80960JA/JF/JD/JS/JC/JT 3.3 V
Embedded 32-Bit Microproce ssor
Datasheet
Product Features
Code Compatible with all 80960Jx
Processors
High-Performance Embedded Architecture
One Instruction/Clock Execution
Core Clock Rate is:
1x the Bus Clock for 80960JA/JF/JS
2x the Bus Clock for 80960JD/JC
3x the Bus Clock for 80960JT
Load/Store Programming Model
Sixteen 32-Bit Global Registers
Sixteen 32-Bit Local Registers (8 sets)
Nine Addressing Modes
User/Supervisor Protect i on Model
Two-Way Set Associative Instruction
Cache
80960JA - 2 Kbyte
80960JF/JD - 4 Kbyte
80960JS/JC/JT - 16 Kbyte
Programmable Cache-Locking
Mechanism
Direct Mapped Data Cache
80960JA - 1 Kbyte
80960JF/JD - 2 Kbyte
80960JS/JC/JT - 4 Kbyte
Write Through Operation
On-Chip Stack Frame Cache
Seven Register Sets May Be Saved
Automatic Allo cation on Call/Return
0-7 Frames Reserved for High-Priority
Interrupts
On-Chip Data RAM
1 Kbyte Critical Variable Storage
Single-Cycle Access
3.3 V Supply Voltage
5 V Tolerant Inputs
TTL Compatible Outputs
High Bandwidth Burst Bus
32-Bit Multip lexed Address/Data
Programmable Memory Configuration
Selecta ble 8-, 16-, 32-Bit Bus Widths
Supports Unaligned Accesses
Big or Little Endian Byte Ord ering
High-Speed Interrupt Controller
31 Programmable Priorities
Eight Maskable Pins plus NMI#
Up to 240 Vectors in Expanded Mode
Two On-Chip Timers
Independent 32-Bit Counting
Clock Prescaling by 1, 2, 4 or 8
Internal Interrupt Sources
Halt Mode for Low Power
IEEE 1149.1 (JTAG) Boundary Scan
Compatibility
Packages
132-Lead Pin Grid Array (PGA)
132-Lead Plastic Quad Flat Pack
(PQFP)
196-Ball Min i Plastic Ball Grid Array
(MPBGA)
Order Number: 273159-005
September 2002
2 Datasheet
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THI S DOCUMENT. EXCEPT AS PROVIDED IN
INTEL’ S TERMS AND CONDITI ONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO L IABILITY WHATSOEVER, AND INTE L DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications.
Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to the m.
The 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calli ng
1-800-548-4725 or by visiting Intel’s website at http://www.intel.com.
AlertVIEW, AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Connect, CT Media, Dialogic, DM3, EtherExpress,
ETOX, FlashFile, i386, i486, i960, iCOMP, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Create & Share,
Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel Play, Intel Play logo, Intel
SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation, Intel Xeon, Intel XScale, IPLink, Itanium, LANDesk, LanRover, MCS, MMX, MMX
logo, Optimizer logo, OverDrive, Paragon, PC Dads, PC Parents, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your
Command, RemoteExpress, Shiva, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside,
TokenExpress, Trillium, VoiceBrick, Vtune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.
*Other names and brands may be cla imed as the property of others.
Copyright © Intel Corporation, 2002
Datasheet 3
Contents
Contents
1.0 Introduction....................................................................................................................................7
2.0 80960Jx Overview..........................................................................................................................9
2.1 80960 Proces so r Core.......... ...... ....... ...... ....... ...... ...... ....... ...... .......................... .................10
2.2 Burst Bus ............................................................................................................................11
2.3 Timer Unit...........................................................................................................................11
2.4 Priority Interrupt Controller..................................................................................................11
2.5 Instruction Set Summary ....................................................................................................12
2.6 Faults and Debugging.........................................................................................................12
2.7 Low Power Operation .........................................................................................................12
2.8 Test Features......................................................................................................................12
2.9 Memory-Mapped Control Registers....................................................................................13
2.10 Data Types and Memory Addressing Modes......................................................................13
3.0 Packagin g Inform atio n................................................................................................................15
3.1 Available Proces sor s and Pack age s .............. ...... ....................................... ...... ....... ...... ....15
3.2 Pin Descriptions..................................................................................................................16
3.2.1 Functional Pin Definitions ......................................................................................16
3.2.2 80960Jx 132-Lead PGA Pinout .............................................................................23
3.2.3 80960Jx 132-Lead PQFP Pinout...........................................................................27
3.2.4 80960Jx 196-Ball MPBGA Pinout..........................................................................30
4.0 Electrical Specifica tions.............................................................................................................35
4.1 Absolute Maximum Ratings................................................................................................35
4.2 Operating Conditions..........................................................................................................35
4.3 Connection Recommendations...........................................................................................36
4.4 VCC5 Pin Requirements (VDIFF).......................................................................................36
4.5 VCCPLL Pin Requirements................................................................................................37
4.6 D.C. Specificat ion s ............... ...... ....... ...... ....... ...... ...... ....... ...... ....... ...... .......................... ....38
4.7 A.C. Specifications..............................................................................................................42
4.7.1 A.C. Test Conditions and Derating Curves............................................................45
4.7.1.1 Output Delay or Hold vs. Load Capacitance..........................................46
4.7.1.2 TLX vs. AD Bus Load Capacitance.........................................................47
4.7.1.3 ICC Active vs. Frequency ......................................................................49
4.7.2 A.C. Timing Waveforms.........................................................................................53
5.0 Device Identification....................................................................................................................59
5.1 80960JS/JC/JT Device Identification Register....................................................................60
5.2 80960JD Device Identification Register..............................................................................61
5.3 80960JA/JF Device Identification Register.........................................................................62
6.0 Thermal S pecificat ions ...............................................................................................................63
6.1 Thermal Management Accessories ....................................................................................68
6.1.1 Heatsinks...............................................................................................................68
7.0 Bus Functional Waveforms ........................................................................................................69
7.1 Basic Bus States............ ....... ...... ....... ...... ....... ...... ...... ....... ...... ....... ...... ......................... .....79
7.2 Boundary-Scan Register.....................................................................................................80
Contents
4 Datasheet
Figures
1 80960Jx Microprocessor Package Options..................................................................................7
2 80960Jx Block Diagram..............................................................................................................10
3 132-Lead Pin Grid Array Top View-Pins Facing Down...............................................................23
4 132-Lead Pin Grid Array Bottom View-Pins Facing Up..............................................................24
5 132-Lead PQFP - Top View .......................................................................................................27
6 196-Ball Mini Plastic Ball Grid Array Top View-Balls Facing Down............................................30
7 196-Ball Mini Plastic Ball Grid Array Bottom View-Balls Facing Up ...........................................31
8 VCC5 Current-Limiting Resistor .................................................................................................36
9 VCCPLL Lowpass Filter .............................................................................................................37
10 A.C. Test Load............................................................................................................................45
11 Output Delay or Hold vs. Load Capacitance80960JS/JC/JT (3.3 V Signals) ..........................46
12 Output Delay or Hold vs. Load Capacitance80960JS/JC/JT (5 V Signals) .............................46
13 Output Delay or Hold vs. Load Capacitance80960JA/JF/JD....................................................47
14 TLX vs. AD Bus Load Capacitance80960JS/JC/J T (3.3 V Signals) ........ ...... ....... ....................47
15 TLX vs. AD Bus Load Capacitance80960JS/J C/J T (5 V Signals) ................. ...........................48
16 TLX vs. AD Bus Load Capacitance80960JA/JF/JD...................................................................48
17 ICC Active (Power Supply) vs. Frequency80960JA/JF .............................................................49
18 80960JA/JF ICC Active (Thermal) vs. Frequency .......................................................................49
19 80960JD ICC Active (Power Supply) vs. Frequency...................................................................50
20 80960JD ICC Active (Thermal) vs. Frequency............................................................................50
21 80960JC ICC Active (Power Supply) vs. Frequency...................................................................51
22 80960JC ICC Active (Thermal) vs. Frequency............................................................................51
23 80960JS ICC Active (Power Supply) vs. Frequency ...................................................................52
24 80960JS ICC Active (Thermal) vs. Frequency ............................................................................52
25 CLKIN Waveform........................................................................................................................53
26 TOV1 Output Delay Waveform ....................................................................................................53
27 TOF Output Float Waveform .......................................................................................................54
28 TIS1 and TIH1 Input Setup and Hold Waveform..........................................................................54
29 TIS2 and TIH2 Input Setup and Hold Waveform..........................................................................54
30 TIS3 and TIH3 Input Setup and Hold Waveform..........................................................................55
31 TIS4 and TIH4 Input Setup and Hold Waveform..........................................................................55
32 TLX, TLXL and TLXA Relative Timings Waveform........................................................................56
33 DT/R# and DEN# Timings Wa ve form........... ...... ....... ...... ...... .............................................. .......56
34 TCK Waveform...... ...... ....... ...... ....... ...... ....... ...... ....... ...... ...... ....... .......................... ....................57
35 TBSIS1 and TBSIH1 Input Setup and Hold Waveforms.................................................................57
36 TBSOV1 and TBSOF1 Output Delay and Output Float Waveform.................................................57
37 TBSOV2 and TBSOF2 Output Delay and Output Float Waveform.................................................58
38 TBSIS2 and TBSIH2 Input Setup and Hold Waveform...................................................................58
39 80960JS/JC/JT Device Identification Register Fields.................................................................60
40 80960JD Device Identification Register Fields...........................................................................61
41 80960JA/JF Device Identification Register Fields......................................................................62
42 Non-Burst Read and Write Transactions Without Wait States, 32-Bit Bus.................................69
43 Burst Read and Write Transactions Without Wait States, 32-Bit Bus ........................................70
44 Burst Write Transactions With 2,1,1,1 Wait States, 32-Bit Bus..................................................71
45 Burst Read and Write Transactions Without Wait States, 8-Bit Bus ..........................................72
46 Burst Read and Write Transactions With 1, 0 Wait States
and Extra Tr State on Read, 16-Bit Bus.....................................................................................73
47 Double Word Read Bus Request, Misaligned One Byte From
Quad Word Boundary, 32-Bit Bus, Little Endian ........................................................................74
Datasheet 5
Contents
48 HOLD/HOLDA Waveform For Bus Arbitration............................................................................75
49 Cold Reset Waveform.................................................................................................................76
50 Warm Reset Waveform ..............................................................................................................77
51 Entering the ONCE State............................................................................................................78
52 Bus States with Arbitration..........................................................................................................80
53 Summary of Aligned and Unaligned Accesses (32-Bit Bus).......................................................84
54 Summary of Aligned and Unaligned Accesses (32-Bit Bus) (Continued)...................................85
Tables
1 80960Jx 3.3-V Microprocessor Family .........................................................................................7
2 80960Jx Instruction Set..............................................................................................................14
3 80960Jx Processors Available in 132-Pin PGA Package...........................................................15
4 80960Jx Processors Available in 132-Pin PQFP Package.........................................................15
5 80960Jx Processors Available in Extended Temperature .........................................................16
6 80960Jx Processors Available in 196-Ball MPBGA Package.....................................................16
7 Pin Description Nomenclature....................................................................................................17
8 Pin DescriptionExternal Bus Signals.......................................................................................18
9 Pin DescriptionProcessor Control Signals, Test Signals, and Power .....................................21
10 Pin DescriptionInterrupt Unit Signals ......................................................................................22
11 132-Le ad PG A Pi nou tIn Si gna l Order............................. .............................................. ..........25
12 132-Le ad PG A Pi nou tIn Pi n Order.. ....... ......................... .............................................. ..........26
13 132-Le ad PQ FP Pi nout In Si gnal Order..................... ............................................. .................28
14 132-Le ad PQ FP Pi nout In Pi n Order ....... ...... ....... ...... ............................................. .................29
15 196-Ball MPBGA PinoutIn Signal Order..................................................................................32
16 196-Ball MPBGA PinoutIn Pin Order ......................................................................................33
17 Absolute Maximum Ratings........................................................................................................35
18 80960Jx Operating Conditions ...................................................................................................35
19 VDIFF Parameters......................................................................................................................37
20 80960Jx D.C. Characteristics.....................................................................................................38
21 80960Jx ICC Characteristics.......................................................................................................39
22 80960Jx A.C. Characteristics .....................................................................................................42
23 Note Definitions for Table 22, 80960Jx AC Characteristics........................................................45
24 80960Jx Device Type and Stepping Reference .........................................................................59
25 80960JS/JC/JT Device ID Register Field Definitions..................................................................60
26 80960JS/JC/JT Device ID Model Types.....................................................................................60
27 80960JD Device ID Field Definitions..........................................................................................61
28 80960JD Device ID Model Types...............................................................................................61
29 80960JA/JF Device ID Field Definitions .....................................................................................62
30 80960JA/JF Device ID Model Types ..........................................................................................62
31 T hermal Resistance for qCA and qJC Reference Table ..............................................................63
32 Maximum Ambient Temperature Reference Table.....................................................................63
33 132-Le ad PGA Pac k age Thermal Char ac teri stics........ ...... ........................................................64
34 80960JA/JF/JD 196-Ball MPBGA Package Thermal Characteristics.........................................64
35 80960JS/JC/JT 196-Ball MPBGA Package Thermal Characteristics.........................................65
36 132-Lead PQFP Package Thermal Characteristics....................................................................65
37 Maximum TA at Various Airflows in °C (80960JT)......................................................................66
38 Maximum TA at Various Airflows in °C (80960JC)......................................................................66
39 Maximum TA at Various Airflows in °C (80960JD)......................................................................67
40 Maximum TA at Various Airflows in °C (80960JS)......................................................................67
41 Maximum TA at Various Airflows in °C (80960JA/JF).................................................................68
Contents
6 Datasheet
42 Boundary-Scan RegisterBit Order ..........................................................................................81
43 Natural Boundaries for Load and Store Accesses......................................................................81
44 Summary of Byte Load and Store Accesses..............................................................................82
45 Summary of Short Word Load and Store Accesses...................................................................82
46 Summary of n-Word Load and Store Accesses (n = 1, 2, 3, 4)..................................................83
Revision History
Date Revision Description
September 2002 005
Removed reference to A80960JF-16 from Table 3 on page 15.
Removed reference to NG80960JC-40, NG80960JC-33, NG80960JS-16,
and NG80960JF-16 from Table 4 on page 15.
Removed reference to GD80960JC-40, GD80960JC-33, and 80960JS-16
in Table 6 on page 16.
Removed reference to 80960JC-40, 80960JC-33, 80960JS-16, and
80960JF-16 in Table 18 on page 35.
Removed reference to 80960JC-40, 80960JC-33, 80960JS-16, and
80960JF-16 from Table 21 on page 39.
Removed reference to 80960JC-40, 80960JC-33, 80960JS-16 and
80960JF-16 from Table 22 on page 42.
September 1999 004
Added new extended temp device offerings. See Table 5 on page 16.
Removed PGA package availability from JS/JC/JT processors.
Changed AC timing parameter TOV1 (min) for extended temp devices only .
See Table 22 on page 42 .
June 1999 003
Merged the 80960JS/JC datasheet information into this datasheet
(previously named 80960JA/JF/JD/JT 3.3 V Embedded 32-Bit
Microprocessor datasheet).
Updated ICC values for the 80960JS/JC/JT processors.
Increased TIH1 specification for the 80960JS/JC/JT processor s.
Updated MPBGA thermal specifications.
December 1998 002
Corrected orientation of MPBGA package diagrams (Figure 6 on page 30
and Figure 7 on page 3 1).
Added Figure 11 on page 46, Figure 12 on page 46, Figure 14 on page 47,
and Figure 15 on page 48 to distinguish 80960JT 3.3-V and 5-V signal
derating curves from the 80960JA/JF/JD derating curves.
March 1998 001
This datasheet supersedes revisions to the following 80960Jx datasheets:
#273109 (JT), #272971-002 (JD), and #276146-001 (JA/JF). In addition to
combining the documents into one, the following content was changed:
Figure 1 on page 7: Added MPBGA package to diagram.
Section 3.2.4, 80960Jx 196-Ball MPBGA Pinout on page 30: Added new
Figures 6 and 7, Tables 10, 11 and 13.
Figure 16 on page 48: Added with the note that follows the figure.
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 7
1.0 Introduction
This document contains information for the 80960Jx microprocessors, including electrical
characteristics and package pinout information. Detailed functional descriptions, other than
parametric performance, are published in the i960® Jx Microprocessor Developers Manual
(272483) and may be viewed online at http://developer.intel.com/design/i960/Techinfo/80960JX/.
Throughout this datasheet, references to 80960Jx indicate features that apply to the 3.3-V Jx
processors only:
Figure 1. 80960Jx Microprocessor Package Options
i960®
i
M
i
©19xx
M
© 19xx
A80960JX
NG80960JX
XXXXXXXXSS
XXXXXXXX SS
i
M
© 19xx
GD80960JX
XXXXXXXSS
132-Pin PGA
132-Pin PQFP
196-Ball MPBGA
Table 1. 80960Jx 3.3-V Microprocessor Family
Processor Voltage Instruction
Cache Data
Cache Core Clock
80960JA 3.3 V (5 V Tolerant) 2 Kbyte 1 Kbyte 1x
80960JF 3.3 V (5 V Tolerant) 4 Kbyte 2 Kbyte 1x
80960JD 3.3 V (5 V Tolerant) 4 Kbyte 2 Kbyte 2x
80960JS 3.3 V (5 V Tolerant) 16 Kbyte 4 Kbyte 1x
80960JC 3.3 V (5 V Tolerant) 16 Kbyte 4 Kbyte 2x
80960JT 3.3 V (5 V Tolerant) 16 Kbyte 4 Kbyte 3x
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
8 Datasheet
This pa ge intentionally left blank.
