LM258, LM358, LM358A, LM2904, LM2904A, LM2904V, NCV2904, NCV2904V Single Supply Dual Operational Amplifiers http://onsemi.com Utilizing the circuit designs perfected for Quad Operational Amplifiers, these dual operational amplifiers feature low power drain, a common mode input voltage range extending to ground/VEE, and single supply or split supply operation. The LM358 series is equivalent to one-half of an LM324. These amplifiers have several distinct advantages over standard operational amplifier types in single supply applications. They can operate at supply voltages as low as 3.0 V or as high as 32 V, with quiescent currents about one-fifth of those associated with the MC1741 (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage. Features * * * * * * * * * * Short Circuit Protected Outputs True Differential Input Stage Single Supply Operation: 3.0 V to 32 V Low Input Bias Currents Internally Compensated Common Mode Range Extends to Negative Supply Single and Split Supply Operation ESD Clamps on the Inputs Increase Ruggedness of the Device without Affecting Operation NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant PDIP-8 N, AN, VN SUFFIX CASE 626 8 1 SOIC-8 D, VD SUFFIX CASE 751 8 1 Micro8] DMR2 SUFFIX CASE 846A 8 1 PIN CONNECTIONS Output A Inputs A VEE/Gnd 1 8 2 7 4 - + 5 - + 3 VCC Output B 6 Inputs B (Top View) ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet. DEVICE MARKING INFORMATION See general marking information in the device marking section on page 11 of this data sheet. (c) Semiconductor Components Industries, LLC, 2011 November, 2011 - Rev. 26 1 Publication Order Number: LM358/D LM258, LM358, LM358A, LM2904, LM2904A, LM2904V, NCV2904, NCV2904V 3.0 V to VCC(max) VCC VCC 1 1 2 2 1.5 V to VCC(max) 1.5 V to VEE(max) VEE VEE/Gnd Single Supply Split Supplies Figure 1. Output Bias Circuitry Common to Both Amplifiers VCC Q15 Q16 Q22 Q14 Q13 40 k Q19 5.0 pF Q12 Q24 25 Q23 Q20 Q18 Inputs Q11 Q9 Q21 Q17 Q6 Q2 Q25 Q7 Q5 Q1 Q10 Q8 Q3 Q4 Q26 2.4 k 2.0 k VEE/Gnd Figure 2. Representative Schematic Diagram (One-Half of Circuit Shown) http://onsemi.com 2 LM258, LM358, LM358A, LM2904, LM2904A, LM2904V, NCV2904, NCV2904V MAXIMUM RATINGS (TA = +25C, unless otherwise noted.) Rating Symbol Value VCC VCC, VEE 32 16 Input Differential Voltage Range (Note 1) VIDR 32 Vdc Input Common Mode Voltage Range (Note 2) VICR -0.3 to 32 Vdc Output Short Circuit Duration tSC Continuous Junction Temperature TJ 150 C RJA 238 212 161 C/W Storage Temperature Range Tstg -65 to +150 C ESD Protection at any Pin Human Body Model Machine Model Vesd Power Supply Voltages Single Supply Split Supplies Thermal Resistance, Junction-to-Air (Note 3) Unit Vdc Case 846A Case 751 Case 626 Operating Ambient Temperature Range LM258 LM358, LM358A LM2904/LM2904A LM2904V, NCV2904 (Note 4) NCV2904V (Note 4) TA V 2000 200 -25 to +85 0 to +70 -40 to +105 -40 to +125 -40 to +150 C Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Split Power Supplies. 