a
AD8541/AD8542/AD8544
REV. D
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700 www.analog.com
Fax: 781/326-8703 © 2004 Analog Devices, Inc. All rights reserved.
General-Purpose CMOS
Rail-to-Rail Amplifiers
PIN CONFIGURATIONS
FEATURES
Single-Supply Operation: 2.7 V to 5.5 V
Low Supply Current: 45 A/Amplifier
Wide Bandwidth: 1 MHz
No Phase Reversal
Low Input Currents: 4 pA
Unity Gain Stable
Rail-to-Rail Input and Output
APPLICATIONS
ASIC Input or Output Amplifier
Sensor Interface
Piezo Electric Transducer Amplifier
Medical Instrumentation
Mobile Communication
Audio Output
Portable Systems
GENERAL DESCRIPTION
The AD8541/AD8542/AD8544 are single, dual, and quad rail-
to-rail input and output single-supply amplifiers featuring very
low supply current and 1 MHz bandwidth. All are guaranteed to
operate from a 2.7 V single supply as well as a 5 V supply. These
parts provide 1 MHz bandwidth at a low current consumption
of 45 mA per amplifier.
Very low input bias currents enable the AD8541/AD8542/AD8544
to be used for integrators, photodiode amplifiers, piezo electric
sensors, and other applications with high source impedance. Sup-
ply current is only 45 mA per amplifier, ideal for battery operation.
Rail-to-rail inputs and outputs are useful to designers buffering
ASICs in single-supply systems. The AD8541/AD8542/AD8544
are optimized to maintain high gains at lower supply voltages,
making them useful for active filters and gain stages.
The AD8541/AD8542/AD8544 are specified over the extended
industrial temperature range (–40C to +125C). The AD8541
is available in 8-lead SOIC, 5-lead SC70, and 5-lead SOT-23
packages. The AD8542 is available in 8-lead SOIC, 8-lead
MSOP, and 8-lead TSSOP surface-mount packages. The AD8544
is available in 14-lead narrow SOIC and 14-lead TSSOP surface-
mount packages. All MSOP, SC70, and SOT versions are available
in tape and reel only.
5-Lead SC70 and SOT-23
(KS and RT Suffixes)
1
2
3
5
4IN A
+IN A
V+
OUT A
AD8541
V
8-Lead SOIC
(R Suffix)
NC
–IN A
+IN A
V–
V+
OUT A
NC
NC
1
2
3
4
8
7
6
5
AD8541
NC = NO CONNECT
8-Lead SOIC, MSOP, and TSSOP
(R, RM, and RU Suffixes)
AD8542
1
2
3
4
8
7
6
5
OUT A
–IN A
+IN A
V– +IN B
–IN B
OUT B
V+
14-Lead SOIC and TSSOP
(R and RU Suffixes)
AD8544
1
2
3
4
14
13
12
11
OUT A
–IN A
+IN A
V+ V–
+IN D
–IN D
OUT D
5
6
7
10
9
8
+IN B
–IN B
OUT B OUT C
–IN C
+IN C
–2– REV. D
AD8541/AD8542/AD8544–SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage V
OS
16 mV
–40C £ T
A
£ +125C7mV
Input Bias Current I
B
460 pA
–40C £ T
A
£ +85C100 pA
–40C £ T
A
£ +125C1,000 pA
Input Offset Current I
OS
0.1 30 pA
–40C £ T
A
£ +85C50pA
–40C £ T
A
£ +125C500 pA
Input Voltage Range 0 2.7 V
Common-Mode Rejection Ratio CMRR V
CM
= 0 V to 2.7 V 40 45 dB
–40C £ T
A
£ +125C38 dB
Large Signal Voltage Gain A
VO
R
L
= 100 kW , V
O
= 0.5 V to 2.2 V 100 500 V/mV
–40C £ T
A
£ +85C50 V/mV
–40C £ T
A
£ +125C2 V/mV
Offset Voltage Drift DV
OS
/DT–40C £ T
A
£ +125C4mV/C
Bias Current Drift DI
B
/DT–40C £ T
A
£ +85C100 fA/C
–40C £ T
A
£ +125C2,000 fA/C
Offset Current Drift DI
OS
/DT–40C £ T
A
£ +125C25fA/C
OUTPUT CHARACTERISTICS
Output Voltage High V
OH
I
L
= 1 mA 2.575 2.65 V
–40C £ T
A
£ +125C 2.550 V
Output Voltage Low V
OL
I
L
= 1 mA 35 100 mV
–40C £ T
A
£ +125C125 mV
Output Current I
OUT
V
OUT
= V
S
– 1 V 15 mA
±I
SC
±20 mA
Closed-Loop Output Impedance Z
OUT
f = 200 kHz, A
V
= 1 50 W
POWER SUPPLY
Power Supply Rejection Ratio PSRR V
S
= 2.5 V to 6 V 65 76 dB
–40C £ T
A
£ +125C60 dB
Supply Current/Amplifier I
SY
V
O
= 0 V 38 55 mA
–40C £ T
A
£ +125C75mA
DYNAMIC PERFORMANCE
Slew Rate SR R
L
= 100 kW0.4 0.75 V/ms
Settling Time t
S
To 0.1% (1 V Step) 5 ms
Gain Bandwidth Product GBP 980 kHz
Phase Margin Fo63Degrees
NOISE PERFORMANCE
Voltage Noise Density e
n
f = 1 kHz 40 nV/÷Hz
e
n
f = 10 kHz 38 nV/÷Hz
Current Noise Density i
n
<0.1 pA/÷Hz
Specifications subject to change without notice.
