IGP01N120H2, IGD01N120H2 IGB01N120H2 HighSpeed 2-Technology * * Designed for: - SMPS - Lamp Ballast - ZVS-Converter - optimised for soft-switching / resonant topologies C G E nd 2 generation HighSpeed-Technology for 1200V applications offers: - loss reduction in resonant circuits - temperature stable behavior - parallel switching capability - tight parameter distribution - Eoff optimized for IC =1A P-TO-220-3-1 (TO-220AB) P-TO-263-3-2 (D-PAK) (TO-263AB) P-TO-252-3-1 (D-PAK) (TO-252AA) * Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type IGP01N120H2 Package Ordering Code VCE IC Eoff Tj 1200V 1A 0.09mJ 150C P-TO-220-3-1 Q67040-S4593 2 IGB01N120H2 1200V 1A 0.09mJ 150C P-TO-263 (D PAK) Q67040-S4592 IGD01N120H2 1200V 1A 0.09mJ 150C P-TO-252 (DPAK) Q67040-S4591 Maximum Ratings Parameter Symbol Value Collector-emitter voltage VCE 1200 Triangular collector current IC Unit V A TC = 25C, f = 140kHz 3.2 TC = 100C, f = 140kHz 1.3 Pulsed collector current, tp limited by Tjmax ICpuls 3.5 Turn off safe operating area - 3.5 Gate-emitter voltage VGE 20 V Power dissipation Ptot 28 W -40...+150 C VCE 1200V, Tj 150C TC = 25C Operating junction and storage temperature Tj , Tstg Soldering temperature, 1.6mm (0.063 in.) from case for 10s - 260 225 (for SMD) Power Semiconductors 1 Rev. 2, Mar-04 IGP01N120H2, IGD01N120H2 IGB01N120H2 Thermal Resistance Parameter Symbol Conditions Max. Value Unit 4.5 K/W Characteristic IGBT thermal resistance, RthJC junction - case Thermal resistance, RthJA P-TO-220-3-1 62 RthJA P-TO-263 (D2PAK) 40 junction - ambient SMD version, device on PCB1) Electrical Characteristic, at Tj = 25 C, unless otherwise specified Parameter Symbol Conditions Value min. Typ. max. 1200 - - T j = 25 C - 2.2 2.8 T j = 15 0 C - 2.5 - V G E = 10V, I C = 1A , T j = 25 C - 2.4 - 2.1 3 3.9 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0V, I C = 30 0A Collector-emitter saturation voltage VCE(sat) V V G E = 15V, I C = 1A Gate-emitter threshold voltage VGE(th) I C = 30A ,V C E =V G E Zero gate voltage collector current ICES V C E = 1200V, V G E = 0V A T j = 25 C - - 20 T j = 15 0 C - - 80 Gate-emitter leakage current IGES V C E = 0V ,V G E = 2 0V - - 40 nA Transconductance gfs V C E = 20V, I C = 1A - 0.75 - S Input capacitance Ciss V C E = 25V, - 91.6 - pF Output capacitance Coss V G E = 0V, - 9.8 - Reverse transfer capacitance Crss f= 1 M Hz - 3.4 - Gate charge QGate V C C = 9 60V, I C = 1A - 8.6 - nC Internal emitter inductance LE - 7 - nH Dynamic Characteristic V G E = 1 5V measured 5mm (0.197 in.) from case P -T O - 2 20- 3- 1 P-TO-247-3-1 13 1) Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70m thick) copper area for collector connection. PCB is vertical without blown air. Power Semiconductors 2 Rev. 2, Mar-04 IGP01N120H2, IGD01N120H2 IGB01N120H2 Switching Characteristic, Inductive Load, at Tj=25 C Parameter Symbol Conditions Value min. Typ. max. - 13 - - 6.3 - - 370 - - 28 - - 0.08 - - 0.06 - - 0.14 - Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j = 25 C, V C C = 8 00V, I C = 1A , V G E = 1 5V/ 0 V, R G = 2 41, L 2 ) = 180nH, C 2 ) = 4 0 pF Energy losses include "tail" and diode 3) reverse recovery. ns mJ Switching Characteristic, Inductive Load, at Tj=150 C Parameter Symbol Conditions Value min. Typ. max. - 12 - - 8.9 - - 450 - Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j = 15 0 C V C C = 8 00V, I C = 1A , V G E = 1 5V/ 0 V, R G = 2 41, L 2 ) = 180nH, C 2 ) = 4 0 pF Energy losses include "tail" and diode 3) reverse recovery. - 43 - - 0.11 - - 0.09 - - 0.2 - ns mJ Switching Energy ZVT, Inductive Load Parameter Symbol Conditions Value