© Freescale Semiconductor, Inc., 2003–2007. All rights reserved.
Freescale Semiconducto r
Technical Data
This hardware specification contains detailed information on
power consi derations, DC/AC electrical characteristics, and
AC timing specifications for the M PC875/MPC870. The
CPU on the MPC875/MPC870 is a 32-bit core built on
Power Architecture™ technology that incorporates memory
management units (MMUs) and instruction and data caches.
For functional characteristics of the MPC875/MPC870, refer
to the MPC885 PowerQUICC™ Family Reference Manual.
T o locate published errata or updates for this document, refer
to the MPC875/MPC870 product summary page on our
website listed on the back cover of this document or , contact
your local Fr ees cale sales office.
Docu ment Number : MPC875 EC
Rev. 4, 08/2007
Contents
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. Maximum T olerated Ratings . . . . . . . . . . . . . . . . . . . 9
4. Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . 10
5. Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 11
7. Thermal Calculation and Measurement . . . . . . . . . . 12
8. Power Supply and Power Sequencing . . . . . . . . . . . 14
9. Mandatory Reset Configurations . . . . . . . . . . . . . . . 15
10. Layout Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
11. Bus Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 17
12. IEEE 1149.1 Electrical Specifications . . . . . . . . . . . 45
13. CPM Electrical Characteristics . . . . . . . . . . . . . . . . . 47
14. USB Electrical Characteristics . . . . . . . . . . . . . . . . . 67
15. FEC Electrical Characteristics . . . . . . . . . . . . . . . . . 67
16. Mechani cal Data and Ordering Inf ormation . . . . . . . 71
17. Document Revision History . . . . . . . . . . . . . . . . . . . 80
MPC875/MPC870 PowerQUICC™
Hardware Specificatio ns
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
2Freescale Semiconductor
Overview
1Overview
The MPC875/M P C870 is a ver satile single-chip integrated microprocessor and peripheral combination
that can be used in a variety of contr oller applications and communications and networking systems. The
MPC875/MPC870 provides enhanced ATM functionality over that of other ATM-enabled members of the
MPC860 fa mily.
Table 1 shows the functionality supported by the MPC875/MPC8 70.
2Features
The MPC8 75/MPC870 is comprised of three modules that each use the 32-bit internal bus: a MPC8xx
core, a system integration unit (SIU), and a communications processor module (CPM).
The following list summarizes the key MPC875/MPC870 features:
Embedded MPC8xx core up to 133 MHz
Maximum frequency operation of the external bus is 80 MHz (i n 1:1 mode)
The 133-MHz core frequency supports 2:1 mode only
The 66-/80-MHz core fr equencies support both the 1:1 and 2:1 modes
Single-issue, 32-bit core (compatible with the Power Architecture definition) with thirty-two
32-bit general-pur pose registers (GPR s)
The core performs br anch prediction with conditional prefetch and without conditional
execution
8-Kbyte data cache and 8-Kbyte instruction cache (see Table 1)
Instruction cache is two-way, set-associative with 256 sets in 2 bl ocks
Data cache is two-way, set-associative with 256 sets
Cache cohere ncy for both instruction and data caches is maintained on 128-bit (4-word)
cache blocks
Caches are physically addressed, implement a least recently used (LRU) replacement
algorithm, and are lockable on a cache block basis
MMUs with 32-entry TLB, fully associative instruction and data TLBs
MMUs support multiple page sizes of 4, 16, and 512 Kbytes, and 8 Mbytes; 16 virtual address
spaces and 16 prote ction groups
Advanced on-chip emulation debug mode
Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits)
Table 1. MPC875/MPC870 De vices
Part Cache (Kbytes) Ethernet SCC SMC USB Security
Engine
I Cache D Cache 10BaseT 10/100
MPC875 8812111Yes
MPC870 8 8 2 1 1 No
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 3
Features
Thirty-two address lines
Memory controller (eight banks)
Contains complete dynamic RAM (DRAM) controller
Eac h bank can be a chip select or RAS to support a DRAM bank
Up to 30 wait states programmable per memory bank
Glueless interface to DRAM, SIMMS, SRAM, EPROMs, Flash EPROMs, and other memory
devices
DRAM controller programmable to s upport most s i ze and speed memory interfaces
Four CAS lines , four WE lines, and one OE line
Boot chip-select available at reset (options for 8-, 16-, or 32-bit memory)
Variable block sizes (32 Kbytes–256 Mbytes)
Selectable write protection
On-chip bus arbitration logic
Genera l-pur pose timers
Four 16-bit timers or two 32-bit timers
Gate mode can enable/disable count ing
Interrupt can be masked on ref erence match and event capture
Two Fast Ethernet controllers (FEC)—Two 10/100 Mbps Ethernet/IEEE Std. 802.3® CDMA/CS
that interface through M I I and/or RMII interfaces
System inte gration unit (SIU)
Bus monitor
S oftware watchdog
Periodic interrupt timer (PI T)
Clock synthesizer
Decremen ter and time base
Reset controller
IEEE 1149.1™ Std. test access port (JTAG)
Security engine is optimized to handle all the algorithms associat ed with IPsec, SSL/TLS, SRTP,
IEEE 802.11i® standard, and iSCSI processing. Available on the MP C875, the security engine
contains a crypto-channel, a controller, and a set of crypto hardware acceler at ors (CHA s) . The
CHAs are:
Data encr yption standard execution unit (DEU)
DES, 3DES
Two key (K1, K2, K1) or three key (K1, K2, K3)
ECB and CB C modes for both DES and 3DES
Advanced encr yption standard unit ( AESU)
Implements the Rijndael symmetric key cipher
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
4Freescale Semiconductor
Features
ECB, CBC, and counter modes
128-, 192-, and 256-bit key lengths
Message digest execution unit (MDEU)
SHA with 160- or 256-bit mess age digest
MD5 with 128- bit message digest
HMAC with either algorithm
Mas t er/sl ave lo gic, with DMA
32-bit addre ss /32-bit data
Operation at MP C8xx bus frequency
Crypto-channel supporting multi-command descriptors
Integrated controller managing crypt o-execution units
Buffer size of 256 bytes f or each execution unit, with flow control for large data sizes
Interrupts
Six external interrupt request (IRQ ) lines
Twelve port pins with interrupt c apability
Twenty- three internal interrupt sources
P rogrammable priority between SCCs
Programmable highest priority re quest
Communications proc essor module (CPM)
RISC cont ro lle r
Communication-specific commands (for example, GRACEFUL STOP TRANSMIT, ENTER HUNT
MODE, and RESTART TRANSMIT)
Supports continuous mode transmission and reception on all serial channels
8-Kbytes of dual-port RAM
Several serial DMA (SDMA) channels to support the CPM
Three parallel I/O regis ters with open-drain capability
On-chip 16 × 16 multiply accumulate controller (MAC)
One operation per clock (two-clock latency, one-clock blockage)
MAC operates concurrently with other instructions
FIR loop—Four clocks per four multiplies
Four baud-rate generators
Inde pendent (can be connected to SCC or SMC)
Allows changes during operation
Autobaud support option
SCC (serial communication controller)
Ethernet/IEEE 802.3® standard, suppor ting full 10-Mbps operation
HDLC/SDLC
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 5
Features
HDLC bus (implements an HDLC-based local area network (LAN))
Asynchronous HDLC to support point-to-point protocol (PPP )
AppleTalk
Univer sal asynchronous receiver transmitter (UART)
Synchronous UART
Serial infr ared (IrDA)
Binary synchronous communicat ion (BISYNC)
Totally transparent (bit streams)
Totally transparent (frame based with optional cyclic redundancy check (C RC))
SMC (serial management channel )
UART (low-speed operation)
Transparent
Universal serial bus (USB)—Supports operation as a USB function endpoint, a USB host
controller, or both for testing purposes (loopback diagnostics)
USB 2.0 full-/low-speed compa tible
The USB function mode has the following fe ature s:
Four independent endpoints support control, bulk, interrupt, and isochronous data tran sfers
CRC16 generation and checking
CRC5 checking
NRZI encoding/decoding with bit stuffing
12- or 1.5-Mbps data rate
Flexible data buffers with multiple buffers per frame
Automatic retransmission upon transmit error
The USB host c ontroller has the following features:
Supports control, bulk, interrupt , and isochr onous data transfers
CRC16 generation and checking
NRZI encoding/decoding with bit stuffing
Supports both 12- and 1.5-Mbps data rates (automatic generation of pr eamble token and
data rate configuration) . Note that low-speed operation require s an external hub.
Flexible data buffers with multiple buffers per frame
Supports local loopback mode for diagnostics (12 M bps only)
Serial peripheral interface (SPI)
S upports master and s lave modes
Supports multiple-master operation on the same bus
Inter -integrat ed circuit (I2C) port
S upports master and s lave modes
Supports a multiple- maste r environment
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
6Freescale Semiconductor
Features
The MPC875 has a time-slot assigner (TSA) that suppor ts one TDM bus (TDMb)
Allows SCC and SMC to run in multiplexed and/or non-multiplexed operation
S upports T1, C EPT, PCM highway, IS DN bas ic rate, ISDN primary ra te, user-defined
1- or 8-bit resolution
Allows independent transmit and receive routing, frame synchronization, and c l ocking
Allows dynamic changes
Can be internally connected to two serial channels (one SCC and one SMC)
PCMCIA interface
Master (socket) i nterface, release 2.1-compliant
Supports one independent PCMCIA socket on the MPC875/MPC870
Eight memory or I/O windows supported
Debug interface
Eight comparators: four operate on instruction address, two operate on data address, and two
operate on data
Supports conditions: = <>
Eac h watchpoint can generate a break point interna lly
Normal high and normal low power modes to conserve power
1.8-V core and 3.3-V I/O operation with 5-V TTL compatibility
The MPC875/M PC870 comes in a 256-pin ball grid ar ray (PBGA) package
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 7
Features
The MPC875 block diagram is shown in Figure 1.
Figure 1. MPC875 Bl ock Diagram
Bus
System Inter face Unit (SIU)
Embedded
Parallel I/O
Memory Controller
4
Timers Interrupt
Controllers 8-Kbyte
Dual-Po r t RAM
System Functions
8-Kbyte
Instruction Cache
32-Ent ry ITLB
Instruction MMU
8-Kbyte
Data Cache
32-Ent ry DTLB
Data MMU
Instruction
Bus
Load/Store
Bus
Unified
4 Baud Rate
Generators
Parallel Interface
Internal
Bus In terface
Unit
External
Bus Interface
Unit
Timers
32-Bit RISC Cont rol ler
and Program
ROM
Se r ia l In te rface
SPI
SMC1
MPC8xx
Processor
Core
SCC4
PC MC IA -ATA In te rfa ce
Virtual IDMA
and
Serial DMAs
Security Engine
AESU DEU MDEU
Controller
Channel
DMAs
DMAs
FIFOs
10/100
MIII/RMII
BaseT
Media Access
Control
Fast Ethernet
Controller
USB
Slave/ Ma ster IF
DMAs
I
2
C
Time-Slot Assigner
Port
Bus In terface
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
8Freescale Semiconductor
Features
The MPC870 block diagram is shown in Figure 2.
Figure 2. MPC870 Bl ock Diagram
Bus
System Int erface Unit (SIU)
Embedded
Parallel I/O
Memory Controller
4
Timers Interrupt
Controllers 8-Kbyte
Dual-Port RAM
System Functions
8-Kbyte
Instr uction Cache
32-Entry ITLB
Instruction MMU
8-Kbyte
Data Cache
32-Entry DTLB
Data MMU
Instruction
Bus
Load/Store
Bus
Unified
4 Baud Rate
Generators
Parallel Interface
Internal
Bus Interface
Unit
External
Bus Interface
Unit
Timers
32-Bit RIS C Contro ll er
and Program
ROM
Se r ia l In te rface
SPISMC1
MPC8xx
Processor
Core
PCM CIA-ATA Inte rface
Virtu al IDMA
and
Serial DMAs
DMAs
DMAs
FIFOs
10/100
MIII/RMII
BaseT
Media Acce ss
Control
Fast Ethernet
Controller
USB
Slave/Master IF
DMAs
I
2
C
Port
Bus Interface
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 9
Maximum Tolerated Ratings
3 Maximum Tolerated Ratings
This section provides the maximum tolerated voltage and temperature ranges for the MPC875/MPC870.
Table 2 displa ys the maximum tolerated ratings and Table 3 displays the operating temper atur es.
Figure 3 shows the undershoot and overshoot voltages at the interfaces of the MPC875/MPC870.
Figure 3. Undershoot/Over shoot Voltage for VDDH and VDDL
Table 2. Maxi mum Toler a te d Ratings
Rating Symbol Value Unit
Supply voltage1
1The power supply of the device must start its ramp from 0.0 V.
VDDL (core voltage) –0.3 to 3.4 V
VDDH (I/O voltage) –0.3 to 4 V
VDDSYN –0.3 to 3.4 V
Diff erence betw een
VDDL and V DDSYN
<100 mV
Input voltage2
2Functional operating condit ions are pro vided with the DC electri cal speci fications i n Table 6. Abs o lute ma x imum rati n g s are
stress ratings only; functional operation at the maxima is not guaranteed. Stress be yond those listed ma y affect device
reliability or cause permanent damage to the device.
Caution: All inputs that to ler ate 5 V cannot b e more than 2.5 V greater than VDDH. This restriction applies to power up and
normal ope ra tion (t hat is , i f the MPC875/MPC87 0 i s unpow ere d, a v ol tage g reater than 2 .5 V must no t be appl ied t o it s input s).
Vin GND – 0.3 to VDDH V
Storage tempera tur e range Tstg –55 to +150 °C
GND
GND – 0.3 V
GND – 0.7 V Not to Exceed 10%
VDDH/VDDL + 20%
VDDH/VDDL
VDDH/VDDL + 5%
of tinterface1
1. tinterface refers to the cl ock period ass o ciated with the bus cloc k interface.
VIH
VIL
Note:
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
10 Freescale Semiconductor
The r m al C ha r ac ter is t ic s
This device contains circuitry protecting against damage due to high-static voltage or electrical fields;
however, it is advised that normal prec autions be taken to avoid application of any voltages higher than
maximum-rated voltage s to this high-impedance circuit. Reliability of operation is enhanced if unused
inputs a re tied to an a ppropriate logic voltage level ( f or example, either GND or VDDH).
4 Thermal Characteristics
Table 4 shows the thermal characteristi cs for the MPC875/MPC870.
Table 3. Op erating Temp eratur es
Rating Symbol Value Unit
Tem perature 1 (stan dard)
1Minimum temperatures are guaranteed as ambient temperatur e, TA. Maximum temperatur es are guaranteed as junct ion
temperature, TJ.
TA(min) C
TJ(max) 95 °C
Temperature (extended) TA(min) –40 °C
TJ(max) 100 °C
Table 4. MP C875/MPC870 Thermal Resistanc e Data
Rating Environment Symbol Value Unit
Junction-to-ambient1
1Junction temperature is a func ti on of on -chip powe r di ssipation, package the rmal resi stance, mo unting site (board)
temper ature, ambient temperatur e, airflo w , power diss ip ation of other components on the boar d, a nd board thermal resis tan ce.
Natural convection Single-layer board (1s) RθJA2
2Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.
