Semiconductor Components Industries, LLC, 2000
August, 2000 – Rev. 4 1Publication Order Number:
MC74VHC1GT66/D
MC74VHC1GT66
Advance Information
Analog Switch
The MC74VHC1GT66 is an advanced high speed CMOS bilateral
analog switch fabricated with silicon gate CMOS technology. It
achieves high speed propagation delays and low ON resistances while
maintaining CMOS low power dissipation. This bilateral switch
controls analog and digital voltages that may vary across the full
power–supply range (from VCC to GND).
The MC74VHC1GT66 is compatible in function to a single gate of
the very High Speed CMOS MC74VHCT4066. The device has been
designed so that the ON resistances (RON) are much lower and more
linear over input voltage than RON of the metal–gate CMOS or High
Speed CMOS analog switches.
The ON/OFF Control input is compatible with TTL–type input
thresholds allowing the device to be used as a logic–level translator
from 3.0V CMOS logic to 5.0V CMOS logic or from 1.8V CMOS
logic to 3.0V CMOS logic while operating at the high–voltage power
supply. The input protection circuitry on this device allows
overvoltage tolerance on the input, which provides protection when
voltages of up to 7V are applied, regardless of the supply voltage. This
allows the MC74VHC1GT66 to be used to interface 5V circuits to 3V
circuits.
Low Power Dissipation: ICC = 2 A (Max) at TA = 25°C
Diode Protection Provided on Inputs and Outputs
Improved Linearity and Lower ON Resistance over Input Voltage
Pin and Function Compatible with Other Standard Logic Families
Latchup Performance Exceeds 300 mA
ESD Performance: HBM > 2000 V; MM > 200 V, CDM > 1500 V
51
2
43
VCC
IN/OUT XA
OUT/IN YA
ON/OFF CONTROLGND
Figure 1. 5–Lead SOT–353 Pinout (Top View)
ON/OFF CONTROL
OUT/IN YA
1
U U
IN/OUT XA1
X 1
Figure 2. Logic Symbol
This document contains information on a new product. Specifications and information
herein are subject to change without notice.
PIN ASSIGNMENT
1
2
3 GND
IN/OUT XA
OUT/IN YA
http://onsemi.com
4
5 VCC
ON/OFF CONTROL
FUNCTION TABLE
See detailed ordering and shipping information in the package
dimensions section on page 6 of this data sheet.
ORDERING INFORMATION
L
H
On/Off Control Input State of Analog Switch
Off
On
SC–88A / SOT–353/SC–70
DF SUFFIX
CASE 419A
Pin 1
d = Date Code
VEd
TSOP–5/SOT–23/SC–59
DT SUFFIX
CASE 483
Pin 1
d = Date Code
VEd
MARKING
DIAGRAMS
MC74VHC1GT66
http://onsemi.com
2
ABSOLUTE MAXIMUM RATINGS
Characteristics Symbol Value Unit
DC Supply Voltage VCC –0.5 to +7.0 V
Digital Input Voltage VIN –0.5 to VCC +0.5 V
Analog Output Voltage VIS –0.5 to VCC + 0.5 V
Digital Input Diode Current IIK –20 mA
DC Supply Current, VCC and GND ICC +25 mA
Power dissipation in still air, SC–88A † PD200 mW
Lead temperature, 1 mm from case for 10 s TL260 °C
Storage temperature Tstg –65 to +150 °C
Derating SC–88A Package: –3 mW/C from 65 to 125C
RECOMMENDED OPERATING CONDITIONS
Characteristics Symbol Min Max Unit
DC Supply Voltage VCC 2.0 5.5 V
Digital Input Voltage VIN GND VCC V
Analog Input Voltage VIS GND VCC V
Static or Dynamic Voltage Across Switch VIO* 1.2 V
Operating Temperature Range TA–55 +125 °C
Input Rise and Fall Time
ON/OFF Control Input VCC = 3.3V ± 0.3V
VCC = 5.0V ± 0.5V
tr , tf0
0100
20
ns/V
* For voltage drops across the switch greater than 1.2V (switch on), excessive VCC current may be drawn; i.e. the current out of the switch may
contain both VCC and switch input components. The reliability of the device will be unaf fected unless the Maximum Ratings are exceeded.
The JA of the package is equal to 1/Derating. Higher junction temperatures may affect the expected lifetime of the device per the table and
figure below.