min. typ. max. Unit IGBT Characteristic Turn-off energy Eoff V C C = 8 00V, mJ I C = 1A , V G E = 1 5V/ 0 V, R G = 2 41, C r 2 ) = 1 nF 2 ) 3) T j = 25 C - 0.02 - T j = 15 0 C - 0.044 - Leakage inductance L and stray capacity C due to dynamic test circuit in figure E Commutation diode from device IKP01N120H2 Power Semiconductors 3 Rev. 2, Mar-04 IGP01N120H2, IGD01N120H2 IGB01N120H2 10A 5A t p =1 s Ic 2 s IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 4A 3A TC=80C 2A 1A TC=110C Ic 1A 5 s 20 s 0,1A 50 s 200 s DC ,01A 0A 10Hz 100Hz 1kHz 10kHz 100kHz 1V 10V 100V 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25C, Tj 150C) f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj 150C, D = 0.5, VCE = 800V, VGE = +15V/0V, RG = 241) 30W 4A IC, COLLECTOR CURRENT Ptot, POWER DISSIPATION 25W 20W 15W 10W 5W 0W 25C 50C 75C 100C 125C 2A 1A 0A 25C 150C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj 150C) Power Semiconductors 3A 50C 75C 100C 125C 150C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE 15V, Tj 150C) 4 Rev. 2, Mar-04 5A 5A 4A 4A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT IGP01N120H2, IGD01N120H2 VGE=15V 3A 12V 10V 8V 6V 2A 1A 0A 0V 1V 2V 3V 4V IC, COLLECTOR CURRENT 4A Tj=+150C Tj=+25C 3A 2A 1A 0A 3V 5V 7V 9V VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 20V) Power Semiconductors 12V 10V 8V 6V 3A 2A 1A 1V 2V 3V 4V 5V 6V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150C) VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25C) 5A VGE=15V 0A 0V 5V IGB01N120H2 4V IC=2A 3V IC=1A 2V IC=0.5A 1V 0V -50C 0C 50C 100C 150C Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 5 Rev. 2, Mar-04 IGP01N120H2, IGD01N120H2 IGB01N120H2 1000ns td(off) 100ns t, SWITCHING TIMES t, SWITCHING TIMES td(off) 100ns tf td(on) tf 10ns td(on) tr 10ns tr 0A 1A 1ns 50 2A IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150C, VCE = 800V, VGE = +15V/0V, RG = 241, dynamic test circuit in Fig.E) 100 150 200 RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150C, VCE = 800V, VGE = +15V/0V, IC = 1A, dynamic test circuit in Fig.E) t, SWITCHING TIMES td(off) 100ns tf td(on) 10ns 0C tr 50C 100C 150C VGE(th), GATE-EMITTER THRESHOLD VOLTAGE 6V Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 800V, VGE = +15V/0V, IC = 1A, RG = 241, dynamic test circuit in Fig.E) Power Semiconductors 5V 4V max. 3V typ. 2V min. 1V 0V -50C 0C 50C 100C 150C Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.03mA) 6 Rev. 2, Mar-04 IGP01N120H2, IGD01N120H2 0.25mJ 1 E, SWITCHING ENERGY LOSSES ) Eon and Ets include losses due to diode recovery. Ets 0.4mJ Eoff 1 Eon 0.2mJ Ets 1 0.20mJ 0.15mJ 1 Eon 0.10mJ Eoff 0.0mJ 0A 1A 2A 0.05mJ 50 3A IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150C, VCE = 800V, VGE = +15V/0V, RG = 241, dynamic test circuit in Fig.E ) Ets 0.20mJ 1 0.15mJ 1 Eon 0.10mJ 0.00mJ Eoff -40C 150 200 0.06mJ 1 ) Eon and Ets include losses due to diode recovery. 0.05mJ 100 RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150C, VCE = 800V, VGE = +15V/0V, IC = 1A, dynamic test circuit in Fig.E ) 25C 100C Eoff, TURN OFF SWITCHING ENERGY LOSS 0.25mJ E, SWITCHING ENERGY LOSSES 1 ) Eon and Ets include losses due to diode recovery. 