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 9
2.0 80960Jx Overview
The 80960Jx processor offers high performance to cost-sensitive 32- bit embedded applicatio ns.
The 80960Jx is o bject code compatible with the 80960 core ar chitecture and is capable of sustained
execution at the rate of one instruction per clock. This processors features include generous
instruction cache, data cache, and data RAM. It also boasts a fast interrupt mechanism and
dual-programmable timer units.
The 80960Jx pro cess ors clock multiplication operates the processor core at two or three times the
bus clock rate to improve execution performance without increasing the complexity of board
designs.
Memory subsystems for co st-sensitive embedded applications often impose substantial wait state
penalties. The 80960Jx integrates considerable storage resources on-chip to decouple CPU
execution from the external bus.
The 80960Jx rapidly allocates and de-allocates local register sets during context switches. The
processor must flush a register set to the stack only when it saves more than seven sets to its local
register cache.
A 32-bit multiplexed burst bus provides a high-speed interface to system memory and I/O. A full
complement of control signals simplifies the connection of the 80960Jx to external components.
The user programs physical and logical memory attributes through memo ry-mapped control
registers (MMRs), an extension not found on the i960® Kx, Sx or Cx processors. Physical and
logical configuration registers enable the processor to operate with all combinations of bus width
and data object alignment. The processor supports a homogeneous byte ordering model.
This processor integrates two important peripherals: a timer unit and an interrupt controller. These
and other hardware resources are programmed through memory-mapped control registers, an
extension to the familiar i960 processor architecture.
The timer unit (TU) offers two independent 32-bit timers for use as real-time system clocks and
general-purpose system timing. These operate in either single-shot or auto-reload mode and may
generate interrupts.
The interrupt controller unit (ICU) provides a flexible, low-latency means for requesting interrupts.
The ICU provides full programmability of up to 240 interr upt so urces into 31 priority levels. The
ICU takes advantage of a cached priority table and optional routine caching to minimize interrupt
latency. Clock doublin g on t he 80960 JD/J C proces sors reduces in terrup t l atency b y 40% co mpar ed
to the 80960JA/JF, and clock tripling on the 80960JT reduces interrupt latency by 20% compared
to the 80960JD/JC. Local registers may be dedicated to high-priority interrupts to further reduce
latency. Acting independently from the core, the ICU compares the priorities of posted interrupts
with the current process priority, off-loading this task from the core. The ICU also supports the
integrated timer interrupts.
The 80960 Jx features a Halt m ode designed to sup port applications wh ere low p owe r cons um pt ion
is critical. The halt instruction shuts down instruction execution, resulting in a power savings of up
to 90 percent.
The 80960Jxs testability features, including ONCE (On-Circ uit Emu lation) mode and Boundary
Scan (JTAG), provide a powerful environment for design debug and fault diagnosis.
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
10 Datasheet
The Solutions960® program features a wide variety of development tools which support the i960
processor famil y. Many of these to ols are d e velop ed by partner co mpan ies; s ome a re dev e loped by
Intel, such as profile-driven optimizing compilers. For more information on these products, contact
your local Intel representative.
2.1 80960 Processor Core
The 80960Jx family is a scalar implementation of the 80960 core architecture. Intel designed this
processor core as a v ery high p erfor mance device that is also cost-effective. Factors that con tribute
to the cores performan ce include:
Core operates at the bus speed with the 80960JA/JF/JS
Core operates at two or three times the bus speed with the 80960JD/JC and 80960JT,
respectively
Single-clock execution of most instructions
Independent Multiply/Divide Unit
Efficient instruction pipeline minimizes pipeline break latency
Register and resource scoreboarding allow overlapped instruction execution
128-bit register bus speeds local register caching
Two-way set associative, integrated instruction cache
Direct-mapped, integrated data cache
1-Kbyte integrated data RAM delivers zero wait state program data
Figure 2. 80960Jx Block Diagram
Programmable
Interrupt Controller
Control
Address/
Instruction Sequencer
Physical Region
Configuration
Interrupt
Port
1K Data RAM
Memory
Interface
Execution
Multiply
Unit
Divide Unit Memory-Mapped
Register Interface
Data Bus
Global / Local
Register File
SRC2 DESTSRC1
address
Control
effective
Constants
Generation
Unit
Address
32-bit Address
32-bit Data
Bus Request
Queues
and
Two 32-Bit
Timers
8-Set
Local Register Cache
SRC1
SRC2
DEST
PLL, Clocks,
Power Mgmt
Boundary Scan
Controller
TAP
5
CLKIN
SRC1
SRC2
DEST
SRC1
DEST
9
32
32-bi t bu ses
address / data
21
Instruction Cache
80960JA - 2K
80960JF/JD - 4K
80960JS /JC/JT - 16K
Direct Mapped
Data Cache
80960JA - 1K
80960JF/JD - 2K
80960JS /JC / JT -
128
3 Independent 32-Bit SRC1, SRC2, and DEST Buses
Bus
Control Unit
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 11
2.2 Burst Bus
A 32-bit high-performance Bus Controller Unit (BCU) interfaces the 80960Jx to external memory
and peripherals. The BCU fetches instructions and transfers data at the rate of up to four 32-bit
words per six clock cycles. The external address/data bus is multiplexed.
Users may configure the 80960Jxs bus controller to match an applications fundamental memory
organ izatio n. Phys ical bus wid th is regist er -prog rammed for up to eigh t regions . Byte ord ering and
data caching are pr ogrammed through a group of logical m emory templates and a d efaults regis ter.
The BCUs features include:
Multiplexed external bus to minimize pin count
32-, 16-, and 8-bit bus widths to simplify I/O interfaces
External ready control for address-to-data, data-to-data and data-to-next-address wait state
types
Support for big or little endian byte order ing to facil itate the porting of existing program code
Unaligned bus accesses performed transparently
Three-deep load/store queue to decouple the bus from the core
Upon reset, the 80960Jx conducts an internal self-test. Then, before executing its first instruction, it
performs an external bus confidence test by performing a checksum on the first words of the
initialization boot record (IBR).
2.3 Timer Unit
The timer unit (TU) contains two independent 32-bit timers that are capable of counting at several
clock rates and generating interrupts. Each is programmed by use of the TU registers. These
memory-mapped registers are addressable on 32-bit boundaries. The timers have a single-shot
mode and auto-reload capabilities for contin uou s operatio n. Each timer has an ind ependent
interrupt request to the 80960Jxs interrupt controller. The TU may generate a fault when
unauthorized writes from user mode are detected. Clock prescaling is supported.
2.4 Priority Interr upt Contro ll er
A programmable interrupt controller manages up to 240 external sources through an 8-bit external
interrupt port. Alternativel y, the interrupt inputs may be configured for individual edge- or level-
triggered inputs. The interrupt unit (IU) also accepts interrupts from the two o n-chip timer channels
and a single Non-Maskable In terrupt (NMI#) pin . Interrupts are serviced according to their prio rity
levels relative to the curren t pro cess priority.
Low interrupt latency is critical to m any embed ded applications. As part of its highly flexible
interrupt mechanism, the 80960Jx exploits several technique s to minim ize laten c y:
Interrupt vectors and interrupt handler routines may be reserved on-chip.
Register frames for high-priority interrupt hand lers may be cached on-chip.
The interrupt stack may be placed in cacheable memory space.
Interrupt microcode executes at two or three times the bus frequency for the 80960JD/JC and
80960JT, respectively.
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
12 Datasheet
2.5 Instruction Set Summary
The 80960Jx adds several new instructions to the i960 processor core architecture. The new
instructions are:
Conditiona l Move
Condition a l Add
Condition a l Subtract
Byte Swap
Halt
Cache Control
Interrupt Control
Table 2 identifies the instructions that the 80960Jx supports. Refer to the i960® Jx Microprocessor
Developers Manual (272483) for a detailed description of each instruction.
2.6 Faults and Debugging
The 80960Jx employs a comprehensive fault model. The processor responds to faults by making
implicit calls to a fault handling routine. Specific information collected for each fault allows the
fault handler to diagnose exceptions and recover appropriately.
The processor also has built-in debu g capabi lities. In software, the 80960Jx may be configured to
detect as many as seven different trace event types. Alternatively, mark and fmark instructions
may generate trace events explicitly in the instruction stream. Hardware breakpoint registers are
also available to trap on execution and data addresses.
2.7 Low Power Op eration
Intel fabri cates the 809 60Jx usin g an advanced sub -micron manufact uring proces s. The process ors
sub-micron topology provides the circuit density for optimal cache size and high operating speeds
while dissipating modest power. The processor also uses dynamic power management to turn off
clocks to unused circuits.
Users may program the 80960Jx to enter Halt mode for maximum power savings. In Halt mode,
the processor core stops completely while the integrated peripherals continue to function, reducing
overall power requirements up to 90 percent. Processor execution resumes from internally or
externally generated interrupts.
2.8 Test Features
The 80960Jx incorporates numerous features that enhance the users ability to test both the
processor and the system to which it is attached. These features include ONCE (On-Circuit
Emulation) mode and Boundary Scan (JTAG).
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 13
The 80960Jx provides testability features compatible with IEEE Stan dard Test Access Port and
Boundary Scan Architecture (IEEE Std. 1149.1).
One of the boundary scan instr u ctions, HIGHZ, f orces th e pro cessor to float all its output pins
(ONCE mode). ONCE mode may also be initiated at reset without using the boundary scan
mechanism.
ONCE mode is useful for board-level testing. This feature allows a mounted 80960Jx to
electrically remove itself from a circuit board. This allows for system-level testing in which a
remote tester, such as an in-circuit emulator, may exercise the processor system.
The provided test logic does not interfere with component or circuit board behavior and ensures
that components function correctly, connections between various components are correct, and
various components interact correctly on the printed circuit board.
The JTAG Boundary Scan feature is an attractive alternative to conv entional bed-of-nails testing.
It may examine connections that might otherwise be inaccessible to a test system.
2.9 Memory-Mapped Control Registers
The 80960Jx, although compliant with the i960 processor core, has the added advantage of
memory-mapped, internal control registers not found on the i960 Kx, Sx or Cx processors. Th ese
registers give software the interface to easily read and modify internal control registers.
Each of these registers is accessed as a memory-mapped, 32-bit register. Access is accomplished
through regular memory-format instructions. The processor ensures that these accesses do not
generate external bus cycles.
2.10 Data Types and Memory Addressing Modes
As with all i960 processors, the 80960Jx instruction set supports several data types and formats:
Bit
Bit fields
Integer (8-, 16-, 32-, 64-bit)
Ordinal (8-, 16-, 32-, 64-bit unsigned integers)
Triple word (96 bits)
Quad word (128 bits)
The 80960Jx provides a full set of addressing modes for C and assembly programming:
Two Absolute modes
Five Register Indirect modes
Index with displacement
IP with displacement
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
14 Datasheet
Table 2. 80960Jx Instruction Set
Data Movement Arithmetic Logical Bit, Bit Field and Byte
Load
Store
Move
Conditional Select
Load Address
Add
Subtract
Multiply
Divide
Remainder
Modulo
Shift
Extended Shift
Extended Multiply
Extended Divide
Add with Carry
Subtract with Carry
Conditional Add
Conditional Subtract
Rotate
And
Not And
And Not
Or
Exclusive Or
Not Or
Or Not
Nor
Exclusive Nor
Not
Nand
Set Bit
Clear Bit
Not Bit
Alter Bit
Scan For Bit
Span Over Bit
Extract
Modify
Scan Byte for Equal
Byte Swap
Comparison Branch Call/Return Fault
Compare
Conditional Compare
Compare and Increment
Compare and Decrement
Test Condition Code
Check Bit
Unconditional Branch
Conditional Branch
Compare and Branch
Call
Call Extended
Call System
Return
Branch and Link
Conditional Fault
Synchronize Fault s
Debug Processor Management Atomic
Modify Trace Controls
Mark
Force Mark
Flush Local Registers
Modify Arithmetic
Controls
Modify Process Controls
Halt
System Control
Cache Control
Interrupt Control
Atomic Ad d
Atomic Modify
Denotes new 80960 instructions unavailable on 80960CA/CF, 80960KA/KB and 80960SA/SB processors.
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 15
3.0 Packaging Information
3.1 Available Processors and Packages
The 80960Jx is offered in various speed grades and three package types.
The 132-pin Pin Grid Array (PGA) device is specified for operation at VCC = 3.3 V ± 0.15 V over
a case temperature range of 0° C to 100° C. The following processor versions are available in the
PGA package:
For pinout diagrams for the PGA package, see Section 3.2.2, 80960Jx 132-Lead PGA Pinout on
page 23.
The 132-pin Plastic Quad Flatpack (PQFP) devices are specified for operation at
VCC = 3.3 V ± 0.15 V over a case temperature range of 0° C to 100° C. Table 4 presents 80960Jx
processor versions that are available in the 132-pin PQFP package:
For pinout diagrams of the PQFP package, see Sect ion 3.2.3, 80960 Jx 132 -Lead PQFP Pi nout on
page 27.
Extended temperature devices are specified for operation at VCC = 3.3 V ± 0.15 V over a case
temperature range of -40° C to 100° C. Table 5 presents 80960Jx processor versions that are
available in the extended temperature 132-pin PQFP package and MPBGA package:
Table 3. 80960Jx Processors Available in 132-Pin PGA Package
Processor Core Speed Bus Speed
A80960JD-66 66 MHz 33 MHz
A80960JD-33 33 MHz 16 MHz
A80960JA/JF-33 33 MHz 33 MHz
A80960JF-25 25 MHz 25 MHz
Table 4. 80960Jx Processors Available in 132-Pin PQFP Package
Processor Core Speed Bus Speed
NG80960JT -100 100 MHz 33 MHz
NG80960JC-66 66 MHz 33 MHz
NG80960JC-50 50 MHz 25 MHz
NG80960JS-33 33 MHz 33 MHz
NG80960JS-25 25 MHz 25 MHz
NG80960JD-66 66 MHz 33 MHz
NG80960JD-40 40 MHz 20 MHz
NG80960JA/JF-33 33 MHz 33 MHz
NG80960JA/JF-25 25 MHz 25 MHz
NG80960JA-16 16 MHz 16 MHz
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
16 Datasheet
The 196-ball Mini Plastic Ball Grid Array (MPBGA) device is specified for operation at
VCC = 3.3 V ± 0.15 V over a case temperature range of 0° C to 100° C. Table 6 presents the
80960Jx processor versions that are available in the 196-ball MPBGA package:
For pinout diagrams of the PQFP package, see Section 3.2.4, 809 60 Jx 19 6-B a l l MPBG A Pin ou t
on page 30.
For additional package specifications and information, refer to the Intel Packaging Databook,
available in individual chapters, at http://www.intel.com.
3.2 Pin Descriptions
This section describes the pins for the 80960Jx processors. For a description of pin function, see
Section 3.2.1, Functional Pin Definitions on page 16. Refer to the following sections for pinout
information for the three package types:
Section 3.2.2, 809 60J x 132 -Lead PG A Pi nou t on page 23.
Section 3.2.3, 809 60J x 132-Lead PQFP Pinout on page 27.
Section 3.2.4, 80960Jx 196-Ball MPBGA Pinout on page 30.
3.2.1 Functional Pin Definitions
Table 7 presents the legend for interpreting the three pin description tables that follow. These tables
define the pins associated with the bus interface, basic control and test functions, and the Interrupt
Unit.
Table 5. 80960Jx Processors Available in Extended Temperature
Processor Core Speed Bus Sp eed Package Type
TG80960JA-25 25 MHz 25 MHz PQFP
TG80960JS-25 25 MHz 25 MHz PQFP
TG80960JS-33 33 MHz 33 MHz PQFP
TG80960JC-66 66 Mhz 33 MHz PQFP
TG80960JT-100 100 MHz 33 MH z PQFP
GD80960JC-66ET 66 MHz 33 MHz MPBGA
Table 6. 80960Jx Processors Available in 196-Ball MPBGA Package
Processor Core Speed Bus Sp eed
GD80960JT- 100 100 MHz 33 MH z
GD80960JC-66 66 MHz 33 MHz
GD80960JS-33 33 MHz 33 MHz
GD80960JS-25 25 MHz 25 MHz
GD80960JD-50 50 MHz 25 MHz
GD80960JA/JF-3 3 33 MHz 33 MH z
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 17
Table 7. Pin Description Nomenclature
Symbol Description
IInput pin only.
OOutput pin only.
I/O Pin may be either an input or output.
Pin must be connected as described.
S
Synchronous. Inputs must meet setup and hold times relative to CLKIN for proper operation.
S(E) Edge sensitive input
S(L) Level sensitive input
A (...)
