DS90LV047A DS90LV047A 3V LVDS Quad CMOS Differential Line Driver Literature Number: SNLS044B DS90LV047A 3V LVDS Quad CMOS Differential Line Driver General Description Features The DS90LV047A is a quad CMOS flow-through differential line driver designed for applications requiring ultra low power dissipation and high data rates. The device is designed to support data rates in excess of 400 Mbps (200 MHz) utilizing Low Voltage Differential Signaling (LVDS) technology. The DS90LV047A accepts low voltage TTL/CMOS input levels and translates them to low voltage (350 mV) differential output signals. In addition, the driver supports a TRI-STATE (R) function that may be used to disable the output stage, disabling the load current, and thus dropping the device to an ultra low idle power state of 13 mW typical. The DS90LV047A has a flow-through pinout for easy PCB layout. The EN and EN* inputs are ANDed together and control the TRI-STATE outputs. The enables are common to all four drivers. The DS90LV047A and companion line receiver (DS90LV048A) provide a new alternative to high power psuedo-ECL devices for high speed point-to-point interface applications. n n n n n n n n n n n n n Connection Diagram Functional Diagram > 400 Mbps (200 MHz) switching rates Flow-through pinout simplifies PCB layout 300 ps typical differential skew 400 ps maximum differential skew 1.7 ns maximum propagation delay 3.3V power supply design 350 mV differential signaling Low power dissipation (13mW at 3.3V static) Interoperable with existing 5V LVDS receivers High impedance on LVDS outputs on power down Conforms to TIA/EIA-644 LVDS Standard Industrial operating temperature range (-40C to +85C) Available in surface mount (SOIC) and low profile TSSOP package Dual-In-Line 10088701 Order Number DS90LV047ATM, DS90LV047ATMTC See NS Package Number M16A, MTC16 Truth Table ENABLES INPUT OUTPUTS EN EN* DIN DOUT+ DOUT- H L or Open L L H H H L X Z Z All other combinations of ENABLE inputs 10088702 TRI-STATE (R) is a registered trademark of National Semiconductor Corporation. (c) 2003 National Semiconductor Corporation DS100887 www.national.com DS90LV047A 3V LVDS Quad CMOS Differential Line Driver January 2003 DS90LV047A Absolute Maximum Ratings Storage Temperature Range (Note 1) Lead Temperature Range If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. Supply Voltage (VCC) Soldering (4 sec.) -0.3V to (VCC + 0.3V) Enable Input Voltage (EN, EN*) -0.3V to (VCC + 0.3V) +260C Maximum Junction Temperature -0.3V to +4V Input Voltage (DIN) -65C to +150C +150C ESD Rating (Note 10) 10 kV (HBM, 1.5 k, 100 pF) Output Voltage (DOUT+, DOUT-) (EIAJ, 0 , 200 pF) 1200 V -0.3V to +3.9V Short Circuit Duration (DOUT+, DOUT-) Recommended Operating Conditions Continuous Maximum Package Power Dissipation @ +25C M Package 1088 mW MTC Package Supply Voltage (VCC) 866 mW Derate M Package 8.5 mW/C above +25C Operating Free Air Derate MTC Package 6.9 mW/C above +25C Temperature (TA) Min Typ Max Units +3.0 +3.3 +3.6 V -40 +25 +85 C Electrical Characteristics Over supply voltage and operating temperature ranges, unless otherwise specified. (Notes 2, 3, 4) Symbol Parameter VOD1 Differential Output Voltage VOD1 Change in Magnitude of VOD1 for Complementary Output States VOS Offset Voltage VOS Change in Magnitude of VOS for Complementary Output States VOH Output High Voltage VOL Output Low Voltage VIH Input High Voltage VIL Input Low Voltage Conditions RL = 100 (Figure 1) Pin Min Typ Max Units DOUT- DOUT+ 250 310 450 mV 1 35 |mV| 1.17 1.375 V 1 25 |mV| 1.33 1.6 V 1.125 0.90 DIN, EN, EN* 1.02 V 2.0 VCC V GND 0.8 V IIH Input High Current VIN = VCC or 2.5V -10 2 +10 A IIL Input Low Current VIN = GND or 0.4V -10 -2 +10 A VCL Input Clamp Voltage ICL = -18 mA -1.5 -0.8 IOS Output Short Circuit Current (Note 11) ENABLED, DIN = VCC, DOUT+ = 0V or DIN = GND, DOUT- = 0V IOSD Differential Output Short Circuit Current (Note 11) ENABLED, VOD = 0V IOFF Power-off Leakage VOUT = 0V or 3.6V, VCC = 0V or Open IOZ Output TRI-STATE Current EN = 0.8V and EN* = 2.0V VOUT = 0V or VCC ICC No Load Supply current Drivers Enabled DIN = VCC or GND ICCL Loaded Supply Current Drivers Enabled ICCZ No Load Supply Current Drivers Disabled www.national.com V -4.2 -9.0 mA -4.2 -9.0 mA -20 1 +20 A -10 1 +10 A 4.0 8.0 mA RL = 100 All Channels, DIN = VCC or GND (all inputs) 20 30 mA DIN = VCC or GND, EN = GND, EN* = VCC 2.2 6.0 mA 2 DOUT- DOUT+ VCC VCC = +3.3V 10%, TA = -40C to +85C (Notes 3, 9, 12) Symbol Parameter Conditions Min Typ Max Units 0.5 0.9 1.7 ns 0.5 1.2 1.7 ns 0 0.3 0.4 ns Channel-to-Channel Skew (Note 6) 0 0.4 Differential Part to Part Skew (Note 7) 0 tSKD4 Differential Part to Part Skew (Note 8) 0 tTLH Rise Time 0.5 tTHL Fall Time 0.5 tPHLD Differential Propagation Delay High to Low