DEVICE JUNCTION TEMPERATURE VERSUS
TIME TO 0.1% BOND FAILURES
Junction
Temperature °CTime, Hours Time, Years
80 1,032,200 117.8
90 419,300 47.9
100 178,700 20.4
110 79,600 9.4
120 37,000 4.2
130 17,800 2.0
140 8,900 1.0
1
1 10 100 1000
TIME, YEARS
NORMALIZED FAILURE RATE
TJ= 80 C°
TJ= 90 C°
TJ= 100 C°
TJ= 110 C°
TJ= 130 C°
TJ= 120 C°
FAILURE RATE OF PLASTIC = CERAMIC
UNTIL INTERMETALLICS OCCUR
Figure 3. Failure Rate vs. Time
Junction Temperature
MC74VHC1GT66
http://onsemi.com
3
DC ELECTRICAL CHARACTERISTICS
VCC TA = 25°C TA 85°C TA 125°C
Symbol Parameter Test Conditions (V) Min Typ Max Min Max Min Max Unit
VIH Minimum High–Level
Input Voltage
ON/OFF Control Input
RON = Per Spec 3.0
4.5
5.5
1.2
2.0
2.0
1.2
2.0
2.0
1.2
2.0
2.0
V
VIL Maximum Low–Level
Input Voltage
ON/OFF Control Input
RON = Per Spec 3.0
4.5
5.5
0.53
0.8
0.8
0.53
0.8
0.8
0.53
0.8
0.8
V
IIN Maximum Input
Leakage Current
ON/OFF Control Input
VIN = VCC or GND 0 to
5.5 ±0.1 ±1.0 ±1.0 µA
ICC Maximum Quiescent
Supply Current VIN = VCC or GND
VIO = 0V 5.5 2.0 20 40 µA
ICCT Quiescent
Supply Current ON/OFF Control at
3.4V 5.5 1.35 1.5 1.65 mA
RON Maximum ”ON”
Resistance VIN = VIH
VIS = VCC or GND
|IIS| 10mA (Figure 1)
3.0
4.5
5.5
30
20
15
50
30
20
70
40
35
100
50
45
Endpoints
VIN = VIH
VIS = VCC or GND
|IIS| 10mA (Figure 1)
3.0
4.5
5.5
25
12
8
50
20
15
65
26
23
90
40
32
IOFF Maximum Off–Channel
Leakage Current VIN = VIL
VIS = VCC or GND
Switch Off (Figure 2)
5.5 0.1 0.5 1.0 µA
ION Maximum On–Channel
Leakage
Current
VIN = VIH
VIS = VCC or GND
Switch On (Figure 3)
5.5 0.1 0.5 1.0 µA
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
AC ELECTRICAL CHARACTERISTICS (Cload = 50 pF, Input tr/tf = 3.0ns)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
VCC
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
TA = 25°C
ÎÎÎÎÎ
ÎÎÎÎÎ
TA 85°C
ÎÎÎÎÎ
ÎÎÎÎÎ
TA 125°C
ÎÎÎÎ
ÎÎÎÎ
Symbol
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Parameter
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Test Conditions
ÎÎÎ
ÎÎÎ
V
CC
(V)
ÎÎÎ
ÎÎÎ
Min
ÎÎÎ
ÎÎÎ
Typ
ÎÎÎ
ÎÎÎ
Max
ÎÎÎ
ÎÎÎ
Min
ÎÎÎ
ÎÎÎ
Max
ÎÎÎ
ÎÎÎ
Min
ÎÎÎ
ÎÎÎ
Max
Unit
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
tPLH,
tPHL
ÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎ
Î
Î
ÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎ
Maximum
Propogation Delay,
Input X to Y
ÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎ
Î
Î
ÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎ
YA = Open
Figure 4
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
2.0
3.0
4.5
5.5
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
1
0
0
0
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
5
2
1
1
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
6
3
1
1
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
7
4
2
1
ns
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
tPLZ,
tPHZ
ÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎ
Maximum
Propogation Delay,
ON/OFF Control to
Analog Output
ÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎ
RL = 1000
Figure 5
ÎÎÎ
Î
Î
Î
ÎÎÎ
2.0
3.0
4.5
5.5
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
15
8
6
4
ÎÎÎ
Î
Î
Î
ÎÎÎ
35
15
10
7
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
46
20
13
9
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
57
25
17
11
ns
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
tPZL,
tPZH
ÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎ
Î
Î
ÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎ
Maximum
Propogation Delay,
ON/OFF Control to
Analog Output
ÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎ
Î
Î
ÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎ
RL = 1000
Figure 5
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
2.0
3.0
4.5
5.5
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
15
8
6
4
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
35
15
10
7
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
46
20
13
9
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
57
25
17
11
ns
ÎÎÎÎ
ÎÎÎÎ
CIN
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Maximum Input
Cit
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ON/OFF Control Input
ÎÎÎ
ÎÎÎ
0.0
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
3
ÎÎÎ
ÎÎÎ
10
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
10
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
10
pF
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎ
Î
Î
ÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎ
Capacitance
ÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎ
Î
Î
ÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎ
Contol Input = GND
Analog I/O
Feedthrough
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
5.0
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
4
4
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
10
10
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
10
10
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
10
10
Typical @ 25°C, VCC = 5.0V
CPD Power Dissipation Capacitance (Note NO TAG) 18 pF
1. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.
Average operating current can be obtained by the equation: ICC(OPR) = CPD VCC fin + ICC. CPD is used to determine the no–load dynamic
power consumption; PD = CPD VCC2 fin + ICC VCC.
MC74VHC1GT66
http://onsemi.com
4
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
Symbol
ÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎ
Parameter
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Test Conditions
ÎÎÎ
Î
Î
Î
ÎÎÎ
VCC
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
Limit
25°C
ÎÎÎ
Î
Î
Î
ÎÎÎ
Unit
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
BW
ÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎ
Maximum On–Channel
Bandwidth or Minimum
Frequency Response
Figure 7
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
fin = 1 MHz Sine Wave
Adjust fin voltage to obtain 0 dBm at VOS
Increase fin = frequency until dB meter reads –3dB
RL = 50, CL = 10 pF
ÎÎÎ
Î
Î
Î
ÎÎÎ
3.0
4.5
5.5
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
150
175
200
ÎÎÎ
Î
Î
Î
ÎÎÎ
MHz
ÎÎÎÎÎ
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
ÎÎÎÎÎ
ISOoff
ÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎ
Off–Channel Feedthrough
Isolation
Figure 8
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
fin = Sine Wave
Adjust fin voltage to obtain 0 dBm at VIS
fin = 10 kHz, RL = 600, CL = 50 pF
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
3.0
4.5
5.5
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
–50
–50
–50
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
dB
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
fin = 1.0 kHz, RL = 50, CL = 10 pF
ÎÎÎ
Î
Î
Î
ÎÎÎ
3.0
4.5
5.5
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
–40
–40
–40
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
NOISEfeed
ÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎ
Feedthrough Noise Control to
Switch
Figure 9
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Vin 1 MHz Square Wave (tr = tf = 2ns)
Adjust RL at setup so that Is = 0 A
RL = 600, CL = 50 pF
ÎÎÎ
Î
Î
Î
ÎÎÎ
3.0
4.5
5.5
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
45
60
130
ÎÎÎ
Î
Î
Î
ÎÎÎ
mVPP
ÎÎÎÎÎ
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
RL = 50, CL = 10 pF
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
3.0
4.5
5.5
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
25
30
60
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
ÎÎÎÎÎ
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
ÎÎÎÎÎ
THD
ÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎ
Total Harmonic Distortion
Figure 10
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
fin = 1 kHz, RL = 10k, CL = 50 pF
THD = THDMeasured – THDSource
VIS = 3.0 VPP sine wave
VIS = 4.0 VPP sine wave
VIS = 5.0 VPP sine wave
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
3.3
4.5
5.5
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
0.20
0.10
0.06
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
%
1. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.
Average operating current can be obtained by the equation: ICC(OPR) = CPD VCC fin + ICC. CPD is used to determine the no–load dynamic
power consumption; PD = CPD VCC2 fin + ICC VCC.
Figure 1. On Resistance Test Set–Up Figure 2. Maximum Off–Channel Leakage Current
Test Set–Up
51
2
43
Figure 3. Maximum On–Channel Leakage Current
Test Set–Up Figure 4. Propagation Delay Test Set–Up
POWER
SUPPLY COMPUTER
DC PARAMETER
ANALYZER
VCC
+-
PLOTTER
51
2
43
VCC
VIL
VCC
VCC A
51
2
43
VCC
VIH
VCC
A
N/C
51
2
43
VCC
VIH
TEST
POINT
VIH
MC74VHC1GT66
http://onsemi.com
5
Figure 5. Propagation Delay Output Enable/Disable
Test Set–Up Figure 6. Power Dissipation Capacitance Test
Set–Up
51
2
43
VCC
VCC
VCC
2
1
2
1
RL
CL*
*Includes all probe and jig capacitance.
51
2
43
VCC
N/C
N/C
TEST POINT
Switch to Position 1 when testing tPLZ and tPZL
Switch to Position 2 when testing tPHZ and tPZH
A
Figure 7. Maximum On–Channel Bandwidth
Test Set–Up Figure 8. Off–Channel Feedthrough Isolation Test
Set–Up
Figure 9. Feedthrough Noise, ON/OFF Control to
Analog Out, Test Set–Up Figure 10. Total Harmonic Distortion Test Set–Up
51
2
43
VCC
CL*
*Includes all probe and jig capacitance.
dB
Meter
0.1 F
VOS
fin 51
2
43
VCC
CL*
*Includes all probe and jig capacitance.
dB
Meter
0.1 F
VOS
fin
RL
VIS
51
2
43
VCC
CL*
*Includes all probe and jig capacitance.
VOS
(VCC)/2
IS
RL
RL
GND
VIH
VIN 1MHz
trtf2ns
51
2
43
VCC
*Includes all probe and jig capacitance.
0.1 F
VIS
fin
CL*
VOS
To Distortion
Meter
(VCC)/2
RL
VIH
VIH
MC74VHC1GT66
http://onsemi.com
6
VCC
VOH
50%
50% VCC
XA
YA
tPHL
tPLH
Figure 11. Propagation Delay,
Analog In to Analog Out Waveforms Figure 12. Propagation Delay, ON/OFF Control
50% VCC
VOL
VIH
10%
50% VCC
Control
Analog Out
tPLZ
tPZL
50% VCC
50% VCC
tPHZ
tPZH
VOL
VOH
High
Impedance
High
Impedance
90%
trtf
90%
10%
DEVICE ORDERING INFORMATION
Device Nomenclature
Device Order Number Circuit
Indicator
Temp
Range
Identifier Technology Device
Function Package
Suffix
Tape &
Reel
Suffix Package
Type Tape and Reel
Size
MC74VHC1GT66DFT2 MC 74 VHC1G T66 DF T2
SC–88A/
SOT–353
/SC–70 178mm (7”)
3000 Unit
MC74VHC1GT66DFT4 MC 74 VHC1G T66 DF T4
SC–88A/
SOT–353
/SC–70 330mm (13”)
100000 Unit
MC74VHC1GT66DTT1 MC 74 VHC1G T66 DT T1
TSOP5/
SOT–23
/SC–59 178mm (7”)
3000 Unit
MC74VHC1GT66DTT3 MC 74 VHC1G T66 DT T3
TSOP5/
SOT–23
/SC–59 330mm (13”)
100000 Unit
MC74VHC1GT66
http://onsemi.com
7
Figure 13. Carrier Tape Specifications
D1
FOR COMPONENTS
10 PITCHES
CUMULATIVE
TOLERANCE ON
TAPE
±0.2 mm
(±0.008")
2.0 mm × 1.2 mm
AND LARGER
CENTER LINES
OF CAVITY
EMBOSSMENT
USER DIRECTION OF FEED
K0
SEE
NOTE 2
P0
P2
D
E
FW
B0++ +
K
t
B1
TOP
COVER
TAPE
P
SEE NOTE 2A0
FOR MACHINE REFERENCE
ONLY
INCLUDING DRAFT AND RADII
CONCENTRIC AROUND B0
R MIN.
TAPE AND COMPONENTS
SHALL PASS AROUND RADIUS R"
WITHOUT DAMAGE
BENDING RADIUS
*TOP COVER
TAPE THICKNESS (t1)
0.10 mm
(0.004") MAX.
EMBOSSED
CARRIER EMBOSSMENT
TYPICAL
COMPONENT CAVITY
CENTER LINE
TYPICAL
COMPONENT
CENTER LINE
MAXIMUM COMPONENT ROTATION
10°
CAMBER (TOP VIEW)
ALLOWABLE CAMBER TO BE 1 mm/100 mm NONACCUMULATIVE OVER 250 mm
100 mm
(3.937")
1 mm
(0.039") MAX 250 mm
(9.843")
1 mm MAX
TAPE
EMBOSSED CARRIER DIMENSIONS (See Notes 1 and 2)
Tape
Size B1
Max D D1E F K P P0P2R T W
8 mm 4.35 mm
(0.171")
1.5 +0.1/
-0.0 mm
(0.059
+0.004/
-0.0")
1.0 mm
Min
(0.039")
1.75
±0.1 mm
(0.069
±0.004")
3.5
±0.5 mm
(1.38
±0.002")
2.4 mm
(0.094")
4.0
±0.10 mm
(0.157
±0.004")
4.0
±0.1 mm
(0.156
±0.004")
2.0
±0.1 mm
(0.079
±0.002")
25 mm
(0.98")
0.3
±0.05 mm
(0.01
+0.0038/
-0.0002")
8.0
±0.3 mm
(0.315
±0.012")
1. Metric Dimensions Govern–English are in parentheses for reference only.
2. A0, B0, and K0 are determined by component size. The clearance between the components and the cavity must be within 0.05 mm min to
0.50 mm max. The component cannot rotate more than 10° within the determined cavity
MC74VHC1GT66
http://onsemi.com
8
Figure 14. Reel Dimensions
13.0 mm ±0.2 mm
(0.512" ±0.008")
1.5 mm MIN
(0.06")
50 mm MIN
(1.969")
20.2 mm MIN
(0.795")
FULL RADIUS
t MAX
G
A
REEL DIMENSIONS
Tape Size T&R Suffix A Max Gt Max
8 mm T1, T2 178 mm
(7")
8.4 mm, +1.5 mm, -0.0
(0.33" + 0.059", -0.00)
14.4 mm
(0.56")
8 mm T3, T4 330 mm
(13")
8.4 mm, +1.5 mm, -0.0
(0.33" + 0.059", -0.00)
14.4 mm
(0.56")
Figure 15. Reel Winding Direction
DIRECTION OF FEED
BARCODE LABEL
HOLEPOCKET
MC74VHC1GT66
http://onsemi.com
9
TAPE TRAILER
(Connected to Reel Hub)
NO COMPONENTS
160 mm MIN
TAPE LEADER
NO COMPONENTS
400 mm MIN
COMPONENTS
DIRECTION OF FEED
CAVITY
TAPE
TOP TAPE
Figure 16. Tape Ends for Finished Goods
Figure 18. DTT1 and DTT3 (TSOP5) Reel Configuration/Orientation
User Direction of Feed
T1" PIN ONE AWAY FROM
SPROCKET HOLE
Figure 17. DFT2 and DFT4 (SC88A) Reel Configuration/Orientation
User Direction of Feed
T2" PIN ONE AWAY FROM
SPROCKET HOLE
MC74VHC1GT66
http://onsemi.com
10
PACKAGE DIMENSIONS
SC–88A / SOT–353 / SC–70
DF SUFFIX
5–LEAD PACKAGE
CASE 419A–01
ISSUE B
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MM.
DIM
A
MIN MAX MIN MAX
MILLIMETERS
1.80 2.200.071 0.087
INCHES
B1.15 1.350.045 0.053
C0.80 1.100.031 0.043
D0.10 0.300.004 0.012
G0.65 BSC0.026 BSC
H--- 0.10---0.004
J0.10 0.250.004 0.010
K0.10 0.300.004 0.012
N0.20 REF0.008 REF
S2.00 2.200.079 0.087
V0.30 0.400.012 0.016
B0.2 (0.008) MM
123
45
A
G
V
S
D 5 PL
H
C
N
J
K
–B–
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
0.5 mm (min)
0.4 mm (min)
0.65 mm 0.65 mm
1.9 mm
MC74VHC1GT66
http://onsemi.com
11
PACKAGE DIMENSIONS
TSOP–5 / SOT–23 / SC–59
DT SUFFIX
5–LEAD PACKAGE
CASE 483–01
ISSUE A
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD
FINISH THICKNESS. MINIMUM LEAD THICKNESS
IS THE MINIMUM THICKNESS OF BASE
MATERIAL.
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A2.90 3.10 0.1142 0.1220
B1.30 1.70 0.0512 0.0669
C0.90 1.10 0.0354 0.0433
D0.25 0.50 0.0098 0.0197
G0.85 1.00 0.0335 0.0413
H0.013 0.100 0.0005 0.0040
J0.10 0.26 0.0040 0.0102
K0.20 0.60 0.0079 0.0236
L1.25 1.55 0.0493 0.0610
M0 10 0 10
S2.50 3.00 0.0985 0.1181
0.05 (0.002)
123
54
S
AG
L
B
D
H
C
KM
J

mm
inches
1.9
0.039
1.0
0.094
0.7
0.074
2.4
0.028
0.95
0.037
0.95
0.037
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
MC74VHC1GT66
http://onsemi.com
12
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty , representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–spanish@hibbertco.com
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: ONlit–asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2745
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
MC74VHC1GT66/D
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)
Email: ONlit–german@hibbertco.com
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
Email: ONlit–french@hibbertco.com
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)
Email: ONlit@hibbertco.com
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy, UK