Asynchronous. Inputs may be asynchronous relative to CLKIN.
A(E) Edge sensitive input
A(L) Level sensitive input
R (...)
While the processors RESET# pin is asserted, the pin:
R(1) is driven to VCC
R(0) is driven to VSS
R(Q) is a valid output
R(X) is driven to unknown state
R(H) is pulled up to VCC
H (...)
While the processor is in the hold state, the pin:
H(1) is driven to VCC
H(0) is driven to VSS
H(Q) Maintains previous state or continues to be a valid output
H(Z) Floats
P (...)
While the processor is halted, the pin:
P(1) is driven to VCC
P(0) is driven to VSS
P(Q) Maintains previous state or continues to be a valid output
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
18 Datasheet
Table 8. Pin DescriptionExternal Bus Signals (Sheet 1 of 4)
NAME TYPE DESCRIPTION
AD[31:0]
I/O
S(L)
R(X)
H(Z)
P(Q)
ADDRESS / DATA BUS carries 32-bit physica l addresses and 8-, 16- or 32-bit data
to and from memory. During an address (Ta) cycle, bits 31:2 contain a physical word
address (bits 0-1 indicate SIZE; see below). During a data (Td) cycle, read or write
data is present on one or more contiguous bytes, comprising AD[31:24], AD[23:16],
AD[15:8] and AD[7:0]. During write operations, unused pins are driven to
determinate values.
SIZE, which comprises bits 0-1 of the AD lines during a Ta cycle, specifies the
number of data transfers during the bus transaction.
AD1 AD0 Bus Transfers
0 0 1 Transfer
0 1 2 Transfers
1 0 3 Transfers
1 1 4 Transfers
When the processor enters Halt mode, if the previous bus operation was a:
write AD[31:2] are driven with the last data value on the AD bus.
read AD[31:4] are driven with the last address value on the AD bus; AD[3:2]
are driven with the value of A[3:2] from the last data cycle.
Typically, AD[1:0] reflect the SIZE information of the last bus transaction (either
instruction fetch or load/store) that was executed before entering Halt mode.
ALE
O
R(0)
H(Z)
P(0)
ADDRESS LATCH ENABLE indicates the transfer of a physical address. ALE is
asserted during a Ta cycle and deasserted before the beginning of the Td state. It is
active HIGH and floats to a high impedance state during a hold cycle (Th).
ALE#
O
R(1)
H(Z)
P(1)
ADDRESS LATCH ENABLE indicates the transfer of a physical address. ALE# is
the inverted version of ALE. This signal gives the 80960Jx a high degree of
compatibility with existing 80960Kx systems.
ADS#
O
R(1)
H(Z)
P(1)
ADDRESS STROBE indicates a valid address and the start of a new bus access.
The processor asserts ADS# for the entire Ta cycle. External bus control logic
typically samples ADS# at the end of the cycle.
A[3:2]
O
R(X)
H(Z)
P(Q)
ADDRESS[3:2] comprise a partial demultiplexed address bus.
32-bit memory accesses: the processor asserts address bits A[3:2] during Ta. The
partial word address increments with each assertion of RDYRCV# during a burst.
16-bit memory accesses: the processor asserts address bits A[3:1] during Ta with A1
driven on the BE1# pin. The partial short word address increments with each
assertion of RDYRCV# during a burst.
8-bit memory accesses : the processor asserts address bits A[3:0] during Ta, with
A[1:0] driven on BE[1:0]#. The partial byte address increments with each assertion of
RDYRCV# during a burst.
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 19
BE[3:0]#
O
R(1)
H(Z)
P(1)
BYTE ENABLES select which of up to four data bytes on the bus participate in the
current bus access. Byte enable encoding is dependent on the bus width of the
memory region access ed:
32-bit bus:
BE3# enables data on AD[31:24]
BE2# enables data on AD[23:16]
BE1# enables data on AD[15:8]
BE0# enables data on AD[7:0]
16-bit bus:
BE3# becomes Byte High Enable (enables data on AD[15:8])
BE2# is not used (state is high)
BE1# becomes Address Bit 1 (A1)
BE0# becomes Byte Low Enable (enables data on AD[7:0])
8-bit bus:
BE3# is not used (state is high)
BE2# is not used (state is high)
BE1# becomes Address Bit 1 (A1)
BE0# becomes Address Bit 0 (A0)
The processor asserts byte enables, byte high enable and byte low enable during Ta.
Since unaligned bus requests are split into separate bus transactions, these signals
do not toggle during a burst. They remain active through the last Td cycle.
For accesses to 8- and 16-bit memory, the processor asserts the address bits in
conjunction with A[3:2] described above.
WIDTH/
HLTD[1:0]
O
R(0)
H(Z)
P(1)
WIDTH/HALTED signals denote the physical memory attributes for a bus
transaction:
WIDTH/
HLTD1 WIDTH/
HLTD0
0 0 8 Bits Wide
0 1 16 Bits Wide
1 0 32 Bits Wide
1 1 Processor Halted
The processor floats the WIDTH/HLTD pins whenever it relinquishes the bus in
response to a HOLD request, regardless of prior operating state.
D/C#
O
R(X)
H(Z)
P(Q)
DATA/CODE indicates that a bus access is a data access (1) or an instruction
access (0). D/C# has the same timing as W/R#.
0 = instruction access
1 = data access
W/R#
O
R(0)
H(Z)
P(Q)
WRITE/READ specifies, during a Ta cycle, whether the operation is a write (1) or
read (0). It is latched on-chip and remains valid during Td cycles.
0 = read
1 = write
DT/R#
O
R(0)
H(Z)
P(Q)
DATA T RAN S MIT / R EC E IV E i ndicates the direction of data transfer to and from the
address/data bus. It is low during Ta and Tw/Td cycles for a read; it is high during Ta
and Tw/Td cycles for a write. DT/R# never changes state when DEN# is asserted.
0 = receive
1 = transmit
Table 8. Pin DescriptionExternal Bus Signals (Sheet 2 of 4)
NAME TYPE DESCRIPTION
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
20 Datasheet
DEN#
O
R(1)
H(Z)
P(1)
DATA ENABLE indicates data transfer cycles during a bus access. DEN# is
asserted at the start of the first data cycle in a bus access and deasserted at the end
of the last data cycle. DEN# is used with DT/R# to provide control for data
transceivers connected to the data bus.
0 = data cycle
1 = not data cycle
BLAST#
O
R(1)
H(Z)
P(1)
BURST LAST indicates the last transfer in a bus access. BLAST# is asserted in the
last data transfer of burst and non-burst accesse s. BLA ST# remains act ive as long
as wait states are inserted through the RDYRCV# pin. BLAST# becomes inactive
after the final data transfer in a bus cycle.
0 = last data transfer
1 = not last data transfer
RDYRCV# I
S(L)
READY/RECOVER indicates that data on AD lines may be sampled or removed.
When RDYRCV# is not asserted during a Td cycle, the Td cycle is extended to the
next cycle by inserting a wait state (Tw).
0 = sample data
1 = dont sample data
The RDYRCV# pin has another function during the recovery (T r) state. The
processor continues to insert additional recovery states until it samples the pin
HIGH. This function gives slow external devices more time to float their buffers
before the processor begins to drive address again.
0 = insert wait states
1 = recovery complete
LOCK#/
ONCE#
I/O
S(L)
R(H)
H(Z)
P(1)
BUS LOCK indicates that an atomic read-modify-write operation is in progress. The
LOCK# output is asserted in the first clock of an atomic operation and deasserted in
the last data transfer of the sequence. The processor does not grant HOLDA while it
is asserting LOCK#. This prevents external agents from accessing memory involved
in semaphore operations.
0 = Atomic read-modify-write in progress
1 = Atomic read-modify-write not in progress
ONCE MODE: The processor sam ples the ONCE# inpu t during reset. When it is
asserted LOW at the end of reset, the processor enters ONCE mode. In ONCE
mode, the processor stops all clocks and floats all out put pins. The pin has a weak
internal pullup which is active during reset to ensure normal operation when the pin
is left unconnected.
0 = ONCE mode enabled
1 = ONCE mode not enabled
HOLD I
S(L)
HOLD: A request from an external bus master to acquire the bus. When the
processor receives HOLD and grants bus control to another master, it asserts
HOLDA, floats the address/data and control lines and enters the Th state. When
HOLD is deasserted, the processor deasserts HOLDA and enters either the Ti or Ta
state, resuming control of the address/data and control lines.
0 = no hold request
1 = hold request
Table 8. Pin DescriptionExternal Bus Signals (Sheet 3 of 4)
NAME TYPE DESCRIPTION
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 21
HOLDA
O
R(Q)
H(1)
P(Q)
HOLD ACKNOWLEDGE indicates to an external bus master that the processor has
relinquished control of the bus. The processor may grant HOLD requests and enter
the Th stat e during reset and while halted as well as during regular operation.
0 = hold not acknowledged
1 = hold acknowledged
BSTAT
O
R(0)
H(Q)
P(0)
BUS STATUS indicates that the processor may soon stall unless it has s ufficient
access to the bus; see i960® Jx Microprocessor Developers Manual (272483).
Arbitration logic may examine this signal to determine when an external bus master
should acquire/relinquish the bus.
0 = no potential stall
1 = potential stall
Table 9. Pin DescriptionProcessor Control Signals, Test Signals, and Power (Sheet 1 of 2)
NAME TYPE DESCRIPTION
CLKIN I CLOCK INPUT provides the processors fundamental time base; both the processor
core and the external bus run at the CLKIN rate. All input and output timings are
specified relative to a rising CLKIN edge.
RESET# I
A(L)
RESET initializes the processor and clears its internal logic. During reset, the
processor places the address/data bus and control output pins in their idle (inactive)
states.
During reset, the input pins are ignored with the exception of LOCK#/ONCE#,
STEST and HOLD.
The RESET# pin has an internal synchronizer. To ensure predictable processo r
initialization during power up, RESET# must be asserted a minimum of 10,000
CLKIN cycles with VCC and CLKIN stable. On a warm reset, RESET# should be
asserted for a minimum of 15 cycles.
STEST I
S(L)
SELF TEST enables or disables the processors internal self-test feature at
initialization. STEST is examined at the end of reset. When STEST is asserted, the
processor perfor ms its internal self-test and the external bus confidence test. When
STEST is deasserted, the processor performs only the external bus confidence test.
0 = self test disabled
1 = self test enabled
FAIL#
O
R(0)
H(Q)
P(1)
FAIL indicates a failure of the processors built-in self-test performed during
initialization. F AIL# is asserted immediately upon reset and toggles during self-test to
indicate the status of individual tests:
When self-test passes, the processor deasserts FAIL# and begins operation
from user code.
When self-test fails, the processor asserts FAIL# and then stops executing.
0 = self test failed
1 = self test passed
TCK I TEST CLOCK is a CPU input which provides the clocking function for IEEE 1149.1
Boundary Scan Testing (JTAG). State information and data are clocked into the
processor on the rising edge; dat a is clocked out of the processor on the falling edge.
TDI I
S(L) TEST DAT A I NPUT is the serial input pin for JTAG. TDI is sampled on the rising edge
of TCK, during the SHIFT-IR and SHIFT-DR states of the Test Access Port.
Table 8. Pin DescriptionExternal Bus Signals (Sheet 4 of 4)
NAME TYPE DESCRIPTION
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
22 Datasheet
TDO
O
R(Q)
HQ)
P(Q)
TEST DATA OUTPUT is the serial output pin for JTAG. TDO is driven on the falling
edge of TCK during the SHIFT-IR and SHIFT- DR states of the Test Access Port. At
other times, TDO floats. TDO does not float during ONCE mode.
TRST# I
A(L)
TEST RESET asynchronously resets the Tes t Acc ess Por t (TAP ) controller function
of IEEE 11 4 9.1 Boundar y Scan testing (JTAG). When using the Boundary Scan
feature, connect a pull-down resistor between this pin and VSS. When TAP is not
used, this pin must be connected to VSS; however, no resistor is required. See
Section 4.3, Connection Recommendations on page 36.
TMS I
S(L) TEST MODE SELECT is sampled at the rising edge of TCK to select the operation of
the test logic for IEEE 1149.1 Boundary Scan testing.
VCC POWER pins intended for external connection to a VCC board plane.
VCCPLL
PLL POWE R is a separate VCC supply pin for the phase lock loop clock generator. It
is intended for external connection to the VCC board plane. In noisy environments,
add a simple bypass filter circuit t o reduce noise-induced clock jitter and its eff ects on
timing relationships.
VCC5
5 V REFERENCE VOLTAGE input is the reference voltage for the 5 V-tolerant I/O
buffers. This signal should be connected to +5 V for use with inputs which exceed
3.3 V. When all inputs are from 3.3 V components, this pin should be connected to
3.3 V.
VSS GROUND pins intended for external connection to a VSS board plane.
NC NO CONNECT pins. Do not make any system connections to these pins.
Table 10. Pin DescriptionInterrupt Unit Signals
NAME TYPE DESCRIPTION
XINT[7:0]# I
A(E/L)
EXTERNAL INTERRUPT pins are used to request interrupt service. The XINT[7:0]#
pins may be configured in three modes:
Dedicated Mode: Each pin is assigned a dedicated interrupt level. Dedicated inputs
may be programmed to be level (low) or edge (falling) sensitive.
Expanded Mode: All eight pins act as a vectored interrupt source. The interrupt pins
are level sensitive in this mode.
Mixed Mode: The XINT[7:5]# pins act as dedicated sources and the XINT[4:0]# pins
act as the five most significant bits of a vectored source. The least significant bits of
the vectored source are set to 0102 internally.
Unused external interrupt pins should be connected to VCC.
NMI# I
A(E)
NON-MASKABLE INTERRUPT caus es a non-mask able interrupt event to occur.
NMI# is the highest priority interrupt source and is falling edge-triggered. when NMI#
is unused, it should be connected to VCC.
Table 9. Pin DescriptionProcessor Control Signals, Test Signals, and Power (Sheet 2 of 2)
NAME TYPE DESCRIPTION
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 23
3.2.2 80960Jx 132-Lead PGA Pinout
Figure 3. 132-Lead Pin Grid Array Top View-Pins Facing Down
AD6 AD11 AD13 VCC VCC VCC VCC VCC VCC VCC AD18 AD19 AD22 AD25
AD3 AD7 AD10 VSS VSS VSS VSS VSS VSS VSS AD20 AD24 AD26 AD27
AD0 AD4 AD8 AD9 AD12 AD14 AD15 AD16 AD17 AD21 AD23 AD29 AD30NC
AD28 BE3# BE2#
AD31 VSS VCC
BE1# VSS VCC
BE0# VSS VCC
ALE VCC
BSTAT VSS VCC
VSS VCC
DT/R# VSS VCC
VCC AD1
VCC VSS
VCC VSS NC
CLKIN VSS VCCPLL
VCC VSS NC
VCC RDYRCV#
VCC RESET#
VCC VSS
AD5
AD2
VSS
TDI
XINT0#
NC
A2
WIDTH/ ADS#
A3XINT1#
TMS XINT2#
NC STESTTRST# HOLD NC FAIL#VCC5 BLAST# LOCK#/
HOLDA
TCK XINT3#
XINT5#XINT7# NMI# VCC VCC VCC VCC NC NC ALE#
XINT6# VSS VSS VSS VSS NC TDO WIDTH/ D/C# W/R#XINT4#
P
N
M
L
K
J
H
G
F
E
D
C
B
A
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1413121110987654321
1413121110987654321
VSS
DEN#
VSS
HLTD1
HLTD0
ONCE#
i© 19xx
A80960Jx
XXXXXXXX SS
M
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
24 Datasheet
Figure 4. 132-Lead Pin Grid Array Bottom View-Pins Facing Up
AD6AD11
AD13VCC
VCC
VCC
VCC
VCC
VCC
VCC
AD18AD19AD22
AD25
AD3AD7AD10VSS
VSS
VSS
VSS
VSS
VSS
VSS
AD20AD24AD26
AD27
AD0
AD4
AD8
AD9AD12
AD14AD15AD16AD17
AD21AD23
AD29AD30 NC
AD28
BE3#BE2#
AD31
VSS
VCC
BE1#VSS
VCC
BE0#
VSS
VCC
ALEVCC
BSTAT
VSS
VCC
VSS
VCC
DT/R#VSS
VCC
VCC
AD1
VCC
VSS
VCC
VSS
NC
CLKINVSS
VCCPLL
VCC
VSS
NC
VCC
RDYRCV#
VCC
RESET#
VCC
VSS
AD5
AD2
VSS
TDI
XINT0#
NC
A2
WIDTH/ADS#
A3 XINT1#
TMSXINT2#
NCSTESTTRST#HOLDNCFAIL# VCC5BLAST#
LOCK#/HOLDA
TCK
XINT3#
XINT5#XINT7#NMI#VCC
VCC
VCC
VCC
NCNCALE#
XINT6#VSS
VSS
VSS
VSS
NCTDOWIDTH/D/C#W/R# XINT4#
P
N
M
L
K
J
H
G
F
E
D
C
B
A
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1413121110987654321
1413121110987654321
VSS
DEN#
VSS
HLTD1
HLTD0
ONCE#
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 25
Table 11. 132-Lead PGA PinoutIn Signal Order
Signal Pin Signal Pin Signal Pin Signal Pin
A2 C5 AD31 K3 TDO B4 VSS B9
A3 C4 ADS# A1 TMS A14 VSS D2
AD0 M14 ALE G3 TRST# C12 VSS D13
AD1 L13 ALE# A3 VCC A6 VSS E2
AD2 K12 BE0# H3 VCC A7 VSS E13
AD3 N14 BE1# J3 VCC A8 VSS F2
AD4 M13 BE2# L1 VCC A9 VSS F13
AD5 L12 BE3# L2 VCC D1 VSS G2
AD6 P14 BLAST# C3 VCC D14 VSS G13
AD7 N13 BSTAT F3 VCC E1 VSS H2
AD8 M12 CLKIN H14 VCC E14 VSS H13
AD9 M11 D/C# B2 VCC F1 VSS J2
AD10 N12 DEN# E3 VCC F14 VSS J13
AD11 P13 DT/R# D3 VCC G1 VSS K2
AD12 M10 FAIL# C6 VCC G14 VSS K13
AD13 P12 HOLD C9 VCC H1 VSS N5
AD14 M9 HOLDA C2 VCC J1 VSS N6
AD15 M8 LOCK#/ONCE# C1 VCC J14 VSS N7
AD16 M7 NC A4 VCC K1 VSS N8
AD17 M6 NC A5 VCC K14 VSS N9
AD18 P4 NC B5 VCC L14 VSS N10
AD19 P3 NC B14 VCC P5 VSS N11
AD20 N4 NC C8 VCC P6 W/R# B1
AD21 M5 NC C14 VCC P7 WIDTH/HLTD0 B3
AD22 P2 NC G12 VCC P8 WIDTH/HLTD1 A2
AD23 M4 NC J12 VCC P9 XINT0# C11
AD24 N3 NC M3 VCC P10 XINT1# C10
AD25 P1 NMI# A10 VCC P11 XINT2# A13
AD26 N2 RDYRCV# F12 VCCPLL H12 XINT3# B12
AD27 N1 RESET# E12 VCC5 C7 XINT4# B11
AD28 L3 STEST C13 VSS B6 XINT5# A12
AD29 M2 TCK B13 VSS B7 XINT6# B10
AD30 M1 TDI D12 VSS B8 XINT7# A11
NOTE: Do not connect any external logic to pins marked NC (no connect pins).