1 E, SWITCHING ENERGY LOSSES 0.6mJ IGB01N120H2 150C 0.04mJ IC=1A, TJ=25C IC=0.3A, TJ=150C 0.02mJ IC=0.3A, TJ=25C 0.00mJ 0V/us 1000V/us 2000V/us 3000V/us dv/dt, VOLTAGE SLOPE Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 800V, VGE = +15V/0V, IC = 1A, RG = 241, dynamic test circuit in Fig.E ) Power Semiconductors IC=1A, TJ=150C Figure 16. Typical turn off switching energy loss for soft switching (dynamic test circuit in Fig. E) 7 Rev. 2, Mar-04 IGP01N120H2, IGD01N120H2 IGB01N120H2 20V 0.2 0 10 K/W VGE, GATE-EMITTER VOLTAGE ZthJC, TRANSIENT THERMAL IMPEDANCE D=0.5 0.1 0.05 R,(K/W) 2.5069 1.1603 0.8327 0.02 -1 10 K/W 0.01 , (s) 0.00066 0.00021 0.00426 R1 single pulse C 1 = 1 /R 1 C 2 = 2 /R 2 -2 10 K/W 1s 10s R2 100s 1ms 10ms UCE=240V 15V 10V UCE=960V 5V 0V 0nC 100ms tp, PULSE WIDTH 5nC 10nC 15nC QGE, GATE CHARGE Figure 18. Typical gate charge (IC = 1A) Figure 17. IGBT transient thermal impedance as a function of pulse width (D = tp / T) 1000V Ciss 10pF Coss Crss 0V 10V 20V 0.8A 600V 0.6A 400V 0.4A 0.2A 200V 0.0A 0V 30V 0.0 VCE, COLLECTOR-EMITTER VOLTAGE Figure 19. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) Power Semiconductors 800V ICE COLLECTOR CURRENT C, CAPACITANCE 100pF VCE, COLLECTOR-EMITTER VOLTAGE 1.0A 0.2 0.4 0.6 0.8 1.0 1.2 tp, PULSE WIDTH Figure 20. Typical turn off behavior, hard switching (VGE=15/0V, RG=220, Tj = 150C, Dynamic test circuit in Figure E) 8 Rev. 2, Mar-04 IGP01N120H2, IGD01N120H2 IGB01N120H2 1000V 800V 0.8A 600V 0.6A 400V 0.4A 0.2A 200V ICE COLLECTOR CURRENT VCE, COLLECTOR-EMITTER VOLTAGE 1.0A 0.0A 0V 0.0 0.4 0.8 1.2 1.6 2.0 tp, PULSE WIDTH Figure 21. Typical turn off behavior, soft switching (VGE=15/0V, RG=220, Tj = 150C, Dynamic test circuit in Figure E) Power Semiconductors 9 Rev. 2, Mar-04 IGP01N120H2, IGD01N120H2 TO-220AB IGB01N120H2 dimensions [mm] symbol [inch] min max min max A 9.70 10.30 0.3819 0.4055 B 14.88 15.95 0.5858 0.6280 C 0.65 0.86 0.0256 0.0339 D 3.55 3.89 0.1398 0.1531 E 2.60 3.00 0.1024 0.1181 0.2677 F 6.00 6.80 0.2362 G 13.00 14.00 0.5118 0.5512 H 4.35 4.75 0.1713 0.1870 K 0.38 0.65 0.0150 0.0256 L 0.95 1.32 0.0374 0.0520 M 2.54 typ. 4.30 4.50 0.1693 0.1772 P 1.17 1.40 0.0461 0.0551 T 2.30 2.72 0.0906 0.1071 TO-263AB (D2Pak) dimensions [mm] symbol A min max min max 9.80 10.20 0.3858 0.4016 B 0.70 1.30 0.0276 0.0512 1.00 1.60 0.0394 0.0630 D 1.03 1.07 0.0406 0.0421 F G 2.54 typ. 0.65 0.85 5.08 typ. 0.1 typ. 0.0256 0.0335 0.2 typ. H 4.30 4.50 0.1693 0.1772 K 1.17 1.37 0.0461 0.0539 L 9.05 9.45 0.3563 0.3720 M 2.30 2.50 0.0906 0.0984 N 15 typ. 0.5906 typ. P 0.00 0.20 0.0000 0.0079 Q 4.20 5.20 0.1654 0.2047 R 10 [inch] C E Power Semiconductors 0.1 typ. N 8 max 8 max S 2.40 3.00 0.0945 0.1181 T 0.40 0.60 0.0157 0.0236 U 10.80 0.4252 V 1.15 0.0453 W 6.23 0.2453 X 4.60 0.1811 Y 9.40 0.3701 Z 16.15 0.6358 Rev. 2, Mar-04 IGP01N120H2, IGD01N120H2 IGB01N120H2 TO-252AA (DPak) dimensions symbol [mm] symbol min A 11 A 6.40 A B 5.25 B 5.25 B C (0.65) C (0.65) C D 0.63 D 0.63 E Power Semiconductors min 6.40 2.28 D E F 2.19 F 2.19 F G 0.76 G 0.76 G H 0.90 H 0.90 H K 5.97 K 5.97 K L 9.40 L 9.40 L M 0.46 M 0.46 M N 0.87 N 0.87 N P 0.51 P 0.51 P R 5.00 R 5.00 R S 4.17 S 4.17 S T 0.26 T 0.26 T U - U - U Rev. 2, Mar-04 IGP01N120H2, IGD01N120H2 IGB01N120H2 i,v tr r =tS +tF diF /dt Qr r =QS +QF tr r IF tS QS Ir r m tF QF 10% Ir r m dir r /dt 90% Ir r m t VR Figure C. Definition of diodes switching characteristics 1 2 r1 n r2 rn Tj (t) p(t) r2 r1 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit 1/2 L oo DUT (Diode) L C Cr VDC RG DUT (IGBT) 1/2 L Figure E. Dynamic test circuit Leakage inductance L = 180nH, Stray capacitor C = 40pF, Relief capacitor Cr = 1nF (only for ZVT switching) Figure B. Definition of switching losses Power Semiconductors 12 Rev. 2, Mar-04 IGP01N120H2, IGD01N120H2 IGB01N120H2 Published by Infineon Technologies AG i Gr., Bereich Kommunikation St.-Martin-Strasse 53, D-81541 Munchen (c) Infineon Technologies AG 1999 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Power Semiconductors 13 Rev. 2, Mar-04