(VS = 2.7 V, VCM = 1.35 V, TA = 25C, unless otherwise noted.)
–3–
REV. D
AD8541/AD8542/AD8544
ELECTRICAL CHARACTERISTICS
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage V
OS
16 mV
–40C £ T
A
£ +125C7mV
Input Bias Current I
B
460 pA
–40C £ T
A
£ +85C100 pA
–40C £ T
A
£ +125C1,000 pA
Input Offset Current I
OS
0.1 30 pA
–40C £ T
A
£ +85C50pA
–40C £ T
A
£ +125C500 pA
Input Voltage Range 03V
Common-Mode Rejection Ratio CMRR V
CM
= 0 V to 3 V 40 45 dB
–40C £ T
A
£ +125C38 dB
Large Signal Voltage Gain A
VO
R
L
= 100 kW , V
O
= 0.5 V to 2.2 V 100 500 V/mV
–40C £ T
A
£ +85C50 V/mV
–40C £ T
A
£ +125C2 V/mV
Offset Voltage Drift DV
OS
/DT–40C £ T
A
£ +125C4mV/C
Bias Current Drift DI
B
/DT–40C £ T
A
£ +85C100 fA/C
–40C £ T
A
£ +125C2,000 fA/C
Offset Current Drift DI
OS
/DT–40C £ T
A
£ +125C25fA/C
OUTPUT CHARACTERISTICS
Output Voltage High V
OH
I
L
= 1 mA 2.875 2.955 V
–40C £ T
A
£ +125C2.850 V
Output Voltage Low V
OL
I
L
= 1 mA 32 100 mV
–40C £ T
A
£ +125C125 mV
Output Current I
OUT
V
OUT
= V
S
– 1 V 18 mA
±I
SC
±25 mA
Closed-Loop Output Impedance Z
OUT
f = 200 kHz, A
V
= 1 50 W
POWER SUPPLY
Power Supply Rejection Ratio PSRR V
S
= 2.5 V to 6 V 65 76 dB
–40C £ T
A
£ +125C60 dB
Supply Current/Amplifier I
SY
V
O
= 0 V 40 60 mA
–40C £ T
A
£ +125C75mA
DYNAMIC PERFORMANCE
Slew Rate SR R
L
= 100 kW0.4 0.8 V/ms
Settling Time t
S
To 0.01% (1 V Step) 5 ms
Gain Bandwidth Product GBP 980 kHz
Phase Margin Fo64Degrees
NOISE PERFORMANCE
Voltage Noise Density e
n
f = 1 kHz 42 nV/÷Hz
e
n
f = 10 kHz 38 nV/÷Hz
Current Noise Density i
n
<0.1 pA/÷Hz
Specifications subject to change without notice.
(VS = 3.0 V, VCM = 1.5 V, TA = 25C, unless otherwise noted.)
–4– REV. D
AD8541/AD8542/AD8544–SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage V
OS
16 mV
–40C £ T
A
£ +125C7mV
Input Bias Current I
B
460 pA
–40C £ T
A
£ +85C100 pA
–40C £ T
A
£ +125C1,000 pA
Input Offset Current I
OS
0.1 30 pA
–40C £ T
A
£ +85C50pA
–40C £ T
A
£ +125C500 pA
Input Voltage Range 0 5V
Common-Mode Rejection Ratio CMRR V
CM
= 0 V to 5 V 40 48 dB
–40C £ T
A
£ +125C38 dB
Large Signal Voltage Gain A
VO
R
L
= 100 kW , V
O
= 0.5 V to 2.2 V 20 40 V/mV
–40C £ T
A
£ +85C10 V/mV
–40C £ T
A
£ +125C2 V/mV
Offset Voltage Drift DV
OS
/DT–40C £ T
A
£ +125C4mV/C
Bias Current Drift DI
B
/DT–40C £ T
A
£ +85C100 fA/C
–40C £ T
A
£ +125C2,000 fA/C
Offset Current Drift DI
OS
/DT–40C £ T
A
£ +125C25fA/C
OUTPUT CHARACTERISTICS
Output Voltage High V
OH
I
L
= 1 mA 4.9 4.965 V
–40C £ T
A
£ +125C4.875 V
Output Voltage Low V
OL
I
L
= 1 mA 25 100 mV
–40C £ T
A
£ +125C125 mV
Output Current I
OUT
V
OUT
= V
S
– 1 V 30 mA
±I
SC
±60 mA
Closed-Loop Output Impedance Z
OUT
f = 200 kHz, A
V
= 1 45 W
POWER SUPPLY
Power Supply Rejection Ratio PSRR V
S
= 2.5 V to 6 V 65 76 dB
–40C £ T
A
£ +125C60 dB
Supply Current/Amplifier I
SY
V
O
= 0 V 45 65 mA
–40C £ T
A
£ +125C85mA
DYNAMIC PERFORMANCE
Slew Rate SR R
L
= 100 kW, C
L
= 200 pF 0.45 0.92 V/ms
Full-Power Bandwidth BW
P
1% Distortion 70 kHz
Settling Time t
S
To 0.1% (1 V Step) 6 ms
Gain Bandwidth Product GBP 1,000 kHz
Phase Margin Fo67Degrees
NOISE PERFORMANCE
Voltage Noise Density e
n
f = 1 kHz 42 nV/÷Hz
e
n
f = 10 kHz 38 nV/÷Hz
Current Noise Density i
n
<0.1 pA/÷Hz
Specifications subject to change without notice.