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
26 Datasheet
Table 12. 132-Lead PGA PinoutIn Pin Order
Pin Signal Pin Signal Pin Signal Pin Signal
A1 ADS# C6 FAIL# H1 VCC M10 AD12
A2 WIDTH/HLTD1 C7 VCC5 H2 VSS M11 AD9
A3 ALE# C8 NC H3 BE0# M12 AD8
A4 NC C9 HOLD H12 VCCPLL M13 AD4
A5 NC C10 XINT1# H13 VSS M14 AD0
A6 VCC C11 XINT0# H14 CLKIN N1 AD27
A7 VCC C12 TRST# J1 VCC N2 AD26
A8 VCC C13 STEST J2 VSS N3 AD24
A9 VCC C14 NC J3 BE1# N4 AD20
A10 NMI# D1 VCC J12 NC N5 VSS
A11 XINT7# D2 VSS J13 VSS N6 VSS
A12 XINT5# D3 DT/R# J14 VCC N7 VSS
A13 XINT2# D12 TDI K1 VCC N8 VSS
A14 TMS D13 VSS K2 VSS N9 VSS
B1 W/R# D14 VCC K3 AD31 N10 VSS
B2 D/C# E1 VCC K12 AD2 N11 VSS
B3 WIDTH/HLTD0 E2 VSS K13 VSS N12 AD10
B4 TDO E3 DEN# K14 VCC N13 AD7
B5 NC E12 RESET# L1 BE2# N14 AD3
B6 VSS E13 VSS L2 BE3# P1 AD25
B7 VSS E14 VCC L3 AD28 P2 AD22
B8 VSS F1 VCC L12 AD5 P3 AD19
B9 VSS F2 VSS L13 AD1 P4 AD18
B10 XINT6# F3 BSTAT L14 VCC P5 VCC
B11 XINT4# F12 RDYRCV# M1 AD30 P6 VCC
B12 XINT3# F13 VSS M2 AD29 P7 VCC
B13 TCK F14 VCC M3 NC P8 VCC
B14 NC G1 VCC M4 AD23 P9 VCC
C1 LOCK#/ONCE# G2 VSS M5 AD21 P10 VCC
C2 HOLDA G3 ALE M6 AD17 P11 VCC
C3 BLAST# G12 NC M7 AD16 P12 AD13
C4 A3 G13 VSS M8 AD15 P13 AD11
C5 A2 G14 VCC M9 AD14 P14 AD6
NOTE: Do not connect any external logic to pins marked NC (no connect pins).
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 27
3.2.3 80960Jx 132-Lead PQFP Pinout
Figure 5. 132-Lead PQFP - Top View
AD8
AD7
AD6
AD5
AD4
VCC (I/O)
VSS (I/O)
AD3
AD2
AD1
AD0
VCC (I/O)
VCC (Core)
VSS (Core)
VCC (Core)
VSS (Core)
VCCPLL
VCC (CLK)
NC
NC
RDYRCV#
VSS (Core)
RESET#
NC
STEST
VCC (I/O)
TDI
VSS(I/O)
AD27
VCC (I/O)
VSS (I/O)
AD28
AD29
AD30
AD31
VCC (Core)
VSS (Core)
VCC (I/O)
VSS (I/O)
BE3#
BE2#
BE1#
BE0#
BSTAT
LOCK#/ONCE#
VCC (I/O)
VSS (I/O)
VCC (Core)
VSS (Core)
ALE
HOLDA
DEN#
DT/R#
VCC (I/O)
VSS (I/O)
VCC (Core)
VSS (Core)
W/R#
ADS#
D/C#
BLAST#
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
TRST#
TCK
TMS
HOLD
XINT0#
XINT1#
XINT2#
XINT3#
VCC (I/O)
VSS (I/O)
XINT4#
XINT5#
XINT6#
XINT7#
NMI#
VCC (Core)
VSS (Core)
NC
NC
VCC5
NC
NC
FAIL#
ALE#
TDO
VCC (I/O)
VSS(I/O)
WIDTH/HLTD1
VCC(Core)
VSS (Core)
WIDTH/HLTD0
A2
A3
AD9
VCC (I/O)
AD10
VSS (I/O)
VCC (I/O)
AD11
VSS (I/O)
VCC (Core)
VSS (Core)
AD12
AD13
AD14
AD15
VCC (I/O)
VSS (I/O)
AD16
AD17
AD18
AD19
NC
VCC (I/O)
AD22
AD25
AD21
AD20
AD24
AD26
AD23
VSS (I/O)
VCC (Core)
VCC (I/O)
VSS (Core)
VSS (I/O)
VSS (I/O)
CLKIN
VSS (CLK)
NC
VCC (Core)
iXXXXXXXX SS
M ©19xx
i960®
NG80960Jx
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
28 Datasheet
Table 13. 132-Lead PQFP PinoutIn Signal Order
Signal Pin Signal Pin Signal Pin Signal Pin
AD31 60 ALE# 24 VCC (Core) 47 VSS (Core) 124
AD30 61 ADS# 36 VCC (Core) 59 VSS (I/O) 10
AD29 62 A3 33 VCC (Core) 74 VSS (I/O) 27
AD28 63 A2 32 VCC (Core) 92 VSS (I/O) 40
AD27 66 BE3# 55 VCC (Core) 113 VSS (I/O) 48
AD26 68 BE2# 54 VCC (Core) 115 VSS (I/O) 56
AD25 69 BE1# 53 VCC (Core) 123 VSS (I/O) 64
AD24 70 BE0# 52 VCC (I/O) 9VSS (I/O) 71
AD23 75 WIDTH/HLTD1 28 VCC (I/O) 26 VSS (I/O) 79
AD22 76 WIDTH/HLTD0 31 VCC (I/O) 41 VSS (I/O) 85
AD21 77 D/C# 35 VCC (I/O) 49 VSS (I/O) 93
AD20 78 W/R# 37 VCC (I/O) 57 VSS (I/O) 97
AD19 81 DT/R# 42 VCC (I/O) 65 VSS (I/O) 106
AD18 82 DEN# 43 VCC (I/O) 72 VSS (I/O) 112
AD17 83 BLAST# 34 VCC (I/O) 80 VSS (I/O) 131
AD16 84 RDYRCV# 132 VCC (I/O) 86 NC 18
AD15 87 LOCK#/ONCE# 50 VCC (I/O) 94 NC 19
AD14 88 HOLD 4VCC (I/O) 98 NC 21
AD13 89 HOLDA 44 VCC (I/O) 105 NC 22
AD12 90 BSTAT 51 VCC (I/O) 111 NC 67
AD11 95 CLKIN 117 VCC (I/O) 129 NC 121
AD10 96 RESET# 125 VCCPLL 119 NC 122
AD9 99 STEST 128 VCC5 20 NC 126
AD8 100 FAIL# 23 VSS (CLK) 118 NC 127
AD7 101 TCK 2VSS (Core) 17 XINT7# 14
AD6 102 TDI 130 VSS (Core) 30 XINT6# 13
AD5 103 TDO 25 VSS (Core) 38 XINT5# 12
AD4 104 TRST# 1VSS (Core) 46 XINT4# 11
AD3 107 TMS 3VSS (Core) 58 XINT3# 8
AD2 108 VCC (CLK) 120 VSS (Core) 73 XINT2# 7
AD1 109 VCC (Core) 16 VSS (Cor e) 91 XINT1# 6
AD0 110 VCC (Core) 29 VSS (Core) 114 XINT0# 5
ALE 45 VCC (Core) 39 VSS (Core) 116 NMI# 15
NOTE: Do not connect any external logic to pins marked NC (no connect pins).
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 29
Table 14. 132-Lead PQFP PinoutIn Pin Order
Pin Signal Pin Signal Pin Signal Pin Signal
1TRST# 34 BLAST# 67 NC 100 AD8
2TCK 35 D/C# 68 AD26 101 AD7
3TMS 36 ADS# 69 AD25 102 AD6
4HOLD 37 W/R# 70 AD24 103 AD5
5XINT0# 38 VSS (Core ) 71 VSS (I/O) 104 AD4
6XINT1# 39 VCC (Core) 72 VCC (I/O) 105 VCC (I/O)
7XINT2# 40 VSS (I/O) 73 VSS (Core) 106 VSS (I/O)
8XINT3# 41 VCC (I/O) 74 VCC (Core) 107 AD3
9VCC (I/O) 42 DT/R# 75 AD23 108 AD2
10 VSS (I/O) 43 DEN# 76 AD22 109 AD1
11 XINT4# 44 HOLDA 77 AD21 110 AD0
12 XINT5# 45 ALE 78 AD20 111 VCC (I/O)
13 XINT6# 46 VSS (Core) 79 VSS (I/O) 112 VSS (I/O)
14 XINT7# 47 VCC (Core) 80 VCC (I/O) 113 VCC (Core)
15 NMI# 48 VSS (I/O) 81 AD19 114 VSS (Core)
16 VCC (Core) 49 VCC (I/O) 82 AD18 115 VCC (Core)
17 VSS (Core) 50 LOCK#/ONCE# 83 AD17 116 VSS (Core)
18 NC 51 BSTAT 84 AD16 117 CLKIN
19 NC 52 BE0# 85 VSS (I/O) 118 VSS (CLK)
20 VCC5 53 BE1# 86 VCC (I/O) 119 VCCPLL
21 NC 54 BE2# 87 AD15 120 VCC (CLK)
22 NC 55 BE3# 88 AD14 121 NC
23 FAIL# 56 VSS (I/O) 89 AD13 122 NC
24 ALE# 57 VCC (I/O) 90 AD12 123 VCC (Core)
25 TDO 58 VSS (Core) 91 VSS (Core) 124 VSS (Core)
26 VCC (I/O) 59 VCC (Core) 92 VCC (Core) 125 RESET#
27 VSS (I/O) 60 AD31 93 VSS (I/O) 126 NC
28 WIDTH/HLTD1 61 AD30 94 VCC (I/O) 127 NC
29 VCC (Core) 62 AD29 95 AD11 128 STEST
30 VSS (Core) 63 AD28 96 AD10 129 VCC (I/O)
31 WIDTH/HLTD0 64 VSS (I/O) 97 VSS (I/O) 130 TDI
32 A2 65 VCC (I/O) 98 VCC (I/O) 131 VSS (I/O)
33 A3 66 AD27 99 AD9 132 RDYRCV#
NOTE: Do not connect any external logic to pins marked NC (no connect pins).
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
30 Datasheet
3.2.4 80960Jx 196-Ball MPBGA Pinout
Figure 6. 196-Ball Mini Plastic Ball Grid Array Top View-Balls Facing Down
NCAD8
VCC
AD13AD15VCC
AD18VCC
AD22VCC
NCVCC
AD28
NC
AD4AD7AD9AD10AD12AD14AD17AD20AD23VCC
AD29AD27AD30
VCC
AD2
AD6
AD11
VCC
VCC
AD16AD19AD21AD24
AD25AD26
AD31NC NC
NCNCNC
VCC
NC
NC
VCC
NC
NC
VCC
NC
NC
BE3#BE1#
BSTAT
BE0#VCC
LOCK#/
ALE
VCC
DEN#HOLDA
AD1AD0
VCC
VCC
VCCPLLVCC
VCC
NCCLKINNC
NCVCC
NC
RESET#
TDI
STESTNC
RDYRCV#NC
AD5
VCC
VCC
NC
XINT0#
HOLD
A3
ADS#NC
NC XINT2#
NCVCC
TCKTRST#TMSVCC
VCC5VCC ALE#NC
DT/R# VCC
XINT3#
XINT1#
XINT5#XINT7#NMI#NCNCFAIL#WIDTH1
WIDTH0VCC
BLAST#
NCXINT4#NCTDOVCC
A2NCNCD/C#W/R# XINT6#
P
N
M
L
K
J
H
G
F
E
D
C
B
A
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1413121110987654321
1413121110987654321
BE2#
VCC
NC
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
AD3VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
ONCE#
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 31
Figure 7. 196-Ball Mini Plastic Ball Grid Array Bottom View-Balls Facing Up
P
N
M
L
K
J
H
G
F
E
D
C
B
A
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1413121110987654321
1413121110987654321
NC AD8 VCC AD13 AD15 VCC AD18 VCC AD22 VCC NC VCC AD28 NC
AD4 AD7 AD9 AD10 AD12 AD14 AD17 AD20 AD23 VCC AD29 AD27 AD30 VCC
AD2 AD6 AD11 VCC VCC AD16 AD19 AD21 AD24 AD25 AD26 AD31 NCNC
NC NC NC
VCC NC NC
VCC NC NC
VCC NC NC
BE3# BE1#
BSTAT BE0# VCC
LOCK#/ ALE
VCC DEN# HOLDA
AD1 AD0
VCC VCC
VCCPLL VCC VCC
NC CLKIN NC
NC VCC NC
RESET# TDI
STEST NC
RDYRCV# NC
AD5
VCC
VCC
NC
XINT0#
HOLD
A3
ADS# NC
NCXINT2#
NC VCC
TCK TRST# TMS VCC VCC5 VCC
ALE# NC DT/R#
VCC
XINT3# XINT1#
XINT5# XINT7# NMI# NC NC FAIL# WIDTH1 WIDTH0 VCC BLAST#
NC XINT4# NC TDO VCC A2 NC NC D/C# W/R#
XINT6#
BE2#
VCC
NC
VSS VSS VSS
VSS VSS VSS
VSS VSS VSS
VSS VSS VSS
VSS VSS
VSS VSS VSS
VSS VSS
VSS VSS VSS
VSS
VSS
VSS VSS VSS
VSS VSS VSS
VSS VSS VSS
VSS VSS VSS
VSS VSS
VSS VSS VSS
VSS VSS
VSS VSS VSS
VSS
VSS
AD3 VSS
VSS VSS
VSS VSS
VSS VSS
VSS
VSS VSS
VSS VSS
VSS VSS
VSS
ONCE#
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
32 Datasheet
Table 15. 196-Ball MPBGA PinoutIn Signal Order (Sheet 1 of 2)
Signal Pin Signal Pin Signal Pin Signal Pin
A2 N5 BE0# J2 NC M4 VCC J1
A3 M5 BE1# H1 NC N3 VCC K3
AD0 D13 BE2# H2 NC N4 VCC K13
AD1 D14 BE3# H3 NC N8 VCC L3
AD2 C14 BLAST# P3 NC N10 VCC M2
AD3 D11 BSTAT J3 NC P1 VCC M6
AD4 B14 CLKIN G13 NC P8 VCC M9
AD5 D12 DEN# L2 NC P9 VCC N6
AD6 C13 D/C# N2 NC P14 VCC P4
AD7 B13 DT/R# M1 NMI# P10 VCC P13
AD8 A13 FAIL# P7 RDYRCV# L14 VCCPLL F14
AD9 B12 HOLD N14 RESET# J14 VSS D4
AD10 B11 HOLDA L1 STEST K14 VSS D5
AD11 C12 LOCK#/ONCE# K2 TCK M14 VSS D6
AD12 B10 NC A1 TDI J12 VSS D7
AD13 A11 NC A4 TDO N7 VSS D8
AD14 B9 NC A14 TMS M12 VSS D9
AD15 A10 NC C1 TRST# M13 VSS D10
AD16 C9 NC C3 VCC5 M8 VSS E4
AD17 B8 NC D1 VCC A3 VSS E5
AD18 A8 NC D2 VCC A5 VSS E6
AD19 C8 NC D3 VCC A7 VSS E7
AD20 B7 NC E1 VCC A9 VSS E8
AD21 C7 NC E2 VCC A12 VSS E9
AD22 A6 NC F1 VCC B1 VSS E10
AD23 B6 NC F2 VCC B5 VSS E11
AD24 C6 NC G1 VCC C10 VSS F4
AD25 C5 NC G2 VCC C11 VSS F5
AD26 C4 NC G12 VCC E3 VSS F6
AD27 B3 NC G14 VCC E12 VSS F7
AD28 A2 NC H12 VCC E13 VSS F8
AD29 B4 NC H14 VCC E14 VSS F9
AD30 B2 NC J13 VCC F3 VSS F10
AD31 C2 NC K12 VCC F12 VSS F11
ADS# P2 NC L12 VCC F13 VSS G4
ALE K1 NC L13 VCC G3 VSS G5
ALE# M7 NC M3 VCC H13 VSS G6
NOTE: Do not connect any external logic to pins marked NC (no connect pins).
