SN74LVC257A QUADRUPLE 2-LINE TO 1-LINE DATA SELECTOR/MULTIPLEXER WITH 3-STATE OUTPUTS SCAS294G - JANUARY 1993 - REVISED OCTOBER 1998 D D D D D D D EPIC (Enhanced-Performance Implanted CMOS) Submicron Process ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0) Latch-Up Performance Exceeds 250 mA Per JESD 17 Typical VOLP (Output Ground Bounce) < 0.8 V at VCC = 3.3 V, TA = 25C Typical VOHV (Output VOH Undershoot) > 2 V at VCC = 3.3 V, TA = 25C Inputs Accept Voltages to 5.5 V Package Options Include Plastic Small-Outline (D), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages D, DB, OR PW PACKAGE (TOP VIEW) A/B 1A 1B 1Y 2A 2B 2Y GND 1 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9 VCC OE 4A 4B 4Y 3A 3B 3Y description This quadruple 2-line to 1-line data selector/multiplexer is designed for 1.65-V to 3.6-V VCC operation. The SN74LVC257A is designed to multiplex signals from 4-bit data sources to 4-output data lines in bus-organized systems. The 3-state outputs do not load the data lines when the output-enable (OE) input is at a high logic level. Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment. To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. The SN74LVC257A is characterized for operation from -40C to 85C. FUNCTION TABLE INPUTS OE A/B A B OUTPUT Y H X X X Z L L L X L L L H X H L H X L L L H X H H Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. EPIC is a trademark of Texas Instruments Incorporated. Copyright 1998, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 1 SN74LVC257A QUADRUPLE 2-LINE TO 1-LINE DATA SELECTOR/MULTIPLEXER WITH 3-STATE OUTPUTS SCAS294G - JANUARY 1993 - REVISED OCTOBER 1998 logic symbol OE A/B 1A 1B 2A 2B 3A 3B 4A 4B 15 1 EN G1 2 1 3 MUX 4 1Y 1 5 7 6 11 9 10 14 12 13 2Y 3Y 4Y This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. logic diagram (positive logic) OE A/B 1A 1B 2A 2B 3A 3B 4A 4B 2 15 1 2 4 1Y 3 5 7 2Y 6 11 9 3Y 10 14 12 13 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 4Y SN74LVC257A QUADRUPLE 2-LINE TO 1-LINE DATA SELECTOR/MULTIPLEXER WITH 3-STATE OUTPUTS SCAS294G - JANUARY 1993 - REVISED OCTOBER 1998 absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to 6.5 V Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to 6.5 V Output voltage range, VO (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to VCC + 0.5 V Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -50 mA Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -50 mA Continuous output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA Package thermal impedance, JA (see Note 3): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113C/W DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131C/W PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149C/W Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65C to 150C Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. The value of VCC is provided in the recommended operating conditions table. 3. The package thermal impedance is calculated in accordance with JESD 51. recommended operating conditions (see Note 4) VCC Supply voltage VIH High-level input voltage Operating Data retention only VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 2.7 V to 3.6 V MIN MAX 1.65 3.6 1.5 UNIT V 0.65 x VCC V 1.7 2 0.35 x VCC VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 2.7 V to 3.6 V VIL Low-level input voltage VI VO Input voltage 0 5.5 V Output voltage 0 VCC -4 V IOH IOL t/v 0.7 0.8 VCC = 1.65 V VCC = 2.3 V High level output current High-level -8 VCC = 2.7 V VCC = 3 V Low level output current Low-level -12 mA -24 VCC = 1.65 V VCC = 2.3 V 4 VCC = 2.7 V VCC = 3 V 12 Input transition rise or fall rate V 8 mA 24 0 10 ns/V TA Operating free-air temperature -40 85 C NOTE 4: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 3 SN74LVC257A QUADRUPLE 2-LINE TO 1-LINE DATA SELECTOR/MULTIPLEXER WITH 3-STATE OUTPUTS SCAS294G - JANUARY 1993 - REVISED OCTOBER 1998 electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCC 1.65 V to 3.6 V IOH = -100 A IOH = -4 mA VOH IOH = -8 mA 12 mA IOH = -12 IOH = -24 mA IOL = 100 A VOL II IOZ ICC ICC Ci MIN 1.65 V VCC-0.2 1.2 2.3 V 1.7 2.7 V 2.2 3V 2.4 3V 2.2 TYP MAX UNIT V 1.65 V to 3.6 V 0.2 IOL = 4 mA IOL = 8 mA 1.65 V 0.45 2.3 V 0.7 IOL = 12 