SEMICONDUCTOR TECHNICAL DATA L SUFFIX CERAMIC CASE 620 The MC14512B is an 8-channel data selector constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. This data selector finds primary application in signal multiplexing functions. It may also be used for data routing, digital signal switching, signal gating, and number sequence generation. * * * * * P SUFFIX PLASTIC CASE 648 Diode Protection on All Inputs Single Supply Operation 3-State Output (Logic "1", Logic "0", High Impedance) Supply Voltage Range = 3.0 Vdc to 18 Vdc Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range IIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIII MAXIMUM RATINGS* (Voltages Referenced to VSS) Symbol VDD Parameter DC Supply Voltage Value Unit - 0.5 to + 18.0 V Vin, Vout Input or Output Voltage (DC or Transient) - 0.5 to VDD + 0.5 V Iin, Iout Input or Output Current (DC or Transient), per Pin 10 mA PD Power Dissipation, per Package Tstg Storage Temperature TL Lead Temperature (8-Second Soldering) 500 mW - 65 to + 150 _C 260 _C * Maximum Ratings are those values beyond which damage to the device may occur. Temperature Derating: Plastic "P and D/DW" Packages: - 7.0 mW/_C From 65_C To 125_C Ceramic "L" Packages: - 12 mW/_C From 100_C To 125_C TRUTH TABLE C B A Inhibit Disable Z 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 X0 X1 X2 X3 1 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 X4 X5 X6 X7 X X X X X X 1 X 0 1 0 High Impedance X = Don't Care D SUFFIX SOIC CASE 751B ORDERING INFORMATION MC14XXXBCP MC14XXXBCL MC14XXXBD Plastic Ceramic SOIC TA = - 55 to 125C for all packages. PIN ASSIGNMENT X0 1 16 VDD X1 2 15 DIS X2 3 14 Z X3 4 13 C X4 5 12 B X5 6 11 A X6 7 10 INH VSS 8 9 X7 This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range VSS (Vin or Vout) VDD. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open. v v REV 3 1/94 MC14512B Motorola, Inc. 1995 370 MOTOROLA CMOS LOGIC DATA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS) Characteristic Output Voltage Vin = VDD or 0 Symbol - 55_C 25_C 125_C VDD Vdc Min Max Min Typ # Max Min Max Unit "0" Level VOL 5.0 10 15 -- -- -- 0.05 0.05 0.05 -- -- -- 0 0 0 0.05 0.05 0.05 -- -- -- 0.05 0.05 0.05 Vdc "1" Level VOH 5.0 10 15 4.95 9.95 14.95 -- -- -- 4.95 9.95 14.95 5.0 10 15 -- -- -- 4.95 9.95 14.95 -- -- -- Vdc 5.0 10 15 -- -- -- 1.5 3.0 4.0 -- -- -- 2.25 4.50 6.75 1.5 3.0 4.0 -- -- -- 1.5 3.0 4.0 5.0 10 15 3.5 7.0 11 -- -- -- 3.5 7.0 11 2.75 5.50 8.25 -- -- -- 3.5 7.0 11 -- -- -- 5.0 5.0 10 15 - 3.0 - 0.64 - 1.6 - 4.2 -- -- -- -- - 2.4 - 0.51 - 1.3 - 3.4 - 4.2 - 0.88 - 2.25 - 8.8 -- -- -- -- - 1.7 - 0.36 - 0.9 - 2.4 -- -- -- -- IOL 5.0 10 15 0.64 1.6 4.2 -- -- -- 0.51 1.3 3.4 0.88 2.25 8.8 -- -- -- 0.36 0.9 2.4 -- -- -- mAdc Input Current Iin 15 -- 0.1 -- 0.00001 0.1 -- 1.0 Adc Input Capacitance (Vin = 0) Cin -- -- -- -- 5.0 7.5 -- -- pF Quiescent Current (Per Package) IDD 5.0 10 15 -- -- -- 5.0 10 20 -- -- -- 0.005 0.010 0.015 5.0 10 20 -- -- -- 150 300 600 Adc Total Supply Current** (Dynamic plus Quiescent, Per Package) (CL = 50 pF on all outputs, all buffers switching) IT 5.0 10 15 Three-State Leakage Current ITL 15 Vin = 0 or VDD Input Voltage "0" Level (VO = 4.5 or 0.5 Vdc) (VO = 9.0 or 1.0 Vdc) (VO = 13.5 or 1.5 Vdc) VIL "1" Level VIH (VO = 0.5 or 4.5 Vdc) (VO = 1.0 or 9.0 Vdc) (VO = 1.5 or 13.5 Vdc) Output Drive Current (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc) Vdc Vdc IOH Source (VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc) Sink mAdc IT = (0.8 A/kHz) f + IDD IT = (1.6 A/kHz) f + IDD IT = (2.4 A/kHz) f + IDD -- 0.1 -- 0.0001 0.1 Adc -- 3.0 Adc #Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. ** The formulas given are for the typical characteristics only at 25_C. To calculate total supply current at loads other than 50 pF: IT(CL) = IT(50 pF) + (CL - 50) Vfk where: IT is in A (per package), CL in pF, V = (VDD - VSS) in volts, f in kHz is input frequency, and k = 0.001. MOTOROLA CMOS LOGIC DATA MC14512B 371 SWITCHING CHARACTERISTICS (CL = 50 pF, TA = 25_C, See Figure 1) All Types Characteristic Symbol Output Rise and Fall Time tTLH, tTHL = (1.5 ns/pF) CL + 25 ns tTLH, tTHL = (0.75 ns/pF) CL + 12.5 ns tTLH, tTHL = (0.55 ns/pF) CL + 9.5 ns tTLH, tTHL Propagation Delay Time (Figure 2) Inhibit, Control, or Data to Z tPLH Propagation Delay Time (Figure 2) Inhibit, Control, or Data to Z tPHL 3-State Output Delay Times (Figure 3) "1" or "0" to High Z, and High Z to "1" or "0" VDD Typ # Max 5.0 10 15 100 50 40 200 100 80 5.0 10 15 330 125 85 650 250 170 5.0 10 15 330 125 85 650 250 170 5.0 10 15 60 35 30 150 100 75 Unit ns ns ns tPHZ, tPLZ, tPZH, tPZL ns * The formulas given are for the typical characteristics only at 25_C. #Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. ID Vin PULSE GENERATOR 50% 50% DUTY CYCLE DISABLE INHIBIT A B C X0 X1 X2 X3 X4 X5 X6 X7 VDD Z CL VSS Figure 1. Power Dissipation Test Circuit and Waveform VDD 20 ns 20 ns PULSE GENERATOR DATA DISABLE INHIBIT A B C X0 X1 X2 X3 X4 X5 X6 X7 Z tPLH CL VDD 90% 50% 10% Z VSS tPHL 90% 50% 10% VOH VOL tTLH tTHL TEST CONDITIONS: INHIBIT = VSS A, B, C = VSS 20 ns INHIBIT, A, B, OR C VSS Parameter Test Conditions Inhibit to Z A, B, C = VSS, XO = VDD A, B, C to Z Inh = VSS, XO = VDD 20 ns VDD 90% 50% 10% tPHL 90% 50% 10% Z tTHL VSS tPLH VOH VOL tTLH Figure 2. AC Test Circuit and Waveforms MC14512B 372 MOTOROLA CMOS LOGIC DATA VDD PULSE GENERATOR VDD S3 S4 VSS 20 ns VDD DISABLE INHIBIT A B C X0 X1 X2 X3 X4 X5 X6 X7 Z 20 ns 90% 50% 10% DISABLE INPUT CL S1 1k VSS tPZL VOH 90% tPLZ S2 2.5 V @ VDD = 5 V, 10 V, AND 15 V tPZH 2 V @ VDD = 5 V VOH 6 V @ VDD = 10 V 10% 10 V @ VDD = 15 V VOL 10% OUTPUT VOL tPHZ VSS VDD OUTPUT 90% Switch Positions for 3-State Test VSS Test S1 S2 S3 S4 tPHZ tPLZ tPZL tPZH Open Closed Closed Open Closed Open Open Closed Closed Open Open Closed Open Closed Closed Open Figure 3. 