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 33
VSS G7 VSS H11 VSS K7 VSS L11
VSS G8 VSS J4 VSS K8 WIDTH0 P5
VSS G9 VSS J5 VSS K9 WIDTH1 P6
VSS G10 VSS J6 VSS K10 W/R# N1
VSS G11 VSS J7 VSS K11 XINT0# M11
VSS H4 VSS J8 VSS L5 XINT1# N12
VSS H5 VSS J9 VSS L6 XINT2# M10
VSS H6 VSS J10 VSS L7 XINT3# N13
VSS H7 VSS J11 VSS L8 XINT4# N9
VSS H8 VSS K4 VSS L9 XINT5# P12
VSS H9 VSS K5 VSS L10 XINT6# N11
VSS H10 VSS K6 VSS L4 XINT7# P11
Table 16. 196-Ball MPBGA PinoutIn Pin Order (Sheet 1 of 2)
Pin Signal Pin Signal Pin Signal Pin Signal
A1 NC C11 VCC F7 VSS J3 BSTAT
A2 AD28 C12 AD11 F8 VSS J4 VSS
A3 VCC C13 AD6 F9 VSS J5 VSS
A4 NC C14 AD2 F10 VSS J6 VSS
A5 VCC D1 NC F11 VSS J7 VSS
A6 AD22 D2 NC F12 VCC J8 VSS
A7 VCC D3 NC F13 VCC J9 VSS
A8 AD18 D4 VSS F14 VCCPLL J10 VSS
A9 VCC D5 VSS G1 NC J11 VSS
A10 AD15 D6 VSS G2 NC J12 TDI
A11 AD13 D7 VSS G3 VCC J13 NC
A12 VCC D8 VSS G4 VSS J14 RESET#
A13 AD8 D9 VSS G5 VSS K1 ALE
A14 NC D10 VSS G6 VSS K2 LOCK#/ONCE#
B1 VCC D11 AD3 G7 VSS K3 VCC
B2 AD30 D12 AD5 G8 VSS K4 VSS
B3 AD27 D13 AD0 G9 VSS K5 VSS
B4 AD29 D14 AD1 G10 VSS K6 VSS
B5 VCC E1 NC G11 VSS K7 VSS
B6 AD23 E2 NC G12 NC K8 VSS
NOTE: Do not connect any external logic to pins marked NC (no connect pins).
Table 15. 196-Ball MPBGA PinoutIn Signal Order (Sheet 2 of 2)
Signal Pin Signal Pin Signal Pin Signal Pin
NOTE: Do not connect any external logic to pins marked NC (no connect pins).
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
34 Datasheet
B7 AD20 E3 VCC G13 CLKIN K9 VSS
B8 AD17 E4 VSS G14 NC K10 VSS
B9 AD14 E5 VSS H1 BE1# K11 VSS
B10 AD12 E6 VSS H2 BE2# K12 NC
B11 AD10 E7 VSS H3 BE3# K13 VCC
B12 AD9 E8 VSS H4 VSS K14 STEST
B13 AD7 E9 VSS H5 VSS L1 HOLDA
B14 AD4 E10 VSS H6 VSS L2 DEN#
C1 NC E11 VSS H7 VSS L3 VCC
C2 AD31 E12 VCC H8 VSS L4 VSS
C3 NC E13 VCC H9 VSS L5 VSS
C4 AD26 E14 VCC H10 VSS L6 VSS
C5 AD25 F1 NC H11 VSS L7 VSS
C6 AD24 F2 NC H12 NC L8 VSS
C7 AD21 F3 VCC H13 VCC L9 VSS
C8 AD19 F4 VSS H14 NC L10 VSS
C9 AD16 F5 VSS J1 VCC L11 VSS
C10 VCC F6 VSS J2 BE0# L12 NC
L13 NC M10 XINT2# N7 TDO P4 VCC
L14 RDYRCV# M11 XINT0# N8 NC P5 WIDTH0
M1 DT/R# M12 TMS N9 XINT4# P6 WIDTH1
M2 VCC M13 TRST# N10 NC# P7 FAIL#
M3 NC M14 TCK N11 XINT6# P8 NC
M4 NC N1 W/R# N12 XINT1# P9 NC
M5 A3 N2 D/C# N13 XINT3# P10 NMI#
M6 VCC N3 NC N14 HOLD P11 XINT7#
M7 ALE# N4 NC P1 NC P12 XINT5#
M8 VCC5 N5 A2 P2 ADS# P13 VCC
M9 VCC N6 VCC P3 BLAST# P14 NC
Table 16. 196-Ball MPBGA PinoutIn Pin Order (Sheet 2 of 2)
Pin Signal Pin Signal Pin Signal Pin Signal
NOTE: Do not connect any external logic to pins marked NC (no connect pins).
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 35
4.0 Electrical Specifications
4.1 Absolute Maximum Ratings
This document contains information on products in the production phase of development. The
specifications within this datasheet are subject to change without prior notice. Verify with your
local Intel sales off ice or the world wide web to ensure that you h ave the latest datasheet and device
specification update before finalizing a design.
Warning: Stressing the dev i ce beyo nd the Absol ute Maxi mum Rat ings may caus e perman ent damage. These
are stress ratings onl y. Table 17 presents the absolute maximum ratings.
4.2 Operating Conditions
Warning: Operation beyond the Oper at ing C ond i tio ns is n ot recommended and extended expo sure beyond
the Operating Conditions may affect device reliability.
Table 18 presents the operating conditions for the 80960Jx 3.3 V processors.
Table 17. Absolute Maximum Ratings
Parameter Maximum Rating
Storage Temperature 65o C to +150o C
Case Temperature Under Bias 65o C to +110o C
Supply Voltage wrt. VSS 0.5 V to + 4.6 V
Voltage on VCC5 wrt. VSS 0.5 V to + 6.5 V
Voltage on Other Pins wrt. VSS 0.5 V to VCC + 0.5 V
Table 18. 80960Jx Operating Conditions
Symbol Parameter Min Max Units Notes
VCC Supply Voltage 3.15 3.45 V
VCC5 Input Protection Bias 3.15 5.5 V ()
fCLKIN
Input Clock Frequency
80960JT-100
80960JC-66
80960JC-50
80960JS-33
80960JS-25
80960JD-66
80960JD-50
80960JD-40
80960JD-33
80960JA/JF-33
80960JA/JF-25
80960JA-16
15
15
15
15
15
12
12
12
12
12
12
12
33.3
33.3
25
33
25
33.3
25
20
16.67
33.3
25
16
MHz
TCOperating Case Tem perat ure
PGA, MPBGA, and PQFP
Extended temp PQFP and MPBGA 0
-40 100
100 °C
See Section 4.4, VCC5 Pin Requirements (VDIFF) on page 36.
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
36 Datasheet
4.3 Connection Recommendations
For clean on-chip power distri bution, VCC and VSS pins separately feed the devices functional
units. Power and ground connections must be made to all 80960Jx power and ground pins. On the
circuit board, every VCC pin should connect to a power plan e and ever y VSS pin should connect to
a ground plane. Place liberal decoupling capacitance near the 80960Jx, since the processor may
cause transient power surges.
The 80960JS/JC/JT processors are produced on Intels advanced CMOS process. Proper bulk
decoupling must be used to prev ent device damag e during in itial power up and during transitions
from low power mode to normal processor operation. Power supply behavior during these
transitions may cause the power supply to exceed the maximum VCC specification and may cause
device damage.
Pay special attention to the Test Reset (TRST#) pin. It is essential that the JTAG Boundary Scan
Test Access Port (TAP) controller initializes to a known state whether it may be used o r not. When
the JTAG Boundary Scan function may be used, connect a pull-down resistor between the TRST#
pin and VSS. When the JTAG Boundary Scan function may not be used (even for board-level
testing), connect the TRST# pin to VSS.
Do not connect the TDI, TDO, and TCK pins when the TAP Controller may not be used.
Note: Pins identified as NC must not be connected in the system.
4.4 VCC 5 Pin Requiremen ts (VDIFF)
In 3.3 V only system s where the 80960Jx inpu t pins are driven from 3.3 V logic, connect the VCC5
pin directly to the 3.3 V VCC plane.
In mixed voltage systems where the processor is powered by 3.3 V and interfaces with 5 V
components, VC C5 must be co nnected to 5 V. This allows proper 5 V t olerant bu ffer o peration, and
prevents damage to the input pins. The voltage differential between the 80960Jx VCC5 pin and its
3.3 V VCC pins must not exceed 2.25 V. When this requ irement is not met, current flow through the
pin may exceed the value at which the processor is damaged. Instances when the voltage may
exceed 2.25 V is during power u p or power down, where one source reaches its level faster than the
other, briefly causing an excess voltage differential. Another instance is during steady-state
operation, where the differential voltage of the regulator (provided a regulator is used) can not be
maintained within 2.25 V. Two methods are possible to prevent this from happening:
Use a regulator that is designed to prevent the voltage differential from exceeding 2.25 V.
or:
As shown in Figure 8, place a 100 resistor in series with the VCC5 pin to limit the current
through VCC5.
Figure 8. VCC5 Current-Limiting Resistor
+5 V (±0.25 V) VCC5 Pin
100
5%, 0. 5 W)
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 37
When the regulator cannot prevent the 2.25 V differential, the addition of the resistor is a simple
and reliable method for limiting current. The resisto r may also prevent d amage in the case of a
power failure, where the 5 V supply remains on and the 3.3 V supply goes to zero.
4.5 VCCPLL Pin Requirements
To reduce clock skew on the 80960Jx processor, the VCCPLL pin for the Phase Lock Loop (PLL)
circuit is isolated on the pinout. The lowpass filter, as shown in Figure 9, reduces noise induced
clock jitter and its effects on timing relationships in system designs. The 4.7 µF capacitor must be
low ESR solid tantalum; the 0.01 µF capacitor must be of the type X7R and the node connecting
VCCPLL must be as short as possible.
When the voltage on the VCCPLL power supply pin exceeds the VCC pin voltage by 0.5 V at any
time, including the power up and power down sequences, excessive currents may permanently
damage on-ch ip electrostatic dischar ge (ESD) protection diod es. The damage m ay accumulate over
multiple episodes.
In actual applications, this problem occurs only when the VCCPLL and VCC pins are driven by
separate power supplies or vol tage r egulators. Applications t hat use one power supply fo r
VCCPLL and VCC are not ty pi cally at risk. Verify that your application does not allow the
VCCPLL voltage to exceed VCC by 0.5 V.
The VCCPLL low-pass filter recommendation does not promote this problem.
Table 19. VDIFF Parameters
Symbol Parameter Min Max Units Notes
VDIFF VCC5-VCC
Difference 2.25 V VCC5 input should not exceed VCC by more than 2.25 V
during power-up and power-down, or during steady-
state operation.
Figure 9. VCCPLL Lowp ass Filter
100
VCC
(Board Plane)
VCCPLL
(On 80960Jx)
(80960JA/JF/JD)
F_CA078A
0.01 µF
4.7 µF
+
10 (80960JS/JC/JT)
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
38 Datasheet
4.6 D.C. Sp ecifications
Table 20. 80960Jx D.C. Characteristics
Symbol Parameter Min Typ Max Units Notes
VIL Input Low Voltage - 0.3 0.8 V
VIH Input High Voltage 2.0 VCC5 + 0.3 V
VOL Output Low V oltage 0.4 V IOL = 3 mA
VOH Output High V oltage 2.4 V IOH = -1 mA
VOLP Output Ground Bounce <0.8 V (1,2)
CIN
Input Capacitance
PGA
PQFP
MPBGA
15
15
15
pF fCLKIN = fMIN (2)
COUT
I/O or Output Capacitance
PGA
PQFP
MPBGA
15
15
15
pF fCLKIN = fMIN (2)
CCLK
CLKIN Capacitance
PGA
PQFP
MPBGA
15
15
15
pF fCLKIN = fMIN (2)
NOTES:
1. Typical is measured with VCC = 3.3 V and temperature = 25°C.
2. Not tested.
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 39
Table 21. 80960Jx ICC Characteristics (Sheet 1 of 3)
Symbol Parameter Typ Max Units Notes
ILI1 Input Leakage Current for each pin
except TCK, TDI, TRST# and TMS ± 1 µA 0 VIN VCC
ILI2
Input Leakage Current for TCK, TDI,
TRST# and TMS
80960 JA/JF/JD
80960 JS/JC/JT -140
-250 -250
-300 µA VIN = 0.45V (1)
ILO Output Leakage Current ± 1 µA 0.4 VOUT
VCC
Rpu Internal Pull-UP Resistance for
ONCE#, TMS, TDI and TRST# 20 30 k
ICC Active
(Power Supply)
80960JT-100
80960JC-66
80960JC-50
80960JS-33
80960JS-25
80960JD-66
80960JD-50
80960JD-40
80960JD-33
80960JA/JF-33
80960JA/JF-25
80960JA-16
505
360
280
240
185
580
447
367
310
320
241
154
mA (2,3)
ICC Active
(Thermal)
80960JT-100
80960JC-66
80960JC-50
80960JS-33
80960JS-25
80960JD-66
80960JD-50
80960JD-40
80960JD-33
80960JA/JF-33
80960JA/JF-25
80960JA-16
480
345
270
221
170
510
390
320
260
271
215
152
mA (2,4)
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
40 Datasheet
ICC Test
(Power modes)
Reset mode
80960JT-100
80960JC-66
80960JC-50
80960JS-33
80960JS-25
80960JD-66
80960JD-50
80960JD-40
80960JD-33
80960JA/JF-33
80960JA/JF-25
80960JA-16
Halt mode
80960JT-100
80960JC-66
80960JC-50
80960JS-33
80960JS-25
80960JD-66
80960JD-50
80960JD-40
80960JD-33
80960JA/JF-33
80960JA/JF-25
80960JA-16
ONCE mode
380
275
210
240
182
475
425
345
300
250
200
150
52
45
34
35
30
50
40
34
29
31
26
21
10
mA (5)
Table 21. 80960Jx ICC Characteristics (Sheet 2 of 3)
Symbol Parameter Typ Max Units Notes
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 41
ICC5 Current on the
VCC5 Pin
80960JT-100
80960JC-66
80960JC-50
80960JS-33
80960JS-25
80960JD-66
80960JD-50
80960JD-40
80960JD-33
80960JA/JF-33
80960JA/JF-25
80960JA-16
200 µA (6)
NOTES:
1. These pins have internal pullup devices. Typical leakage current is not tested.
2. Measured with device operating and outputs loaded to the test condition in Figure 10, A.C. Test Load on
page 45.
3. ICC Active (Power Supply) value is provided for selecting your systems power supply. It is measured using
one of the worst case instruction mixes with VCC = 3.45 V. This parameter is characterized but not tested.
4. ICC Active (Thermal) value is provided for your systems thermal management. Typi cal ICC is measured
with VCC =3.3 V and temperature = 25° C. This parameter is characterized but not tested.
5. ICC Test (Power modes) refers to the ICC values that are tested when the 80960JD is in Reset mode, Halt
mode or ONCE mode with VCC = 3.45 V.
6. ICC5 is tested at VCC = 3.3 V, VCC5 = 5.25 V.
Table 21. 80960Jx ICC Characteristics (Sheet 3 of 3)
Symbol Parameter Typ Max Units Notes
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
42 Datasheet
4.7 A.C. Sp ecifications
The 80960Jx A.C. timings are based upon device characterization.