43 °C/W
Four-la yer board (2s2p) RθJMA3
3Per JEDEC JESD51-6 with the board horizontal.
29
Airfl ow (200 ft/min) Single- layer board (1s) RθJMA336
Four-la yer board (2s2p) RθJMA326
Junction-to-board4
4Thermal res istance between the die and the printed-circuit board per JEDEC JESD51-8. B oard temperature is measured on
the top surface of the board near the package.
RθJB 20
Junction-t o-case 5
5Indi cates the a verage thermal resistance be tween the di e and the case t op surf ace as measur ed by the co ld plate met hod (MIL
SPEC-883 Method 1012.1) wit h the col d plate tem peratur e used for the case temp erature. For exposed pad pack ages where
the pad would be ex pected to be solde red, junction-to-case thermal res istance is a simulated v alue from the junct ion to the
exposed pad without contact resistance.
RθJC 10
Junction- to- package top6
6Thermal characterizat ion paramet er i ndicating the temp erature difference be tween the package top and the junction
temperature per JEDEC JESD51- 2.
Natural convection ΨJT 2
Airflow (200 ft/min) ΨJT 2
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 11
Power Dissipation
5 Po we r Di ssip ation
Table 5 pr ovides information on power dissipation. The modes are 1:1, where CPU and bus speeds are
equal, and 2:1, where CPU frequency is twice bus speed.
NOTE
The values in Table 5 represent VDDL-based power dissipation and do not
include I/O power dissipation over VDDH. I/O power dissipation varies
widely by appl icati on due to buffe r curr ent , depending on external circuitry.
The V DDSYN power dissipation is negligible.
6 DC Characteristics
Table 6 provides the DC electrical characteristics for the MPC875/MPC870.
Table 5. Power Dissipation (PD)
Die Revision Bus Mode Frequency Typical1
1Typical power dissi pation is measured at VDDL = VDDSYN = 1.8 V, and VDDH is at 3.3 V.
Maximum2
2Maximum power di ssipation at VDDL = VDDSYN = 1.9 V, and VDDH is at 3.5 V.
Unit
0 1:1 66 MHz 310 390 mW
80 MHz 350 430 mW
2:1 133 MHz 430 495 mW
Table 6. DC Electrical Specification s
Characteristic Symbol Min Max Unit
Operating voltage VDDH (I/O) 3. 135 3.465 V
VDDL (core) 1.7 1.9 V
VDDSYN11.7 1.9 V
Difference
between VDDL
and VDDSYN
—100mV
Input high volt age (al l inputs except EXTAL and EXTCLK)2VIH 2.0 3.465 V
Input low voltage3VIL GND 0.8 V
EXTAL , EXTCLK in put hi gh voltage VIHC 0.7 × VDDH VDDH V
Input leakage current, Vin = 5.5 V (except TMS, TRST, DSCK, and
DSDI pins) for 5-V tolerant pins1Iin 100 µA
Input leakage current, Vin = VDDH (except TMS, TRST, DSCK, and
DSDI) IIn —10µA
Input leakage curren t, Vin = 0 V (e xcept TMS, TRST , DSCK, and DSDI
pins) IIn —10µA
Input capacitance4Cin —20pF
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
12 Freescale Semiconductor
Thermal Calculation and Measurement
7 Thermal Calculation and Measurement
For the following discussions, PD = (VDDL × IDDL) + PI/O, where PI/O is the power dissipation of the I/O
drivers.
NOTE
The VDDSYN power dissipation is negligible.
7.1 Estimation with Junction-to-Ambient Thermal Resistance
An estimation of the chip junction t emperat ure, TJ, in °C can be obtained from the following equation:
TJ = TA + (R θJA × PD)
where:
TA = ambient temperature (°C)
RθJA = package junction-to-ambient thermal resistance (°C/W)
PD = power dissipation in package
The junction-to- ambient thermal res istance is an industry standa rd value that provides a quick and easy
estimation of thermal performance. However , the answer is only an estimate; test cases have demonstrated
that errors of a fact or of two (in the quantity TJ – TA) are possible.
Output hi gh volta ge, IOH = –2.0 mA, VDDH = 3.0 V (except XTAL and
open-drain pins) VOH 2.4 V
Output low volt age
IOL = 2.0 mA (CLK O UT)
IOL = 3.2 mA5
IOL = 5.3 mA6
IOL = 7.0 mA (TXD1/PA14, TXD2/PA12)
IOL = 8.9 mA (TS, TA, TEA , BI, BB, HRESET, SRESET)
VOL —0.5V
1The difference between VDDL and VDDSYN cannot be more than 100 m V.
2The sign als PA[0:15], PB[14:31], PC[4:15] , PD[3:15], PE(14:31), TDI, TDO, TCK, TRST , TMS , MII1_TXEN, and MII_MDIO are
5-V tolerant. The minimum voltage is still 2.0 V.
3VIL(m a x ) for th e I2C int erface is 0.8 V rather than the 1.5 V as spec if ied in the I 2C standard.
4Input capacitance is peri odically sampled.
5A(0:31), TSIZ0/REG, TSIZ1, D(0:31), IRQ(2:4), IRQ6, RD/WR, BURST, IP_B(0:1), PA(0:4), PA(6:7), PA(10: 11), PA15, PB19,
PB(23:31), PC(6:7), PC(10:13), PC15, PD8, PE(14: 31), MII1_CRS, MII_MDIO, MII1_ TXEN, and MII 1_CO L.
6BDIP/GPL_B(5) , BR, BG, F R Z/ IRQ 6 , CS(0 :7 ), WE(0:3), BS_A(0:3), GPL_A0/GPL_B0, OE/GPL_A1/GPL_B1,
GPL_A(2:3)/GPL_B(2:3)/CS(2:3), UPWAITA/GPL_A4, U P WAITB /GPL_ B4, GP L_A 5, ALE_A, CE1_A, CE2_A, OP(0:3) , and
BADDR(28:30).
Table 6. DC Electrical Specifications (continued)
Characteristic Symbol Min Max Unit
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 13
Th er m al C al culation an d Mea suremen t
7.2 Estimation with Junction-to-Case Thermal Resistance
Historica lly, thermal resistan ce has frequently been expressed as the sum of a junction-to-case thermal
resistance and a case-to-ambient thermal resistance:
RθJA = RθJC + RθCA
where:
RθJA = junction-to-ambient thermal resista nce (°C/W)
RθJC = junction-t o -ca se thermal resis tan ce (°C/W)
RθCA = case-to-ambient thermal resi stance (°C/W)
RθJC is device-related and cannot be influenced by the user. The user adjusts the thermal environment to
af fect the cas e-to-ambi ent thermal resistance, RθCA. For instance, the user can change the airflow around
the device, add a heat sink, change the mounting arrangement on the printed-circuit board, or change the
thermal dis sipation on the printed-circuit board surrounding the device. This ther mal model is most useful
for ceramic packages with heat sinks where some 90% of the heat f lows through the case and the heat sink
to the ambient environment. For most packages , a better model is required.
7.3 Estimat ion with Junc tion-to-Board Thermal Resistance
A simple package thermal model that has demonstrated reasonable accuracy (about 20%) is a two-resistor
model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case
thermal resistance covers the situation where a heat sink is used or where a subst antial amount of heat is
dissipated from the top of the package. The junction-to-board thermal resistanc e describes the ther mal
performance when most of the heat is conducted to the printed-circuit board. It has been observed that the
thermal performance of most plastic packages and especially PBGA packages is strongly dependent on the
board temperature. If the board temperature is known, an estimate of the junction temperature in the
environment can be made usi ng the following equ ation:
TJ = TB + (RθJB ×PD)
where:
RθJB = junction-to-board thermal resistance (°C/W)
TB = board temperature (°C)
PD = power dissipation in package
If the board temperature is known and the heat loss from the package case to the air can be ignored,
acceptable predictions of junction temperature can be made. For this method to work, the board and board
mounting must be similar to the test board used to determine the junction-to-board thermal resistance,
namely a 2s2p (board with a power and a ground plane) and vias attaching the thermal balls to the ground
plane.
7.4 Estimation Using Simulation
When the board te mperature is not known, a thermal simulation of the application is needed. The simple
two-re sistor mode l can be u sed with the the r ma l sim ulat ion of the applic ation [2], or a mor e accurate a nd
complex model of the package can be used in the thermal simulati on.
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
14 Freescale Semiconductor
Power Supply and Power Sequencing
7.5 Experimental Determination
To determine th e junction temperature of the devi ce in the application after prototypes are available, the
therma l character izat ion para met er (ΨJT) can be used to determine the junction temperature with a
measurement of the tempe rature at the top center of the package case using the following equation:
TJ = TT + (ΨJT ×PD)
where:
ΨJT = thermal character ization paramete r
TT = thermocouple temperature on top of package
PD = power dissipation in package
The thermal characterization parameter is measured per the JESD51-2 specification published by JEDEC
using a 40 gauge t ype T thermocouple epoxied to the top center of the package case. The thermocouple
should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is
placed over the the rmocouple junction and over about 1 mm of wire extending from the junction. The
thermocouple wire is placed flat agai nst the package case t o avoid measurement errors caused by the
cooling effects of the thermocouple wire.
7.6 References
Semiconductor Equipment and Materials International (415) 964-5111
805 East Middlefield Rd
Mountain View, CA 94043
MIL-SPEC and EIA/JESD (JEDEC) specifications 800-854-7179 or
(Available from Global Engineering Documents) 303-397-7956
JEDEC Specifications http://www.jedec.org
1. C.E. T ri plett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an
Automotive Engine Contr oller Module,” Proceedings of SemiT herm, San Diego, 1998, pp. 47–54.
2. 2. B. J oiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal
Resistance and Its Application in Thermal Modeling,” Proceedings of SemiTherm, San Diego,
1999, pp. 212–220.
8 Pow er Supply and Power Sequencing
This section pr ovides design considerations for the M PC875/MPC870 power supply. The
MPC875/MPC870 has a core voltage (VDDL) and PLL voltage (VDDSYN) , which both operate at a lower
voltage than the I/O voltage (VDDH). The I/O section of the MPC875/MPC870 is supplied with 3.3 V
across VDDH and VSS (GND).
The signals PA[0:3], PA [8:11], PB 15, PB[24:25], PB[28:31], PC[4:7] , PC[12:13], PC15, PD[3:15], TDI,
TDO, TCK, TRST, TMS, MII_TXEN, and MII_MDIO are 5 V tolerant. No input can be more than 2.5 V
greater than VDDH. In addi tion, 5-V tolerant pins cannot exceed 5.5 V, and remaining input pins cannot
exceed 3.465 V. This restriction applies to power up, power down, and nor mal operation.
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 15
Mandatory Reset Configurations
One consequence of multiple power supplies is that when power is initially applied, the voltage rails ramp
up at different rates. The rates depend on the nature of the power supply, the type of load on each power
supply, and the manner in which different voltages are derived. The following restrictions apply:
•V
DDL mus t not exceed VDDH during power up and power down
•V
DDL mus t not exceed 1.9 V, and VDDH must not exceed 3.465 V
These cautions are necessary for the long-term reliability of t he part. If they are viol ated, the electrostatic
dischar ge (ESD) protection diodes are forward-biased, and excessive current can flow through these
diodes. If the system power supply design does not control the voltage sequencing, the circuit shown in
Figure 4 ca n be added to meet these requirements. The MUR420 Schottky diodes control the maximum
potential difference between the external bus and core power supplies on power up, and the 1N5820 diodes
regulate the maximum potential difference on power down.
Figure 4. Example Voltage Sequencing Cir cuit
9 Mand atory Reset Configu rations
The MPC875/M P C870 requires a ma ndatory configuration dur ing reset.
If hardware reset configuration word (HRCW) is enabled, the HR CW[DBGC ] value needs to be set to
binary X1 in the HRCW and the SIUMCR[DBGC] should be programmed with the same value in the boot
code after res et. This can be done by as serting the RSTCONF during HRESET assertion.
If HRCW is disabled, the SIUMCR [DBGC] should be programmed with b inary X1 in the boot code after
reset by negating the RSTCONF during the HR ESET assertion.
The MBMR[GPLB4DIS], PAPAR, PADIR, PBPAR, PBDIR, PCPAR, and PCDIR need to be configured
with the mandatory values in Table 7 in the boot code after the reset is negated.
Table 7. Mandator y Reset Configuration of MPC875/MPC870
Register/Configuration Field Value
(Binary)
HRCW (Hardware reset conf iguration word) HRCW[DBGC] X1
SIUMCR (SIU module configuration r egister) SIUMCR[DBGC] X1
MBMR (Machi ne B mode register) MBMR[GPLB4DI S} 0
PAPAR (Port A pin assignment r egister) PAPAR[5:9]
PAPAR[12:13] 0
VDDH VDDL
1N5820
MUR420
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
16 Freescale Semiconductor
Layout Practices
10 Layout Practices
Each VDD pin on the MPC875/MPC870 should be provided with a low-impedance path to the board’s
supply. Each GND pin should likewise be provided with a low-impedance path to ground. The power
supply pins drive distinct gr oups of logic on chip. The VDD power supply should be bypassed to ground
using at leas t four 0.1-µF bypass capacitors located as close as possible to the four sides of the package.
Each board designed should be characterized and additional appropriate decoupling capacitors s hould be
used if required. The capacitor leads and associated printed-circuit traces connecting to chip V DD and
GND should be kept to less than half an inch per capacitor lead. At a minimum, a four-l ayer board
employing two inner layers as VDD and GND planes should be used.
All output pins on the MPC875/MPC870 have fast rise and fall times. Printed circ uit (PC) trace
interconnection length should be minimized in order to minimize undershoot and ref lections caused by
these fast out put switching t imes. This recommendation particularly applies to the address and data buses.
Maximum PC trace lengths of 6 inches are recommended. Capacitance calculations should consider all
device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and
bypassing becom es especial ly critical in systems with higher capacitive loads because these loads create
higher tra nsient curr ents in the VDD and GND circ uits. Pull up all unused inputs or signals that will be
inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins. For
more information, refer to Section 14.4.3, “Clock Synthesizer Power (VDDSYN, VSSSYN, VSSSYN1),” i n
the MPC885 PowerQUICC™ Family Refe rence Manual.
PADI R (Port A data direction register) PADI R[5: 9]
PADIR[12:13] 0
PBPAR (Port B pin assignment regi ster) PBPAR[14:18]
PBPAR[20:22] 0
PBDIR (Port B data direction regi ster) PBDIR[14: 8]
PBDIR[20:22] 0
PCPAR (Port C pin assignment register) PCPAR[ 4:5]
PCPAR[8:9]
PCPAR[14]
0
PCDIR (Port C data directi on register) PCDIR[4:5]
PCDIR[8:9]
PCDIR[14]
0
PDPAR (Port D pin assignment register) PDPAR[ 3:7]
PDPAR[9:5] 0
PDDIR (Port D data directi on register) PDDIR[3:7]
PDDIR[9:15] 0
Table 7. Mandator y Reset Configuration of MPC875/ MPC870 (continued)
Register/Configuration Field Value
(Binary)
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 17
Bus Signal Timing
11 Bus Signal Timing
The maximum bus speed supported by the MPC875/MPC870 is 80 MHz. Higher-speed parts must be
operated in half-speed bus mode (for example, an MPC875/MPC870 used at 133 MHz must be configured
for a 66 MHz bus). Table 8 shows the frequency ranges for standard part frequencies in 1:1 bus mode, and
Table 9 shows the frequency ranges for standard part frequencies in 2:1 bus mode.