(VS = 5.0 V, VCM = 2.5 V, TA = 25C, unless otherwise noted.)
AD8541/AD8542/AD8544
–5–
REV. D
ABSOLUTE MAXIMUM RATINGS
1
Supply Voltage (V
S
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND to V
S
Differential Input Voltage
2
. . . . . . . . . . . . . . . . . . . . . . . ±6 V
Storage Temperature Range . . . . . . . . . . . . –65C to +150C
Operating Temperature Range . . . . . . . . . . –40C to +125C
Junction Temperature Range . . . . . . . . . . . . –65C to +150C
Lead Temperature Range (Soldering, 60 sec) . . . . . . . 300C
NOTES
1
Stresses above those listed under Absolute Maximum Ratings may cause perma-
nent damage to the device. This is a stress rating only; functional operation of the
device at these or any other conditions above those listed in the operational
sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability.
2
For supplies less than 6 V, the differential input voltage is equal to ±V
S
.
ORDERING GUIDE
Temperature Package Package Branding
Model Range Description Option Information
AD8541AKS-R2 –40C to +125C5-Lead SC70 KS-5 A4B
AD8541AKS-REEL7 –40C to +125C5-Lead SC70 KS-5 A4B
AD8541AKSZ-REEL7*–40C to +125C5-Lead SC70 KS-5 A4B
AD8541AR –40C to +125C8-Lead SOIC R-8
AD8541AR-REEL –40C to +125C8-Lead SOIC R-8
AD8541AR-REEL7 –40C to +125C8-Lead SOIC R-8
AD8541ART-R2 –40C to +125C5-Lead SOT-23 RT-5 A4A
AD8541ART-REEL –40C to +125C5-Lead SOT-23 RT-5 A4A
AD8541ART-REEL7 –40C to +125C5-Lead SOT-23 RT-5 A4A
AD8541ARTZ-REEL*–40C to +125C5-Lead SOT-23 RT-5 A4A
AD8541ARTZ-REEL7*–40C to +125C5-Lead SOT-23 RT-5 A4A
AD8542AR –40C to +125C8-Lead SOIC R-8
AD8542AR-REEL –40C to +125C8-Lead SOIC R-8
AD8542AR-REEL7 –40C to +125C8-Lead SOIC R-8
AD8542ARZ*–40C to +125C8-Lead SOIC R-8
AD8542ARZ-REEL*–40C to +125C8-Lead SOIC R-8
AD8542ARZ-REEL7*–40C to +125C8-Lead SOIC R-8
AD8542ARM-R2 –40C to +125C8-Lead MSOP RM-8 AVA
AD8542ARM-REEL –40C to +125C8-Lead MSOP RM-8 AVA
AD8542ARU –40C to +125C8-Lead TSSOP RU-8
AD8542ARU-REEL –40C to +125C8-Lead TSSOP RU-8
AD8542ARUZ*–40C to +125C8-Lead TSSOP RU-8
AD8542ARUZ-REEL*–40C to +125C8-Lead TSSOP RU-8
AD8544AR –40C to +125C14-Lead SOIC R-14
AD8544AR-REEL –40C to +125C14-Lead SOIC R-14
AD8544AR-REEL7 –40C to +125C14-Lead SOIC R-14
AD8544ARZ*–40C to +125C14-Lead SOIC R-14
AD8544ARZ-REEL*–40C to +125C14-Lead SOIC R-14
AD8544ARZ-REEL7*–40C to +125C14-Lead SOIC R-14
AD8544ARU –40C to +125C14-Lead TSSOP RU-14
AD8544ARU-REEL –40C to +125C14-Lead TSSOP RU-14
AD8544ARUZ*–40C to +125C14-Lead TSSOP RU-14
AD8544ARUZ-REEL*–40C to +125C14-Lead TSSOP RU-14
*Z = Pb-free part.