tPLHD Differential Propagation Delay Low to High tSKD1 Differential Pulse Skew |tPHLD - tPLHD| (Note 5) tSKD2 tSKD3 tPHZ Disable Time High to Z tPLZ Disable Time Low to Z tPZH tPZL fMAX Maximum Operating Frequency (Note 14) RL = 100, CL = 15 pF (Figure 2 and Figure 3) RL = 100, CL = 15 pF (Figure 4 and Figure 5) 0.5 ns 1.0 ns 1.2 ns 1.5 ns 1.5 ns 2 5 ns 2 5 ns Enable Time Z to High 3 7 ns Enable Time Z to Low 3 7 ns 200 250 MHz Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" specifies conditions of device operation. Note 2: Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground except: VOD1 and VOD1. Note 3: All typicals are given for: VCC = +3.3V, TA = +25C. Note 4: The DS90LV047A is a current mode device and only functions within datasheet specifications when a resistive load is applied to the driver outputs typical range is (90 to 110). Note 5: tSKD1 |tPHLD - tPLHD| is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of the same channel. Note 6: tSKD2 is the Differential Channel-to-Channel Skew of any event on the same device. Note 7: tSKD3, Differential Part to Part Skew, is defined as the difference between the minimum and maximum specified differential propagation delays. This specification applies to devices at the same VCC and within 5C of each other within the operating temperature range. Note 8: tSKD4, part to part skew, is the differential channel-to-channel skew of any event between devices. This specification applies to devices over recommended operating temperature and voltage ranges, and across process distribution. tSKD4 is defined as |Max - Min| differential propagation delay. Note 9: Generator waveform for all tests unless otherwise specified: f = 1 MHz, ZO = 50, tr 1 ns, and tf 1 ns. Note 10: ESD Ratings: HBM (1.5 k, 100 pF) 10 kV EIAJ (0 , 200 pF) 1200 V Note 11: Output short circuit current (IOS) is specified as magnitude only, minus sign indicates direction only. Note 12: CL includes probe and jig capacitance. Note 13: All input voltages are for one channel unless otherwise specified. Other inputs are set to GND. Note 14: fMAX generator input conditions: tr = tf < 1 ns (0% to 100%), 50% duty cycle, 0V to 3V. Output Criteria: duty cycle = 45%/55%, VOD > 250mV, all channels switching. Parameter Measurement Information 10088703 FIGURE 1. Driver VOD and VOS Test Circuit 3 www.national.com DS90LV047A Switching Characteristics DS90LV047A Parameter Measurement Information (Continued) 10088704 FIGURE 2. Driver Propagation Delay and Transition Time Test Circuit 10088705 FIGURE 3. Driver Propagation Delay and Transition Time Waveforms 10088706 FIGURE 4. Driver TRI-STATE Delay Test Circuit www.national.com 4 DS90LV047A Parameter Measurement Information (Continued) 10088707 FIGURE 5. Driver TRI-STATE Delay Waveform Typical Application 10088708 FIGURE 6. Point-to-Point Application Applications Information General application guidelines and hints for LVDS drivers and receivers may be found in the following application notes: LVDS Owner's Manual (lit #550062-001), AN808, AN977, AN971, AN916, AN805, AN903. LVDS drivers and receivers are intended to be primarily used in an uncomplicated point-to-point configuration as is shown in Figure 6. This configuration provides a clean signaling environment for the fast edge rates of the drivers. The receiver is connected to the driver through a balanced media which may be a standard twisted pair cable, a parallel pair cable, or simply PCB traces. Typically, the characteristic differential impedance of the media is in the range of 100. A termination resistor of 100 (selected to match the media), and is located as close to the receiver input pins as possible. The termination resistor converts the driver output current (current mode) into a voltage that is detected by the receiver. Other configurations are possible such as a multi-receiver configuration, but the effects of a mid-stream connector(s), cable stub(s), and other impedance discontinuities as well as ground shifting, noise margin limits, and total termination loading must be taken into account. The DS90LV047A differential line driver is a balanced current source design. A current mode driver, generally speak- ing has a high output impedance and supplies a constant current for a range of loads (a voltage mode driver on the other hand supplies a constant voltage for a range of loads). Current is switched through the load in one direction to produce a logic state and in the other direction to produce the other logic state. The output current is typically 3.1 mA, a minimum of 2.5 mA, and a maximum of 4.5 mA. The current mode driver requires(as discussed above) that a resistive termination be employed to terminate the signal and to complete the loop as shown in Figure 6. AC or