Table 10 provides the bus operation timing for the MPC875/MPC870 at 33, 40, 66, and 80 MHz.
The timing for the MPC875/MPC870 bus shown Table 10, assumes a 50-pF load for maximum delays and
a 0-pF load for minimum delays. CLKOUT assumes a 100-pF load m aximum delay
Table 8. Frequency Ranges f o r Standard Part Frequencies (1:1 Bus Mode)
Par t Frequency 66 MHz 80 MHz
Min Max Min Max
Core frequency 40 66.67 40 80
Bus frequency 40 66.67 40 80
Table 9. Frequency Ranges f o r Standard Part Frequencies (2:1 Bus Mode)
Par t Frequency 66 MHz 80 MHz 133 MHz
Min Max Min Max Min Max
Core frequency 40 66.67 40 80 40 133
Bus frequency 20 33.33 20 40 20 66
Table 10. Bus Operation Timing s
Num Characteristic 33 MHz 40 MHz 66 MHz 80 MHz Unit
Min Max Min Max Min Max Min Max
B1 Bus period (CLKOUT), see Table 8 ————————ns
B1a EXTCLK to CLKOUT phase skew—If
CLKOUT is an integer multiple of EXTCLK,
then the rising edge of EXTCLK is aligned with
the ri sing e dge of CLKOUT. F or a non-in teger
multiple of EXTCLK, this synchronization is
lost, and the risi ng edges o f EXTCLK and
CLKOUT have a cont inuously varying phase
skew.
–2 +2 –2 +2 2 +2 –2 +2 ns
B1b CLKOUT frequency jit ter peak-to-peak 1 1 1 1 ns
B1c Frequency jitt er on EXTCLK 0.50 0.50 0.50 0.50 %
B1d CLK O U T phase jitter peak -t o-peak for
OSCLK 15 M H z —4—4—4—4ns
CLKOUT phase jit ter peak-to-peak fo r
OSCLK < 15 MHz —5—5—5—5ns
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
18 Freescale Semiconductor
Bus Signal Timing
B2 CLKOUT pulse width low (MIN = 0. 4 ×B1,
MAX = 0.6 ×B1) 12.1 18.2 10.0 15.0 6.1 9.1 5.0 7.5 ns
B3 CLKOUT pul se width high (MIN = 0.4 ×B1,
MAX = 0.6 ×B1) 12.1 18.2 10.0 15.0 6.1 9.1 5.0 7.5 ns
B4 CLKOUT rise time 4.00 4.00 4.00 4.00 ns
B5 CLKOUT fall time 4.00 4.00 4.00 4.00 ns
B7 CLK OUT t o A(0: 31), BADDR( 28:30) , RD/WR,
BURST, D(0: 31) output hold (MIN = 0. 25 ×B1) 7.60 6.30 3.80 3.13 ns
B7a CLKOUT to TSIZ(0:1), REG, RSV, BDIP, PTR
output hold (MIN = 0.25 ×B1) 7.60 6.30 3.80 3.13 ns
B7b CLK OUT t o BR, BG, FRZ, VFLS( 0:1), VF(0:2)
IWP(0:2), LWP(0:1), STS output hold
(MIN = 0.25 ×B1)
7.60 6.30 3.80 3.13 ns
B8 CLK OUT t o A(0: 31), BADDR( 28:30) , RD/WR,
BURST, D(0:31) v alid (MAX = 0.25 ×B1 + 6.3) 13.80 12.50 10.00 9.43 ns
B8a CLKOUT to TSIZ(0:1), REG, RSV, BDIP, PTR
valid (MAX = 0.25 ×B1 + 6.3) 13.80 12.50 10.00 9.43 ns
B8b CLKOUT to BR, B G, VFLS(0: 1), VF(0: 2),
IWP(0:2), FRZ, LWP(0:1), STS valid 2
(MAX = 0.25 ×B1 + 6.3)
13.80 12.50 10.00 9.43 ns
B9 CLK OUT t o A(0: 31), BADDR( 28:30) , RD/WR,
BURST, D(0:31), TSIZ(0:1), REG, RS V, PT R
High-Z (MAX = 0.25 ×B1 + 6.3)
7.60 13.80 6.30 12.50 3.80 10.00 3.13 9.43 ns
B11 CLKOUT to TS, BB asser tion
(MAX = 0.25 ×B1 + 6.0) 7.60 13.60 6.30 12.30 3.80 9.80 3.13 9.13 ns
B11a CLKOUT to TA, BI assertion (when driven by
the memor y controller or PCMCIA interface)
(MAX = 0 .00 ×B1 + 9.301)
2.50 9.30 2.50 9.30 2.50 9.80 2.5 9.3 ns
B12 CLKOUT to TS, BB negation
(MAX = 0 .25 ×B1 + 4.8) 7.60 12.30 6.30 11.00 3.80 8.50 3.13 7.92 ns
B12a CLKOUT to TA, BI negati on (when driven by
the memor y controller or PCMCIA interface)
(MAX = 0 .00 ×B1 + 9.00)
2.50 9.00 2.50 9.00 2.50 9.00 2.5 9.00 ns
B13 CLKOUT to TS, BB High -Z (M IN = 0 .2 5 ×B1) 7.60 21.60 6.30 20.30 3.80 14.00 3.13 12.93 ns
B13a CLK OUT t o TA, BI High-Z (when dri ven b y the
memory control ler or PCMCIA interface)
(MIN = 0.00 ×B1 + 2.5)
2.50 15.00 2.50 15.00 2.50 15.00 2.5 15.00 ns
B14 CLKOUT to TEA assertion
(MAX = 0.00 ×B1 + 9.00) 2.50 9.00 2.50 9.00 2.50 9.00 2.50 9.00 ns
Tabl e 10. Bus Operat i on Tim i ng s (c onti nued)
Num Characteristic 33 MHz 40 MHz 66 MHz 80 MHz Unit
Min Max Min Max Min Max Min Max
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 19
Bus Signal Timing
B15 CLKOUT to TEA High-Z
(MIN = 0.00 ×B1 + 2.50) 2.50 15.00 2.50 15.00 2.50 15.00 2.50 15.00 ns
B16 TA, BI val id to CLKOUT (set up ti m e)
(MIN = 0.00 ×B1 + 6.00) 6.00 6.00 6.00 6 ns
B16a TEA, KR, RETR Y, CR vali d to CLKOUT (setup
ti me ) (MIN = 0 .0 0 ×B1 + 4.5 ) 4.50 4.50 4.50 4.50 ns
B16b BB, BG, BR, val id to CL KOUT (s e tup ti me)2
(4MIN = 0.00 ×B1 + 0.00) 4.00 4.00 4.00 4.00 ns
B17 CLKOUT to TA, TEA , BI, B B, BG , BR vali d
(hold time) (MIN = 0.00 ×B1 + 1.003)1.00 1.00 2.00 2.00 ns
B17a CLKOUT to KR, R ETRY, C R val id (hol d ti m e)
(MIN = 0.00 ×B1 + 2.00) 2.00 2.00 2.00 2.00 ns
B18 D( 0:31) valid to CLKOUT rising edge (setup
time)4 (MIN = 0.00 ×B1 + 6.00) 6.00 6.00 6.00 6.00 ns
B19 CLKOUT rising edge to D(0:31) valid (hold
time)4 (MIN = 0.00 ×B1 + 1.005)1.00 1.00 2.00 2.00 ns
B20 D(0:31) valid to CLKOUT falling edge (setup
time)6 (MIN = 0.0 0 ×B1 + 4.00) 4.00 4.00 4.00 4.00 ns
B21 CLKOUT falling edge to D(0:31) vali d (hold
time)6 (MIN = 0.00 ×B1 + 2.00) 2.00 2.00 2.00 2.00 ns
B22 CLKOUT rising edge to C S asserted GPCM
ACS = 00 (MAX = 0.25 ×B1 + 6.3) 7.60 13.80 6.30 12.50 3.80 10.00 3.13 9.43 ns
B22a CLKOUT falling edge to CS asserted GPCM
ACS = 10, TRLX = 0 (MAX = 0.00 ×B1 + 8.00) 8.00 8.00 8.00 8.00 ns
B22b CLKOUT falling edge to CS asserted GPCM
ACS = 11, TRLX = 0, EBDF = 0
(MAX = 0 .25 ×B1 + 6.3)
7.60 13.80 6.30 12.50 3.80 10.00 3.13 9.43 ns
B22c CLKOUT falling edge to CS asserted GPCM
ACS = 11, TRLX = 0, EBDF = 1
(MAX = 0 .375 ×B1 + 6.6)
10.90 18.00 10.90 16.00 5.20 12.30 4.69 10.93 ns
B23 CLKOUT rising edge to C S negat ed GPCM
read access, GPCM write access ACS = 00,
TRLX = 0 and CSNT = 0
(MAX = 0 .00 ×B1 + 8.00)
2.00 8.00 2.00 8.00 2.00 8.00 2.00 8.00 ns
B24 A(0:31) and BADDR(28: 30) to CS asserted
GPCM ACS = 10, TRLX = 0
(MIN = 0.25 ×B1 2.00)
5.60 4.30 1.80 1.13 ns
B24a A(0:31) and BADDR(28: 30) to CS asserted
GPCM ACS = 11, TRLX = 0
(MIN = 0.50 ×B1 2.00)
13.20 10.50 5.60 4.25 ns
Tabl e 10. Bus Operat i on Tim i ng s (c onti nued)
Num Characteristic 33 MHz 40 MHz 66 MHz 80 MHz Unit
Min Max Min Max Min Max Min Max
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
20 Freescale Semiconductor
Bus Signal Timing
B25 CLKOUT rising edge to O E,
WE(0:3)/BS_B[ 0:3] asserted
(MAX = 0 .00 ×B1 + 9.00)
9.00 9.00 9.00 9.00 ns
B26 CLKOUT rising edge to O E neg ated
(MAX = 0 .00 ×B1 + 9.00) 2.00 9.00 2.00 9.00 2.00 9.00 2.00 9.00 ns
B27 A(0:31) and BADDR(28: 30) to CS asserted
GPCM ACS = 10, TRLX = 1
(MIN = 1.25 ×B1 2.00)
35.90 29.30 16.90 13.60 ns
B27a A(0:31) and BADDR(28: 30) to CS asserted
GPCM ACS = 11, TRLX = 1
(MIN = 1.50 ×B1 2.00)
43.50 35.50 20.70 16.75 ns
B28 CLKOUT rising edge to W E(0: 3)/BS_B[0: 3]
negated GPCM write access CSNT = 0
(MAX = 0 .00 ×B1 + 9.00)
9.00 9.00 9.00 9.00 ns
B28a CLKOUT falli ng edge to WE ( 0:3)/BS_B[0:3]
negated GPCM write access TRLX = 0,
CSNT = 1, EBD F = 0
(MAX = 0 .25 ×B1 + 6.80)
7.60 14.30 6.30 13.00 3.80 10.50 3.13 9.93 ns
B28b CLKOUT falling edge to CS negated GPCM
write acces s TRLX = 0, CSNT = 1 ACS = 10 or
ACS = 11, EBDF = 0
(MAX = 0.25 ×B1 + 6.80)
14.30 13.00 10.50 9.93 ns
B28c CLKOUT falling edge to WE (0:3)/BS_B[0:3]
negated GPCM write access TRLX = 0,
CSNT = 1 write ac cess TRLX = 0, CSNT = 1,
EBDF = 1 (MAX = 0.375 ×B1 + 6.6)
10.90 18.00 10.90 18.00 5.20 12.30 4.69 11.29 ns
B28d CLKOUT falling edge to CS negated GPCM
write access TRLX = 0, CSNT = 1, ACS = 10
or ACS = 11, EBDF = 1
(MAX = 0 .375 ×B1 + 6.6)
18.00 18.00 12.30 11.30 ns
B29 WE(0:3)/BS_B[0:3] negated to D(0:31) High-Z
GPCM write acc ess, CSNT = 0, EBDF = 0
(MIN = 0.25 ×B1 2.00)
5.60 4.30 1.80 1.13 ns
B29a WE(0:3)/BS_B[0:3] negated to D(0:31) High-Z
GPCM write access , TRLX = 0, CSNT = 1,
EBDF = 0 (MIN = 0.50 ×B1 2.00)
13.20 10.50 5.60 4.25 ns
B29b CS negated to D(0:31) High -Z GPCM write
access, ACS = 00, TRLX = 0 and CSNT = 0
(MIN = 0.25 ×B1 2.00)
5.60 4.30 1.80 1.13 ns
B29c CS negated to D(0 :31) High -Z GPCM write
access, TRLX = 0, CSNT = 1, ACS = 10 or
A CS = 11, EBDF = 0 (MI N = 0.50 ×B1 2.00)
13.20 10.50 5.60 4.25 ns
Tabl e 10. Bus Operat i on Tim i ng s (c onti nued)
Num Characteristic 33 MHz 40 MHz 66 MHz 80 MHz Unit
Min Max Min Max Min Max Min Max
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 21
Bus Signal Timing
B29d WE(0:3)/BS_B[0:3] negated to D(0:31) High-Z
GPCM write access , TRLX = 1, CSNT = 1,
EBDF = 0 (MIN = 1.50 ×B1 2.00)
43.50 35.50 20.70 16.75 ns
B29e CS negated to D(0:31) High -Z GPCM write
access, TRLX = 1, CSNT = 1, ACS = 10 or
A CS = 11, EBDF = 0 (MIN = 1.50 ×B1 2.00)
43.50 35.50 20.70 16.75 ns
B29f WE(0:3/BS_B[0:3]) negated to D(0:31) High-Z
GPCM write access , TRLX = 0, CSNT = 1,
EBDF = 1 (MIN = 0.375 ×B1–6.30)
7
5.00 3.00 0.00 0.00 ns
B29g CS negated to D(0:31) High -Z GPCM write
access, TRLX = 0, CSNT = 1 ACS = 10 or
ACS = 11, EBDF = 1
(MIN = 0.375 ×B1 6.30)7
5.00 3.00 0.00 0.00 ns
B29h WE(0:3)/BS_B[0:3] negated to D(0:31) High-Z
GPCM write access , TRLX = 1, CSNT = 1,
EBDF = 1 (MIN = 0.375 ×B1–3.30)
38.40 31.10 17.50 13.85 ns
B29i CS negated to D(0:31) (0: 3) High- Z GPCM
write access , TRLX = 1, CSNT = 1, A CS = 10
or ACS = 11, EBDF = 1
(MIN = 0.375 ×B1 3.30)
38.40 31.10 17.50 13.85 ns
B30 CS, W E(0:3) /BS_B[0:3] negat ed to A(0:31),
BADDR(28:30) inva lid GPCM write access8
(MIN = 0.25 ×B1 2.00)
5.60 4.30 1.80 1.13 ns
B30a WE(0:3)/ BS_B[0:3] negated to A(0:31),
BADDR(28:30) inva lid GPCM, write acces s,
TRLX = 0, CSNT = 1, CS negated to A(0:31 ),
invalid GPCM write access TRLX = 0,
CSNT = 1, ACS = 10 or A CS == 11, EBDF = 0
(MIN = 0.50 ×B1 2.00)
13.20 10.50 5.60 4.25 ns
B30b WE(0:3)/BS_B[0:3] negated to A(0:31), invalid
GPCM BADDR(2 8:3 0), in valid GPCM write
access, TRLX = 1, CSNT = 1. CS negated to
A(0:31), in valid GPCM write access TRLX = 1,
CSNT = 1, A CS = 1 0 or A CS == 11, EBDF = 0
(MIN = 1.50 ×B1 2.00)
43.50 35.50 20.70 16.75 ns
B30c WE(0:3)/ BS_B[0:3] negated to A(0:31),
BADDR(28:30) inva lid GPCM write access ,
TRLX = 0, CSNT = 1. CS negated to A(0:31)
invalid GPCM write access, TRLX = 0,
CSNT = 1 ACS = 10 or ACS == 11, EBDF = 1
(MIN = 0.375 ×B1 3.00)
8.40 6.40 2.70 1.70 ns
Tabl e 10. Bus Operat i on Tim i ng s (c onti nued)
Num Characteristic 33 MHz 40 MHz 66 MHz 80 MHz Unit
Min Max Min Max Min Max Min Max
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
22 Freescale Semiconductor
Bus Signal Timing
B30d WE(0:3)/ BS_B[0:3] negated to A(0:31),
BADDR(28:30) inva lid GPCM write access
TRLX = 1, CSNT =1, CS negat ed to A(0:31)
invalid GPCM write access TRLX = 1,
CSNT = 1, ACS = 10 or 11, EBDF = 1
38.67 31.38 17.83 14.19 ns
B31 CLKOUT falling edg e to CS valid as requested
by c ontrol bit CST4 in th e co rrespon ding wo rd
in the UPM (MAX = 0.00 ×B1 + 6.00)
1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00 ns
B31a CLK OUT f alling edge to CS valid as requested
by c ontrol bit CST1 in th e co rrespon ding wo rd
in the UPM (MAX = 0.25 ×B1 + 6.80)
7.60 14.30 6.30 13.00 3.80 10.50 3.13 10.00 ns
B31b CLKOUT rising edge to CS valid, as requested
by c ontrol bit CST2 in th e co rrespon ding wo rd
in the UPM (MAX = 0.00 ×B1 + 8.00)
1.50 8.00 1.50 8.00 1.50 8.00 1.50 8.00 ns
B31c CLKOUT rising edge to CS valid, as requested
by c ontrol bit CST3 in th e co rrespon ding wo rd
in the UPM (MAX = 0.25 ×B1 + 6.30)
7.60 13.80 6.30 12.50 3.80 10.00 3.13 9.40 ns
B31d CLK OUT f alling edge to CS valid as requested
by c ontrol bit CST1 in th e co rrespon ding wo rd
in the UPM EBDF = 1
(MAX = 0.375 ×B1 + 6.6)
13.30 18.00 11.30 16.00 7.60 12.30 4.69 11.30 ns
B32 CLKOUT falling edge to BS vali d as request ed
by con tr ol bi t BST4 in the cor respondi ng w ord
in the UPM (MAX = 0.00 ×B1 + 6.00)
1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00 ns
B32a CLKOUT falling edge to BS val id as re quested
by con tr ol bi t BST1 in the cor respondi ng w ord
in the UPM, EBDF = 0
(MAX = 0.25 ×B1 + 6.80)
7.60 14.30 6.30 13.00 3.80 10.50 3.13 10.00 ns
B32b CLKOUT rising edge to BS vali d, as r equested
by con tr ol bi t BST2 in the cor respondi ng w ord
in the UPM (MAX = 0.00 ×B1 + 8.00)
1.50 8.00 1.50 8.00 1.50 8.00 1.50 8.00 ns
B32c CLKOUT rising edge to BS v alid, as requ ested
by con tr ol bi t BST3 in the cor respondi ng w ord
in the UPM (MAX = 0.25 ×B1 + 6.80)
7.60 14.30 6.30 13.00 3.80 10.50 3.13 10.00 ns
B32d CLKOUT falling edge to BS val id as re quested
by con tr ol bi t BST1 in the cor respondi ng w ord
in the UPM, EBDF = 1
(MAX = 0.375 ×B1 + 6.60)
13.30 18.00 11.30 16.00 7.60 12.30 4.49 11.30 ns
B33 CLKOUT falling edge to GPL valid as
requested by cont rol bit GxT4 in the
corresponding word i n the UPM
(MAX = 0.00 ×B1 + 6.00)
1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00 ns
Tabl e 10. Bus Operat i on Tim i ng s (c onti nued)
Num Characteristic 33 MHz 40 MHz 66 MHz 80 MHz Unit
Min Max Min Max Min Max Min Max
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 23
Bus Signal Timing
B33a CLKOUT rising edge to GPL valid as
requested by cont rol bit GxT3 in the
corresponding word i n the UPM
(MAX = 0.25 ×B1 + 6.80)
7.60 14.30 6.30 13.00 3.80 10.50 3.13 10.00 ns
B34 A(0:31) , BADDR(28: 30), and D(0:31) to CS
valid, as request ed by control bit CST4 in the
corresponding word i n the UPM
(MIN = 0.25 ×B1 2.00)
5.60 4.30 1.80 1.13 ns
B34a A(0:31) , BADDR(28: 30), and D(0:31) to CS
valid, as request ed by control bit CST1 in the
corresponding word i n the UPM
(MIN = 0.50 ×B1 2.00)
13.20 10.50 5.60 4.25 ns
B34b A(0:31) , BADDR(28: 30), and D(0:31) to CS
valid, as request ed by CST2 in the
corresponding word i n UPM
(MIN = 0.75 ×B1 2.00)
20.70 16.70 9.40 6.80 ns
B35 A(0:31), BADDR(28:30) to CS valid as
requested by control bit BST4 in the
corresponding word i n the UPM
(MIN = 0.25 ×B1 2.00)
5.60 4.30 1.80 1.13 ns
B35a A(0:31) , BADDR(28: 30), and D(0:31) to BS
valid as requested by BST1 in the
corresponding word i n the UPM
(MIN = 0.50 ×B1 2.00)
13.20 10.50 5.60 4.25 ns
B35b A(0:31) , BADDR(28: 30), and D(0:31) to BS
valid as requested by control bit BST2 in the
corresponding word i n the UPM
(MIN = 0.75 ×B1 2.00)
20.70 16.70 9.40 7.40 ns
B36 A(0:31) , BADDR(28: 30), and D(0:31) to GPL
valid as requested by control bit GxT4 in the
corresponding word i n the UPM
(MIN = 0.25 ×B1 2.00)
5.60 4.30 1.80 1.13 ns
B37 UPWAIT valid to CL KOUT falling edge9
(MIN = 0.00 ×B1 + 6.00) 6.00 6.00 6.00 6.00 ns
B38 CLKOUT falling edge to UPWAIT valid9
(MIN = 0.00 ×B1 + 1.00) 1.00 1.00 1.00 1.00 ns
B39 AS valid to CLKOUT rising edge10
(MIN = 0.00 ×B1 + 7.00) 7.00 7.00 7.00 7.00 ns
B4 0 A( 0 :3 1 ), T S IZ ( 0: 1 ), R D / WR, BURST val id to
CLKOUT rising edge
(MIN = 0.00 ×B1 + 7.00)
7.00 7.00 7.00 7.00 ns
B41 TS valid to CLKOUT r ising edge (setup tim e)
(MIN = 0.00 ×B1 + 7.00) 7.00 7.00 7.00 7.00 ns
Tabl e 10. Bus Operat i on Tim i ng s (c onti nued)
Num Characteristic 33 MHz 40 MHz 66 MHz 80 MHz Unit
Min Max Min Max Min Max Min Max
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
24 Freescale Semiconductor
Bus Signal Timing
B42 CLKOUT rising edge to TS valid (h old t im e )
(MIN = 0.00 ×B1 + 2.00) 2.00 2.00 2.00 2.00 ns
B43 AS negation to memory controller signals
negati on (MAX = TBD) TBD TBD TBD TBD ns
1For part speeds above 50 MHz, use 9. 80 ns for B11a.
2The timing required for BR input is relevant when the MPC875/ MP C870 is selected to work with the internal bus a rbiter. The
ti ming for BG input i s rel evant when the MPC875/MPC870 is selected to work with the external bus arbiter.
3For part speeds above 50 MHz, use 2 ns for B17.
4The D(0:31) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input si gnal is asserted.
5For part speeds above 50 MHz, use 2 ns for B19.
6The D(0:31) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only for read accesses
controlled by chip-select s under cont rol of the user-programmable machine ( UPM) in the memory controller, for data beats
where DLT3 = 1 in the RAM words. (This is onl y the case where data is latc hed on the falling edge of CLKOUT.)
7This formula applies to bus operati on up to 50 MHz.
8The ti ming B30 refers t o CS when A CS = 00 and to WE(0:3) when CSNT = 0.
9The si gnal UPW AIT is consi dered asynch ronous to the CLK OUT and syn chronized internall y . The ti ming s specified in B37 and
B38 are specified to enable the freeze of the UPM output signals as described in Figure 20.
10 The AS s ig nal i s consi dered a sync hron ous to the CLKOUT. Th e timi ng B39 is specif ied i n order t o all ow th e be havi or spec ifie d
in Figure 23.
Tabl e 10. Bus Operat i on Tim i ng s (c onti nued)
Num Characteristic 33 MHz 40 MHz 66 MHz 80 MHz Unit
Min Max Min Max Min Max Min Max
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 25
Bus Signal Timing
Figure 5 provide s the control timing diagram.
.
Figure 5 . Con t rol Ti m in g
Figure 6 provide s the timing for the external clock.
Figure 6. External Clock Timing
CLKOUT
Outputs
A
B
Outputs
B
A
Inputs
D
C
Inputs
C
D
A Maximum output delay specification.
B Mi nimum output hold ti m e.
C Minimum input set up time specification.
D Minimum input hol d ti m e specification.
CLKOUT
B1
B5
B3
B4
B1
B2
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
26 Freescale Semiconductor
Bus Signal Timing
Figure 7 provides the timing for the synchronous output signal s.
Figu re 7. Sy nchronou s Output Si gnals Timi ng
Figure 8 provides the timing for the synchronous active pull-up and open-drain output signals.
Figure 8. Syn chronous Active Pull-Up Resistor and Ope n-Drain Ou tputs Signals Timing
CLKOUT
Output
Signals
Output
Signals
Output
Signals
B8
B7 B9
B8a
B9B7a
B8b
B7b
CLKOUT
TS, BB
TA, B I
TEA
B13
B12B11
B11 B12a
B13a
B15
B14
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 27
Bus Signal Timing
Figure 9 provides the timing for the synchronous input signal s.
Figure 9. Synchronous Input Signals Timing
Figure 10 provides normal case timing for input data. It also applies to normal read accesses under the
contr ol of the user-programma ble ma chi ne (UPM) in the memory controller.
Fig ure 10 . Inpu t Dat a Ti m i ng i n N orma l C ase
CLKOUT
TA
D[0:31]
B16
B17
B19
B18
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
28 Freescale Semiconductor
Bus Signal Timing
Figure 11 provi des the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in
the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)
Figure 11. Input Data Timing when Controlled by UPM in the Memory Contr oller and DLT3 = 1
Figure 12 through Figure 15 provide the timing for the external bus read contr olle d by various GPCM
factors.
Figure 12. External Bus Read Timing (GPCM Controlled— ACS = 00)
CLKOUT
TA
D[0:31]
B20
B21
CLKOUT
A[0:31]
CSx
OE
WE[0:3]
TS
D[0:31]
B11 B12
B23
B8
B22
B26
B19
B18
B25
B28
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 29
Bus Signal Timing
Figure 13. External Bus Read Timing (GP CM Controlled—T RLX = 0, ACS = 10)
Figure 14. External Bus Read Timing (GP CM Controlled—T RLX = 0, ACS = 11)
CLKOUT
A[0:31]
CSx
OE
TS
D[0:31]
B11 B12
B8
B22a B23
B26
B19B18
B25B24
CLKOUT
A[0:31]
CSx
OE
TS
D[0:31]
B11 B12
B22b
B8
B22c B23
B24a B25 B26
B19B18
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
30 Freescale Semiconductor
Bus Signal Timing
Figure 15. External Bus Read Timing (GPCM Controlled—TRLX = 1, ACS = 10, A CS = 11)
CLKOUT
A[0:31]
CSx
OE
TS
D[0:31]
B11 B12
B8
B22a
B27
B27a
B22b B22c B19B18
B26
B23
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 31
Bus Signal Timing
Figure 16 through Figure 18 provide the timing for the external bus write controlled by various GPCM
factors.
Figure 16. External Bu s Write Timing (GPCM Controlled—TRLX = 0, CSNT = 0)
CLKOUT
A[0:31]
CSx
WE[0:3]
OE
TS
D[0:31]
B11
B8
B22 B23
B12
B30
B28B25
B26
B8 B9
B29
B29b
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
32 Freescale Semiconductor
Bus Signal Timing
Figure 17. External Bus Write Timi ng (GPCM Controlled—T RLX = 0, CSNT = 1)
B23
B30a B30c
CLKOUT
A[0:31]
CSx
OE
WE[0:3]
TS
D[0:31]
B11
B8
B22
B12
B28b B28d
B25
B26
B8
B28a
B9
B28c
B29c B29g
B29a B29f
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 33
Bus Signal Timing
Figure 18. External Bus Write Timi ng (GPCM Controlled—T RLX = 1, CSNT = 1)
B23B22
B8
B12B11
CLKOUT
A[0:31]
CSx
WE[0:3]
TS
OE
D[0:31]
B30dB30b
B28b B28d
B25 B29e B29i
B26 B29d B29h
B28a B28c B9B8
B29b
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
34 Freescale Semiconductor
Bus Signal Timing
Figure 19 provide s the timing for the external bus controlled by the UPM.
Figure 19. E xter nal Bus Timin g (UPM Controlled Signals)
CLKOUT
CSx
B31d
B8
B31
B34
B32b
GPL_A[0:5],
GPL_B[0:5]
BS_A[0:3]
A[0:31]
B31c
B31b
B34a
B32
B32a B32d
B34b
B36
B35b
B35a
B35
B33
B32c
B33a
B31a
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 35
Bus Signal Timing
Figure 20 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.
Figure 20. As ynchronous UPWAIT Asser ted Detection in UPM Handled Cycles Timing
Figure 21 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.
Figur e 21. Asynch ronous UPWAIT Negated Detection in UP M Handled Cycles Timing
CLKOUT
CSx
UPWAIT
GPL_A[0:5],
GPL_B[0:5]
BS_A[0:3]
B37
B38
CLKOUT
CSx
UPWAIT
GPL_A[0:5],
GPL_B[0:5]
BS_A[0:3]
B37
B38
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
36 Freescale Semiconductor
Bus Signal Timing
Figure 22 provides the timing for the synchronous external master access controlled by the GPCM.
Figure 22. Synch ronous External Master Access Ti ming (GP CM Handled ACS = 00)
Figure 23 provides the timing for the asynchronous external master memory access controlled by the
GPCM.
Figure 23. Asyn chronous Externa l Master Memo ry Access Timing (GP CM Co ntrolled—ACS = 00)
Figure 24 provides the timing for the asynchronous external master control signals nega tion.
Fig ure 24. A s ynchronou s Ex te rna l Maste r—C ontrol Si gnals Negat io n Ti m in g
CLKOUT
TS
A[0:31],
TSIZ[0:1],
R/W, BURST
CSx
B41 B42
B40
B22
CLKOUT
AS
A[0:31],
TSIZ[0:1],
R/W
CSx
B39
B40
B22
AS
CSx, W E [0:3],
OE, GP L x ,
BS[0:3]
B43
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 37
Bus Signal Timing
Table 11 pr ovides the interrupt timing for the M P C875/MPC870.
Figure 25 provide s the interrupt detection timing for the external level- sens itive lines.
Figure 25. I nter rupt Detectio n Timing for External Level Sensitive Lines
Figure 26 provide s the interrupt detection timing for the external edge- sensi tive lines.
Figure 26. Interrupt Detection Timing for External Edge-Sensitive Lines
Table 11. Interrupt Timing
Num Characteristic1
1The I39 and I40 ti m ings d escri be the testing conditions under which the IRQ lin es are tested when being defined as le vel
sensitive. The IRQ lines are sy nchroni zed in ternally and do not ha ve t o be asse rted or negat ed with ref ere nce to the CLK O UT.
The I41, I42, and I43 timi ngs ar e specified to allow correct functionin g of the IRQ lines det ection circui try and have no direct
relation with the tot al system interrupt latency t hat the MPC875/MPC870 is able to support.
All Frequencies Unit
Min Max
I39 IRQx v alid to CLKOUT rising edge (setup ti m e) 6.00 ns
I40 IRQx hold ti me after CLK O UT 2.00 ns
I41 IRQx pulse width low 3.00 ns
I42 IRQx pulse width high 3.00 ns
I43 IRQx edg e-to-edge time 4 ×TCLOCKOUT
CLKOUT
IRQx
I39
I40
CLKOUT
IRQx
I41 I42
I43
I43
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
38 Freescale Semiconductor
Bus Signal Timing
Table 12 shows the PCMCIA timing for the MPC875/MPC 870.
Table 12. PCMCIA Timing
Num Characteristic 33 MHz 40 MHz 66 MHz 80 MHz Unit
Min Max Min Max Min Max Min Max
P44 A(0:31), REG valid to PCMCI A str obe
asserted1 (MIN = 0.75 ×B1 2.00)
1PSST = 1. Otherwise add PSST times cycl e ti me .
PSHT = 0. Otherwi se add PSHT times cycle time.
These synchronous timings defi ne when the WAITA signal s are detected in order to freeze (or reli eve) the PCMCIA current
cycle. The WAITA assertion wil l be ef fective only i f it is detected 2 cycles before the PSL ti me r expiration. See Chapter 16,
“PCMCIA Interface,” in the
MPC885 PowerQUICC™ Family Refere nce M anual
.
20.70 16.70 9.40 7.40 ns
P45 A(0:31), REG valid to ALE negation1
(MIN = 1.00 ×B1 2.00) 28.30 23.00 13.20 10.50 ns
P46 CLKOUT to REG va lid
(MAX = 0.25 ×B1 + 8.00) 7.60 15.60 6.30 14.30 3.80 11.80 3.13 11.13 ns
P47 CLKOUT to REG inva li d
(MIN = 0.25 ×B1 + 1.00) 8.60 7.30 4.80 4.125 ns
P48 CLKOUT to CE1, CE2 asserted
(MAX = 0.25 ×B1 + 8.00) 7.60 15.60 6.30 14.30 3.80 11.80 3.13 11.13 ns
P49 CLKOUT to CE1, CE2 negated
(MAX = 0.25 ×B1 + 8.00) 7.60 15.60 6.30 14.30 3.80 11.80 3.13 11.13 ns
P50 CLKOUT to PCOE, IORD , PCWE, IOWR
assert time (MAX = 0.00 ×B1 + 11.00) 11.00 11.00 11.00 11.00 ns
P51 CLKOUT to PCOE, IORD , PCWE, IOWR
negate tim e (MAX = 0.00 ×B1 + 11.00) 2.00 11.00 2.00 11.00 2.00 11.00 2.00 11.00 ns
P52 CLKOUT to ALE asser t t ime
(MAX = 0 .25 ×B1 + 6.30) 7.60 13.80 6.30 12.50 3.80 10.00 3.13 9.40 ns
P53 CLKOUT to ALE negate time
(MAX = 0 .25 ×B1 + 8.00) 15.60 14.30 11.80 11.13 ns
P54 PCWE, I OWR negated to D(0:31)
invalid1 (MIN = 0.25 ×B1–2.00) 5.60 4.30 1.80 1.125 ns
P55 WAITA and WAITB vali d to CLKOUT
rising edge1 (MIN = 0.00 ×B1 + 8.00) 8.00 8.00 8.00 8.00 ns
P56 CLKOUT rising edge to WAITA and
WAITB invalid1 (MIN = 0.00 ×B1 + 2. 00) 2.00 2.00 2.00 2.00 ns
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 39
Bus Signal Timing
Figure 27 provides the PCMCIA access cycle timing for the external bus read.
Fi gure 27. PCMCIA Access Cycles Timing External Bus Read
CLKOUT
A[0:31]
REG
CE1/CE2
PCOE, IORD
TS
D[0:31]
ALE
B19B18
P53P52 P52
P51P50
P48 P49
P46 P45
P44
P47
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
40 Freescale Semiconductor
Bus Signal Timing
Figure 28 provides the PCMCIA access cycle timing for the external bus write.
Figure 28. PCMCIA Access Cycles Timing Extern al Bus Write
Figure 29 provides the PCMCIA WAIT signals detection timing.
Figure 29. PCM CIA WAIT Signals Detection Timing
CLKOUT
A[0:31]
REG
CE1/CE2
PCWE, IOWR
TS
D[0:31]
ALE
B9B8
P53P52 P52
P51P50
P48 P49
P46 P45
P44
P47
P54
CLKOUT
WAITA
P55
P56
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 41
Bus Signal Timing
Table 13 shows the PCMCIA port timing for the MPC875/MPC870.
Figure 30 provides the PCMCIA output port timing for the MPC875/MPC870.
Figure 30. PCMCIA Output Port Timing
Figure 31 provides the PCM CIA input port timing for the MPC 875/MPC870.
Figure 31. PCMCIA Input P ort Timing
Ta b le 13 . PCMC IA Por t Tim ing
Num Characteristic 33 MHz 40 MHz 66 MHz 80 MHz Unit
Min Max Min Max Min Max Min Max
P57 CLKOUT to OPx val id
(MAX = 0.00 ×B1 + 19.00) 19.00 19.00 19.00 19.00 ns
P58 HRESET negated to OPx drive1
(MIN = 0.75 ×B1 + 3.00)
1OP2 and OP3 onl y.
25.70 21.70 14.40 12.40 ns
P59 IP_Xx val id to CLKOUT r ising edge
(MIN = 0.00 ×B1 + 5.00) 5.00 5.00 5.00 5.00 ns
P60 CLKOUT rising edge to IP_Xx invalid
(MIN = 0.00 ×B1 + 1.00) 1.00 1.00 1.00 1.00 ns
CLKOUT
HRESET
Output
Signals
OP2, OP3
P57
P58
CLKOUT
Input
Signals
P59
P60
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
42 Freescale Semiconductor
Bus Signal Timing
Table 14 shows the debug port timing for the MPC875/MPC870.
Figure 32 provides the input timing for the debug port clock.
Fi gure 32. De bug Port Cl ock I nput T iming
Figure 33 provides the timing for the debug port.
Figure 33. Debug Port Timings
Table 14 . De bug Port Ti m in g
Num Characteristic All Frequencies Unit
Min Max
D61 DSCK cycle time 3 ×TCLOCKOUT
D62 DSCK clock pul se width 1.25 ×TCLOCKOUT
D63 DSCK rise and fall times 0.00 3.00 ns
D64 DSDI input data set up time 8.00 ns
D65 DSDI data hol d ti me 5.00 ns
D66 DSCK low to DSDO data valid 0.00 15.00 ns
D67 DSCK low to DSDO invali d 0.00 2.00 ns
DSCK
D61
D61
D63
D62
D62
D63
DSCK
DSDI
DSDO
D64
D65
D66
D67
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 43
Bus Signal Timing
Table 15 shows the reset timi ng for the MPC875/MPC870.
Table 15. Reset Timing
Num Characteristic 33 MHz 40 MHz 66 MHz 80 MHz Unit
Min Max Min Max Min Max Min Max
R69 CLKOUT to HRESET high impedance
(MAX = 0.00 ×B1 + 20.00) 20.00 20.00 20.00 20.00 ns
R70 CLKOUT to SRESET high impedance
(MAX = 0.00 ×B1 + 20.00) 20.00 20.00 20.00 20.00 ns
R71 RSTCONF pulse width
(MIN = 17.00 ×B1) 515.20 425.00 257.60 212.50 ns
R72 ————————
R73 Config uration data to HRESET rising
edge setup time
(MIN = 15.00 ×B1 + 50.00)
504.50 425.00 277.30 237.50 ns
R74 Config uration data to RSTCONF rising
edge setup time
(MIN = 0.00 ×B1 + 350.00)
350.00 350.00 350.00 350.00 ns
R75 Configuration dat a hold time after
RSTCONF negation
(MIN = 0.00 ×B1 + 0.00)
0.00 0.00 0.00 0.00 ns
R76 Configuration dat a hold time after
HRESET negation
(MIN = 0.00 ×B1 + 0.00)
0.00 0.00 0.00 0.00 ns
R77 HRESET and RSTCONF asser ted to
data out drive
(MAX = 0.00 ×B1 + 25.00)
25.00 25.00 25.00 25.00 ns
R78 RSTCONF negated to data out high
impedance (MAX = 0.00 ×B1 + 25.00) 25.00 25.00 25.00 25.00 ns
R79 CLKOUT of last rising edge before c hip
three-states HRESET to data out high
impedance (MAX = 0.00 ×B1 + 25.00)
25.00 25.00 25.00 25.00 ns
R80 DSDI, DSCK setup (MIN = 3.00 ×B1) 90.90 75.00 45.50 37.50 ns
R81 DSDI, DSCK hold time
(MIN = 0.00 ×B1 + 0.00) 0.00 0.00 0.00 0.00 ns
R82 SRESET negated to CLKOUT rising
edge for DSDI and DSCK sampl e
(MIN = 8.00 ×B1)
242.40 200.00 121.20 100.00 ns
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
44 Freescale Semiconductor
Bus Signal Timing
Figure 34 shows the reset timing for the data bus configuration.
Figure 34. Reset Timing—Configuration from Data Bus
Figure 35 provide s the reset timing for the data bus weak drive during configuration.
Figure 35. Reset Timin g—D ata Bus Weak Drive During Configuration
Figure 36 provides the reset timing for the debug port configuration.
Figure 36. Reset Timing—Debug Port Configuration
HRESET
RSTCONF
D[0:31 ] (IN)
R71
R74
R73
R75
R76
CLKOUT
HRESET
D[0:31] (OUT )
(Weak)
RSTCONF
R69
R79
R77 R78
CLKOUT
SRESET
DSCK, DSDI
R70
R82
R80R80
R81 R81
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 45
IEEE 1149.1 Electrical Specifications
12 IEEE 1149.1 Electrical Specifications
Table 16 provides the JTAG tim ings for the MPC875/MPC870 shown in Figure 37 through Figure 40.
Figure 37. JTAG Test Clock Inpu t Timing
Table 16. JTAG Timing
Num Characteristic All Frequencies Unit
Min Max
J82 TCK cycle time 100.00 ns
J83 TCK clock pulse width measured at 1.5 V 40.00 ns
J84 TCK rise and fall times 0.00 10.00 ns
J85 TMS, TDI dat a setup time 5.00 ns
J86 TMS, TDI dat a hold ti me 25.00 ns
J87 TCK low to TDO data valid 27.00 ns
J88 T CK low to TD O d at a invalid 0. 00 n s
J89 TCK low to TDO high impedance 20.00 ns
J90 TRST assert time 100.00 ns
J91 TRST setup ti me to TCK lo w 40.00 ns
J92 TCK falling edge to output valid 50.00 ns
J93 TCK falling edge to output valid out of hi gh impedance 50.00 ns
J94 TCK falling edge to output high impedance 50.00 ns
J95 Bounda ry scan inpu t valid to TCK rising edge 50.00 ns
J96 TCK rising edge to bound ary scan inp ut inv alid 50.00 ns
TCK
J82 J83
J82 J83
J84 J84
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
46 Freescale Semiconductor
IEEE 1149.1 Electrical Specifications
Figure 38. JTAG T est Access Port Timing Diagram
Figure 39. JTAG TRST Ti m i ng Diagr am
Fig ure 40. Bo undar y Scan (JTAG ) T im ing Diagr am
TCK
TMS, TDI
TDO
J85
J86
J87
J88 J89
TCK
TRST
J91
J90
TCK
Output
Signals
Output
Signals
Output
Signals
J92 J94
J93
J95 J96
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 47
CPM Electrical Characterist ics
13 CPM Electrical Characteristics
This section provides the AC and DC electrical specif ications for the communications pr ocesso r module
(CPM) of the MPC875/MP C870.
13 .1 Port C Inter rupt AC Electrical Specifications
Table 17 provid es the timings for Port C interrupts.
Figure 41 shows the Port C interrupt detection timing.
Figure 41 . Port C In te rrupt Detect io n Ti m in g
13.2 IDMA Controller AC Electrical Specifications
Table 18 provides the IDMA controller timings as shown in Figure 42 through Figure 45.
Table 17 . Por t C Int errupt Ti m in g
Num Characteristic 33.34 MHz Unit
Min Max
35 Port C in terr upt pul se width low (edge-tri ggered mode) 55 ns
36 Port C interrupt minimum time between active edges 55 ns
Table 18 . IDMA Controller Timing
Num Characteristic All Frequencies Unit
Min Max
40 DREQ s et u p ti m e to cl o ck hig h 7 ns
41 DREQ hold t ime fr om clock hig h1
1Applie s to high- t o -low m o de ( E D M = 1 ).
TBD ns
42 SDACK ass ertion delay fro m clock high 1 2 ns
43 SDACK nega tion delay from cloc k low 12 ns
44 SDACK nega ti on delay f rom TA low 20 ns
45 SDACK nega tion delay from cloc k high 15 ns
46 TA asserti on to rising edge of the clock setup tim e (applies to external TA)7ns
Port C
35
36
(Input)
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
48 Freescale Semiconductor
CP M Electrical Characteristics
Figure 42. IDMA External Requests Timing Diagram
Figu re 43. S DACK Timin g Diagram—Peri pheral Wri te, External ly-Generated TA
41
40
DREQ
(Input)
CLKO
(Output)
DATA
42
46
43
CLKO
(Output)
TS
(Output)
R/W
(Output)
SDACK
TA
(Input)
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 49
CPM Electrical Characterist ics
Figure 44. SDA CK Timing Diagram—Peri ph eral Wri te, Internal ly-Generated TA
Fi gure 45 . SDACK Timing Diagram— Peripheral Read, Internally-Gener ated TA
DATA
42 44
CLKO
(Output)
TS
(Output)
R/W
(Output)
TA
(Output)
SDACK
DATA
42 45
CLKO
(Output)
TS
(Output)
R/W
(Output)
TA
(Output)
SDACK
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
50 Freescale Semiconductor
CP M Electrical Characteristics
13 .3 Baud Rate Generator AC Electrical Specifications
Table 19 provid es the baud rate genera tor timings as shown in Figure 46.
Figure 46. Baud Rate Generator Timing Diagram
13 .4 Timer AC Elec t rical Specificati on s
Table 20 provides the genera l-purpose timer timings as shown in Figure 47.
Table 19. Baud Rate Generator Timing
Num Characteristic All Frequencies Unit
Min Max
50 BRGO rise and fall time 10 ns
51 BRGO duty cycle 40 60 %
52 BRGO cycle 40 ns
Ta ble 2 0 . Time r Timin g
Num Characteristic All Frequencies Unit
Min Max
61 TIN/TGATE rise and fall time 10 ns
62 TIN/TGATE low ti me 1 clk
63 TIN/TGATE high time 2 clk
64 TIN/TGATE cycle time 3 clk
65 CLKO low to TOUT v alid 3 25 ns
52
50
51
BRGOX
50
51
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 51
CPM Electrical Characterist ics
Figure 47. CPM General-Purpose Timers Timing Diagram
13 .5 S erial Interface AC Electr ical Specifications
Table 21 provid es the serial interfa ce (SI ) timings as shown in Figure 48 through Figure 52.
Table 21. SI Timing
Num Characteristic All Frequencies Unit
Min M ax
70 L1RCLKB, L1TCLKB frequency (DSC = 0)1, 2 SYNCCLK/2.5 MHz
71 L1RCLKB , L1TCLKB widt h low (DSC = 0)2P + 10 ns
71a L1RCLKB, L1TCLKB width high (DSC = 0)3P + 10 ns
72 L1TXDB, L1ST1 and L1ST2, L1RQ, L1CLKO rise/fall time 15.00 ns
73 L1RSYNCB , L1TSYNCB valid to L1CLKB edg e (SYNC setup ti me) 20.00 ns
74 L1CLKB edge to L1RSYNCB, L1TSYNCB, invalid (SYNC hold time) 35.00 ns
75 L1RSYNCB , L1TSYNCB rise/fa ll ti me 15.00 ns
76 L1RXDB v alid to L1CLKB edge (L 1RXDB setup ti me ) 17. 00 ns
77 L1CLKB edge to L1RXDB in valid (L1RXDB hold ti m e) 13.00 ns
78 L1CLKB edge to L1ST1 and L1ST2 valid410.00 45.00 ns
78A L1SYNCB valid to L1ST1 and L1ST2 valid 10.00 45.00 ns
79 L1CLKB edge to L1ST1 and L1ST2 inval id 10.00 45. 00 ns
80 L1CLKB edge to L1TXDB valid 10.00 55.00 ns
80A L1TSYNCB valid to L1TXDB valid410.00 55.00 ns
81 L1CLKB edge to L1TXDB hig h impedance 0.00 42.00 ns
82 L1RCLKB, L1TCLKB frequency (DSC = 1) 16.00 or
SYNCCLK/2 MHz
83 L1RCLKB, L1TCLKB width low (DSC = 1) P + 10 ns
CLKO
TIN/TGATE
(Input)
TOUT
(Output)
64
65
61
626361
60
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
52 Freescale Semiconductor
CP M Electrical Characteristics
Figure 48. SI Receive Timing Diagram with Normal Clocking (DSC = 0)
83a L1RCLKB, L1TCLKB width high (DSC = 1)3P + 10 ns
84 L1CLKB edge to L1CLKOB valid (DSC = 1) 30.00 ns
85 L1RQB v alid before falling edge of L1TSYNCB41.00 L1TCLK
86 L1GRB set up ti m e242.00 ns
87 L1GRB hold time 42.00 ns
88 L1CLKB edge to L1SYNCB valid (FSD = 00) CNT = 0000, BYT = 0,
DSC = 0) —0.00ns
1The ratio SYNCCLK/L1RCLKB must be greater than 2.5/1.
2These specs are val id for IDL mode only.
3Wher e P = 1/CLKOUT. Thus, fo r a 25-MHz CLKO1 rate, P = 40 ns.
4These st rob es and TxD on the first bit of the fr ame beco me vali d after the L1CLK B edge or L1SYNCB , whichev er come s later.
Table 21. SI Timing (continued)
Num Characteristic All Frequencies Unit
Min M ax
L1RXDB
(Input)
L1RCLKB
(FE = 0, CE = 0)
(Input)
L1RCLKB
(FE = 1, CE = 1)
(Input)
L1RSYNCB
(Input)
L1ST(2–1)
(Output)
71
72
70 71a
RFSD=1
75
73
74 77
78
76
79
BIT0
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 53
CPM Electrical Characterist ics
Figure 49. SI Receive Timing with Double-Speed Cloc king (DSC = 1)
L1RXDB
(Input)
L1RCLKB
(FE = 1, CE = 1)
(Input)
L1RCLKB
(FE = 0, CE = 0)
(Input)
L1RSYNCB
(Input)
L1ST(2–1)
(Output)
72
RFSD=1
75
73
74 77
78
76
79
83a
82
L1CLKOB
(Output)
84
BIT0
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
54 Freescale Semiconductor
CP M Electrical Characteristics
Figure 50. SI Transmit Timing Diagram (DSC = 0)
L1TXDB
(Output)
L1TCLKB
(FE = 0, CE = 0)
(Input)
L1TCLKB
(FE = 1, CE = 1)
(Input)
L1TSYNCB
(Input)
L1ST(2–1)
(Output)
71 70
72
73
75
74
80a
80
78
TFSD=0
81
79
BIT0
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 55
CPM Electrical Characterist ics
Figure 51. SI Transmit Timing with Double Speed Cloc king (DSC = 1)
L1TXDB
(Output)
L1RCLKB
(FE = 0, CE = 0)
(Input)
L1RCLKB
(FE = 1, CE = 1)
(Input)
L1RSYNCB
(Input)
L1ST(2–1)
(Output)
72
TFSD=0
75
73
74
78a
80
79
83a
82
L1CLKOB
(Output)
84
BIT0
78
81
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
56 Freescale Semiconductor
CP M Electrical Characteristics
Fig ure 52. I D L Ti m i ng
B17 B16 B14 B13 B12 B11 B10 D1 A B27 B26 B25 B24 B23 B22 B21 B20 D2 MB15
L1RXDB
(Input)
L1TXDB
(Output)
L1ST(2–1)
(Output)
L1RQB
(Output)
73
77
12345678910 11 12 13 14 15 16 17 18 19 20
74
80
B17 B16 B15 B14 B13 B12 B11 B10 D1 A B27 B26 B25 B24 B23 B22 B21 B20 D2 M
71
71
L1GRB
(Input)
78
85
72
76
87
86
L1RSYNCB
(Input)
L1RCLKB
(Input)
81
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 57
CPM Electrical Characterist ics
13.6 S CC in NMSI Mode Electrical Sp ecificati ons
Table 22 provides the NMSI external clock timing.
Table 23 pr ovides the NMSI internal clock timing.
Table 22. NMSI External Clock Ti ming
Num Characteristic All Frequencies Unit
Min Max
100 RCLK3 and TCLK3 wid th hi gh1
1The ratios SYNCCLK/RCLK3 and SYNCCLK/TCLK3 must be greater than or equal to 2.25/1.
1/SYNCCLK ns
101 RCLK3 and TCLK3 width low 1/SYNCCLK + 5 ns
102 RCLK3 and TCLK3 rise/fall ti me 15.00 ns
103 TXD3 active delay (from TCLK3 falling edge) 0.0 0 50.00 ns
104 RTS3 active/inactive delay (f rom TCLK3 falling edge) 0.00 50.00 ns
105 CTS3 setup time to TCLK3 rising edge 5.00 ns
106 RXD3 setup time to RCLK3 rising edge 5.00 ns
107 RXD3 hold time from RCLK3 rising edge2
2Also applies to CD and CTS hold time when they are used as external SYNC signals.
5.00 ns
108 CD3 setup time to RCLK3 rising edge 5.00 ns
Table 23. NMSI Internal Clock Timing
Num Characteristic All Frequencies Unit
Min Max
100 RCLK3 and TCLK3 fr equency1
1The rat ios SYNCCLK/RCLK3 and SYNCCLK/TCLK3 must be greater or equal to 3/1.
0.00 SYNCCLK/3 MHz
102 RCLK3 and TCLK3 rise/fall time ns
103 TXD3 active delay (from TCLK3 falling edge) 0.00 30.00 ns
104 RTS3 active/inactive delay (f rom TCLK3 falling edge) 0.00 30.00 ns
105 CTS3 setup time to TCLK3 rising edge 40.00 ns
106 RXD3 setup time to RCLK3 rising edge 40.00 n s
107 RXD3 hold time from RCLK3 rising edge2
2Also applies to CD and CTS hold time when they are used as external SYNC signals.
0.00 ns
108 CD3 setup tim e to RCLK3 rising edge 40.00 ns
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
58 Freescale Semiconductor
CP M Electrical Characteristics
Figure 53 through Figure 55 show the NMSI timings.
Figur e 53. SC C NMSI Receive Timi ng Diagram
Figure 54. SCC NMSI Transmit Timing Diagram
RCLK3
CD3
(Input)
102
100
107
108
107
RxD3
(Input)
CD3
(SYNC Input)
102 101
106
TCLK3
CTS3
(Input )
102
100
104
107
TxD3
(Output)
CTS3
(SYNC Input)
102 101
RTS3
(Output)
105
103
104
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 59
CPM Electrical Characterist ics
Figure 55. HDLC Bu s Timing Diagr am
13.7 Ethernet Electrical Specifications
Table 24 provides the E thernet timings as shown in Figure 56 through Figure 58.
Table 24 . E t hernet Ti m in g
Num Characteristic All Frequencies Unit
Min Max
120 CLSN width high 40 ns
121 RCLK3 rise/fall time 15 ns
122 RCLK3 width low 40 ns
123 RCLK3 clock peri od 180 120 ns
124 RXD3 setup time 20 ns
125 R X D 3 ho ld ti me 5—ns
126 RENA active delay (from RCLK3 rising edge of the last data bit) 10 ns
127 RENA width low 100 ns
128 TCLK3 rise/fall time 15 ns
129 TCLK3 wid th l ow 40 ns
130 TCLK3 clock period199 101 ns
131 TXD3 active delay (from TCLK3 ris ing e dge) 50 ns
132 TXD3 inactive delay (from TCLK3 ris ing edge) 6. 5 50 ns
133 TENA active del ay (from TCLK3 rising edge) 10 50 ns
134 TENA inactive delay (from TCLK3 rising edge) 10 50 ns
TCLK3
CTS3
(Echo Input)
102
100
104
TxD3
(Output)
102 101
RTS3
(Output)
103
104107
105
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
60 Freescale Semiconductor
CP M Electrical Characteristics
Figure 56 . Eth ernet Co ll i sio n Ti m in g D i agram
Figure 57. Ether net Receive Tim ing Diagram
138 C L KO1 low to SDACK asserted2—20ns
139 C L KO1 low to SDACK negated2—20ns
1The ratios SYNCCLK/RCLK3 and SYNCCLK/TCLK3 must be greater than or equal to 2/1.
2SDACK is asserted whenever the SDMA writes the incoming frame DA i nto memor y.
Table 24 . Ethernet Ti m i ng (c on t inu ed)
Num Characteristic All Frequencies Unit
Min Max
CLSN(CTS1)
120
(Input)
RCLK3
121
RxD3
(Input)
121
RENA(CD3)
(Input )
125
124 123
127
126
Last Bit
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 61
CPM Electrical Characterist ics
Figure 58. Etherne t Tran smi t Timing Diagram
13.8 SM C Transparent AC Electrical Specifications
Table 25 provides the SMC transparent timings as shown in Figure 59.
Table 25. SMC Transparent Timing
Num Characteristic All Frequencies Unit
Min Max
150 S M C L K cl ock pe riod 1
1 SYNCCLK must be at least twice as fast as SMCLK.
100 ns
151 SMCLK width low 50 ns
151A SMCLK width high 50 ns
152 SMCLK rise/fall time 15 ns
153 SMTXD active delay (from SMCLK falling edge) 10 50 ns
154 SMRXD/SMSYNC setu p time 20 ns
155 RXD1/SMSYNC hol d ti me 5 ns
TCLK3
128
TxD3
(Output)
128
TENA(RTS3)
(Input)
Notes:
Transmi t clock invert (TCI) b it in GSM R is set .
If RENA is negated before TENA or RENA is not asserted at all during transmit, then the
CSL bit is set i n the buffer descriptor at th e end of th e frame trans mission.
1.
2.
RENA(CD3)
(Input)
133 134
132
131 121
129
(Note 2)
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
62 Freescale Semiconductor
CP M Electrical Characteristics
Figure 59. SMC T r an sparent Timing Diagram
13.9 SPI Master AC Electrical Specifications
Table 26 provides the SPI master timings as shown in Figure 60 and Figure 61.
Ta ble 26. S P I Master Timin g
Num Characteristic All Frequencies Unit
Min Max
16 0 Master cycle time 4 1024 tcyc
161 Master clock (SCK) high or lo w ti m e 2 512 tcyc
162 Master data setup time (inputs) 15 ns
163 Master data hold time (inputs) 0 ns
164 Master data valid (after SCK edge ) 10 ns
165 Master data hold time (outputs) 0 ns
166 Rise time output 15 ns
167 Fall time output —15ns
SMCLK
SMRXD
(Input)
152
150
SMTXD
(Output)
152 151
SMSYNC
151
154 153
155
154
155
Note 1
Note:
This del ay is equal to an integer number of character-l ength cloc ks.1.
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 63
CPM Electrical Characterist ics
Figure 60. SPI Master (CP = 0) Timing Diagram
Figure 61. SPI Master (CP = 1) Timing Diagram
SPIMOSI
(Output)
SPICLK
(CI = 0)
(Output)
SPICLK
(CI = 1)
(Output)
SPIMISO
(Input)
162
Data
166167161
161 160
msb lsb msb
msb Data lsb msb
167 166
163
166
167
165 164
SPIMOSI
(Output)
SPICLK
(CI = 0)
(Output)
SPICLK
(CI = 1)
(Output)
SPIMISO
(Input)
Data
166167161
161 160
msb lsb msb
msb Data lsb msb
167 166
163
166
167
165 164
162
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
64 Freescale Semiconductor
CP M Electrical Characteristics
13.10 SPI Slave AC Electrical Specifications
Table 27 provides the SPI slave timings as shown in Figure 62 and Figure 63.
Figure 62. SPI Slave (CP = 0) Timing Diagram
Ta ble 27. S P I Slave Timing
Num Characteristic All Frequencies Unit
Min Max
170 Slave cycle time 2—t
cyc
171 Slave enable lead time 15 ns
172 Slave enable lag time 15 ns
173 Sla ve clock ( SPICLK) high or low time 1 tcyc
174 Slave sequential transfer delay (does not require deselect) 1 tcyc
175 Slave data setup time (inputs) 20 ns
176 Slave data hold tim e (i nputs) 20 ns
177 S lave ac ce ss t ime 50 n s
SPIMOSI
(Input)
SPICLK
(CI = 0)
(Input)
SPICLK
(CI = 1)
(Input)
SPIMISO
(Output)
180
Data
181182173
173 170
msb lsb msb
181
177 182
175 179
SPISEL
(Input)
171172
174
Datamsb lsb msbUndef
181
178
176 182
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 65
CPM Electrical Characterist ics
Figure 63. SPI Slave (CP = 1) Timing Diagram
13.11 I2C AC Electrical Specifications
Table 28 provides the I2C (SCL < 100 kHz) timings.
Ta ble 28. I2C Timing (SCL < 100 kHZ)
Num Characteristic All Frequencies Unit
Min Max
200 SCL clock frequency (slave) 0 100 kHz
20 0 SCL clock frequency (master)11.5 100 kHz
202 Bus free time between transm issions 4.7 μs
203 Low per iod of SCL 4.7 μs
204 H igh per iod o f SC L 4. 0 μs
205 Star t condition setup time 4.7 μs
206 Star t condition hold tim e 4.0 μs
207 D a ta hol d ti m e 0—μs
208 D a ta se tup tim e 250 ns
209 SDL/SCL rise time 1 μs
SPIMOSI
(Input)
SPICLK
(CI = 0)
(Input)
SPICLK
(CI = 1)
(Input)
SPIMISO
(Output)
180
Data
181182
msb lsb
181
177 182
175 179
SPISEL
(Input)
174
Data
msb lsbUndef
178
176 182
msb
msb
172
173
173
171 170
181
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
66 Freescale Semiconductor
CP M Electrical Characteristics
Table 29 provides the I2C (SCL > 100 kHz) timings.
Figure 64 shows the I2C bus timing.
Figure 6 4. I 2C Bus Timin g Diag ram
210 SDL/SCL fall time 300 ns
211 Stop conditi on setup time 4.7 μs
1SCL frequency is giv en by SCL = BRGCLK_frequency/((BRG register + 3) ×pre_scalar ×2).
The ratio SYNCCLK/(BRGCLK/pre_scalar) must be greater than or equal to 4/1.
Ta ble 29. I2C Timing (SCL > 100 kHZ)
Num Characteristic Expression All Frequencies Unit
Min Max
200 SCL clock frequency (slave) fSCL 0 BRGCLK/48 Hz
20 0 SCL clock frequency (master)1
1SCL frequency is giv en by SCL = BRGCLK_frequency/((BRG register + 3) ×pre_scalar ×2).
The ratio SYNCCLK/(BRGCLK/pre_scalar) must be greater than or equal to 4/1.
fSCL BRGCLK/16512 BRGCLK/48 Hz
202 Bus free time between transm issions 1/(2.2 ×fSCL) s
203 Low peri od of SCL 1/(2.2 ×fSCL) s
204 H igh per iod o f SC L 1/(2 . 2 ×fSCL) s
205 Star t condition setup time 1/(2.2 ×fSCL) s
206 Star t condition hold tim e 1/(2.2 ×fSCL) s
207 D a ta hol d ti m e 0 s
208 D a ta se tup tim e 1/(40 ×fSCL) s
209 S D L/ SCL r i s e ti m e 1/ (10 ×fSCL) s
210 S D L/ SCL fall ti m e 1/ (33 ×fSCL) s
211 Stop conditi on setup time 1/2(2.2 ×fSCL) s
Table 28. I2C Timing (SCL < 100 kHZ) (con tinued)
Num Characteristic All Frequencies Unit
Min Max
SCL
202
205
203
207
204
208
206 209 211210
SDA
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 67
USB Electrical Ch aracteristics
14 U SB Elect rical Characteristics
This section provides the AC timings for the USB interfac e.
14.1 USB Interface AC T iming Specification s
The USB Port uses the tr ans m it clock on SCC1. Table 30 lists the USB interface timings .
15 FEC Elec trical Characteristi cs
This section provides the AC electri cal specifications for the Fast Ethernet controller (FEC). Note that the
timing specifications for the M II signals are independent of system clock frequency (part speed
designation). Also, M II signals use TTL signal levels compatible with devices operating at either 5.0 or
3.3 V.
15.1 MII and Reduced MII Receive Signal Timing
The receiver functions cor rectly up to a MII_RX_CLK maximum frequency of 25 MHz + 1%. The
reduced MII (RMII) r eceiver functions correctly up to a RMII_REFCLK maximum f requency of 50 MHz
+ 1%. There is no minimum frequency requirement. In addition, the processor clock f r equency must
exceed the MII_RX_CLK frequency 1%.
Table 31 provid es information on the MII rec eiv e signal timing.
Table 30. USB Interface AC Timi ng Spec ifications
Name Characteristic All Frequencies Unit
Min Max
US1 USBCLK frequency of oper ati on 1
Low speed
F ull speed
1USBCLK accuracy shoul d be ±500 ppm or bet ter. USBCLK may be stopped to conserve power.
6
48
MHz
US4 USBCLK duty cycle (measure d at 1.5 V) 45 55 %
Table 31. MII Receive Signal Timing
Num Characteristic Min Max Unit
M1 MII_RXD[3:0], MII _RX_DV, MII_RX_ER t o MII_RX_CLK set up 5 ns
M2 MII_RX_CLK t o MII_ RXD[3:0], MII_RX_DV, MII_RX_ER hold 5 ns
M3 MII_RX_CLK pul se width high 35% 65% MII_RX_CLK period
M4 MII_RX_CLK pulse width low 35% 65% M II _RX_CLK peri od
M1_RMII R MII _RXD[1 :0] , RMII_CRS_DV, RMII_RX_ERR to RMII_REFCLK
setup 4— ns
M2_RMII RMII_REFCLK to RMII_RXD[1:0], RMII_CRS_DV, RMII_RX_ERR
hold 2— ns
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
68 Freescale Semiconductor
FEC Electrical Characteristics
Figure 65 shows MII re ceive signal timing.
Figure 65. M I I Receive Sig nal Timing Diagra m
15.2 MII and Reduced MII Transmit Signal Timing
The transmitter functions correctly up to a MII_TX_CLK maximum fr equency of 25 MHz + 1%. There is
no minimum frequency requirement. In addition, the processor clock frequency must exceed the
MII_TX_CLK frequency 1%.
Table 32 provid es information on the MII trans mit signal timing.
Table 32. MII Transmi t Signal Timing
Num Characteristic Min Max Unit
M5 MII_TX_CLK to MII_T XD[3: 0], MII_TX_EN, MII_TX_ER in valid 5 ns
M6 MII_TX_CLK to MII_T XD[3:0], MII_TX_EN, MII _TX_ER valid 25 ns
M7 MII_TX_CLK pul se width high 35% 65% MII_TX_CLK period
M8 MII_TX_CLK pul se width low 35% 65% MII_TX_CLK period
M 20 _ RM I I RMII_ T X D[1 :0 ], RM II _ TX _ E N to RMII_ R EF C L K se tu p 4 n s
M21_RMII RM II_TXD[1:0], RMII _TX_EN data hold from RMII _REFCLK rising
edge 2— ns
M1 M2
MII_R X_CLK (Input)
MII_R XD[3:0] (Inputs)
MII_RX_DV
MII_RX_ER
M3
M4
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 69
FEC Electrical Characteristics
Figure 66 shows the M II trans mit signal timing diagra m.
Figure 66. MII Transmit Sig nal Timing Diagram
15.3 MII Async Inputs Signal Timing (MII_CRS, MII_COL)
Table 33 provid es information on the MII async inputs signal timing.
Figure 67 shows the MII asynchronous inputs signal timing diagram.
Figure 67. MII Async In puts Timing Diagram
15 .4 MII Serial Management Chann e l Timing (MII_MDIO, MII_MDC)
Table 34 provides information on t he MII seri al management channel signal timing. The FEC functions
correctly with a maximum MDC frequency in excess of 2.5 MHz.
Table 33. MII Async Inp uts Signal Timing
Num Characteristic Min Max Unit
M9 MII_CRS, MII_COL minimum pulse width 1.5 MII_TX_CLK period
Table 34 . M I I S eri a l Ma nagem ent Channel Tim in g
Num Characteristic Min Max Unit
M10 MII_MDC falling edge to MII_MDIO output invalid (minimum propagation
delay) 0— ns
M11 MII_MDC fall ing edge to MII_MDIO output valid (max prop delay) 25 ns
M12 MII_MDIO (i nput) to MII_MDC rising edge setup 10 ns
M13 MII_MDIO (i nput) to MII_MDC rising edge hol d 0 ns
M14 MII_MDC pulse width high 40% 60% MII_MDC period
M15 MII_MDC pulse width low 40% 60% MII_MDC peri od
M6
MII_TX_CLK (Input)
MII_TXD [3:0] (Outputs)
MII_TX_EN
MII_TX_ER
M5
M7
M8
MI I_ C R S, MI I_ C OL
M9
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
70 Freescale Semiconductor
FEC Electrical Characteristics
Figure 68 shows the MII serial mana gem ent channel timing diagram.
Figure 68. MII Serial Management Channel Timing Diagram
M11
MII_MDC (Out put)
MII_MD IO (Output)
M12 M13
MII_MD IO (I nput)
M10
M14
MM15
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 71
Mec han ic al Data and Or deri ng Info r ma tion
16 Mechani cal Data and Ordering Information
Table 35 identifies the packages and oper ating frequencies available for the MPC875/MPC870.
Table 35. Available MPC875 /M PC 870 Packages/Freq uencie s
P ackage Type Temper ature (TJ) Frequency (MHz) Order Number
Plast i c ball gr i d array
ZT suffix—Leaded
VR suffix—L ead-Free are available as needed
0°C to 95°C 66 KMPC875ZT66
KMPC870ZT66
MPC875ZT66
MPC870ZT66
80 KMPC875ZT80
KMPC870ZT80
MPC875ZT80
MPC870ZT80
133 KMPC875ZT133
KMPC870ZT133
MPC875ZT133
MPC870ZT133
Plast i c ball gr i d array
CZT suffix—Leaded
CVR suffix—L ead-Free are available as needed
-40°C to 1 00°C 66 KMPC875CZT66
KMPC870CZT66
MPC875CZT66
MPC870CZT66
133 KMPC875CZT133
KMPC870CZT133
MPC875CZT133
MPC870CZT133
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
72 Freescale Semiconductor
Mec han ic al Data and Ord eri ng Informa tion
16.1 Pin Assignments
Figure 69 s hows the JEDEC pinout of the PBGA package as viewed from the t op surface. For additional
information, see the MPC885 PowerQUICC Family Users Manual.
NOTE
The pin numbering starts with B2 in order to conform to the JEDEC standard for
23-mm body size using a 16 ×16 arra y.
NOTE: This is the top view of the device.
Figur e 69. Pinout of the PBGA PackageJEDE C Standard
MODCK2
IPA7
IPA4
D31
D29
D7
D18
D5
D3
D11
D10
N/C
EXTCLK MODCK1 OP0 ALEA IPB0 BURST IRQ6 BR TEA BI CS0 CS3 CS5 N/C
RSTCONFSRESET BADDR29 OP1
XTAL
IPA2 WAITA PORESET EXTAL BADDR30 IPB1 BG GPLA4 GPLA5 WR CE2A CS7 WE2
IPA5 IPA3 VDDSYN
AS ALEB IRQ2 BB
HRESETBADDR28 IRQ3
D30 IPA6
TS TA BDIP CS2 CE1A GPLAB3 GPLA0
CS1 GPLB4 CS4 GPLAB2 WE0 BSA1 BSA2
B
C
D
E
D28 CLKOUT
D22 D6 D24
D19 D20
D15 D16
D2 D27
D9 D12
D1
D23 D17 PE22
D4 D8 PE25
TSIZ0 A31
A22 A18
A25 A24
A20 A29
G
H
J
F
A27 A17
A15 A16
A11 A13
A7 A9
A5 A4
A0 PB29
K
L
VDDH
M
N
PE26 PD8 PA1 N/C PB30PE27
PE20 PE23 MII-TX-EN
PE17 PE21 PC7 PB19 PB24 TDI TMS PC12
PA14 N/C
PE15
PE29 PE24 PC13 MII-CRS PC10 PB23 PB25 TRST GND
P
R
T
PE16
234567 8910111213141516
IPA1
D26
D25
D14
D0
PE18
IRQ7
IRQ1
PA3
PB31
PA0 PE14 PE31 PC6 PA6 PC11 TDO PA15 A3PA4
PE28 PE30 PA11 MII_COL PA7 TCK PB28 PC15PE19
BSA0 BSA3
TSIZ1 A26
A28 A30
A23 A21
A14 A19
A10 A12
A2 A8
A1 A6
IRQ4VSSSYN
WE1
PA10
D13
D21
VSSSYN1 CS6 OE
PA2 PB26 PB27
TEXP
17
U
IRQ0
IPA0
MII_MDIO
WE3
VDDH VDDH
VDDH
VDDH
VDDH
VDDH
VDDH
VDDH
VDDL VDDL
VDDL
VDDL
VDDL
VDDL
VDDL
VDDL GND
GND
GND
GND
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 73
Mec han ic al Data and Or deri ng Info r ma tion
Table 36 contains a list of the MPC875/MPC870 input and output signals and s hows multiplexing and pin
assignments.
Table 36. Pin AssignmentsJ EDEC Stand ard
Name Pi n Numb er Type
A[0:31] R16, N14, M14, P15, P17, P16 , N15, N16, M15, N17, L14, M16,
L15, M17, K14, L16, L17, K17, G1 7, K15, J16, J15, G16, J14, H17,
H16, G15, K16, H14, J17, H15, F17
Bidirectional
Three-state (3.3 V only)
TSIZ0, REG F16 Bidirectional
Three-state (3.3 V only)
TSIZ1 G14 Bidirectional
Three-state (3.3 V only)
RD/WR D13 Bidirectional
Three-state (3.3 V only)
BURST B9 Bidirectional
Three-state (3.3 V only)
BDIP, GPL_B5 C13 Output
TS C11 Bidirectional
Activ e pull-up (3.3 V only)
TA C12 Bidirectional
Activ e pull-up (3.3 V only)
TEA B12 Open-drain
BI B13 Bidirectional
Activ e pull-up (3.3 V only)
IRQ2, RS V C9 Bidirectional
Three-state (3.3 V only)
IRQ4, K R , R ET RY,
SPKROUT E9 Bidirectional
Three-state (3.3 V only)
D[0:31] L5, N3, L3, L2, R2, K2, H3, G2, R3, M3, N2, M2, M4, N4, K5, K3, K4,
P3, J2, J3, J4, J5, H2, P2, H4, H5, G5, L4, G3, F2, F3, E2 Bidirectional
Three-state (3.3 V only)
CR, IRQ3 E10 Input
FRZ, IRQ6 B10 Bidirectional
Three-state (3.3 V only)
BR B11 Bi directional (3.3 V only)
BG D10 Bidirectional (3.3 V only)
BB C10 Bidirectional
Activ e pull-up (3.3 V only)
IRQ0 M6 Input (3 .3 V only)
IRQ1 P5 Input (3.3 V o n ly)
IRQ7 N5 Inpu t (3.3 V o n ly)
CS[0:5] B14, E11, C14, B15, E13, B16 Out put
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
74 Freescale Semiconductor
Mec han ic al Data and Ord eri ng Informa tion
CS6, CE1_B F12 Output
CS7, CE2_B D15 Output
WE0, BS_B0, IORD E15 Output
WE1, BS_B1, IOWR D17 Output
WE2, BS_B2, PCOE D16 Output
WE3, BS_B3, PCWE G13 Output
BS_A[0:3] F14, E16, E17, F15 Output
GPL_A0, GPL _B 0 C17 Output
OE, GPL_A1, GPL _B 1 F13 Output
GPL_A[2:3], GPL_B[2:3],
CS[2–3] E14, C16 Output
UPWAITA, GPL_A4 D11 Bidirectional (3.3 V only)
UPWAITB, GPL_B4 E12 Bidirectional
GPL_A5 D12 Output
PORESET D5 Input ( 3 .3 V only )
RSTCONF C3 Input ( 3 .3 V only )
HRESET E7 Open-drain
SRESET C4 Open-drain
XTAL D6 Analog output
EXTAL D7 Anal og input (3.3 V only)
CLKOUT G4 Output
EXTCLK B4 Input ( 3.3 V onl y)
TEXP B3 Output
ALE_A B7 Output
CE1_A C15 Output
CE2_A D14 Output
WAIT_A D4 Input (3 .3 V only )
IP_A0 G6 Input (3.3 V only)
IP_A1 F5 Input ( 3.3 V onl y)
IP_A2, IOI S 16_A D3 Input ( 3 .3 V only )
IP_A3 E4 Input (3.3 V onl y)
IP_A4 D2 Input (3.3 V onl y)
IP_A5 E3 Input (3.3 V onl y)
Table 36. Pin AssignmentsJEDEC Standard (continued)
Name Pi n Numb er Type
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 75
Mec han ic al Data and Or deri ng Info r ma tion
IP_A6 F4 Input ( 3.3 V onl y)
IP_A7 C2 Input (3.3 V onl y)
ALE_B, DSCK C8 Bidirectional
Three-state (3.3 V only)
IP_B[0:1], IWP[0:1],
VFLS[0:1] B8, D9 Bidirectional (3.3 V only)
OP0 B6 Bidirectional (3.3 V only)
OP1 C6 Output
OP2, MODCK1, STS B5 Bidirectional (3.3 V only)
OP3, MODCK2, DSDO B2 Bidirectional (3.3 V only)
BADDR[28:29] E8, C5 Output
BADDR30, REG D8 Output
AS C7 Input ( 3 .3 V only )
PA15, USBRXD P14 Bid ir ectional
PA14, USBOE U16 Bidirect ional
(Opti onal: open-drain)
PA11 , RXD4, MII1-TXD0,
RMII1-TXD0 R9 Bidirectional
(Opti onal: open-drain)
(5-V tolerant)
PA10 , MII1- TXERR, TIN4,
CLK7 R12 Bidirectional
(Opti onal: open-drain)
(5-V tolerant)
PA7, CLK1, BRGO1, TIN1 R11 Bi directional
PA6, CLK2, TOUT1 P11 Bidirectional
PA4, CTS4, MII1-TXD1,
RMII-TXD1 P7 Bidirectional
PA3, MII1-RXER,
RMII1-RXER, BRGO3 R5 Bidirectional
(5-V tolerant)
PA2, MII1-RXDV,
RMII1-CRS_DV, TXD4 N6 Bidirectional
(5-V tolerant)
PA1, MII1-RXD0,
RMII1-RXD0, BRGO4 T4 Bidirectional
(5-V tolerant)
PA0, MII1-RXD1,
RMII1-RXD1, T O UT4 P6 Bidirectional
(5-V tolerant)
PB31, SPI SEL, MII1-TXCLK,
RMII1-REFCLK T5 Bidirectional
(Opti onal: open-drain)
(5-V tolerant)
Table 36. Pin AssignmentsJEDEC Standard (continued)
Name Pi n Numb er Type
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
76 Freescale Semiconductor
Mec han ic al Data and Ord eri ng Informa tion
PB30, SPICLK T17 Bidirectional
(Opti onal: open-drain)
(5-V tolerant)
PB29, SPIMOSI R17 Bidirectional
(Opti onal: open-drain)
(5-V tolerant)
PB28, SPIMISO, BRGO4 R14 Bidi rectional
(Opti onal: open-drain)
(5-V tolerant)
PB27, I2CSDA, BRGO1 N13 Bi directional
(Opti onal: open-drain)
PB26, I2CSCL, BRGO2 N12 Bidirectional
(Opti onal: open-drain)
PB25, SMTXD1 U13 Bidirectional
(Opti onal: open-drain)
(5-V tolerant)
PB24, SMRXD1 T12 Bidirectional
(Opti onal: open-drain)
(5-V tolerant)
PB23, SDACK1, SMSYN1 U12 Bidirectional
(Opti onal: open-drain)
PB19, MII1-RXD3, RTS4 T11 Bidirectional
(Opti onal: open-drain)
PC15, DREQ0, L1ST1 R15 Bidirectional
(5-V tolerant)
PC13, MII1-TXD3, SDACK1 U9 Bi directional
(5-V tolerant)
PC12, MII1-TXD2, TOUT1 T15 Bidirectional
(5-V tolerant)
PC11, USBRXP P12 Bidi rectional
PC10, USBRXN, TGATE1 U11 Bidirectional
PC7, CTS4, L1TSYNCB ,
USBTXP T10 Bidirectional
(5-V tolerant)
PC6, CD4, L1 RSYNCB,
USBTXN P10 Bidirectional
(5-V tolerant)
PD8, RXD4, MII-MDC,
RMII-MDC T3 Bidirectional
(5-V tolerant)
PE31, CLK8, L1TCLKB,
MII1-RXCLK P9 Bidirectional
(Opti onal: open-drain)
PE30, L1RXDB, M II1-RXD2 R8 Bidi rectional
(Opti onal: open-drain)
Table 36. Pin AssignmentsJEDEC Standard (continued)
Name Pi n Numb er Type
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 77
Mec han ic al Data and Or deri ng Info r ma tion
PE29, MII2-CRS U7 Bidirectional
(Opti onal: open-drain)
PE28, TOUT3, MII2-COL R7 Bidi rectional
(Opti onal: open-drain)
PE27, L1RQB , MII2-RXERR,
RMII2-RXERR T6 Bidirectional
(Opti onal: open-drain)
PE26, L1CLKOB,
MII2-RXDV, RMII2-CRS_DV T2 Bidirectional
(Opti onal: open-drain)
PE 2 5 , RX D 4 , M II2 - R X D3 ,
L1ST2 R4 Bidirectional
(Opti onal: open-drain)
PE24, SMRXD1, BRGO1,
MII2-RXD2 U8 Bidirectional
(Opti onal: open-drain)
PE23, TXD4, MII2-RXCLK,
L1ST1 U4 Bidirectional
(Opti onal: open-drain)
PE22, TOUT2, MII2-RXD1,
RMII2-RXD1, SDACK1 P4 Bidirectional
(Opti onal: open-drain)
PE21, TOUT1, M II 2-RX D 0 ,
RMII2-RXD0 T9 Bidirectional
(Opti onal: open-drain)
PE20, MII2-TXER U3 Bidirectional
(Opti onal: open-drain)
PE19, L1TXDB, MII2-TXEN,
RMII2-TXEN R6 Bidirectional
(Opti onal: open-drain)
PE18, SMTXD1, MII2-TXD3 M5 Bidirectional
(Opti onal: open-drain)
PE17, TIN3, CLK5, BRGO3,
SMSYN1, MII2-TXD2 T8 Bidirectional
(Opti onal: open-drain)
PE16, L1RCLKB, CLK6,
MII2-TXCLK, RMII2-REFCLK U6 Bidirectional
(Opti onal: open-drain)
PE15, TGATE1, MII 2 -T X D 1 ,
RMII2-TXD1 T7 Bidirectional
PE14, MII2-TXD0,
RMII2-TXD0 P8 Bidirectional
TMS T14 Input
(5-V tolerant)
TDI, DSDI T13 Input
(5-V tolerant)
TCK, DSCK R13 Input
(5-V tolerant)
TRST U14 Input
(5-V tolerant)
Table 36. Pin AssignmentsJEDEC Standard (continued)
Name Pi n Numb er Type
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
78 Freescale Semiconductor
Mec han ic al Data and Ord eri ng Informa tion
TDO, DSDO P13 Output
(5-V tolerant)
MII1_CRS U10 Input
MII_MDIO M13 Bidirectional
(5-V tolerant)
MII1_TX_EN, RMII 1_TX_EN U5 Output
(5-V tolerant)
MII1_COL R10 Input
VSSSYN E5 PLL analog GND
VSSSYN1 F6 PLL analog GND
VDDSYN E6 PLL analog VDD
GND H8, H9, H10, H11, J8, J9, J10, J11, K8, K9, K10, K11, L8, L9, L10,
L11, U15 Power
VDDL F7, F8, F9, F10, F11, H6, H13, J6, J13 , K6, K13, L6, L13, N7, N8,
N9, N10, N11 Power
VDDH G7, G8, G9, G10, G11, G12, H7, H12, J7, J12, K7, K12, L7, L12, M7,
M8, M9, M10, M11, M12 Power
N/C B17, T16, U2, U17 No connect
Table 36. Pin AssignmentsJEDEC Standard (continued)
Name Pi n Numb er Type
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 79
Mec han ic al Data and Or deri ng Info r ma tion
16.2 Mechanical Dimensions of the PBGA Package
Figure 70 shows the mechanical dimensions of the PBGA package.
.
Figure 70. Mechanical Dimensions and Bottom Surface Nomenclature of the PBGA Package
Note: Solder sphere composition is 95.5%Sn 45%Ag 0.5%Cu for MPC875/MPC870VRXXX.
Solder sphere composition is 62%Sn 36%Pb 2%Ag for MPC875/MPC870ZTXXX.
1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M—1994.
3. MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.
4. DATUM A, THE SEATING PLANE, IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
NOTES:
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
80 Freescale Semiconductor
Docume nt Revision Hist ory
17 D ocument Revision H istory
Table 37 lists significant changes between revisions of this hardwar e specification.
Table 37. Documen t Revision History
Revision
Number Date Changes
0 2/2003 Initial release.
0.1 3/2003 Took out the tim e-slot assigner and changed the SCC for SCC3 to SCC4.
0.2 5/2003 Changed the package drawing, removed all references to Data P arity. Changed the SPI Master Timing
Specs. 1 62 and 164. Added the RMII and USB tim ing. Added the 80-MHz timi ng.
0.3 5/2003 Made sure the pin types were correct. Changed the Features list to agree with the MPC885.
0.4 5/2003 Corrected the signals that had overlines on them. Made corrections on two pins that were typos.
0.5 5/2003 Changed the pi n descri ptions for PD8 and PD9.
0.6 5/2003 Changed a few typos. Put bac k the I2C. Put in the ne w reset configurat ion, corrected the USB timing.
0.7 6/2003 Changed the pi n descriptions per the June 22 spec, removed Utopia from the pin descri pti ons,
changed PADIR, PBDIR, PCDIR and PDDIR to be 0 in the M andatory Reset Config.
0.8 8/2003 Added the referenc e to USB 2.0 to the F eatures list and remov ed 1. 1 from USB on the b lock diagrams.
0.9 8/2003 Changed the USB description to full-/low-speed compatible.
1.0 9/2003 Added the DSP informa ti on in the Featur es li st.
Put a new sentence under Mechanical Dimensions.
Fixed tab le formattin g.
Nontechnical edits .
Released to the external web.
1.1 10/2003 Added TDMb to the MPC875 Featur es li st, the MPC875 Blo ck Diagram, added 13.5 Serial Interfa ce
AC Electrical Specifications, and removed TDMa from the pin descripti ons.
2.0 12/2003 Changed DBGC i n the Mandatory Reset Configurati on to X1.
Changed the maximum operating frequency to 133 MHz.
Put the timing in the 80 MHz column.
Put in the orderable part numbers.
Rounded the timings to hundredths in the 80 MHz column.
Put the pi n num bers in footnotes by the maximum currents in Tabl e 6.
Changed 22 and 41 in the Timing.
Put TBD in the Thermal table.
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 81
Document Revision History
3.0 1/07/2004
7/19/2004 Added senten ce to Spec B1A about EXTCLK and CLKOUT being in alignment for integer values .
Added a footnote to Spec 41 specifying th at EDM = 1.
Added the thermal numbers to Table 4.
Added RMII1_EN under M1II_EN in Table 36, Pin Assignments.
Added a table footnote to Table 6, DC Electrica l Specificat ions, about meeti ng the VIL Max of the
I2C Standard.
Put the new par t num bers in the Ordering Information Section.
4 08/2007 Updated t emplate.
On page 1, updated first paragraph and added a second paragr aph.
After Table 2, inserted a new figure showing the undershoot/overshoot voltage (Figure 3) and
renumbered the rest of the figures.
•In Table 10, f or reset ti mings B29f and B29g added f ootnote indicat ing that the f ormula only applies
to bus operati on up to 50 MHz.
•In Figure 5, cha nged all reference v oltage measure me nt poi nts from 0.2 and 0.8 V to 50% leve l.
•In Table 18, changed num 46 description to read, TA assertion to rising edge ...
•In Figure 43, changed TA to reflect the rising ed ge of t he clock.
Table 37. Document Revisi on History (continued)
Revision
Number Date Changes
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
82 Freescale Semiconductor
Docume nt Revision Hist ory
THIS PAGE INTENTIONALLY LEFT BLANK
MPC875 /MPC870 Power Q UICC™ Har dware Specif ications, Re v. 4
Freescale Semiconductor 83
Document Revision History
THIS PAGE INTENTIONALLY LEFT BLANK
Document Number: MPC875EC
Rev. 4
08/2007
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
F reescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance ma y vary ov er time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Fr eescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees , subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
How to Reach Us:
Home Pag e:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1- 80 0-52 1-627 4 or
+1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deut schland GmbH
Techni ca l I nform at ion Ce nt er
Schatzbogen 7
81829 Mu en c h e n, G erm any
+44 1296 380 45 6 ( Eng lish )
+46 8 52200080 (English)
+49 89 9210 3 55 9 ( Germ an)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153- 0064
Japan
0120 191014 or
+81 3 5437 91 25
support.japan@freescale.com
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Techni ca l I nform at ion Ce nt er
2 Dai Kin g Stre et
Tai Po Industr ial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com
For Lite rat ur e Req ues ts Only:
Freescale Semiconductor
Lit e rature D is tributio n C en ter
P.O. Box 5405
Denver, Colorado 80217
+1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor
@hibbertgroup.com
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
The Pow er Architecture and Pow er.org word marks and the P ower and P ower.org logos
and related marks are trademarks and service marks licensed by Power.org. IEEE
802.3, 802.11i, and 1149.1 are trademarks or registered trademarks of the Institute of
Electrical and Electronics Engineers, Inc. (IEEE). This product is not endorsed or
approved by the IEEE. All other product or service names are the property of their
respective owners.
© Fre e sc al e S em ic o nd uc tor, Inc ., 2003–2 00 7 . All right s r es er ve d.