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection. Although
the AD8541/AD8542/AD8544 feature proprietary ESD protection circuitry, permanent damage
may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD
precautions are recommended to avoid performance degradation or loss of functionality.
WARNING!
ESD SENSITIVE DEVICE
PACKAGE INFORMATION
Package Type
JA
*
JC
Unit
5-Lead SC70 (KS) 376 126 C/W
5-Lead SOT-23 (RT) 230 146 C/W
8-Lead SOIC (R) 158 43 C/W
8-Lead MSOP (RM) 210 45 C/W
8-Lead TSSOP (RU) 240 43 C/W
14-Lead SOIC (R) 120 36 C/W
14-Lead TSSOP (RU) 240 43 C/W
*q
JA
is specified for worst-case conditions, i.e.,
JA
is specified for device soldered
onto a circuit board for surface mount packages.
AD8541/AD8542/AD8544
–6– REV. D
COMMON-MODE VOLTAGE – V
0.5 0.5 5.5
1.5 2.5 3.5 4.5
INPUT BIAS CURRENT – pA
9
8
0
4
3
2
1
7
5
6
V
S
= 2.7V AND 5V
V
CM
= V
S
/2
TPC 3. Input Bias Current vs.
Common-Mode Voltage
FREQUENCY – Hz
POWER SUPPLY REJECTION – dB
100 1k 10M10k 100k 1M
160
140
40
120
100
80
60
40
20
0
20
V
S
= 2.7V
T
A
= 25C
+PSRR
PSRR
TPC 6. Power Supply Rejection
Ratio vs. Frequency
CAPACITANCE – pF
SMALL SIGNAL OVERSHOOT – %
60
0
10 100 10k
1k
30
20
10
40
V
S
= 2.7V
R
L
=
T
A
= 25C
50
+OS
OS
TPC 9. Small Signal Overshoot vs.
Load Capacitance
INPUT OFFSET VOLTAGE – mV
4.5 3.5 4.5
2.5 1.5 0.5 1.5 2.5 3.50.5
NUMBER OF AMPLIFIERS
180
160
0
80
60
40
20
140
100
120
V
S
= 5V
V
CM
= 2.5V
T
A
= 25C
TPC 1. Input Offset Voltage
Distribution
TEMPERATURE – C
INPUT BIAS CURRENT – pA
400
0
40 20 140
02040 80100 12060
350
200
150
100
50
300
250
V
S
= 2.7V AND 5V
V
CM
= V
S
/2
TPC 4. Input Bias Current vs.
Temperature
LOAD CURRENT – mA
OUTPUT VOLTAGE – mV
10k
100
0.01
0.001 0.01 100
0.1 1 10
1
SINK
0.1
10
V
S
= 2.7V
T
A
= 25C
1k
SOURCE
TPC 7. Output Voltage to Supply
Rail vs. Load Current
TEMPERATURE – C
INPUT OFFSET VOLTAGE – mV
1.0
2.5
4.0
55 35 15 525456585105 125
0.5
2.0
3.0
3.5
1.0
1.5
0.0
0.5
V
S
= 2.7V AND 5V
V
CM
= V
S
/2
145
TPC 2. Input Offset Voltage
vs. Temperature
TEMPERATURE – C
INPUT OFFSET CURRENT – pA
7
1
55 35 145
15 25 85 105 12565
6
3
2
1
0
5
4
V
S
= 2.7V AND 5V
V
CM
= V
S
/2
545
TPC 5. Input Offset Current vs.
Temperature
FREQUENCY – Hz
OUTPUT SWING – V p-p
3.0
2.5
01k 10k 10M
100k 1M
2.0
1.5
0.5
1.0
V
S
= 2.7V
V
IN
= 2.5V p-p
R
L
= 2k
T
A
= 25C
TPC 8. Closed-Loop Output
Voltage Swing vs. Frequency
–Typical Performance Characteristics
AD8541/AD8542/AD8544
–7–
REV. D
CAPACITANCE –
p
F
SMALL SIGNAL OVERSHOOT – %
60
0
10 100 10k
1k
30
20
10
40
V
S
= 2.7V
R
L
= 10k
T
A
= 25C
50
+OS
OS
TPC 10. Small Signal Overshoot vs.