unterminated configurations are not allowed. The 3.1 mA loop current will develop a differential voltage of 310mV across the 100 termination resistor which the receiver detects with a 250mV minimum differential noise margin, (driven signal minus receiver threshold (250mV - 100mV = 150mV)). The signal is centered around +1.2V (Driver Offset, VOS) with respect to ground as shown in Figure 7. Note that the steady-state voltage (VSS) peak-to-peak swing is twice the differential voltage (VOD) and is typically 620mV. The current mode driver provides substantial benefits over voltage mode drivers, such as an RS-422 driver. Its quiescent current remains relatively flat versus switching frequency. Whereas the RS-422 voltage mode driver increases exponentially in most case between 20 MHz-50 MHz. This 5 www.national.com DS90LV047A Typical Application provide isolation for the differential lines. Minimize the number or vias and other discontinuities on the line. (Continued) is due to the overlap current that flows between the rails of the device when the internal gates switch. Whereas the current mode driver switches a fixed current between its output without any substantial overlap current. This is similar to some ECL and PECL devices, but without the heavy static ICC requirements of the ECL/PECL designs. LVDS requires > 80% less current than similar PECL devices. AC specifications for the driver are a tenfold improvement over other existing RS-422 drivers. Avoid 90 turns (these cause impedance discontinuities). Use arcs or 45 bevels. The TRI-STATE function allows the driver outputs to be disabled, thus obtaining an even lower power state when the transmission of data is not required. TERMINATION Use a termination resistor which best matches the differential impedance or your transmission line. The resistor should be between 90 and 130. Remember that the current mode outputs need the termination resistor to generate the differential voltage. LVDS will not work without resistor termination. Typically, connecting a single resistor across the pair at the receiver end will suffice. Within a pair of traces, the distance between the two traces should be minimized to maintain common-mode rejection of the receivers. On the printed circuit board, this distance should remain constant to avoid discontinuities in differential impedance. Minor violations at connection points are allowable. The DS90LV047A has a flow-through pinout that allows for easy PCB layout. The LVDS signals on one side of the device easily allows for matching electrical lengths of the differential pair trace lines between the driver and the receiver as well as allowing the trace lines to be close together to couple noise as common-mode. Noise isolation is achieved with the LVDS signals on one side of the device and the TTL signals on the other side. Surface mount 1% to 2% resistors are best. PCB stubs, component lead, and the distance from the termination to the receiver inputs should be minimized. The distance between the termination resistor and the receiver should be < 10mm (12mm MAX). POWER DECOUPLING RECOMMENDATIONS Bypass capacitors must be used on power pins. Use high frequency ceramic (surface mount is recommended) 0.1F and 0.001F capacitors in parallel at the power supply pin with the smallest value capacitor closest to the device supply pin. Additional scattered capacitors over the printed circuit board will improve decoupling. Multiple vias should be used to connect the decoupling capacitors to the power planes. A 10F (35V) or greater solid tantalum capacitor should be connected at the power entry point on the printed circuit board between the supply and ground. PROBING LVDS TRANSMISSION LINES Always use high impedance ( > 100k), low capacitance ( < 2 pF) scope probes with a wide bandwidth (1 GHz) scope. Improper probing will give deceiving results. CABLES AND CONNECTORS, GENERAL COMMENTS When choosing cable and connectors for LVDS it is important to remember: Use controlled impedance media. The cables and connectors you use should have a matched differential impedance of about 100. They should not introduce major impedance discontinuities. Balanced cables (e.g. twisted pair) are usually better than unbalanced cables (ribbon cable, simple coax.) for noise reduction and signal quality. Balanced cables tend to generate less EMI due to field canceling effects and also tend to pick up electromagnetic radiation a common-mode (not differential mode) noise which is rejected by the receiver. For cable distances < 0.5M, most cables can be made to work effectively. For distances 0.5M d 10M, CAT 3 (category 3) twisted pair cable works well, is readily available and relatively inexpensive. PC BOARD CONSIDERATIONS Use at least 4 PCB layers (top to