3-State AC Test Circuit and Waveform LOGIC DIAGRAM C B A X0 X1 X2 13 12 15 11 1 DISABLE 10 2 INHIBIT VDD X4 IOD MC14512B 3 IL 14 X3 DATA BUS SELECTED DEVICE 4 LOAD ITL Z MC14512B 5 ITL X5 X6 X7 6 MC14512B VSS 7 9 1 1 OUT IN 2 TRANSMISSION GATE IN OUT 2 3-STATE MODE OF OPERATION Output terminals of several MC14512B 8-Bit Data Selectors can be connected to a single date bus as shown. One MC14512B is selected by the 3-state control, and the remaining devices are disabled into a high-impedance "off" state. The number of 8-bit data selectors, N, that may be connected to a bus line is determined from the output drive current, IOD, 3-state or disable output leakage current, ITL, MOTOROLA CMOS LOGIC DATA and the load current, IL, required to drive the bus line (including fanout to other device inputs), and can be calculated by: N= IOD - IL +1 ITL N must be calculated for both high and low logic state of the bus line. MC14512B 373 OUTLINE DIMENSIONS L SUFFIX CERAMIC DIP PACKAGE CASE 620-10 ISSUE V -A- 16 9 1 8 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 4. DIMENSION F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY. -B- C L DIM A B C D E F G H K L M N -T- K N SEATING PLANE M E F J G D 16 PL 0.25 (0.010) 16 PL 0.25 (0.010) M T A T B M S INCHES MIN MAX 0.750 0.785 0.240 0.295 --- 0.200 0.015 0.020 0.050 BSC 0.055 0.065 0.100 BSC 0.008 0.015 0.125 0.170 0.300 BSC 0_ 15 _ 0.020 0.040 MILLIMETERS MIN MAX 19.05 19.93 6.10 7.49 --- 5.08 0.39 0.50 1.27 BSC 1.40 1.65 2.54 BSC 0.21 0.38 3.18 4.31 7.62 BSC 0_ 15 _ 0.51 1.01 S P SUFFIX PLASTIC DIP PACKAGE CASE 648-08 ISSUE R NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. -A- 16 9 1 8 B F C L S -T- K H G D J 16 PL 0.25 (0.010) MC14512B 374 SEATING PLANE M T A M M DIM A B C D F G H J K L M S INCHES MIN MAX 0.740 0.770 0.250 0.270 0.145 0.175 0.015 0.021 0.040 0.70 0.100 BSC 0.050 BSC 0.008 0.015 0.110 0.130 0.295 0.305 0_ 10 _ 0.020 0.040 MILLIMETERS MIN MAX 18.80 19.55 6.35 6.85 3.69 4.44 0.39 0.53 1.02 1.77 2.54 BSC 1.27 BSC 0.21 0.38 2.80 3.30 7.50 7.74 0_ 10 _ 0.51 1.01 MOTOROLA CMOS LOGIC DATA OUTLINE DIMENSIONS D SUFFIX PLASTIC SOIC PACKAGE CASE 751B-05 ISSUE J -A- 16 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 9 -B- 1 P 8 PL 0.25 (0.010) 8 M B S G R K F X 45 _ C -T- SEATING PLANE M D 16 PL 0.25 (0.010) M T B S A S J DIM A B C D F G J K M P R MILLIMETERS MIN MAX 9.80 10.00 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.386 0.393 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.229 0.244 0.010 0.019 Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. How to reach us: USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454 JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315 MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298 MOTOROLA CMOS LOGIC DATA *MC14512B/D* MC14512B MC14512B/D 375