Load Capacitance
500mV 10s
1.35V
V
S
= 2.7V
R
L
= 2k
A
V
= 1
T
A
= 25C
TPC 13. Large Signal Transient
Response
FREQUENCY – Hz
COMMON-MODE REJECTION – dB
1k 10k 10M100k 1M
60
50
40
30
20
V
S
= 5V
T
A
= 25C
10
0
10
70
80
90
TPC 16. Common-Mode Rejection
Ratio vs. Frequency
CAPACITANCE –
p
F
SMALL SIGNAL OVERSHOOT – %
60
0
10 100 10k
1k
30
20
10
40
V
S
= 2.7V
R
L
= 2k
T
A
= 25C
50
+OS
OS
TPC 11. Small Signal Overshoot
vs. Load Capacitance
FREQUENCY – Hz
GAIN – dB
1k 10k 10M100k 1M
80
60
40
20
0
45
90
135
180
PHASE SHIFT – Degrees
VS = 2.7V
RL = NO LOAD
TA = 25C
TPC 14. Open-Loop Gain and
Phase vs. Frequency
LOAD CURRENT – mA
OUTPUT VOLTAGE – mV
10k
100
0.01
0.001 0.01 100
0.1 1 10
1
SINK
0.1
10
V
S
= 5V
T
A
= 25C
1k
SOURCE
TPC 17. Output Voltage to Supply
Rail vs. Frequency
50mV 10s
1.35V
VS = 2.7V
RL = 100kV
CL = 300pF
AV = 1
TA = 25 C
TPC 12. Small Signal Transient
Response
FREQUENCY – Hz
POWER SUPPLY REJECTION RATIO – dB
100 1k 10M10k 100k 1M
160
140
40
120
100
80
60
40
20
0
20
V
S
= 5V
T
A
= 25C
+PSRR
PSRR
TPC 15. Power Supply Rejection
Ratio vs. Frequency
FREQUENCY – Hz
OUTPUT SWING – V p-p
3.0
2.5
01k 10k 10M
100k 1M
2.0
1.5
0.5
1.0
V
S
= 5V
V
IN
= 4.9V p-p
R
L
= NO LOAD
T
A
= 25C
4.0
3.5
5.0
4.5
TPC 18. Closed-Loop Output
Voltage Swing vs. Frequency
AD8541/AD8542/AD8544
–8– REV. D
CAPACITANCE – pF
SMALL SIGNAL OVERSHOOT – %
60
0
10 100 10k
1k
30
20
10
40
VS = 5V
RL = 10k
TA = 25C
50
+OS
OS
TPC 20. Small Signal Overshoot vs.
Load Capacitance
50mV 10s
2.5V
VS = 5V
RL = 100k
CL = 300pF
AV = 1
TA = 25C
TPC 23. Small Signal Transient
Response
1V 20s
2.5V
V
S
= 5V
R
L
= 10k
A
V
= 1
T
A
= 25C
V
OUT
V
IN
TPC 26. No Phase Reversal
CAPACITANCE – pF
SMALL SIGNAL OVERSHOOT – %
60
0
10 100 10k
1k
30
20
10
40
V
S
= 5V
R
L
= 2k
T
A
= 25C
50
+OS
OS
TPC 21. Small Signal Overshoot vs.
Load Capacitance
1V 10s
2.5V
V
S
= 5V
R
L
= 2k
A
V
= 1
T
A
= 25C
TPC 24. Large Signal Transient
Response
SUPPLY VOLTAGE – V
SUPPLY CURRENT/AMPLIFIER – A
60
001 6
23 45
50
40
30
20
10
T
A
= 25C
TPC 27. Supply Current per
Amplifier vs. Supply Voltage
FREQUENCY – Hz
OUTPUT SWING – V p-p
3.0
2.5
01k 10k 10M
100k 1M
2.0
1.5
0.5
1.0
V
S
= 5V
V
IN
= 4.9V p-p
R
L
= 2k
T
A
= 25C
4.0
3.5
5.0
4.5
TPC 19. Closed-Loop Output
Voltage Swing vs. Frequency
CAPACITANCE – pF
SMALL SIGNAL OVERSHOOT – %
60
0
10 100 10k
1k
30
20
10
40
VS = 5V
RL =
TA = 25C
50
+OS
OS
TPC 22. Small Signal Overshoot vs.
Load Capacitance
FREQUENCY – Hz
GAIN – dB
1k 10k 10M100k 1M
80
60
40
20
0
V
S
= 5V
R
L
= NO LOAD
T
A
= 25C
45
90
135
180
PHASE SHIFT – De
g
rees
TPC 25. Open-Loop Gain and Phase
vs. Frequency
AD8541/AD8542/AD8544
–9–
REV. D
FREQUENCY – kHz
200mV/DIVISION
05 2510 15 20
V
S
= 5V
A
V
= 1
MARKER SET @ 10kHz
MARKER READING: 37.6V/ Hz
T
A
= 25C
TPC 30. Voltage Noise
FREQUENCY – Hz
IMPEDANCE –
1k 10k 100M100k 1M 10M
1,000
900
0
800
700
600
500
400
300
200
100
V
S
= 2.7V AND 5V
A
V
= 1
T
A
= 25C
TPC 29. Closed-Loop Output
Impedance vs. Frequency
NOTES ON THE AD854x AMPLIFIERS
The AD8541/AD8542/AD8544 amplifiers are improved perfor-
mance general-purpose operational amplifiers. Performance has
been improved over previous amplifiers in several ways.