bottom); LVDS signals, ground, power, TTL signals. Isolate TTL signals from LVDS signals, otherwise the TTL may couple onto the LVDS lines. It is best to put TTL and LVDS signals on different layers which are isolated by a power/ground plane(s). Keep drivers and receivers as close to the (LVDS port side) connectors as possible. DIFFERENTIAL TRACES Use controlled impedance traces which match the differential impedance of your transmission medium (ie. cable) and termination resistor. Run the differential pair trace lines as close together as possible as soon as they leave the IC (stubs should be < 10mm long). This will help eliminate reflections and ensure noise is coupled as common-mode. In fact, we have seen that differential signals which are 1mm apart radiate far less noise than traces 3mm apart since magnetic field cancellation is much better with the closer traces. In addition, noise induced on the differential lines is much more likely to appear as common-mode which is rejected by the receiver. Match electrical lengths between traces to reduce skew. Skew between the signals of a pair means a phase difference between signals which destroys the magnetic field cancellation benefits of differential signals and EMI will result. (Note the velocity of propagation, v = c/Er where c (the speed of light) = 0.2997mm/ps or 0.0118 in/ps). Do not rely solely on the autoroute function for differential traces. Carefully review dimensions to match differential impedance and www.national.com LVDS FAIL-SAFE This section addresses the common concern of fail-safe biasing of LVDS interconnects, specifically looking at the DS90LV047A driver outputs and the DS90LV048A receiver inputs. The LVDS receiver is a high gain, high speed device that amplifies a small differential signal (20mV) to CMOS logic levels. Due to the high gain and tight threshold of the receiver, care should be taken to prevent noise from appearing as a valid signal. The receiver's internal fail-safe circuitry is designed to source/sink a small amount of current, providing fail-safe protection (a stable known state of HIGH output voltage) for floating, terminated or shorted receiver inputs. 6 noise is seen as common-mode and not differential, a balanced interconnect should be used. Twisted pair cable will offer better balance than flat ribbon cable. (Continued) 1. Open Input Pins. The DS90LV048A is a quad receiver device, and if an application requires only 1, 2 or 3 receivers, the unused channel(s) inputs should be left OPEN. Do not tie unused receiver inputs to ground or any other voltages. The input is biased by internal high value pull up and pull down resistors to set the output to a HIGH state. This internal circuitry will guarantee a HIGH, stable output state for open inputs. 2. Terminated Input. If the DS90LV047A driver is disconnected (cable unplugged), or if the DS90LV047A driver is in a TRI-STATE or power-off condition, the receiver output will again be in a HIGH state, even with the end of cable 100 termination resistor across the input pins. The unplugged cable can become a floating antenna which can pick up noise. If the cable picks up more than 10mV of differential noise, the receiver may see the noise as a valid signal and switch. To insure that any 3. Shorted Inputs. If a fault condition occurs that shorts the receiver inputs together, thus resulting in a 0V differential input voltage, the receiver output will remain in a HIGH state. Shorted input fail-safe is not supported across the common-mode range of the device (GND to 2.4V). It is only supported with inputs shorted and no external common-mode voltage applied. External lower value pull up and pull down resistors (for a stronger bias) may be used to boost fail-safe in the presence of higher noise levels. The pull up and pull down resistors should be in the 5k to 15k range to minimize loading and waveform distortion to the driver. The common-mode bias point should be set to approximately 1.2V (less than 1.75V) to be compatible with the internal circuitry. 10088709 FIGURE 7. Driver Output Levels Pin Descriptions Pin No. Name 2, 3, 6, 7 DIN Description DOUT+ Non-inverting driver output pin, LVDS levels 9, 12, 13, 16 DOUT- Inverting driver output pin, LVDS levels EN Name Description 8 EN* Driver enable pin: When EN* is high, the driver is disabled. When EN* is low or open and EN is high, the driver is enabled. If both EN and EN* are open circuit, then the driver is disabled. 4 VCC Power supply pin, +3.3V 0.3V 5 GND Ground pin Driver input pin, TTL/CMOS compatible 10, 11, 14, 15 1 Pin No. Driver enable pin: When EN is low, the driver is disabled. When EN is high and EN* is low or open, the driver is enabled. If both EN and EN* are open circuit, then the driver is disabled. Ordering Information Operating Package Type/ Temperature Number Order Number -40C to +85C SOP/M16A DS90LV047ATM -40C to +85C TSSOP/MTC16 DS90LV047ATMTC 7 www.national.com DS90LV047A Typical Application DS90LV047A Typical Performance Curves Output High Voltage vs Power Supply Voltage Output Low Voltage vs Power Supply Voltage 10088714 10088715 Output Short Circuit Current vs Power Supply Voltage Output TRI-STATE Current vs Power Supply Voltage 10088717 10088716 Differential Output Voltage vs Power Supply Voltage Differential Output Voltage vs Load Resistor 10088718 www.national.com 10088719 8 DS90LV047A Typical Performance Curves (Continued) Offset Voltage vs Power Suppy Voltage Power Supply Current vs Frequency 10088720 10088721 Power Supply Current vs Power Supply Voltage Power Supply Current vs Ambient Temperature 10088722 10088723 Differential Propagation Delay vs Power Supply Voltage Differential Propagation Delay vs Ambient Temperature 10088724 10088725 9 www.national.com DS90LV047A Typical Performance Curves (Continued) Differential Skew vs Power Supply Voltage Differential Skew vs Ambient Temperature 10088726 10088727 Transition Time vs Power Supply Voltage Transition Time vs Ambient Temperature 10088728 www.national.com 10088729 10 DS90LV047A Typical Performance Curves (Continued) Data Rate vs Cable Length 10088730 DATA RATE VS CABLE LENGTH GRAPH TEST PROCEDURE A pseudo-random bit sequence (PRBS) of 29-1 bits was programmed into a function generator (Tektronix HFS9009) and connected to the driver inputs via 50 cables and SMB connectors. An oscilloscope (Tektronix 11801B) was used to probe the resulting eye pattern, measured differentially at the input to the receiver. A 100 resistor was used to terminate the pair at the far end of the cable. The measurements were taken at the far end of the cable, at the receiver"s input, and used for the jitter analysis for this graph. The frequency of the input signal was increased until the measured jitter (ttcs) equaled 20% with respect to the unit interval (ttui) for the particular cable length under test. Twenty percent jitter is a reasonable place to start with many system designs. The data used was NRZ. Jitter was measured at the 0V differential voltage of the differential eye pattern. The cables used were LG UTP 4 pair 24 gauge CAT 5 cables. The DS90LV047A and DS90LV048A were tested using the new LVDS Flow-Evaluation Board LVDS47/48PCB which is available in the LVDS47/48EVK evaluation kit. The curve shows very good typical performance that can be used as a design guideline for data rate vs cable length. Increasing the jitter percentage increases the curve respectively, allowing the device to transmit faster over longer cable lengths. This relaxes the jitter tolerance of the system allowing more jitter into the system, which could reduce the reliability and efficiency of the system. Alternatively, decreasing the jitter percentage will have the opposite effect on the system. The area under the curve is considered the safe operating area based on the above signal quality criteria. For more information on eye pattern testing, please see National Application Note AN-808. 11 www.national.com DS90LV047A Physical Dimensions inches (millimeters) unless otherwise noted 16-Lead (0.150" Wide) Molded Small Outline Package, JEDEC Order Number DS90LV047ATM NS Package Number M16A www.national.com 12 DS90LV047A 3V LVDS Quad CMOS Differential Line Driver Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 16-Lead (0.100" Wide) Molded Thin Shrink Small Outline Package, JEDEC Order Number DS90LV047ATMTC NS Package Number MTC16 LIFE SUPPORT POLICY NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959 www.national.com National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Francais Tel: +33 (0) 1 41 91 8790 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. National Semiconductor Asia Pacific Customer Support Center Fax: 65-6250 4466 Email: ap.support@nsc.com Tel: 65-6254 4466 National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: nsj.crc@jksmtp.nsc.com Tel: 81-3-5639-7560 National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications. IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Audio www.ti.com/audio Communications and Telecom www.ti.com/communications Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps DLP(R) Products www.dlp.com Energy and Lighting www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive Microcontrollers microcontroller.ti.com Video and Imaging RFID www.ti-rfid.com OMAP Mobile Processors www.ti.com/omap Wireless Connectivity www.ti.com/wirelessconnectivity TI E2E Community Home Page www.ti.com/video e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright (c) 2011, Texas Instruments Incorporated