Table 22. 80960Jx A.C. Characteristics (Sheet 1 of 3)
Symbol Parameter Min Max Unit Notes
Input Clock Timings
TF
CLKIN Frequency
80960JT-100
80960JC-66
80960JC-50
80960JS-33
80960JS-25
80960JD-66
80960JD-50
80960JD-40
80960JD-33
80960JA/JF-33
80960JA/JF-25
80960JA-16
15
15
15
15
15
12
12
12
12
12
12
12
33.3
33.3
25
33.3
25
33.3
25
20
16.67
33.3
25
16
MHz
TC
CLKIN Period
80960JT-100
80960JC-66
80960JC-50
80960JS-33
80960JS-25
80960JD-66
80960JD-50
80960JD-40
80960JD-33
80960JA/JF-33
80960JA/JF-25
80960JA-16
30
30
40
30
40
30
40
50
60
30
40
62.5
66.7
66.7
66.7
66.7
66.7
83.3
83.3
83.3
83.3
83.3
83.3
83.3
ns
TCS CLKIN Period Stability ± 250 ps (1, 2)
TCH CLKIN High Tim e 8 ns Measured at 1.5 V (1)
TCL CLKIN Low Tim e 8 ns Measured at 1.5 V (1)
TCR CLKIN Rise Time 4 ns 0.8 V to 2.0 V (1)
TCF CLKIN Fall T ime 4 ns 2.0 V to 0.8 V (1)
NOTE: See Table 23 on page 45 for note definitions for this table.
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 43
Synchronous Output Timings
TOV1
Output Valid Delay, Except ALE/ALE#
Inactive and DT/R# for 3.3 V input
signals
Same as above, but for 5.5 V input
signals
Extended Temp MPBGA and PQFP
(JS/JC/JT on ly):
Output Valid Delay, Except ALE/ALE#
Inactive and DT/R# for 3.3 V input
signals
Same as above, but for 5.5 V input
signals
2.5
2.5
1.75
1.75
13.5
16.5
13.5
16.5
ns (2, 11)
TOV2
Output Valid Delay, DT/R#
80960JS/JC/JT
80960JD
80960JA/JF
0.5TC + 7
0.5TC + 7
0.5TC + 4
0.5TC + 9
0.5TC + 9
0.5TC + 18
ns
TOF Output Float Delay 2.5 13.5 ns (4)
Synchr onous Input Timings
TIS1
Input Setup to CLKIN AD[31:0], NMI#,
XINT[7:0]#
80960JS/JC/JT
80960JD
80960JA/JF
6
6
9
ns (5)
TIH1
Input Hold from CLKIN AD[31:0],
NMI#, XINT[7:0]#
80960JS/JC/JT
80960JD
80960JA/JF
2.0
1.5
1.0
ns (5)
TIS2
Input Setup to CLKIN RDYRCV# and
HOLD
80960JS/JC/JT
80960JD
80960JA/JF
6.5
6.5
10.0
ns (6)
TIH2 Input Hold from CLKIN RDYRCV#
and HOLD 1ns(6)
TIS3
Input Setup to CLKIN RESET#
80960JS/JC/JT
80960JD
80960JA/JF
7
7
8
ns (7)
TIH3
Input Hold from CLKIN RESET#
80960JS/JC/JT
80960JD
80960JA/JF
2
2
1
ns (7)
TIS4
Input Setup to RESET# ONCE#,
STEST
80960JS/JC/JT
80960JD
80960JA/JF
7
7
8
ns (8)
Table 22. 80960Jx A.C. Characteristics (Sheet 2 of 3)
Symbol Parameter Min Max Unit Notes
NOTE: See Table 23 on page 45 for note definitions for this table.
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
44 Datasheet
TIH4
Input Hold from RESET# ONCE # ,
STEST
80960JS/JC/JT
80960JD
80960JA/JF
2
2
1
ns (8)
Relative Output Timing s
TLX Address Valid to ALE/ALE# Inactive
For 3.3 V Data Input Signals
For 5.0 V Data Input Signals 0.5TC - 5
0.5TC - 8 ns (9)
TLXL ALE/ALE# Width 0.5TC - 7 ns Equal Loading (9)TLXA Address Hold from ALE/ALE# Ina ctive
TDXD DT/R# Valid to DEN# Active
Boundary Scan Test Signal Timings
TBSF TCK Frequency 0.5TF MHz
TBSCH TCK High Time 15 ns Measured at 1.5 V (1)
TBSCL TCK Low Time 15 ns Measured at 1.5 V (1)
TBSCR TCK Rise Time 5 ns 0.8 V to 2.0 V (1)
TBSCF T CK Fa ll Time 5 ns 2.0 V to 0.8 V (1)
TBSIS1 Input Setup to TCK TDI, TMS 4 ns
TBSIH1 Input Hold from TCK TDI, TMS 6 ns
TBSOV1 TDO Valid Delay 3 30 ns (1, 10)
TBSOF1 TD O Float Delay 3 30 ns (1, 10)
TBSOV2 All Outputs (Non-Test) Valid Delay 3 30 ns (1, 10)
TBSOF2 All Output s (Non-Test) Float Delay 3 30 ns (1, 10)
TBSIS2 Input Setup to TCK All Inputs
(Non-Test) 4ns
TBSIH2 Input Hold from TCK All Inputs
(Non-Test) 6ns
Table 22. 80960Jx A.C. Characteristics (Sheet 3 of 3)
Symbol Parameter Min Max Unit Notes
NOTE: See Table 23 on page 45 for note definitions for this table.
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 45
4.7.1 A.C. Test Conditions and Derating Curves
The A.C. Specifications in Section 4.7, A.C. Specifications are tested with the 50 pF load
indicated in Figure 10 .
Refer to the following sections for the specified derating curves:
Section 4.7.1.1, Output Delay or Hold vs. Load Capacitance on page 46
Section 4.7.1.2, TLX vs. AD Bus Load Capacitance on page 47
Table 23. Note Definitions for Table 22, 80960Jx AC Characteristics
NOTES:
1. Not tested.
2. To ensure a 1:1 relationship between the amplitude of the input jitter and the internal clock, the jitter
frequency spectrum should not have any power peaking between 500 KHz and 1/3 of the CLKIN
frequency.
3. Inactive ALE /ALE# refers to the falling edge of ALE and the rising edge of ALE#. For inactive ALE/ALE#
timings, ref e r to Relative Output T i m i ng s in this table.
4. A float condition occurs when the output current becomes less than IOL. Float delay is not tested, but is
designed to be no longer than the valid delay.
5. AD[31:0] are synchronous inputs. Setup and hold times must be met for proper processor operation. NMI#
and XINT[7:0]# may be synchronous or asynchronous. Meeting setup and hold time guarantees
recognition at a particular clock edge. For asynchronous operation, NMI# and XINT[7:0]# must be asserted
for a minimum of two CLKIN periods to ensure recognition.
6. RDYRCV # and HOLD are synchronous inputs. Setup and hold times must be met for proper processor
operation.
7. RESET# may be synchronous or asynchronous. Meeting setup and hold time guarantees recognition at a
particular clock edge.
8. ONCE# and STEST# must be stable at the rising edge of RESET# for proper operation.
9. Guaranteed by design. May not be 100% tested.
10.Relative to falling edge of TCK.
11.Worst-case T OV condition occurs on I/O pins when pins transition from a floating high input to driving a low
output state. The Address/Data Bus pins encounter this condition between the last access of a read, and
the address cycle of a following write. 5 V signals take 3 ns longer to discharge than 3.3 V signals at 50 pF
loads.
Figure 10. A.C. Test Load
Output Pin
CL = 50 pF for all signals
CL
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
46 Datasheet
4.7.1.1 Output Delay or Hold vs. Load Capacitance
Figure 11. Output Delay or Hold vs. Load Capacitance80960JS/JC/JT (3.3 V Signals)
Figure 12. Output Delay or Hold vs. Load Capacitance80960JS/JC/JT (5 V Signals)
AC Tim i ngs vs. Load Ca pacita nce
(3.3 V Signa ls)
nom + 0
nom + 2
nom + 4
nom + 6
nom + 8
nom + 10
50 100 150
AD Bus Capacitive Load (pF)
Tov
(ns)
AC Tim i ngs vs. Load Ca pacita nce
(5 V S i gnal s)
nom + 0
nom + 2
nom + 4
nom + 6
nom + 8
nom + 10
nom + 12
nom + 14
nom + 16
50 100 150
AD Bus Capaci ti ve Load (pF)
TOV (ns)
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 47
4.7.1.2 TLX vs. AD Bus Load Capacitance
Figure 13. Output Delay or Hold vs. Load Capacitance80960JA/JF/JD
Figure 14. TLX vs. AD Bus Load Capacitance80960JS/JC/JT (3.3 V Signals)
AC Tim i ngs vs. Load Ca pacita nce
nom + 0
nom + 1
nom + 2
nom + 3
nom + 4
nom + 5
nom + 6
nom + 7
nom + 8
50 100 150
AD Bus Capacitive Load (pF)
Tov (ns)
Rise and Fall times are identical.
AC Tim i ngs vs. Load Ca pacita nce
(3.3 V Signa ls)
nom - 0
nom - 2
nom - 4
nom - 6
nom - 8
nom - 10
50 100 150
AD Bus Capacitiv e Load (pF)
Tlx (ns)
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
48 Datasheet
Note: The TLX Derating curve applies only when an imbalance in the capacitive load occur s between the
AD bus and ALE. The T LX d erating is based on a 50 pF lo ad on ALE. The d erating ap plie s to ALE
and ALE#.
Note: The TLX Derating curve applies only when an imbalance in the capacitive load occur s between the
AD bus and ALE. The T LX d erating is based on a 50 pF lo ad on ALE. The d erating ap plie s to ALE
and ALE#.
Figure 15. TLX vs. AD Bus Load Capacitance80960JS/JC/JT (5 V Signals)
Figure 16. TLX vs. AD Bus Load Capacitance80960JA/JF/JD
AC Tim i ngs vs. Load Ca pacita nce
(5 V S i gnal s)
nom - 0
nom - 5
nom - 10
nom - 15
nom - 20
50 100 150
AD Bus Capacitive Load (pF)
Tlx (ns)
AC Ti m ings vs. Load Capacitance
nom - 0
nom - 1
nom - 2
nom - 3
nom - 4
nom - 5
nom - 6
nom - 7
nom - 8
50 100 150
AD Bus Capacitive Load (pF )
Tlx (ns)
Rise and Fall times are identical.
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 49
Note: The TLX Derating curve applies only when an imbalance in the capacitive load occurs between the
AD bus and ALE. The TLX derating is based o n a 50 pF l oad on ALE. Th e derating app lies to ALE
and ALE#.
4.7.1.3 ICC Active vs. Frequency
Figure 17. ICC Active (Power Supply) vs. Frequency80960JA/JF
Figure 18. 80960JA/JF ICC Active (Thermal) vs. Frequency
Icc Active (Pow e r Supply) vs Fre que ncy
0
50
100
150
200
250
300
350
12 15 18 21 24 27 30 33
CLKIN Freque ncy MHz
Icc Active (Power Supply) (mA)
Icc Acti ve (The rma l) vs. Fre que ncy
0
50
100
150
200
250
300
12 15 18 21 24 27 30 33
CLKI N Frequency MHz
Icc Active (Ther mal) (mA)
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
50 Datasheet
Figure 19. 8096 0JD ICC Active (Power Supply) vs. Frequency
Figure 20. 8096 0JD ICC Active (Thermal) vs. Frequency
Icc Active (Pow e r S upply) vs. Fre que ncy
0
100
200
300
400
500
600
12 15 18 21 24 27 30 33
CLKIN Frequency (M Hz)
Icc Active (Power Supply) (mA)
I cc Acti ve (T h ermal ) v s. F req u en cy
0
100
200
300
400
500
600
12 15 18 21 24 27 30 33
CLK I N F requency (M Hz)
Icc Active (Thermal) (mA)
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 51
Figure 21. 80960JC ICC Active (Power Supply) vs. Frequency
Figure 22. 80960JC ICC Active (Thermal) vs. Frequency
I cc Active (P o wer S u p p ly) vs Fr eq u en cy
80960 JC
0
50
100
150
200
250
300
350
400
15 18 21 24 27 30 33
CLKIN Frequency MHz
Icc Active (Power Supply)
(mA)
Icc Activ e (Thermal) vs Frequency
80960 JC
0
50
100
150
200
250
300
350
400
15 18 21 24 27 30 33
C LKIN F requency MHz
Icc Active (Thermal) (mA)
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
52 Datasheet
Figure 23. 80960JS ICC Active (Power Supply) vs. Frequency
Figure 24. 80960JS ICC Active (Thermal) vs. Fr equency
Icc Active (Power Supply) vs Frequency
80960 JS
0
50
100
150
200
250
300
15 18 21 24 27 30 33
CLKIN Frequency MHz
Icc Active (Power Supply)
(mA)
Icc Active (Thermal) vs. Frequency
80960 JS
0
50
100
150
200
250
15 18 21 24 27 30 33
C LKIN F requency MHz
Icc Active (Thermal) (mA)
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 53
4.7.2 A.C. Timing Waveforms
Figure 25. CLKIN Waveform
Figure 26. TOV1 Output Delay Waveform
2.0 V
1. 5V
0.8 V
TCF
TCH TCL
TC
TCR
CLKIN
AD[31:0],
ALE (active),
ALE# (active),
ADS#, A[3:2],
BE[3:0]#,
WIDTH/HLTD[1:0],
D/C#, W/R#, DEN#,
BLAST#, LOCK#,
HOLDA, BSTAT, FAIL#
1.5 V
1.5 V
1.5 V
TOV1
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
54 Datasheet
Figure 27. TOF Output Float Waveform
Figure 28. TIS1 and TIH1 Input Setup and Hold Waveform
Figure 29. TIS2 and TIH2 Input Setup and Hold Waveform
1.5 V
1.5 V
TOF
CLKIN
AD[31:0],
ALE, ALE#
ADS#, A[3:2],
BE[3:0]#,
WIDTH/HLTD[1:0],
D/C#, W/R#, DT/R#,
DEN#, BLAST#, LOCK#
CLKIN
AD[31:0]
1.5 V1.5 V1.5 V
TIS1
TIH1
1.5 V
NMI#
XINT[7:0]# Valid
CLKIN
Valid
HOLD,
1.5 V1.5 V1.5 V
1.5 V
1.5 V
TIS2
TIH2
RDYRCV#
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 55
Figure 30. TIS3 and TIH3 Input Setup and Hold Waveform
Figure 31. TIS4 and TIH4 Input Setup and Hold Waveform
CLKIN
RESET#
1.5 V1.5 V
TIH3 TIS3
RESET#
Valid
ONCE#,
T
IS4
T
IH4
STEST
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
56 Datasheet
Figure 32. TLX, TLXL and TLXA Relative Timings Waveform
Figure 33. DT/R# and DEN# Timings Waveform
CLKIN
ALE
1.5 V1.5 V1.5 V
ALE# 1.5 V 1.5 V
AD[31:0]
Valid
TLXA
TaTw/Td
1.5 V Valid 1.5 V
TLXL
TLX
CLKIN
DT/R#
1.5 V1.5 V
1.5 V
DEN#
Valid
TDXD
TaTw/Td
TOV1
TOV2
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 57
Figure 34. TCK Waveform
Figure 35. TBSIS1 and TBSIH1 Input Setup and Hold Waveforms
Figure 36. TBSOV1 and TBSOF1 Output Delay and Output Float Waveform
2.0 V
1.5 V
0.8 V
T
BSCH
T
BSCL
T
BSCF
T
BSCR
TCK
TMS
1.5 V1.5 V1.5 V
TDI 1.5V 1.5V
Valid
TBSIS1 TBSIH1
TCK 1.5 V1.5 V1.5 V
TBSOV1
TDO Valid
TBSOF1
1.5 V
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
58 Datasheet
Figure 37. TBSOV2 and TBSOF2 Output Delay and Output Float Waveform
Figure 38. TBSIS2 and TBSIH2 Input Setup and Hold Waveform
TCK 1.5 V
1.5 V
1.5 V
TBSOV2
Non-Test Valid
TBSOF2
Outputs 1.5 V
TCK
Non-Test
1.5 V1.5 V1.5 V
1.5 V 1.5 V
Valid
TBSIS2 TBSIH2
Inputs
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 59
5.0 Device Identification
80960Jx processors may be identified electrically, according to device type and stepping (see
Figure 39, and Table 25 through Table 30). Table 24 identifies the device type and stepping
for all 5 V, 80960Jx processors. Figure 39, and Table 25 through Table 30 identify all 3.3 V
to 5 V-tolerant 80960Jx p rocessors. The device ID was enhanced to dif ferentiate b etween 3.3 V and
5 V supply v olta ges, and bet ween non -clock- doubled an d clo ck-doub led cor es wh en stepping from
the A2 stepping to the C0 stepping. The 32-bit identifier is accessible in several ways:
Upon reset, the identifier is placed into the g0 register.
The identifier may be accessed from supervisor mode at any time by reading the DEVICEID
register at address FF008710H.
The IEEE Standard 1149.1 Test Access Port may select the DEVICE ID register through the
IDCODE instruction.
The device and stepping letter is also printed on the top side of the product package.