Lower Supply Current for 1 MHz Gain Bandwidth
The AD854x series typically uses 45 mA of current per amplifier.
This is much less than the 200 mA to 700 mA used in earlier
generation parts with similar performance. This makes the
AD854x series a good choice for upgrading portable designs for
longer battery life. Alternatively, additional functions and per-
formance can be added at the same current drain.
Higher Output Current
At 5 V single supply, the short-circuit current is typically 60 mA.
Even 1 V from the supply rail, the AD854x amplifiers can provide
30 mA, sourcing or sinking.
Sourcing and sinking are strong at lower voltages, with 15 mA
available at 2.7 V and 18 mA at 3.0 V. For even higher output
currents, please see the Analog Devices AD8531/AD8532/AD8534
parts, with output currents to 250 mA. Information on these
parts is available from your Analog Devices representative,
and data sheets are available at the Analog Devices website at
www.analog.com.
Better Performance at Lower Voltages
The AD854x family of parts has been designed to provide better
ac performance, at 3.0 V and 2.7 V, than previously available
parts. Typical gain-bandwidth product is close to 1 MHz at 2.7 V.
Voltage gain at 2.7 V and 3.0 V is typically 500,000. Phase margin
is typically over 60C, making the part easy to use.
APPLICATIONS
Notch Filter
The AD8542 has very high open-loop gain (especially with a
supply voltage below 4 V), which makes it useful for active filters
of all types. For example, Figure 1 illustrates the AD8542 in the
classic Twin-T Notch Filter design. The Twin-T Notch is desired
for simplicity, low output impedance, and minimal use of op
amps. In fact, this notch filter may be designed with only one op
amp if Q adjustment is not required. Simply remove U2 as illus-
trated in Figure 2. However, a major drawback to this circuit
topology is ensuring that all the Rs and Cs closely match. The
components must closely match or notch frequency offset and
drift will cause the circuit to no longer attenuate at the ideal
notch frequency. To achieve desired performance, 1% or
better component tolerances or special component screens
are usually required. One method to desensitize the circuit-
to-component mismatch is to increase R2 with respect to
R1, which lowers Q. A lower Q increases attenuation over a
wider frequency range but reduces attenuation at the peak
notch frequency.
1/2 AD8542
[ ]
41 R1
R1+R2
1
2pRC
C
26.7nF
R1
97.5k
C2
53.6F
R/2
50k
R2
2.5k
R
100k
R
100k
5
6
7
8
3
2 VOUT
4 1
1/2 AD8542
5.0V
2.5VREF C
26.7nF
2.5VREF
f0 =
1
f0 =
U2
U1
Figure 1. 60 Hz Twin-T Notch Filter, Q = 10
C
2C
R/2
R R 7
3
2
V
OUT
4 6
AD8541
5.0V
2.5V
REF
C
V
IN
Figure 2. 60 Hz Twin-T Notch Filter, Q =
(Ideal)
Figure 3 shows another example of the AD8542 in a notch
filter circuit. The FNDR notch filter has fewer critical
matching requirements than the Twin-T Notch and for the
FNDR Q is directly proportional to a single resistor R1.
While matching component values is still important, it is also
TEMPERATURE – C
SUPPLY CURRENT/AMPLIFIER – A
55
20
55 35 145
15 525456585105 125
50
45
40
35
30
25
V
S
= 5V
V
S
= 2.7V
TPC 28. Supply Current per
Amplifier vs. Temperature
AD8541/AD8542/AD8544
–10– REV. D
much easier and/or less expensive to accomplish in the FNDR
circuit. For example, the Twin-T notch uses three capacitors
with two unique values, whereas the FNDR circuit uses only two
capacitors, which may be of the same value. U3 is simply a buffer
that is added to lower the output impedance of the circuit.
4
f =
R2C2
L =
C2
1F
1/4 AD8544
11
6
1/4 AD8544
1/4 AD8544
10
8
9
C1
1F
1
2p LC1
R
2.61k
R1
Q ADJUST
200 VOUT
2.5VREF
2
1
3
1/4 AD8544
R
2.61k
12
14
13
NC
2.5VREF
SPARE
5
7
R
2.61k
R
2.61k
2.5VREF
U3
U2
U1
U4
Figure 3. FNDR 60 Hz Notch Filter with Output Buffer
Comparator Function
A comparator function is a common application for a spare op
amp in a quad package. Figure 4 illustrates 1/4 of the AD8544
as a comparator in a standard overload detection application.
Unlike many op amps, the AD854x family can double as
comparators because this op amp family has rail-to-rail differential
input range, rail-to-rail output, and a great speed versus power
ratio. R2 is used to introduce hysteresis. The AD854x, when
used as comparators, have 5 ms propagation delay at 5 V and 5 ms
overload recovery time.