mA IOL = 24 mA 2.7 V 0.4 3V 0.55 VI = 5.5 V or GND 3.6 V 5 A 3.6 V 10 A 3.6 V 10 A 500 A VO = VCC or GND VI = VCC or GND, One input at VCC - 0.6 V, Other inputs at VCC or GND IO = 0 2.7 V to 3.6 V VI = VCC or GND Co VO = VCC or GND All typical values are at VCC = 3.3 V, TA = 25C. V 3.3 V 5 pF 3.3 V 5 pF switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3) PARAMETER FROM (INPUT) TO (OUTPUT) A or B tpd d VCC = 1.8 V Y A/B VCC = 2.5 V 0.2 V TYP MIN MAX 13.4 1 15.5 VCC = 2.7 V MIN VCC = 3.3 V 0.3 V MAX MIN MAX 7.4 5.4 1 4.6 1 9.5 7.5 1 6.4 UNIT ns ten OE Y 14.7 1 8.7 6.7 1 5.6 ns tdis OE Y 12.7 1 6.7 4.7 1 4.3 ns 1 ns tsk(o) Skew between any two outputs of the same package switching in the same direction operating characteristics, TA = 25C PARAMETER Cpd 4 TEST CONDITIONS VCC = 1.8 V TYP VCC = 2.5 V TYP VCC = 3.3 V TYP UNIT f = 10 MHz 13.5 14.5 15.5 pF Power dissipation capacitance POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 SN74LVC257A QUADRUPLE 2-LINE TO 1-LINE DATA SELECTOR/MULTIPLEXER WITH 3-STATE OUTPUTS SCAS294G - JANUARY 1993 - REVISED OCTOBER 1998 PARAMETER MEASUREMENT INFORMATION VCC = 1.8 V 0.15 V 2 x VCC S1 1 k From Output Under Test Open GND CL = 30 pF (see Note A) 1 k TEST S1 tpd tPLZ/tPZL tPHZ/tPZH Open 2 x VCC Open LOAD CIRCUIT tw VCC Timing Input VCC/2 VCC/2 VCC/2 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VCC/2 VCC/2 0V tPLH Output Control (low-level enabling) tPLZ VCC VCC/2 VCC/2 VOL Output Waveform 2 S1 at Open (see Note B) VOL + 0.15 V VOL tPHZ tPZH VOH VCC/2 0V Output Waveform 1 S1 at 2 x VCC (see Note B) tPHL VCC/2 VCC VCC/2 tPZL VCC Input VOLTAGE WAVEFORMS PULSE DURATION th VCC Data Input VCC/2 0V 0V tsu Output VCC VCC/2 Input VCC/2 VOH VOH - 0.15 V 0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr 2 ns, tf 2 ns. D. The outputs are measured one at a time with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. Figure 1. Load Circuit and Voltage Waveforms POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 5 SN74LVC257A QUADRUPLE 2-LINE TO 1-LINE DATA SELECTOR/MULTIPLEXER WITH 3-STATE OUTPUTS SCAS294G - JANUARY 1993 - REVISED OCTOBER 1998 PARAMETER MEASUREMENT INFORMATION VCC = 2.5 V 0.2 V 2 x VCC S1 500 From Output Under Test Open GND CL = 30 pF (see Note A) 500 TEST S1 tpd tPLZ/tPZL tPHZ/tPZH Open 2 x VCC GND LOAD CIRCUIT tw VCC Timing Input VCC/2 VCC/2 VCC/2 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VCC/2 VCC/2 0V tPLH Output Control (low-level enabling) tPLZ VCC VCC/2 VCC/2 VOL Output Waveform 2 S1 at GND (see Note B) VOL + 0.15 V VOL tPHZ tPZH VOH VCC/2 0V Output Waveform 1 S1 at 2 x VCC (see Note B) tPHL VCC/2 VCC VCC/2 tPZL VCC Input VOLTAGE WAVEFORMS PULSE DURATION th VCC Data Input VCC/2 0V 0V tsu Output VCC VCC/2 Input VCC/2 VOH VOH - 0.15 V 0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr 2 ns, tf 2 ns. D. The outputs are measured one at a time with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. Figure 2. Load Circuit and Voltage Waveforms 6 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 SN74LVC257A QUADRUPLE 2-LINE TO 1-LINE DATA SELECTOR/MULTIPLEXER WITH 3-STATE OUTPUTS SCAS294G - JANUARY 1993 - REVISED OCTOBER 1998 PARAMETER MEASUREMENT INFORMATION VCC = 2.7 V AND 3.3 V 0.3 V 6V S1 500 From Output Under Test Open GND CL = 50 pF (see Note A) 500 TEST S1 tpd tPLZ/tPZL tPHZ/tPZH Open 6V GND tw LOAD CIRCUIT 2.7 V 2.7 V Timing Input 0V 0V VOLTAGE WAVEFORMS PULSE DURATION th 2.7 V Data Input 1.5 V 1.5 V 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES 1.5 V 1.5 V 0V tPLH tPHL VOH 1.5 V 2.7 V Output Control (low-level enabling) 1.5 V 1.5 V VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES Output Waveform 1 S1 at 6 V (see Note B) Output Waveform 2 S1 at GND (see Note B) 1.5 V 0V tPZL 2.7 V Output Input 1.5 V 1.5 V tsu Input 1.5 V tPLZ 3V 1.5 V tPZH VOL + 0.3 V VOL tPHZ 1.5 V VOH - 0.3 V VOH 0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr 2.5 ns, tf 2.5 ns. D. The outputs are measured one at a time with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. Figure 3. Load Circuit and Voltage Waveforms POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 7 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof. Copyright 1998, Texas Instruments Incorporated