Table 24. 80960Jx Device Type and Stepping Reference
Device and
Stepping Version
Number Part Number Manufacturer X Complete ID
(Hex)
80960JT A0, A1 0000 0000 1000 0010 1011 0000 0001 001 1 0082B013
80960JC A1 0011 0000 1000 0011 0011 0000 0001 001 1 30833013
80960JS A1 0011 0000 1000 0010 0011 0000 0001 001 1 30823013
80960JD C0 0011 0000 1000 0011 0000 0000 0001 001 1 30830013
80960JF C0 0011 0000 1000 0010 0000 0000 0001 001 1 30820013
80960JA C0 0011 0000 1000 0010 0001 0000 0001 001 1 30821013
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
60 Datasheet
5.1 80960JS/JC/JT Device Ide nti fication Register
Figure 39. 80960JS/JC/JT Device Identification Register Fields
Table 25. 80960JS/JC/JT Device ID Register Field Definitions
Field Value Definition
Version See Table 26 Indicates major stepping changes.
VCC 0 = 3.3 V device Indicates that a device is 3.3 V.
Product Type 000 100
(Indicates i960 CPU) Designates type of product.
Generation Type 0001 = J-series Indicates the generation (or series) to which the
product belongs.
Model
D DPCC
D = Clock Multiplier
(01) Clock-Tripled
(P) Product De rivat ive
(0) Jx
C = Cache Size
(11) 16K I-cache, 4K D-cache
Indicates member within a series and specific model
information.
Manufacturer ID 000 0000 1001
(Indicates Intel) Manufacturer ID assigned by IEEE .
Table 26. 80960JS/JC/JT Device ID Model Types
Device Version VCC Product Gen. Model Manufacturer ID 1
80960JT A0, A1 0000 0 000100 0001 01011 00000001001 1
80960JC A1 0000 0 000100 0001 10011 00000001001 1
80960JS A1 0000 0 000100 0001 00011 00000001001 1
28 24 20 40
16 12 8
110010000000
Manufa ctur er ID
Part Number
Version ModelGen
Product
TypeVCC
10000010000
1
11010
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 61
5.2 8096 0JD Device Identi fication Register
Figure 40. 80960JD Device Identification Register Fields
Table 27. 80960JD Device ID Field Definitions
Field Value Definition
Version See Table 24. Indicates major stepping changes.
VCC 0 = 3.3 V device
1 = 5 V device Indicates that a device is 3.3 V.
Product Type 00 0100
(Indicates i960 CPU) Designates type of product.
Generation Type 0001 = J-series Indicates the generation (or series) to which the product
belongs.
Model
D000C
D = Clock Doubled
(0) Not Clock-Doubled
(1) Clock Doubled
C = Cache Size
(0) 4K I-cache, 2K D-cache
(1) 2K I-cache, 1K D-cache
Indicates member within a series and specific model
information.
Manufacturer ID 000 0000 1001
(Indicates Intel) Manufacturer ID assigned by IEEE.
Table 28. 80960JD Device ID Model Types
Device Version VCC Product Gen. Model Manufacturer ID 1
80960JD C0 0011 0 000100 0001 10000 00000001001 1
28 24 20 40
16 12 8
110010000000
Manufa ctur er ID
Part Number
Version ModelGen
Product
TypeVCC
10000010000
1
10001
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
62 Datasheet
5.3 80960JA/JF Device Identifi cation Register
Figure 41. 80960JA/JF Device Identification Register Fields
Table 29. 80960JA/JF Device ID Field Definitions
Field Value Definition
Version See Table 30. Indicates major stepping changes.
VCC 0 = 3.3 V device
1 = 5 V device Indicates that a device is 3.3 V.
Product Type 00 0100
(Indicates i960 CPU) Designates type of product.
Generation Type 0001 = J-series Indicates the generation (or series) to which the
product belongs.
Model
0000C
C = Cache Size
0 = 4K I-cache, 2K D-cache
1 = 2K I-cache, 1K D-cache
Indicates member within a series and specific
model information.
Manufacturer ID 000 0000 1001
(Indicates Intel) Manufacturer ID ass igne d by IEEE.
Table 30. 80960JA/JF Device ID Model Types
Device Version VCC Product Gen. Model Manufacturer ID 1
80960JA C0 0011 0 000100 0001 00001 00000001001 1
80960JF C0 0011 0 000100 0001 00000 00000001001 1
28 24 20 40
16 12 8
110010000000
Manufa ctur er ID
Part Number
Version ModelGen
Product
TypeVCC
10000010000
1
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 63
6.0 Thermal Specifications
The 80960Jx is specified for operation when TC (case temperature) is within the range of 0° C to
100° C for PGA, MPBGA and PQFP packages. Extended temperature devices are also available in
a PQFP package and an MPBGA package with TC = -40° C to 100° C. Case temperature may be
measured in any environment to determine whether the 80960Jx is within its specified operating
range. The case temperature should be measured at the center of the top surface, opposite the pins.
θCA is the thermal resistance from case to ambient. Use the fo llowing eq uation to calculate TA, the
maximum ambient temperature to conform to a particular case temperature:
TA = TC - P (θCA)
Junction temperature (TJ) is commonly used in reliability calculations. TJ may be calculated from
θJC (thermal resistance from junction to case) using the following equation:
TJ = TC + P (θJC)
Similarly, when TA is known, the corresponding case temperature (TC) may be calculated as
follows:
TC = TA + P (θCA)
Compute P by multiplying ICC from Table 21, 80960Jx ICC C haracteristics on pa ge 39 and VCC.
See the following tables for θJC and θCA values:
For high speed operation, the processors θJA may be significantly reduced by adding a heatsink
and/or by increasing airflow.
Refer to the following tables for the maximum ambient temperature (TA) permitted without
exceeding TC for the PGA, MPBGA, and PQFP packages. The values are based on typical ICC and
VCC of +3.3 V, with a TC of +100° C.
Table 31. Thermal Resistance for θCA a nd θJC Reference Table
Package Table
PGA package Table 33 on page 64
MPBG A packa ge Table 34 on page 64 and Table 35 on page 65
PQFP package Table 36 on page 65
Table 32. Maximum Ambient Temperature Reference Table
Processor Table
80960JT processor Table 37 on page 66
80960JC processor Ta ble 38 on page 66
80960JD processor Ta ble 39 on page 67
80960JS processor Table 40 on page 67
80960JA/JF proces sor Ta ble 41 on page 68
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
64 Datasheet
Table 33. 132-Lead PGA Package Thermal Characteristics
Thermal Resistance °C/Watt
Parameter
Airflow ft./min (m/sec)
0
(0) 200
(1.01) 400
(2.03) 600
(3.04) 800
(4.06) 1000
(5.08)
θJC (Junction-to-Case) 0.7 0.7 0.7 0.7 0.7 0.7
θCA (Case-t o-A m bien t) (N o Heatsink) 25 19 14 12 11 10
θCA (Case-to-Ambient) (Omnidirectional Heatsink) 1596544
θCA (Case-to-Ambient) (Unidirectional Heatsink) 1686544
NOTES:
1. This table applies to a PGA device plugged into a socket or soldered directly into a board.
2. θJA = θJC + θCA
3. θJ-CAP = 5.6° C/W (approximate) (no heat sink)
4. θJ-PIN = 6.4° C/W (inner pins) (approximate) (no heatsink)
5. θJ-PIN = 6.2° C/W (outer pins) (approximate) (no heatsink)
6. θJ-CAP = 3° C/W (approximate) (with heatsink)
7. θJ-PIN = 3.3° C/W (inner pins) (approximate) (with heatsink)
8. θJ-PIN = 3.3° C/W (outer pins) (approximate) (with heatsink)
Table 34. 80960JA/JF/JD 196-Ball MPBGA Package Thermal Characteristics
Thermal Resistance °C/Watt
Parameter
Airflow ft./min (m/sec)
0
(0) 200
(1.01) 400
(2.03) 600
(3.04) 800
(4.06) 1000
(5.08)
θJC (Junction-to-Case) 222222
θCA (Case-t o-A m bien t) (N o Heatsink) 30 22 20 19 18 18
NOTES:
1. This table applies to an MPBGA device soldered directly into a board with all VSS connections.
2. θJA = θJC + θCA
θJC
θJA
θJ-CAP
θCA
θJ-PIN
θJA θJC θCA
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 65
Table 35. 80960JS/JC/JT 196-Ball MPBGA Package Thermal Characteristics
Thermal Resistance °C/Watt
Parameter
Airflow ft./min (m/sec)
0
(0) 200
(1.01) 400
(2.03) 600
(3.04) 800
(4.06) 1000
(5.08)
θJC (Junction- to-Case) 222222
θCA (Case-to-Ambient) (No Heatsink) 34 25 23 22 21 20
NOTES:
1. This table applies to an MPBGA device soldered directly into a board with all VSS connections.
2. θJA = θJC + θCA
Table 36. 132-Lead PQFP Package Thermal Characteristics
Thermal Resistance °C/Watt
Parameter
Airflow ft./min (m/sec)
0
(0) 50
(0.25) 100
(0.50) 200
(1.01) 400
(2.03) 600
(3.04) 800
(4.06)
θJC (Junction- to-Case) 4.1 4.3 4.3 4.3 4.3 4.7 4.9
θCA (C ase-to-A mbient -No Heatsink) 23 19 18 16 14 11 9
NOTES:
1. This table applies to a PQFP device soldered directly into board.
2. θJA = θJC + θCA
3. θJL = 13° C/W (approx.)
4. θJB = 13.5° C/W (approx.)
θJA θJC θCA
θJB
θJA
θJC
θJL
θCA
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
66 Datasheet
Table 37. Maximum TA at Various Airflow s in °C (80960JT)
Airflow-ft/min (m/sec)
fCLKIN
(MHz) 0
(0) 200
(1.01) 400
(2.03) 600
(3.04) 800
(4.06) 1000
(5.07)
PQFP
Package TA without Heatsink 33 63 74 78 82 86 87
PGA
Package
TA without Heatsink 33 60 70 78 81 82 84
TA with Omnidirectional
Heatsink133 76 86 90 92 94 94
TA with Unidirectional
Heatsink233 74 87 90 92 94 94
MPBGA
Package TA without Heatsink 33 46 60 63 65 66 68
NOTES:
1. 0.248 inch high omnidirectional heatsink (AI alloy 6061, 41 mil fin widt h, 124 mil center-to-center fin
spacing).
2. 0.250 inch high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 146 mil center-to-center fin spacing).
Table 38. Maximum TA at Various Airflow s in °C (80960JC)
Airflow-ft/min (m/sec)
fCLKIN (MHz) 0
(0) 200
(1.01) 400
(2.03) 600
(3.04) 800
(4.06) 1000
(5.07)
PQFP
Package TA without Heatsink
33
25
20
16.67
75
79
84
86
82
86
89
90
85
87
90
92
88
90
92
93
90
92
94
95
91
93
94
95
PGA
Package
TA without Heatsink
33
25
20
16.67
73
78
83
85
79
83
87
89
85
87
90
92
87
89
92
93
88
90
92
93
89
91
93
94
TA with Omnidirectional
Heatsink1
33
25
20
16.67
84
87
90
91
90
92
94
95
93
95
96
96
95
96
97
97
96
96
97
98
96
96
97
98
TA with Unidirectional
Heatsink2
33
25
20
16.67
82
86
89
90
91
93
94
95
93
95
96
96
95
96
97
97
96
96
97
98
96
96
97
98
MPBGA
Package TA without Heatsink
33
25
20
16.67
63
69
76
80
73
78
83
85
75
79
84
86
76
80
85
87
77
81
85
87
78
82
86
88
NOTES:
1. 0.248 inch high omnidirectional heatsink (AI alloy 6061, 41 mil fin widt h, 124 mil center-to-center fin
spacing).
2. 0.250 inch high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 146 mil center-to-center fin spacing).
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 67
Table 39. Maximum TA at Various Airflows in °C (80960JD)
Airflow-ft/min (m/sec)
fCLKIN (MH z) 0
(0) 200
(1.01) 400
(2.03) 600
(3.04) 800
(4.06) 1000
(5.07)
PQFP
Package TA without Heatsink
33
25
20
16.67
61
70
75
79
73
79
82
86
76
82
85
87
81
86
88
90
85
88
90
92
86
90
91
93
PGA
Package
TA without Heatsink
33
25
20
16.67
58
68
73
78
68
75
79
83
76
82
85
87
80
84
87
89
81
86
88
90
83
87
89
91
TA with Omnidirectional
Heatsink1
33
25
20
16.67
75
81
84
87
85
88
90
92
90
92
93
95
92
94
95
96
93
95
96
96
93
95
96
96
TA with Unidirectional
Heatsink2
33
25
20
16.67
73
79
82
86
86
90
91
93
90
92
93
95
92
94
95
96
93
95
96
96
93
96
96
96
MPBGA
Package TA without Heatsink 25 61 72 74 76 77 77
NOTES:
1. 0.248 inch high omnidirectional heatsink (AI alloy 6061, 41 mil fin width, 124 mil center-to-center fin
spacing).
2. 0.250 inch high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 146 mil center-to-center fin spacing).
Table 40. Maximum TA at Various Airflows in °C (80960JS)
Airflow-ft/min (m/sec)
fCLKIN (MHz) 0
(0) 200
(1.01) 400
(2.03) 600
(3.04) 800
(4.06) 1000
(5.07)
PQFP
Package TA without Heatsink 33
25
16.67
84
86
91
89
90
94
90
92
94
92
93
96
94
95
96
94
95
97
PGA
Package
TA without Heatsink 33
25
16.67
83
85
90
87
89
92
90
92
94
92
93
95
92
93
96
93
94
96
TA with Omnidirectional
Heatsink133
25
16.67
90
91
94
94
95
96
96
96
98
97
97
98
97
98
98
97
98
98
TA with Unidirectional
Heatsink233
25
16.67
89
90
94
94
95
97
96
96
98
97
97
98
97
98
98
97
98
98
MPBGA
Package TA without Heatsink 33
25
16.67
76
80
86
83
85
90
84
86
91
85
87
91
85
87
92
86
88
92
NOTES:
1. 0.248 inch high omnidirectional heatsink (AI alloy 6061, 41 mil fin width, 124 mil center-to-center fin
spacing).
2. 0.250 inch high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 146 mil center-to-center fin
spacing).
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
68 Datasheet
6.1 Thermal Management Accessories
The following is a list of suggested sources for 80960 Jx thermal solutions. This is neither an
endorsement or a warranty of the performance of any of the listed products and/or companies.
6.1.1 Heatsinks
1. Thermalloy, Inc.
2021 West Valley View Lane
Dallas, TX 75234-8993
(972) 243-4321
2. Wakefield Engineering
60 Audubon Road
Wakefield, MA 01880
(617) 245-5900
3. Aavid Thermal Technologies, Inc.
One Kool Path
Laconia, NH 03247- 040 0
(603) 528-3400
Table 41. Maximum TA a t Variou s Airflo ws in °C (80960JA/JF)
Airflow-ft/min (m/sec)
fCLKIN (MHz) 0
(0) 200
(1.01) 400
(2.03) 600
(3.04) 800
(4.06) 1000
(5.07)
PQFP
Package
For NG80960JA/JF
TA without Heatsink
33
25
16
79
84
89
86
89
92
87
90
93
90
92
95
92
94
96
93
94
96
For TG80960JA-25
TA without Heatsink 25 84 89 90 92 94 94
PGA
Package
TA without Heatsink 33
25
16
78
83
88
83
87
91
87
90
93
89
92
94
90
92
95
91
93
95
TA with Omnidirectional
Heatsink133
25
16
87
90
93
92
94
96
95
96
97
96
97
98
96
97
98
96
97
98
TA with Unidirectional
Heatsink233
25
16
86
89
92
93
94
96
95
96
97
96
97
98
96
97
98
96
97
98
MPBGA
Package TA without Heatsink 33
25 73
79 80
84 82
86 83
87 84
87 84
87
NOTES:
1. 0.248 inch high omnidirectional heatsink (AI alloy 6061, 41 mil fin width, 124 mil center-to-center fin
spacing).
2. 0.250 inch high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 146 mil center-to-center fin
spacing).
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 69
7.0 Bus Functional Waveforms
Figure 42 through Figure 47 illustrate typical 80960Jx bus transactions. Figure 48 depicts the bus
arbitration sequence. Figure 49 illustrates the processor reset sequence from the time power is
applied to the device. Figure 50 illustrates the processo r reset sequence when the processor is in
operation. Figure 51 illustrates the processor ONCE# s equence from the time power is applied to
the device. Figu re 53 and Figure 54 also show acces ses on 32 -bit bu ses. Table 44 thro ugh Table 46
summarize all possible combinations of bus accesses across 8-, 16-, and 32-bit buses according to
data alignment.