R1
1k
V
OUT
2.5V
REF
V
IN 1/4 AD8544
2.5V
DC
R2
1M
Figure 4. AD854x Comparator Application–Overload Detector
Photodiode Application
The AD854x family has very high impedance with input bias
current typically around 4 pA. This characteristic allows the
AD854x op amps to be used in photodiode applications and
other applications that require high input impedance. Note that
the AD854x has significant voltage offset, which can be removed
by capacitive coupling or software calibration.
Figure 5 illustrates a photodiode or current measurement
application. The feedback resistor is limited to 10 MW to avoid
excessive output offset. Also, note that a resistor is not needed
on the noninverting input to cancel bias current offset because
the bias current related output offset is not significant when
compared to the voltage offset contribution. For the best
performance follow the standard high impedance layout
techniques including:
Shield the circuit.
Clean the circuit board.
Put a trace connected to the noninverting input around the
inverting input.
Use separate analog and digital power supplies.
AD8541
4
6
7
3
2
V
OUT
2.5V
REF
R
10M
C
100pF
D
2.5V
REF
OR
V+
Figure 5. High Input Impedance Application–Photodiode
Amplifier
AD8541/AD8542/AD8544
–11–
REV. D
* AD8542 SPICE Macro-model Typical Values
* 6/98, Ver. 1
* TAM / ADSC
*
* Copyright 1998 by Analog Devices
*
* Refer to “README.DOC” file for License
* Statement. Use of this model indicates your
* acceptance of the terms and provisions in
* the License Statement.
*
* Node Assignments
*noninverting input
*|inverting input
*|| positive supply
*|| | negative supply
*|| | | output
*|| | | |
*|| | | |
.SUBCKT AD8542 1 2 99 50 45
*
* INPUT STAGE
*
M1 4 1 8 8 PIX L=0.6E-6 W=16E-6
M2 6 7 8 8 PIX L=0.6E-6 W=16E-6
M3 11 1 10 10 NIX L=0.6E-6 W=16E-6
M4 12 7 10 10 NIX L=0.6E-6 W=16E-6
RC1 4 50 20E3
RC2 6 50 20E3
RC3 99 11 20E3
RC4 99 12 20E3
C1 4 6 1.5E-12
C2 11 12 1.5E-12
I1 99 8 1E-5
I2 10 50 1E-5
V1 99 9 0.2
V2 13 50 0.2
D1 8 9 DX
D2 13 10 DX
EOS 7 2 POLY(3) (22,98) (73,98) (81,0) 1E-3 1 1 1
IOS 1 2 2.5E-12
*
* CMRR 64dB, ZERO AT 20kHz
*
ECM1 21 98 POLY(2) (1,98) (2,98) 0 .5 .5
RCM1 21 22 79.6E3
CCM1 21 22 100E-12
RCM2 22 98 50
*
* PSRR=90dB, ZERO AT 200Hz
*
RPS1 70 0 1E6
RPS2 71 0 1E6
CPS1 99 70 1E-5
CPS2 50 71 1E-5
EPSY 98 72 POLY(2) (70,0) (0,71) 0 1 1
RPS3 72 73 1.59E6
CPS3 72 73 500E-12
RPS4 73 98 25
*
* VOLTAGE NOISE REFERENCE OF 35nV/rt(Hz)
*
VN1 80 0 0
RN1 80 0 16.45E-3
HN 81 0 VN1 35
RN2 81 0 1
*
* INTERNAL VOLTAGE REFERENCE
*
VFIX 90 98 DC 1
S1 90 91 (50,99) VSY_SWITCH
VSN1 91 92 DC 0
RSY 92 98 1E3
EREF 98 0 POLY(2) (99,0) (50,0) 0 .5 .5
GSY 99 50 POLY(1) (99,50) 0 3.7E-6
*
* ADAPTIVE GAIN STAGE
* AT Vsy>+4.2, AVol=45 V/mv
* AT Vsy<+3.8, AVol=450 V/mv
*
G1 98 30 POLY(2) (4,6) (11,12) 0 2.5E-5 2.5E-5
VR1 30 31 DC 0
H1 31 98 POLY(2) VR1 VSN1 0 5.45E6 0 0 49.05E9
CF 45 30 10E-12
D3 30 99 DX
D4 50 30 DX
*
* OUTPUT STAGE
*
M5 45 46 99 99 POX L=0.6E-6 W=375E-6
M6 45 47 50 50 NOX L=0.6E-6 W=500E-6
EG1 99 46 POLY(1) (98,30) 1.05 1
EG2 47 50 POLY(1) (30,98) 1.04 1
*
* MODELS
*
.MODEL POX PMOS (LEVEL=2,KP=20E-6,VTO=-
+1,LAMBDA=0.067)
.MODEL NOX NMOS (LEVEL=2,KP=20E-
+6,VTO=1,LAMBDA=0.067)
.MODEL PIX PMOS (LEVEL=2,KP=20E-6,VTO=-