2. For supply voltages less than 32 V the absolute maximum input voltage is equal to the supply voltage. 3. All RJA measurements made on evaluation board with 1 oz. copper traces of minimum pad size. All device outputs were active. 4. NCV2904 and NCV2904V are qualified for automotive use. http://onsemi.com 3 LM258, LM358, LM358A, LM2904, LM2904A, LM2904V, NCV2904, NCV2904V ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = GND, TA = 25C, unless otherwise noted.) LM258 Characteristic Input Offset Voltage VCC = 5.0 V to 30 V, VIC = 0 V to VCC -1.7 V, VO ] 1.4 V, RS = 0 TA = 25C TA = Thigh (Note 5) TA = Tlow (Note 5) Symbol Min Typ LM358 Max Min Typ LM358A Max Min Typ Max VIO Unit mV - - - 2.0 - - 5.0 7.0 7.0 - - - 2.0 - - 7.0 9.0 9.0 - - - 2.0 - - 3.0 5.0 5.0 VIO/T - 7.0 - - 7.0 - - 7.0 - V/C IIO - - - - 3.0 - -45 -50 30 100 -150 -300 - - - - 5.0 - -45 -50 50 150 -250 -500 - - - - 5.0 - -45 -50 30 75 -100 -200 nA IIO/T - 10 - - 10 - - 10 - pA/C Input Common Mode Voltage Range (Note 6), VCC = 30 V VCC = 30 V, TA = Thigh to Tlow VICR 0 - 28.3 0 - 28.3 0 - 28.5 V 0 - 28 0 - 28 0 - 28 Differential Input Voltage Range VIDR - - VCC - - VCC - - VCC Large Signal Open Loop Voltage Gain RL = 2.0 k, VCC = 15 V, For Large VO Swing, TA = Thigh to Tlow (Note 5) AVOL 50 25 100 - - - 25 15 100 - - - 25 15 100 - - - CS - -120 - - -120 - - -120 - dB Common Mode Rejection RS 10 k CMR 70 85 - 65 70 - 65 70 - dB Power Supply Rejection PSR 65 100 - 65 100 - 65 100 - dB Output Voltage-High Limit TA = Thigh to Tlow (Note 5) VCC = 5.0 V, RL = 2.0 k, TA = 25C VCC = 30 V, RL = 2.0 k VCC = 30 V, RL = 10 k VOH Output Voltage-Low Limit VCC = 5.0 V, RL = 10 k, TA = Thigh to Tlow (Note 5) VOL Output Source Current VID = +1.0 V, VCC = 15 V TA = Thigh to Tlow (LM358A Only) IO+ Output Sink Current VID = -1.0 V, VCC = 15 V TA = Thigh to Tlow (LM358A Only) VID = -1.0 V, VO = 200 mV IO- Output Short Circuit to Ground (Note 7) ISC Power Supply Current (Total Device) TA = Thigh to Tlow (Note 5) VCC = 30 V, VO = 0 V, RL = VCC = 5 V, VO = 0 V, RL = ICC Average Temperature Coefficient of Input Offset Voltage TA = Thigh to Tlow (Note 5) Input Offset Current TA = Thigh to Tlow (Note 5) Input Bias Current TA = Thigh to Tlow (Note 5) Average Temperature Coefficient of Input Offset Current TA = Thigh to Tlow (Note 5) Channel Separation 1.0 kHz f 20 kHz, Input Referenced IIB V V/mV V 3.3 26 27 3.5 - 28 - - - 3.3 26 27 3.5 - 28 - - - 3.3 26 27 3.5 - 28 - - - - 5.0 20 - 5.0 20 - 5.0 20 20 40 - 20 40 - 20 10 40 - - - 10 20 - 10 20 - 12 50 - 12 50 - 10 5.0 12 20 - 50 - - - mA mA A - 40 60 - 40 60 - 40 60 mA mV mA mA - - 1.5 0.7 3.0 1.2 - - 1.5 0.7 3.0 1.2 - - 1.5 0.7 2.0 1.2 5. LM258: Tlow = -25C, Thigh = +85C LM358, LM358A: Tlow = 0C, Thigh = +70C LM2904V & NCV2904: Tlow = -40C, Thigh = +125C LM2904/LM2904A: Tlow = -40C, Thigh = +105C NCV2904 and NCV2904V are qualified for automotive use. NCV2904V: Tlow = -40C, Thigh = +150C 6. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is VCC - 1.7 V. 7. Short circuits from the output to VCC can cause excessive heating and eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers. http://onsemi.com 4 LM258, LM358, LM358A, LM2904, LM2904A, LM2904V, NCV2904, NCV2904V ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = Gnd, TA = 25C, unless otherwise noted.) LM2904 Characteristic Input Offset Voltage VCC = 5.0 V to 30 V, VIC = 0 V to VCC -1.7 V, VO ] 1.4 V, RS = 0 TA = 25C TA = Thigh (Note 8) TA = Tlow (Note 8) Symbol Min Typ LM2904V, NCV2904 NCV2904V LM2904A Max Min Typ Max Min Typ Max VIO Unit mV - - - 2.0 - - 7.0 10 10 - - - 2.0 - - 7.0 10 10 - - - - - - 7.0 13 10 VIO/T - 7.0 - - 7.0 - - 7.0 - V/C IIO - - - - 5.0 45 -45 -50 50 200 -250 -500 - - - - 5.0 45 -45 -50 50 200 -100 -250 - - - - 5.0 45 -45 -50 50 200 -250 -500 nA IIO/T - 10 - - 10 - - 10 - pA/C Input Common Mode Voltage Range (Note 9), VCC = 30 V VCC = 30 V, TA = Thigh to Tlow VICR 0 - 28.3 0 - 28.3 0 - 28.3 V 0 - 28 0 - 28 0 - 28 Differential Input Voltage Range VIDR - - VCC - - VCC - - VCC Large Signal Open Loop Voltage Gain RL = 2.0 k, VCC = 15 V, For Large VO Swing, TA = Thigh to Tlow (Note 8) AVOL 25 15 100 - - - 25 15 100 - - - 25 15 100 - - - CS - -120 - - -120 - - -120 - dB Common Mode Rejection RS 10 k CMR 50 70 - 50 70 - 50 70 - dB Power Supply Rejection PSR 50 100 - 50 100 - 50 100 - dB Output Voltage-High Limit TA = Thigh to Tlow (Note 8) VCC = 5.0 V, RL = 2.0 k, TA = 25C VCC = 30 V, RL = 2.0 k VCC = 30 V, RL = 10 k VOH Output Voltage-Low Limit VCC = 5.0 V, RL = 10 k, TA = Thigh to Tlow (Note 8) Average Temperature Coefficient of Input Offset Voltage TA = Thigh to Tlow (Note 8) Input Offset Current TA = Thigh to Tlow (Note 8) Input Bias Current TA = Thigh to Tlow (Note 8) Average Temperature Coefficient of Input Offset Current TA = Thigh to Tlow (Note 8) Channel Separation 1.0 kHz f 20 kHz, Input Referenced IIB V V/mV V 3.3 26 27 3.5 - 28 - - - 3.3 26 27 3.5 - 28 - - - 3.3 26 27 3.5 - 28 - - - VOL - 5.0 20 - 5.0 20 - 5.0 20 mV Output Source Current VID = +1.0 V, VCC = 15 V IO+ 20 40 - 20 40 - 20 40 - mA Output Sink Current VID = -1.0 V, VCC = 15 V VID = -1.0 V, VO = 200 mV IO- 10 - 20 - - - 10 - 20 - - - 10 - 20 - - - mA A - 40 60 - 40 60 - 40 60 mA Output Short Circuit to Ground (Note 10) ISC Power Supply Current (Total Device) TA = Thigh to Tlow (Note 8) VCC = 30 V, VO = 0 V, RL = VCC = 5 V, VO = 0 V, RL = ICC mA - - 1.5 0.7 3.0 1.2 - - 1.5 0.7 3.0 1.2 - - 1.5 0.7 3.0 1.2 8. LM258: Tlow = -25C, Thigh = +85C LM358, LM358A: Tlow = 0C, Thigh = +70C LM2904V & NCV2904: Tlow = -40C, Thigh = +125C LM2904/LM2904A: Tlow = -40C, Thigh = +105C NCV2904 and NCV2904V are qualified for automotive use. NCV2904V: Tlow = -40C, Thigh = +150C 9. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is VCC - 1.7 V. 10. Short circuits from the output to VCC can cause excessive heating and eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers. http://onsemi.com 5 LM258, LM358, LM358A, LM2904, LM2904A, LM2904V, NCV2904, NCV2904V CIRCUIT DESCRIPTION The LM358 series is made using two internally compensated, two-stage operational amplifiers. The first stage of each consists of differential input devices Q20 and Q18 with input buffer transistors Q21 and Q17 and the differential to single ended converter Q3 and Q4. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance, a smaller compensation capacitor (only 5.0 pF) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q20 and Q18. Another feature of this input stage is that the input common mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single-ended converter. The second stage consists of a standard current source load amplifier stage. Each amplifier is biased from an internal-voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection. 1.0 V/DIV VCC = 15 Vdc RL = 2.0 k TA = 25C 5.0 s/DIV Figure 3. Large Signal Voltage Follower Response AVOL, OPEN LOOP VOLTAGE GAIN (dB) 20 VI , INPUT VOLTAGE (V) 18 16 14 12 10 Negative 8.0 Positive 6.0 4.0 2.0 0 120 VCC = 15 V VEE = Gnd TA = 25C 100 80 60 40 20 0 -20 0 2.0 4.0 6.0 8.0 10 12 14 16 VCC/VEE, POWER SUPPLY VOLTAGES (V) 18 1.0 20 10 100 1.0 k 10 k 100 k 1.0 M f, FREQUENCY (Hz) Figure 4. Input Voltage Range Figure 5. Large-Signal Open Loop Voltage Gain http://onsemi.com 6 LM258, LM358, LM358A, LM2904, LM2904A, LM2904V, NCV2904, NCV2904V 550 RL = 2.0 k VCC = 15 V VEE = Gnd Gain = -100 RI = 1.0 k RF = 100 k 12 10 8.0 VO , OUTPUT VOLTAGE (mV) VOR , OUTPUT VOLTAGE RANGE (V pp ) 14 6.0 4.0 2.0 VCC = 30 V VEE = Gnd TA = 25C CL = 50 pF 500 Input 450 400 Output 350 300 250 200 0 1.0 0 10 100 f, FREQUENCY (kHz) 1000 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 t, TIME (ms) Figure 6. Large-Signal Frequency Response Figure 7. Small Signal Voltage Follower Pulse Response (Noninverting) TA = 25C RL = R 2.1 I IB , INPUT BIAS CURRENT (nA) I CC , POWER SUPPLY CURRENT (mA) 2.4 1.8 1.5 1.2 0.9 0.6 0.3 0 0 5.0 10 15 20 25 VCC, POWER SUPPLY VOLTAGE (V) 30 90 80 70 35 0 Figure 8. Power Supply Current versus Power Supply Voltage 2.0 4.0 6.0 8.0 10 12 14 16 VCC, POWER SUPPLY VOLTAGE (V) Figure 9. Input Bias Current versus Supply Voltage http://onsemi.com 7 18 20 LM258, LM358, LM358A, LM2904, LM2904A, LM2904V, NCV2904, NCV2904V 50 k R1 VCC VCC R2 5.0 k - 10 k 1/2 MC1403 2.5 V 1/2 + VO = 2.5 V (1 + 1 CR 1/2 fo = 1 V 2 CC R1 ) R2 R R C For: fo = 1.0 kHz R = 16 k C = 0.01 F C R LM358 Hysteresis R2 VOH R1 - a R1 R1 1/2 eo LM358 + LM358 Vin - 1 CR 1/2 + R VinH = eo = C (1 + a + b) (e2 - e1) H= Figure 12. High Impedance Differential Amplifier C1 R2 - VinL R2 = R1 TBP - 100 k 1/2 + LM358 + - R3 = TN R2 1/2 C1 = 10 C LM358 + Vref Bandpass Output Vref 1 2 RC R1 = QR fo = C C R Vref R1 (VOH - VOL) R1 + R2 100 k LM358 VinH R1 (V - V ) + Vref R1 + R2 OH ref R 1/2 R2 VOL Figure 13. Comparator with Hysteresis R Vin VO R1 (V - V )+ Vref VinL = R1 + R2 OL ref LM358 e2 VO + Vref 1/2 b R1 1 2 RC Figure 11. Wien Bridge Oscillator Figure 10. Voltage Reference + VO LM358 + Vref = e1 VCC - Vref VO LM358 For: fo Q TBP TN Vref R3 R1 + Where: TBP = Center Frequency Gain TN = Passband Notch Gain Figure 14. Bi-Quad Filter 8 = 1.0 kHz = 10 =1 =1 Notch Output LM358 http://onsemi.com 1 V 2 CC C1 1/2 Vref Vref = R C R1 R2 R3 = 160 k = 0.001 F = 1.6 M = 1.6 M = 1.6 M LM258, LM358, LM358A, LM2904, LM2904A, LM2904V, NCV2904, NCV2904V VCC C Vin R1 R3 C - 1/2 LM358 + R2 Vref Given: VO CO CO = 10 C 1 Vref = 2 VCC fo = center frequency A(fo) = gain at center frequency Choose value fo, C Vref = Vref 1 V 2 CC Triangle Wave Output + 300 k R3 1/2 LM358 - 75 k R1 100 k LM358 - Square Wave Output R1 + RC 4 CRf R1 Q fo C R1 = R3 2 A(fo) R2 = R1 R3 4Q2 R1 -R3 For less than 10% error from operational amplifier. Qo fo < 0.1 BW Where fo and BW are expressed in Hz. Rf f = R3 = + 1/2 Vref C Then: R2 if, R3 = R2 R1 R2 + R1 If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters. Figure 16. Multiple Feedback Bandpass Filter Figure 15. Function Generator http://onsemi.com 9 LM258, LM358, LM358A, LM2904, LM2904A, LM2904V, NCV2904, NCV2904V ORDERING INFORMATION Device Operating Temperature Range Package LM358ADR2G 2500 / Tape & Reel SOIC-8 (Pb-Free) LM358DG LM358DR2G LM358DMR2G Shipping 98 Units / Rail 2500 / Tape & Reel 0C to +70C Micro8 (Pb-Free) 4000 / Tape & Reel LM358NG PDIP-8 (Pb-Free) 50 Units / Rail LM258DG SOIC-8 (Pb-Free) 98 Units / Rail LM258DR2G LM258DMR2G 2500 / Tape & Reel Micro8 (Pb-Free) 4000 / Tape & Reel LM258NG PDIP-8 (Pb-Free) 50 Units / Rail LM2904DG SOIC-8 (Pb-Free) 98 Units / Rail -25C to +85C LM2904DR2G LM2904DMR2G 2500 / Tape & Reel Micro8 (Pb-Free) 2500 / Tape & Reel PDIP-8 (Pb-Free) 50 Units / Rail Micro8 (Pb-Free) 4000 / Tape & Reel LM2904ANG PDIP-8 (Pb-Free) 50 Units / Rail LM2904VDG SOIC-8 (Pb-Free) 98 Units / Rail LM2904NG -40C to +105C LM2904ADMG LM2904ADMR2G LM2904VDR2G LM2904VDMR2G 4000 / Tape & Reel 2500 / Tape & Reel Micro8 (Pb-Free) 4000 / Tape & Reel PDIP-8 (Pb-Free) 50 Units / Rail NCV2904DR2G SOIC-8 (Pb-Free) 2500 / Tape & Reel NCV2904DMR2G Micro8 (Pb-Free) 4000 / Tape & Reel SOIC-8 (Pb-Free) 2500 / Tape & Reel LM2904VNG NCV2904VDR2G -40C to +125C -40C to +150C For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 10 LM258, LM358, LM358A, LM2904, LM2904A, LM2904V, NCV2904, NCV2904V MARKING DIAGRAMS PDIP-8 AN SUFFIX CASE 626 PDIP-8 N SUFFIX CASE 626 8 8 LMx58N AWL YYWWG 1 8 LM2904N AWL YYWWG 1 8 LM358 ALYWA G 2904V ALYW G 1 8 x58 AYWG G x A WL, L YY, Y WW, W G G 8 2904 ALYW G 1 8 1 SOIC-8 VD SUFFIX CASE 751 8 1 LM2904VN AWL YYWWG 1 SOIC-8 D SUFFIX CASE 751 LMx58 ALYW G 8 LM2904AN AWL YYWWG 1 8 PDIP-8 VN SUFFIX CASE 626 8 * 2904V ALYWV G 1 Micro8 DMR2 SUFFIX CASE 846A 8 2904 AYWG G 1 SOIC-8 VD SUFFIX CASE 751 1 NCV2904V 8 904A AYWG G 1 = 2 or 3 = Assembly Location = Wafer Lot = Year = Work Week = Pb-Free Package = Pb-Free Package - (Note: Microdot may be in either location) http://onsemi.com 11 904V AYWG G * 1 *This diagram also applies to NCV2904 LM258, LM358, LM358A, LM2904, LM2904A, LM2904V, NCV2904, NCV2904V PACKAGE DIMENSIONS PDIP-8 N, AN, VN SUFFIX CASE 626-05 ISSUE M D A D1 E 8 5 E1 1 4 NOTE 5 F c E2 END VIEW TOP VIEW NOTE 3 e/2 A L A1 C SEATING PLANE E3 e 8X SIDE VIEW b 0.010 M C A END VIEW http://onsemi.com 12 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. DIMENSION E IS MEASURED WITH THE LEADS RESTRAINED PARALLEL AT WIDTH E2. 4. DIMENSION E1 DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. DIM A A1 b C D D1 E E1 E2 E3 e L INCHES NOM MAX ---- 0.210 ---- ---- 0.018 0.022 0.010 0.014 0.365 0.400 ---- ---- 0.310 0.325 0.250 0.280 0.300 BSC ---- ---- 0.430 0.100 BSC 0.115 0.130 0.150 MIN ---- 0.015 0.014 0.008 0.355 0.005 0.300 0.240 MILLIMETERS MIN NOM MAX ---- ---- 5.33 0.38 ---- ---- 0.35 0.46 0.56 0.20 0.25 0.36 9.02 9.27 10.02 0.13 ---- ---- 7.62 7.87 8.26 6.10 6.35 7.11 7.62 BSC ---- ---- 10.92 2.54 BSC 2.92 3.30 3.81 LM258, LM358, LM358A, LM2904, LM2904A, LM2904V, NCV2904, NCV2904V PACKAGE DIMENSIONS SOIC-8 NB CASE 751-07 ISSUE AK -X- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07. A 8 5 S B 0.25 (0.010) M Y M 1 4 -Y- K G C N DIM A B C D G H J K M N S X 45 _ SEATING PLANE -Z- 0.10 (0.004) H D 0.25 (0.010) M Z Y S X S M J SOLDERING FOOTPRINT* 1.52 0.060 7.0 0.275 4.0 0.155 0.6 0.024 1.270 0.050 SCALE 6:1 mm inches *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 13 MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0_ 8_ 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 _ 8 _ 0.010 0.020 0.228 0.244 LM258, LM358, LM358A, LM2904, LM2904A, LM2904V, NCV2904, NCV2904V PACKAGE DIMENSIONS Micro8t CASE 846A-02 ISSUE H D HE PIN 1 ID NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. 846A-01 OBSOLETE, NEW STANDARD 846A-02. E e b 8 PL 0.08 (0.003) M T B S A S SEATING -T- PLANE 0.038 (0.0015) A A1 MILLIMETERS NOM MAX -- 1.10 0.08 0.15 0.33 0.40 0.18 0.23 3.00 3.10 3.00 3.10 0.65 BSC 0.40 0.55 0.70 4.75 4.90 5.05 DIM A A1 b c D E e L HE MIN -- 0.05 0.25 0.13 2.90 2.90 INCHES NOM -- 0.003 0.013 0.007 0.118 0.118 0.026 BSC 0.016 0.021 0.187 0.193 MIN -- 0.002 0.010 0.005 0.114 0.114 MAX 0.043 0.006 0.016 0.009 0.122 0.122 0.028 0.199 L c SOLDERING FOOTPRINT* 8X 1.04 0.041 0.38 0.015 3.20 0.126 6X 8X 4.24 0.167 0.65 0.0256 5.28 0.208 SCALE 8:1 mm inches *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. Micro8 is a trademark of International Rectifier. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 http://onsemi.com 14 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative LM358/D