Figure 42. Non-Burst Read and Write Transactions Without Wait States, 32-Bit Bus
CLKIN
AD31:0
ALE
ADS#
A3:2
BE3:0#
WIDTH1:0
D/C#
W/R#
DT/R#
DEN#
RDYRCV#
BLAST#
ADDR
D
In Invalid
ADDR
DATA Out
10 10
T
a
T
d
T
r
T
i
T
i
T
a
T
d
T
r
T
i
T
i
F_JF030A
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
70 Datasheet
Figure 43. Burst Read and Write Transactions Without Wait States, 32-Bit Bus
ADDR
DD
ADDR
DATA DATA DATA DATA
1 0 1 0
CLKIN
AD31:0
ALE
ADS#
A3:2
BE3:0#
WIDTH1:0
D/C#
W/R#
BLAST#
DT/R#
DEN#
RDYRCV#
T
A
T
D
T
D
T
R
T
A
T
D
T
D
T
D
T
D
T
R
In In Out Out Out Out
00 or 10 01 or 11 00 01 10 11
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 71
Figure 44. Burst Write Transactions With 2,1,1,1 Wait States, 32-Bit Bus
ADDR DATA
1 0
DATA DATA
DATA
CLKIN
AD31:0
ALE
ADS#
A3:2
BE3:0#
WIDTH1:0
D/C#
W/R#
BLAST#
DT/R#
DEN#
RDYRCV#
TATWTWTDTWTDTWTDTWTDTR
Out Out Out Out
F_JF032A
0 0 0 1 1 0 1 1
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
72 Datasheet
Figure 45. Burst Read and Write Transactions Without Wait States, 8-Bit Bus
ADDR DDADDR DATA DATA DATA DATA
CLKIN
AD31:0
ALE
ADS#
A3:2
BE1#/A1
WIDTH1:0
D/C#
W/R#
BLAST#
DT/R#
DEN#
RDYRCV#
TATDTDTRTATDTDTDTDTR
00,01, 10 or 11 00,01,10 or 11
00 01 10 11
00 00
BE0#/A0
In In Out Out Out
Out
F_JF033A
00 or 10 01 or
11
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 73
Figure 46. Burst Read and Write Transactions With 1, 0 Wait States
and Extra Tr State on Read, 16-Bit Bus
ADDR DDADDR DATA DATA
CLKIN
AD31:0
ALE
ADS#
A3:2
BE3#/BHE
WIDTH1:0
D/C#
W/R#
BLAST#
DT/R#
DEN#
RDYRCV#
TWTDTDTRTRTATWTDTDTR
00,01,10, or 11 00,01,10, or 11
TA
BE0#/BLE
BE1#/A1
01 01
0101
Out Out
In
In
F_JF034A
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
74 Datasheet
Figure 47. Double Word Read Bus Request, Misaligned One Byte From
Quad Word Boundary, 32-Bit Bus, Little Endian
TATDTRTATDTRTATDTRTATDTR
CLKIN
AD31:0
ALE
ADS#
A3:2
BE3:0#
WIDTH1:0
D/C#
W/R#
BLAST#
DT/R#
DEN#
RDYRCV#
00 00 01 10
1 1 0 1 0 0 1 1 0 0 0 0 1 1 1 0
1 0
Valid
AAA
DAD
In In D
In D
In
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 75
Figure 48. HOLD/HOLDA Waveform For Bus Arbitration
CLKIN
Valid
Outputs:
AD31:0,
ALE, ALE#,
ADS#, A3: 2,
BE3:0#,
WIDTH/HLTD1:0,
D/C#, W/R#,
DT/R#, DEN#,
BLAST#, LOCK#
HOLD
HOLDA
~
~~
~~
~~
~
(Note)
NOTE: HOLD is sampled on the rising edge of CLKIN. The processor asserts HOLDA to grant the bus on the
same edge in which it recognizes HOLD when the last state was Ti or the last Tr of a bus transaction. Similarly,
Valid
~
~~
~
~
~
~
~
~
~
TI or TRTHTHTI or TA
the processor deasserts HOLDA on the same edge in which it recognizes the deassertion of HOLD.
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
76 Datasheet
Figure 49. Cold Reset Waveform
CLKIN
ALE#, ADS#,
ALE#,W/R#,
RESET#
LOCK#/
STEST
V
CC
DT/R#
FAIL#
~
~
~
~~
~~
~~
~~
~
~
~
First
Bus
Activity
~
~~
~
~
~
~
~~
~
~
~
Valid
~
~
(Output)
ONCE#
AD31:0, A3:2,D/C#
~
~
~
~~
~
~
~~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~~
~
(Note 1)
~
~
~
~
Idle (Note 2)
HOLD
~
~
Valid Input (Note 3)
~
~
~
~
~
~
~
~
BE3:0#, DEN#,
BLAST#
~
~
~
~
~
~
Valid Output (Note 3)
~
~
~
~
~
~~
~~
~
~
~
~
~
~
~
~
~
~
~~
~~
~
~
~
~
~
~
~~
~
~
~
~
~
HOLDA
V
10,000 C LKIN perio ds, for PLL stabi liz ation .
CC and CLKIN stable to RESET High, minimum
~
~
Built-in self-test (Note 4)
(Input)
~
~
1. The processor asserts FAIL# during built-in self-test. When self- test passes, the FAIL# pin is deasserted.The processor also asserts FAIL#
during the bus confidence test. When the bus confidence test passes, FAIL# is deasserted and the processor begins user program execution.
Notes:
2. If the processor fails built-in self-test, it initiates one dummy load bus access. The load address indicates the point of self-test failure.
3. Since the bus is i dle, hold request s are honored during reset and built-in self-test.
~
~
~
~
WIDTH/HLTD1:0
4. When selected, built-in self test requires approximately (in CLKIN periods): 393,000 for 80960JT, 580,012 for the 80960JC,
~
~
1,176,025 for the 80960JS, 207,000 for 80960JD, and 414,000 for 80960JA/JF.
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 77
Figure 50. Warm Reset Waveform
~
~
~
~
Maximum RESET# Low to Reset Sta te
4 CLKIN Cycles
~
~
~
~~
~
CLKIN
AD31:0, A3:2, D/C#
STEST
RESET#
~
~~
~
RESET# High to First Bus
Minimum RESET# Low Time
15 CLKIN Cycles
~
~
~
~~
~
~
~
HOLDA
~
~
~
~
~
~
~
~
Valid
ALE#, ADS#, BE3:0#,
DEN#, BLAST#
ALE, W/R#,DT/R#, BSTAT,
WIDTH/HLTD1:0
~
~
~
~
FAIL#
~
~
~
~
~
~
HOLD
~
~
~
~
~
~
~
~
~
~
LOCK#/ONCE#
~
~
~
~
~
~
~
~
~
~
Activity: (CLKIN cycles)
~
~
~
~
~
~
~
~
80960JD - 46
80960JA/JF - 92
80960JT - 26
80960JS - 60
80960JC - 40
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
78 Datasheet
Figure 51. Entering the ONCE State
CLKIN
ALE#, ADS#,
ALE,W/R,#
RESET#
LOCK#/
V
CC
DT/R#, WIDTH/HLTD1:0
FAIL#
~
~
~
~~
~~
~
~
~
~
~
~
~
~
~
~
~
ONCE#
AD31:0, A3:2,
D/C#
~
~
~
~~
~
~
~~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
HOLD
~
~
~
~
~
~
BE3:0#, DEN#, BLAST#
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
HOLDA
~
~
~
~
(Input)
minimum 10,000 CLKIN peri ods, for PLL
V
CC
and CLKIN stable to RESET# High,
~
~
~
~
~
~
~
~
~
~
~
~
(Note 1)
1. ONCE# mode may be entered prior to the rising edge of RESET#: ONCE# input is not latched until the rising edge of RESET #.
NOTES:
CLKIN may not be allowed to float.
~
~
~
~
STEST
~
~
~
~
~
~
~
~~
~~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
2. The ONCE# input may be removed after the processor enters ONCE# Mode.
~
~
stabilization.
It must be driven high or low or continue to run.
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 79
7.1 Basic Bus States
The bus h as fi ve bas ic bus states : idle (Ti), address (Ta), wait /data (Tw/Td), recovery ( Tr), and hold
(Th). During system operation, the processor continuously enters and exits different bus states.
Figure 52 shows the five bus st a t es.
The bus occupies the idle (Ti) state when no address/data transactions are in progress and when
RESET# is asserted. When the processor needs to initiate a b us access, it enters the Ta state to
transmit the address.
Following a Ta state, the bus enters the Tw/Td state to transmit or receive data on the address/data
lines. Assertion of the RDYRCV# input signal indicates completion of each transfer. When data is
not ready, the processor may wait as long as necessary for the memory or I/O device to respond.
After the data transfer, the bus exits the Tw/Td state and enters the recovery (Tr) state. In the case
of a burst transaction, the bus exits the Td state and re-enters the Td/Tw state to transfer the next
data word. The processor asserts the BLAST# signal during the last Tw/Td states of an access.
Once all data words transfer in a burst access (up to four), the bus enters the Tr state to allow
devices on the bus to recover.
The processor remains in the Tr state until RDYRCV# is deasserted. When the recovery state
completes, the bus enters the Ti state when no new accesses are required. When an access is
pending, the bus enters the Ta state to transmit the new address.
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
80 Datasheet
7.2 Bound ary-Scan Register
The Boundary-Scan regis ter contains a cell for each pin as well as cells for control of I/O and
HIGHZ pins.
Table 42 shows the bit order of the 80960Jx processor Boundary-Scan register. All table cells that
contain CTL select the direction of bidirectional pins or HIGHZ output pins. When a 1 is loaded
into the control cell, the associated pin(s) are HIGHZ or selected as input.
Figure 52. Bus States with Arbitrati on
Ti IDLE STATE
Ta ADDRESS STATE
Tw / Td WAIT/DATA STATE
Tr RECOVERY STATE
Th HOLD STATE
To ONCE STATE
READY RDYRCV# AS SERTED
NOT READY RDYRCV# NOT ASSERTED
BURST BLAST# NOT ASSERTED
NO BURST BLAST# ASSERTED
RECOVERED RDYRCV# NOT ASSERTED
NOT RECOVERED RDYRCV# ASSERTED
REQUEST PENDING NEW TRANSACTION
NO REQUEST NO NEW TRANSACTION
HOLD HOLD REQUEST ASSERTED
NO HOLD HOLD REQUEST NOT ASSERTED
LOCKED ATOMIC EXECUTION (ATADD, ATMOD) IN PROGRESS
NOT LOCKED NO ATOMIC EXECUTION IN PROGRESS
RESET RESET# ASSERTED
ONCE ONCE# ASSERTED
Tw/Td
Tr
Th
Ti
Ta
HOLD AND
NOT LOCKED HOLD
RECOVERED AND
NO REQUEST AND
(NO HOLD OR
LOCKED)
RECOVERED AND
REQUEST
PENDING AND (NO
HOLD OR LOCKED)
NO REQUEST
AND NO HOLD
To
RESET
NOT
RECOVERED
RECOVERED AND
HOLD AND NOT
LOCKED
READY AND NO BURST
(READY AND BURST)
OR NOT READY
REQUEST PENDING
AND (NO HOLD OR
LOCKED)
NO REQUEST
AND (NO HOLD
OR LOCKED)
ONCE & RESET
DEASSERTION
REQUEST
PENDING AND
NO HOLD
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 81
Table 42. Boundary-Scan RegisterBit Order
Bit Signal Input/
Output Bit Signal Input/
Output Bit Signal Input/
Output
0RDYRCV#
(TDI) I24DEN# O48AD17 I/O
1HOLD I25HOLDA O49AD16 I/O
2XINT0# I26ALE O50AD15 I/O
3XINT1# I27
LOCK#/
ONCE# cell En able cell51 AD14 I/O
4XINT2# I28
LOCK#/
ONCE# I/O 52 AD13 I/O
5XINT3# I29BSTAT O53AD12 I/O
6XINT4# I30BE0# O54AD cells E nable
cell
7XINT5# I31BE1# O55AD11 I/O
8XINT6# I32BE2# O56AD10 I/O
9XINT7# I33BE3# O57AD9 I/O
10 NMI# I34AD31 I/O 58 AD8 I/O
11 FAIL# I35AD30 I/O 59 AD7 I/O
12 ALE# O36AD29 I/O 60 AD6 I/O
13 WIDTH/HLTD1 O37AD28 I/O 61 AD5 I/O
14 WIDTH/HLTD0 O38AD27 I/O 62 AD4 I/O
15 A2 O39AD26 I/O 63 AD3 I/O
16 A3 O40AD25 I/O 64 AD2 I/O
17 CONTROL1 Enable cell41 AD24 I/O 65 AD1 I/O
18 CONTROL2 Enable cell42 AD23 I/O 66 AD0 I/O
19 BLAST# O43AD22 I/O 67 CLKIN I
20 D/C# O44AD21 I/O 68 RESET# I
21 ADS# O45AD20 I/O 69 STEST
(TDO) I
22 W/R# O46AD19 I/O
23 DT/R# O47AD18 I/O
Enable cells are active low.
Table 43. Natural Boundaries for Load and Store Accesses
Data Wid th Natural Boundary (Bytes)
Byte 1
Short Word 2
Word 4
Double Word 8
Triple W ord 16
Quad Word 16
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
82 Datasheet
Table 44. Summary of Byte Load and Store Accesses
Address Offset from
Natural Boun dar y
(in Bytes)
Accesses on 8-Bit Bus
(WIDTH1:0=00) Accesses on 16 Bit
Bus (WIDTH1:0=01) Accesses on 32 Bit Bus
(WIDTH1:0=10)
+0 (aligned) Byte access Byte access Byte access
Table 45. Summary of Short Word Load and Store Accesses
Address Offset from
Natural Boun dar y
(in Bytes)
Accesses on 8-Bit Bus
(WIDTH1:0=00) Accesses on 16 Bit
Bus (WIDTH1:0=01) Accesses on 32 Bit Bus
(WIDTH1:0=10)
+0 (aligned) Burst of 2 bytes Short-word access Short-word access
+1 Two byte accesses Two byte accesses Two byte accesses
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 83
Table 46. Summary of n-Word Load and Store Accesses (n = 1, 2, 3, 4)
Address Offset
from Natural
Boundary in Bytes
Accesses on 8-Bit Bus
(WIDTH1:0=00) Accesses on 16 Bit Bus
(WIDTH1:0=01) Accesses on 32 Bit
Bus (WIDTH1:0=10)
+0 (aligned)
(n =1, 2, 3, 4) n burst(s) of 4 bytes
Case n=1:
burst of 2 short words
Case n=2:
burst of 4 short words
Case n=3:
burst of 4 short words
burst of 2 short words
Case n=4:
2 bursts of 4 short words
Burs t o f n word(s)
+1 (n =1, 2, 3, 4)
+5 (n = 2, 3, 4)
+9 (n = 3, 4)
+13 (n = 3, 4)
Byte access
Burst of 2 bytes
n-1 burst(s) of 4 bytes
Byte access
Byte access
Short-word access
n-1 burst(s) of 2 short
words
Byte access
Byte access
Short-word access
n-1 word
access(es)
Byte access
+2 (n =1, 2, 3, 4)
+6 (n = 2, 3, 4)
+10 (n = 3, 4)
+14 (n = 3, 4)
Burst of 2 bytes
n-1 burst(s) of 4 bytes
Burst of 2 bytes
Short-word access
n-1 burst(s) of 2 short
words
Short-word access
Short-word access
n-1 word
access(es)
Short-word access
+3 (n =1, 2, 3, 4)
+7 (n = 2, 3, 4)
+11 (n = 3, 4)
+15 (n = 3, 4)
Byte access
n-1 burst(s) of 4 bytes
Burst of 2 bytes
Byte access
Byte access
n-1 burst(s) of 2 short
words
Short-word access
Byte access
Byte access
n-1 word
access(es)
Short-word access
Byte access
+4 (n = 2, 3, 4)
+8 (n = 3, 4)
+12 (n = 3, 4) n burst(s) of 4 bytes n burst(s) of 2 short words n word access(es)
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
84 Datasheet
Figure 53. Summary of Aligned and Unaligned Accesses (32-Bit Bus)
04 812162024
0123456
One Doub le-Wo rd
Short-Word
Load/Store
Word
Load/Store
Double-Word
Load/Store
Byte, Byte Accesses
Short Access (Aligned)
Short Access (Aligne d)
Byte, Byte Accesses
Word Access (Aligned)
Byte, Short, Byte, Accesses
Short, Short Accesses
Byte, Short, Byte Accesses
Byte Offset
Word Offset
One Doub le-Wo rd Burst (A li gne d)
Byte, Short, Word, Byte Accesses
Short, Word, Short Accesses
Byte, Word, Short, Byte Accesses
Word, Word Accesses
Burs t (Aligned)
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
Datasheet 85
Figure 54. Summary of Aligned and Unaligned Accesses (32-Bit Bus) (Continued)
04 812162024
0123456
Triple-Word
Load/Store
Quad-Word
Load/Store
Word, Word,
Word Accesses
Word,
Accesses
Word,
Word,
Word,
Word , Wor d , Wor d ,
Word Accesses
Byte Offset
Word Offset
One Th ree -Wor d
Burst (Ali gn ed)
Byte, Short, Word,
Word, Byte Accesses
Short Accesses
Short, Word, Word,
Byte, Word, Word,
Short, Byte Accesses
Word , Wor d ,
Word Accesses
One Four-Word
Burst (Aligned)
Byte, Short, Word, Word,
Word, Byte Accesses
Short, Word, Word, Word,
Short Accesses
Byte, Word, Word, Word,
Short, Byte Accesses
Accesses
Word,
Word
Word,
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
86 Datasheet
This pa ge intentionally left blank.