+0.7,LAMBDA=0.01,KF=1E-31)
.MODEL NIX NMOS (LEVEL=2,KP=20E-
+6,VTO=0.7,LAMBDA=0.01,KF=1E-31)
.MODEL DX D(IS=1E-14)
.MODEL VSY_SWITCH VSWITCH(ROFF=100E3,RON=1,VOFF=-
+4.2,VON=-3.5)
.ENDS AD8542
AD8541/AD8542/AD8544
–12– REV. D
OUTLINE DIMENSIONS
8-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-8)
Dimensions shown in millimeters
85
41
PIN 1
0.65
BSC
SEATING
PLANE
0.15
0.05
0.30
0.19
1.20
MAX
0.20
0.09
8
0
6.40 BSC
0.75
0.60
0.45
4.50
4.40
4.30
3.10
3.00
2.90
COPLANARITY
0.10
COMPLIANT TO JEDEC STANDARDS MO-153AA
14-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-14)
Dimensions shown in millimeters
4.50
4.40
4.30
14 8
71
6.40
BSC
PIN 1
5.10
5.00
4.90
0.65
BSC
SEATING
PLANE
0.15
0.05 0.30
0.19
1.20
MAX
1.05
1.00
0.80 0.20
0.09
8
0
0.75
0.60
0.45
COMPLIANT TO JEDEC STANDARDS MO-153AB-1
COPLANARITY
0.10
8-Lead Standard Small Outline Package [SOIC]
Narrow Body
(R-8)
Dimensions shown in millimeters and (inches)
0.25 (0.0098)
0.17 (0.0067)
1.27 (0.0500)
0.40 (0.0157)
0.50 (0.0196)
0.25 (0.0099) 45
8
0
1.75 (0.0688)
1.35 (0.0532)
SEATING
PLANE
0.25 (0.0098)
0.10 (0.0040)
85
41
5.00 (0.1968)
4.80 (0.1890)
4.00 (0.1574)
3.80 (0.1497)
1.27 (0.0500)
BSC
6.20 (0.2440)
5.80 (0.2284)
0.51 (0.0201)
0.31 (0.0122)
COPLANARITY
0.10
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
COMPLIANT TO JEDEC STANDARDS MS-012AA
14-Lead Standard Small Outline Package [SOIC]
Narrow Body
(R-14)
Dimensions shown in millimeters and (inches)
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
COPLANARITY
0.10
14 8
7
1
6.20 (0.2441)
5.80 (0.2283)
4.00 (0.1575)
3.80 (0.1496)
8.75 (0.3445)
8.55 (0.3366)
1.27 (0.0500)
BSC
SEATING
PLANE
0.25 (0.0098)
0.10 (0.0039)
0.51 (0.0201)
0.31 (0.0122)
1.75 (0.0689)
1.35 (0.0531)
8
0
0.50 (0.0197)
0.25 (0.0098) 45
1.27 (0.0500)
0.40 (0.0157)
0.25 (0.0098)
0.17 (0.0067)
COMPLIANT TO JEDEC STANDARDS MS-012AB
AD8541/AD8542/AD8544
–13–
REV. D
5-Lead Small Outline Transistor Package [SOT-23]
(RT-5)
Dimensions shown in millimeters
PIN 1
1.60 BSC 2.80 BSC
1.90
BSC
0.95 BSC
1 3
4 5
2
0.22
0.08
10
5
0
0.50
0.30
0.15 MAX SEATING
PLANE
1.45 MAX
1.30
1.15
0.90
2.90 BSC
0.60
0.45
0.30
COMPLIANT TO JEDEC STANDARDS MO-178AA
8-Lead Mini Small Outline Package [MSOP]
(RM-8)
Dimensions shown in millimeters
0.80
0.60
0.40
8
0
85
4
1
4.90
BSC
PIN 1
0.65 BSC
3.00
BSC
SEATING
PLANE
0.15
0.00
0.38
0.22
1.10 MAX
3.00
BSC
COPLANARITY
0.10
0.23
0.08
COMPLIANT TO JEDEC STANDARDS MO-187AA
5-Lead Thin Shrink Small Outline Transistor Package [SC70]
(KS-5)
Dimensions shown in millimeters
0.30
0.15
1.00
0.90
0.70
SEATING
PLANE
1.10 MAX
0.22
0.08 0.46
0.36
0.26
3
5 4
1 2
2.00 BSC
PIN 1
2.10 BSC
0.65 BSC
1.25 BSC
0.10 MAX
0.10 COPLANARITY
COMPLIANT TO JEDEC STANDARDS MO-203AA
OUTLINE DIMENSIONS
AD8541/AD8542/AD8544
–14– REV. D
Revision History
Location Page
8/04—Data Sheet changed from REV. C to REV. D.
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Change to Figure 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1/03—Data Sheet changed from REV. B to REV. C.
Updated format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Universal
Change to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Changes to OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
–15–
–16–
C00935–0–8/04(D)