148IRTDT ACTIVE VQFN RTD 64 250 Green (RoHS &
no Sb/Br) CU SN Level-3-260C-168 HR
MSP430F1491IPM ACTIVE LQFP PM 64 160 Green (RoHS &
no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430F1491IPMG4 ACTIVE LQFP PM 64 160 Green (RoHS &
no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430F1491IPMR ACTIVE LQFP PM 64 1000 Green (RoHS &
no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430F1491IPMRG4 ACTIVE LQFP PM 64 1000 Green (RoHS &
no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430F1491IRTDR ACTIVE VQFN RTD 64 2500 Green (RoHS &
no Sb/Br) CU SN Level-3-260C-168 HR
MSP430F1491IRTDT ACTIVE VQFN RTD 64 250 Green (RoHS &
no Sb/Br) CU SN Level-3-260C-168 HR
MSP430F149IPAG ACTIVE TQFP PAG 64 160 Green (RoHS &
no Sb/Br) CU NIPDAU Level-4-260C-72 HR
MSP430F149IPAGR ACTIVE TQFP PAG 64 1500 Green (RoHS &
no Sb/Br) CU NIPDAU Level-4-260C-72 HR
MSP430F149IPM ACTIVE LQFP PM 64 160 Green (RoHS &
no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430F149IPMG4 ACTIVE LQFP PM 64 160 Green (RoHS &
no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430F149IPMR ACTIVE LQFP PM 64 1000 Green (RoHS &
no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430F149IPMRG4 ACTIVE LQFP PM 64 1000 Green (RoHS &
no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430F149IRTDR ACTIVE VQFN RTD 64 2500 Green (RoHS &
no Sb/Br) CU SN Level-3-260C-168 HR
MSP430F149IRTDT ACTIVE VQFN RTD 64 250 Green (RoHS &
no Sb/Br) CU SN Level-3-260C-168 HR
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
PACKAGE OPTION ADDENDUM
www.ti.com 10-Mar-2010
Addendum-Page 2
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
PACKAGE OPTION ADDENDUM
www.ti.com 10-Mar-2010
Addendum-Page 3
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
MSP430F133IPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2
MSP430F133IPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2
MSP430F135IPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2
MSP430F135IPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2
MSP430F1471IPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2
MSP430F1471IPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2
MSP430F147IPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2
MSP430F147IPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2
MSP430F1481IPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2
MSP430F1481IPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2
MSP430F148IPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2
MSP430F148IPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2
MSP430F1491IPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2
MSP430F1491IPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2
MSP430F149IPAGR TQFP PAG 64 1500 330.0 24.4 13.0 13.0 1.5 16.0 24.0 Q2
MSP430F149IPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2
MSP430F149IPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2
PACKAGE MATERIALS INFORMATION
www.ti.com 17-Jul-2012
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
MSP430F133IPMR LQFP PM 64 1000 367.0 367.0 45.0
MSP430F133IPMR LQFP PM 64 1000 336.6 336.6 41.3
MSP430F135IPMR LQFP PM 64 1000 336.6 336.6 41.3
MSP430F135IPMR LQFP PM 64 1000 367.0 367.0 45.0
MSP430F1471IPMR LQFP PM 64 1000 367.0 367.0 45.0
MSP430F1471IPMR LQFP PM 64 1000 336.6 336.6 41.3
MSP430F147IPMR LQFP PM 64 1000 336.6 336.6 41.3
MSP430F147IPMR LQFP PM 64 1000 367.0 367.0 45.0
MSP430F1481IPMR LQFP PM 64 1000 367.0 367.0 45.0
MSP430F1481IPMR LQFP PM 64 1000 336.6 336.6 41.3
MSP430F148IPMR LQFP PM 64 1000 336.6 336.6 41.3
MSP430F148IPMR LQFP PM 64 1000 367.0 367.0 45.0
MSP430F1491IPMR LQFP PM 64 1000 367.0 367.0 45.0
MSP430F1491IPMR LQFP PM 64 1000 336.6 336.6 41.3
MSP430F149IPAGR TQFP PAG 64 1500 367.0 367.0 45.0
MSP430F149IPMR LQFP PM 64 1000 367.0 367.0 45.0
MSP430F149IPMR LQFP PM 64 1000 336.6 336.6 41.3
PACKAGE MATERIALS INFORMATION
www.ti.com 17-Jul-2012
Pack Materials-Page 2
MECHANICAL DATA
MTQF006A – JANUARY 1995 – REVISED DECEMBER 1996
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PAG (S-PQFP-G64) PLASTIC QUAD FLATPACK
0,13 NOM
0,25
0,45
0,75
Seating Plane
0,05 MIN
4040282/C 11/96
Gage Plane
33
0,17
0,27
16
48
1
7,50 TYP
49
64
SQ
9,80
1,05
0,95
11,80
12,20
1,20 MAX
10,20 SQ
17
32
0,08
0,50 M
0,08
0°–7°
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026
MECHANICAL DATA
MTQF008A – JANUARY 1995 – REVISED DECEMBER 1996
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PM (S-PQFP-G64) PLASTIC QUAD FLATPACK
4040152/C 11/96
32
17 0,13 NOM
0,25
0,45
0,75
Seating Plane
0,05 MIN
Gage Plane
0,27
33
16
48
1
0,17
49
64
SQ
SQ
10,20
11,80
12,20
9,80
7,50 TYP
1,60 MAX
1,45
1,35
0,08
0,50 M
0,08
0°–7°
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026
D. May also be thermally enhanced plastic with leads connected to the die pads.
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time
of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated