© Semiconductor Components Industries, LLC, 2010
August, 2010 Rev. 9
1Publication Order Number:
MJE13005/D
MJE13005G
SWITCHMODEt Series
NPN Silicon Power
Transistors
These devices are designed for highvoltage, highspeed power
switching inductive circuits where fall time is critical. They are
particularly suited for 115 and 220 V SWITCHMODE applications
such as Switching Regulators, Inverters, Motor Controls,
Solenoid/Relay drivers and Deflection circuits.
Features
VCEO(sus) 400 V
Reverse Bias SOA with Inductive Loads @ TC = 100_C
Inductive Switching Matrix 2 to 4 A, 25 and 100_C tc @ 3A,
100_C is 180 ns (Typ)
700 V Blocking Capability
SOA and Switching Applications Information
These Devices are PbFree and are RoHS Compliant*
MAXIMUM RATINGS
Rating Symbol Value Unit
CollectorEmitter Voltage VCEO(sus) 400 Vdc
CollectorEmitter Voltage VCEV 700 Vdc
EmitterBase Voltage VEBO 9 Vdc
Collector Current Continuous
Peak (Note 1)
IC
ICM
4
8
Adc
Base Current Continuous
Peak (Note 1)
IB
IBM
2
4
Adc
Emitter Current Continuous
Peak (Note 1)
IE
IEM
6
12
Adc
Total Device Dissipation @ TA = 25_C
Derate above 25°C
PD2
0.016
W
W/_C
Total Device Dissipation @ TC = 25_C
Derate above 25°C
PD75
0.6
W
W/_C
Operating and Storage Junction
Temperature Range
TJ, Tstg 65 to
+150
_C
THERMAL CHARACTERISTICS
Characteristics Symbol Max Unit
Thermal Resistance, JunctiontoAmbient RqJA 62.5 _C/W
Thermal Resistance, JunctiontoCase RqJC 1.67 _C/W
Maximum Lead Temperature for Soldering
Purposes 1/8 from Case for 5 Seconds
TL275 _C
Stresses exceeding Maximum Ratings may damage the device. Maximum
Ratings are stress ratings only. Functional operation above the Recommended
Operating Conditions is not implied. Extended exposure to stresses above the
Recommended Operating Conditions may affect device reliability.
1. Pulse Test: Pulse Width = 5 ms, Duty Cycle 10%.
*For additional information on our PbFree strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
4 AMPERE
NPN SILICON
POWER TRANSISTOR
400 VOLTS 75 WATTS
TO220AB
CASE 221A09
STYLE 1
1
http://onsemi.com
MARKING DIAGRAM
23
MJE13005G
AY WW
A = Assembly Location
Y = Year
WW = Work Week
G = PbFree Package
Device Package Shipping
ORDERING INFORMATION
MJE13005G TO220
(PbFree)
50 Units / Rail
MJE13005G
http://onsemi.com
2
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Characteristic
ÎÎÎÎ
ÎÎÎÎ
Symbol
ÎÎÎÎ
ÎÎÎÎ
Min
ÎÎÎ
ÎÎÎ
Typ
ÎÎÎÎ
ÎÎÎÎ
Max
ÎÎÎ
ÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
OFF CHARACTERISTICS (Note 2)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
CollectorEmitter Sustaining Voltage
(IC = 10 mA, IB = 0)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VCEO(sus)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
400
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Cutoff Current
(VCEV = Rated Value, VBE(off) = 1.5 Vdc)
(VCEV = Rated Value, VBE(off) = 1.5 Vdc, TC = 100_C)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ICEV
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
1
5
ÎÎÎ
ÎÎÎ
ÎÎÎ
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Emitter Cutoff Current
(VEB = 9 Vdc, IC = 0)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
IEBO
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
1
ÎÎÎ
ÎÎÎ
ÎÎÎ
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SECOND BREAKDOWN
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Second Breakdown Collector Current with base forward biased
ÎÎÎÎ
ÎÎÎÎ
IS/b
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
See Figure 11
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Clamped Inductive SOA with Base Reverse Biased
ÎÎÎÎ
ÎÎÎÎ
RBSOA
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
See Figure 12
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ON CHARACTERISTICS (Note 2)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DC Current Gain
(IC = 1 Adc, VCE = 5 Vdc)
(IC = 2 Adc, VCE = 5 Vdc)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
hFE
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
10
8
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
60
40
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
CollectorEmitter Saturation Voltage
(IC = 1 Adc, IB = 0.2 Adc)
(IC = 2 Adc, IB = 0.5 Adc)
(IC = 4 Adc, IB = 1 Adc)
(IC = 2 Adc, IB = 0.5 Adc, TC = 100_C)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VCE(sat)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.5
0.6
1
1
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
BaseEmitter Saturation Voltage
(IC = 1 Adc, IB = 0.2 Adc)
(IC = 2 Adc, IB = 0.5 Adc)
(IC = 2 Adc, IB = 0.5 Adc, TC = 100_C)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VBE(sat)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
1.2
1.6
1.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DYNAMIC CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
CurrentGain Bandwidth Product
(IC = 500 mAdc, VCE = 10 Vdc, f = 1 MHz)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
fT
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
4
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
MHz
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Output Capacitance
(VCB = 10 Vdc, IE = 0, f = 0.1 MHz)
ÎÎÎÎ
ÎÎÎÎ
Cob
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
65
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
pF
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SWITCHING CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Resistive Load (Table 2)
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Delay Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
(VCC = 125 Vdc, IC = 2 A,
IB1 = IB2 = 0.4 A, tp = 25 ms,
Duty Cycle v 1%)
ÎÎÎÎ
ÎÎÎÎ
td
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.025
ÎÎÎÎ
ÎÎÎÎ
0.1
ÎÎÎ
ÎÎÎ
ms
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Rise Time
ÎÎÎÎ
ÎÎÎÎ
tr
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.3
ÎÎÎÎ
ÎÎÎÎ
0.7
ÎÎÎ
ÎÎÎ
ms
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Storage Time
ÎÎÎÎ
ÎÎÎÎ
ts
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
1.7
ÎÎÎÎ
ÎÎÎÎ
4
ÎÎÎ
ÎÎÎ
ms
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Fall Time
ÎÎÎÎ
ÎÎÎÎ
tf
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.4
ÎÎÎÎ
ÎÎÎÎ
0.9
ÎÎÎ
ÎÎÎ
ms
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Inductive Load, Clamped (Table 2, Figure 13)
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Voltage Storage Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
(IC = 2 A, Vclamp = 300 Vdc,
IB1 = 0.4 A, VBE(off) = 5 Vdc, TC = 100_C)
ÎÎÎÎ
ÎÎÎÎ
tsv
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.9
ÎÎÎÎ
ÎÎÎÎ
4
ÎÎÎ
ÎÎÎ
ms
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Crossover Time
ÎÎÎÎ
ÎÎÎÎ
tc
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.32
ÎÎÎÎ
ÎÎÎÎ
0.9
ÎÎÎ
ÎÎÎ
ms
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Fall Time
ÎÎÎÎ
ÎÎÎÎ
tfi
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.16
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ms
2. Pulse Test: Pulse Width = 300 ms, Duty Cycle = 2%.
MJE13005G
http://onsemi.com
3
C, CAPACITANCE (pF)
VCE(sat), COLLECTOR-EMITTER SATURATION
VOLTAGE (VOLTS)
VBE, BASE-EMITTER VOLTAGE (VOLTS)
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS
IC, COLLECTOR CURRENT (AMP)IC, COLLECTOR CURRENT (AMP)
1.1
1.3
0.7
0.3
Figure 1. DC Current Gain
IC, COLLECTOR CURRENT (AMP)
0.1 0.4 2 4
10
Figure 2. Collector Saturation Region
0.03
IB, BASE CURRENT (AMP)
0.30.05
1.2
0.4
0
100
hFE, DC CURRENT GAIN
0.1 0.2 0.5 3
Figure 3. BaseEmitter Voltage Figure 4. CollectorEmitter Saturation Voltage
Figure 5. Collector Cutoff Region
2
0.8
0.1
VBE, BASE-EMITTER VOLTAGE (VOLTS)
0
TJ = 25°C
0.2 1
Figure 6. Capacitance
2 k
VR, REVERSE VOLTAGE (VOLTS)
Cib
Cob
0.3
, COLLECTOR CURRENT (A)μIC
-0.4 -0.2
70
50
300
1.6
0.5
IC = 1 A
TJ = -55°C
5
0.04 0.6
0.06 0.1 10.04 0.40.2 0.6
70
50
30
7
300
200
100
20
30
10050510.5
150°C
IC/IB = 4
+0.6
2 A
0.7 1 2
0.9 0.35
0.55
0.25
0.05
0.45
0.06
VCE = 2 V
VCE = 5 V
TJ = 150°C
25°C
-55°C
2
0.15
+0.4+0.2
1
10
100
1 k
10 k
500
700
1 k
10 30
REVERSE FORWARD
VCE = 250 V
VBE(sat) @ IC/IB = 4
VBE(on) @ VCE = 2 V
20
3 A 4 A
4
25°C
25°C
0.06 0.1 10.04 0.40.2 0.6 2 4
3
TJ = -55°C
25°C
150°C
TJ = 150°C
125°C
100°C
75°C
50°C
25°C
MJE13005G
http://onsemi.com
4
trv
TIME
IC
VCE
90% IB1
tsv
ICPK Vclamp
90% Vclamp 90% IC
10% Vclamp 10%
ICPK 2% IC
IB
tfi tti
tc
Figure 7. Inductive Switching Measurements
Table 1. Typical Inductive Switching Performance
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
IC
AMP
ÎÎÎ
ÎÎÎ
ÎÎÎ
TC
_C
ÎÎÎ
ÎÎÎ
ÎÎÎ
tsv
ns
ÎÎÎ
ÎÎÎ
ÎÎÎ
trv
ns
ÎÎÎ
ÎÎÎ
ÎÎÎ
tfi
ns
ÎÎÎ
ÎÎÎ
ÎÎÎ
tti
ns
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
tc
ns
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
2
ÎÎÎ
ÎÎÎ
ÎÎÎ
25
100
ÎÎÎ
ÎÎÎ
ÎÎÎ
600
900
ÎÎÎ
ÎÎÎ
ÎÎÎ
70
110
ÎÎÎ
ÎÎÎ
ÎÎÎ
100
240
ÎÎÎ
ÎÎÎ
ÎÎÎ
80
130
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
180
320
ÎÎÎÎ
ÎÎÎÎ
3
ÎÎÎ
ÎÎÎ
25
100
ÎÎÎ
ÎÎÎ
650
950
ÎÎÎ
ÎÎÎ
60
100
ÎÎÎ
ÎÎÎ
140
330
ÎÎÎ
ÎÎÎ
60
100
ÎÎÎÎ
ÎÎÎÎ
200
350
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
4
ÎÎÎ
ÎÎÎ
ÎÎÎ
25
100
ÎÎÎ
ÎÎÎ
ÎÎÎ
550
850
ÎÎÎ
ÎÎÎ
ÎÎÎ
70
110
ÎÎÎ
ÎÎÎ
ÎÎÎ
160
350
ÎÎÎ
ÎÎÎ
ÎÎÎ
100
160
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
220
390
NOTE: All Data recorded in the inductive Switching Circuit In Table 2.
SWITCHING TIMES NOTE
In resistive switching circuits, rise, fall, and storage times
have been defined and apply to both current and voltage
waveforms since they are in phase. However, for inductive
loads which are common to SWITCHMODE power
supplies and hammer drivers, current and voltage
waveforms are not in phase. Therefore, separate
measurements must be made on each waveform to
determine the total switching time. For this reason, the
following new terms have been defined.
tsv = Voltage Storage Time, 90% IB1 to 10% Vclamp
trv = Voltage Rise Time, 1090% Vclamp
tfi = Current Fall Time, 9010% IC
tti = Current Tail, 102% IC
tc = Crossover Time, 10% Vclamp to 10% IC
An enlarged portion of the inductive switching
waveforms is shown in Figure 7 to aid in the visual identity
of these terms.
For the designer, there is minimal switching loss during
storage time and the predominant switching power losses
occur during the crossover interval and can be obtained
using the standard equation from AN222:
PSWT = 1/2 VCCIC(tc)f
In general, trv + tfi ] tc. However, at lower test currents
this relationship may not be valid.
As is common with most switching transistors, resistive
switching is specified at 25°C and has become a benchmark
for designers. However, for designers of high frequency
converter circuits, the user oriented specifications which
make this a “SWITCHMODE” transistor are the inductive
switching speeds (tc and tsv) which are guaranteed at 100_C.
t, TIME (s)μ
t, TIME (s)μ
Figure 8. TurnOn Time
IC, COLLECTOR CURRENT (AMP)
tr
td @ VBE(off) = 5 V
0.02
0.01
1
0.5
0.2
IC, COLLECTOR CURRENT (AMP)
0.4 4120.04
VCC = 125 V
IC/IB = 5
TJ = 25°C
0.2
0.05
0.1
0.1
Figure 9. TurnOff Time
0.2
0.1
10
5
1
0.5 4120.04
VCC = 125 V
IC/IB = 5
TJ = 25°C
0.2
0.3
0.5
0.1
2
ts
tf
RESISTIVE SWITCHING PERFORMANCE
MJE13005G
http://onsemi.com
5
REVERSE BIAS SAFE OPERATING AREA AND INDUCTIVE SWITCHING RESISTIVE
SWITCHING
OUTPUT WAVEFORMS
TEST CIRCUITS
CIRCUIT
VALUES
TEST WAVEFORMS
NOTE
PW and VCC Adjusted for Desired IC
RB Adjusted for Desired IB1
5 V
PW
DUTY CYCLE 10%
tr, tf 10 ns 68
1 k
0.001 mF
0.02 mF
1N493
3
270
+5 V
1 k
2N2905
47
1/2 W
100
-V
BE(off)
MJE200
T.U.T.
IB
RB
1N4933
1N4933 33
33
2N222
2
1 k
MJE210
VCC
+5 V
L
IC
MR826*
Vclamp
*SELECTED FOR 1 kV
VCE
5.1 k
51
+125 V
RC
SCOPE
-4.0
V
D1
RB
TUT
t1 ADJUSTED TO
OBTAIN IC
t1
Lcoil (ICpk)
VCC
t2
Lcoil (ICpk)
Vclamp
+10 V 25 ms
0
-8 V
Coil Data:
Ferroxcube Core #6656
Full Bobbin (~16 Turns) #16
GAP for 200 mH/20 A
Lcoil = 200 mH
VCC = 20 V
Vclamp = 300 Vdc
VCC = 125 V
RC = 62 W
D1 = 1N5820 or Equiv.
RB = 22 W
Test Equipment
ScopeTektronics
475 or Equivalent
tr, tf < 10 ns
Duty Cycle = 1.0%
RB and RC adjusted
for desired IB and IC
t1
IC
VCE
TIME
IC(pk)
VCE or
Vclamp
t2
t
t
tf
tf CLAMPED
tf UNCLAMPED t2
Table 2. Test Conditions for Dynamic Performance
t, TIME (ms)
1
0.01
0.01
0.7
0.2
0.1
0.05
0.02
r(t), TRANSIENT THERMAL RESISTANCE
0.05 1 2 5 10 20 50 100 200 500
ZqJC(t) = r(t) RqJC
RqJC = 1.67°C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) - TC = P(pk) ZqJC(t)
P(pk)
t1
t2
DUTY CYCLE, D = t1/t2
D = 0.5
0.2
0.05
0.01
SINGLE PULSE
0.1 0.50.2
(NORMALIZED)
1 k
0.5
0.3
0.07
0.03
0.02
Figure 10. Typical Thermal Response [ZqJC(t)]
0.1
0.02
MJE13005G
http://onsemi.com
6
SAFE OPERATING AREA INFORMATION
The Safe Operating Area Figures 11 and 12 are specified ratings for these devices under the test conditions shown.
IC(pk), COLLECTOR CURRENT (AMP)
IC, COLLECTOR CURRENT (AMP)
5 ms 500 ms
1 ms
dc
10
7
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
0.02
10
400
2
1
5
0.5
0.1
0.05
30 50 70 100
Figure 11. Forward Bias Safe Operating Area Figure 12. Reverse Bias Switching Safe Operating Area
0.2
0.01
300 500
MJE13005
520
4
0
800
1
100 300
TC 100°C
IB1 = 2.0 A
500 700
VBE(off) = 9 V
0
2
VCE, COLLECTOR-EMITTER CLAMP VOLTAGE (VOLTS)
3
200 400 600
5 V
MJE13005
3 V
200
1.5 V
FORWARD BIAS
There are two limitations on the power handling ability of
a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC VCE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to greater
dissipation than the curves indicate.
The data of Figure 11 is based on TC = 25_C; TJ(pk) is
variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC 25_C. Second breakdown limitations do
not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 11 may be found at
any case temperature by using the appropriate curve on
Figure 13.
TJ(pk) may be calculated from the data in Figure 10. At
high case temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations
imposed by second breakdown.
REVERSE BIAS
For inductive loads, high voltage and high current must be
sustained simultaneously during turnoff, in most cases,
with the base to emitter junction reverse biased. Under these
conditions the collector voltage must be held to a safe level
at or below a specific value of collector current. This can be
accomplished by several means such as active clamping, RC
snubbing, load line shaping, etc. The safe level for these
devices is specified as Reverse Bias Safe Operating Area
and represents the voltagecurrent conditions during
reverse biased turnoff. This rating is verified under
clamped conditions so that the device is never subjected to
an avalanche mode. Figure 12 gives the complete RBSOA
characteristics.
Figure 13. Forward Bias Power Derating
TC, CASE TEMPERATURE (°C)
040 120 160
0.6
POWER DERATING FACTOR
SECOND BREAKDOWN
DERATING
1
0.8
0.4
0.2
60 100 14080
THERMAL
DERATING
20
MJE13005G
http://onsemi.com
7
PACKAGE DIMENSIONS
TO220AB
CASE 221A09
ISSUE AF
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL
BODY AND LEAD IRREGULARITIES ARE
ALLOWED.
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A0.570 0.620 14.48 15.75
B0.380 0.405 9.66 10.28
C0.160 0.190 4.07 4.82
D0.025 0.035 0.64 0.88
F0.142 0.161 3.61 4.09
G0.095 0.105 2.42 2.66
H0.110 0.155 2.80 3.93
J0.014 0.025 0.36 0.64
K0.500 0.562 12.70 14.27
L0.045 0.060 1.15 1.52
N0.190 0.210 4.83 5.33
Q0.100 0.120 2.54 3.04
R0.080 0.110 2.04 2.79
S0.045 0.055 1.15 1.39
T0.235 0.255 5.97 6.47
U0.000 0.050 0.00 1.27
V0.045 --- 1.15 ---
Z--- 0.080 --- 2.04
B
Q
H
Z
L
V
G
N
A
K
F
123
4
D
SEATING
PLANE
T
C
S
T
U
R
J
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
MJE13005/D
SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.
PUBLICATION ORDERING INFORMATION
N. American Technical Support: 8002829855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81357733850
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 3036752175 or 8003443860 Toll Free USA/Canada
Fax: 3036752176 or 8003443867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative