Freescale Semiconductor
Data Sheet: Technical Data Document Number: MPC5645S
Rev. 13, 04/2015
© Freescale Semiconductor, Inc., 20092015. All rights reserved.
MPC5645S
416 TEPBGA
27 mm × 27 mm
176 LQFP
24 mm × 24 mm
208 LQFP
28 mm × 28 mm
The Qorivva MPC5645S represents a new generation of
32-bit microcontrollers targeting single-chip automotive
instrument cluster applications. MPC5645S devices are part
of the MPC56xxS family of Power Architecture®-based
devices. This family has been designed with an emphasis on
providing cost-effective and high quality graphics capabilities
in order to satisfy the increasing market demand for color
Thin Film Transistor (TFT) displays within the vehicle
cockpit. T raditional cluster functions, such as gauge drive,
real time counter, and sound generation are also integrated on
each device.
Devices in the MPC56xxS family contain between 256 KB
and 2 MB internal flash memory. The family allows for easy
expansion and covers a broad range of cluster appl icati ons
from low to high-end enabling users to design a complete
platform around one common architecture. Serial flash
memory and DRAM interfaces are provided to allow even
greater system flexibility.
The MPC5645S is designed to reduce development and
production costs of TFT-based instrument cluster displays by
providing a single-chip solution with the processing and
storage capacity to host and execute real-time application
software and drive TF T displays directly.
The MPC5645S features a 2D OpenVG graphics accelerator ,
Video Input Unit (VIU2) and two on-chip display control
units (DCU3 and DCULite) designed to drive two color TFT
displays simultaneously. The MPC5645S includes an
enhanced QuadSPI Serial Flash Controller and an optional
DRAM controller allowing graphics RAM expansion
externally.
The MPC5645S is compatible with the existing development
infrastructure of current Power Architecture devices and are
supported with software drivers, operating systems and
configuration code to assist with application devel opm ent.
Qorivva MPC5645S
Microcontroller Data Sheet
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Device comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Feature list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
1.4 Feature details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2 Pinout and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1 176 LQFP package pinout . . . . . . . . . . . . . . . . . . . . . . 24
2.2 208 LQFP package pinout . . . . . . . . . . . . . . . . . . . . . . 25
2.3 416 TEPBGA package pinout. . . . . . . . . . . . . . . . . . . .26
2.4 Signal description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
3 System design information. . . . . . . . . . . . . . . . . . . . . . . . . . .59
3.1 Power-up sequencing. . . . . . . . . . . . . . . . . . . . . . . . . .59
4 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . .60
4.3 Absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . .60
4.4 Recommended operating conditions . . . . . . . . . . . . . . 62
4.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6 EMI (electromagnetic interference) characteristics . . .69
4.7 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . .69
4.8 DC electrical specifications. . . . . . . . . . . . . . . . . . . . . . 74
4.9 SSD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .84
4.10 RESET electrical characteristics . . . . . . . . . . . . . . . . .84
4.11 Fast external crystal oscillator (4–16 MHz) electrical
characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.12 Slow external crystal oscillator (32 KHz) electrical
characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.13 FMPLL electrical characteristics. . . . . . . . . . . . . . . . . .89
4.14 Fast internal RC oscillator (16 MHz) electrical
characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.15 Slow internal RC oscillator (128 kHz) electrical
characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.16 Flash memory electrical characteristics . . . . . . . . . . . . 91
4.17 ADC parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.18 AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.19 AC timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.1 176 LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.2 208 LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.3 416 TEPBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
2Freescale Semiconductor
1 Overview
1.1 Device comparison
Table 1. MPC5645S device comparison
Feature MPC5645S
Package 176 LQFP 208 LQFP 416 TEPBGA
CPU e200z4d
4 KB Instruction-Cache
16-entry Memory Management Unit (MMU)
Floating Point Unit (FPU)
Signal Processing Extension (SPE)
Execution speed Static–125 MHz
Flash memory (ECC) 2 MB
RAM (ECC) 64 KB
On-chip graphics RAM (no ECC) 1 MB
MPU 16 entry
eDMA 16 channels
DRAM controller No Yes
OpenVG Graphics Accelerator
(GFX2D) Yes (OpenVG 1.1)
Display Control Unit (DCU3) Yes
Display Control Unit Lite (DCULite) No Yes
Timing Controller (TCON) and RSDS
interface No Yes
Video Input Unit (VIU2) Yes
QuadSPI serial flash interface Yes
Stepper Motor Controller (SMC) 4 motors 6 motors
Stepper Stall Detect (SSD) Yes
Sound Generator Module (SGM) Yes
32 kHz external crystal oscillator Yes
Real Time Counter and Autonomou s
Periodic Interrupt (RTC/API) Yes
Periodic interrupt timer (PIT) 8 ch, 32-bit
Software Watchdog Timer (SWT) Yes
System Timer Module (STM) 4 ch, 32-bit
Timed I/O120 ch, 16-bit: IC / OC / OPWM
8 ch, 16-bit: IC / OC
4 ch, 16-bit: IC / OC / OPWM / QDEC
Analog-to-Digital Converter (ADC)2 16 channels, 10-bit 20 channels, 10-bit
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 3
CAN (64 mailboxes) 3 × FlexCAN
CAN sampler Yes
Serial communication interface 3 × LINFlex 4 × LINFlex
SPI 2 × DSPI 3 × DSPI
I2C 4
GPIO 128 150 1773
Debug Nexus Class 3 (4×MDO)4 Nexus Class 3 (12×MDO)
1IC-Input Capture, OC-Output Compare, OPWM-Output Pulse Width Modulation, QDEC- Quadrature Decode Mode
2Support for external multiplexer enabling up to 8 channels
3The 416-pin GPIO count does not include the DRAM interface, which is dedicated to DRAM only.
4Nexus pins are multiplexed with other functional pins on 176 LQFP and 208 L QF P package options.
Table 1. MPC5645S device comparison (continued)
Feature MPC5645S
Package 176 LQFP 208 LQFP 416 TEPBGA
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
4Freescale Semiconductor
1.2 Block diagram
Figure 1. MPC5645S block diagram
ADC – Analog-to-Digital Converter
BAM – Boot Assist Module
eDMA – Enhanced Direct Memory Access Controller
DCU3 – Display Control Unit
DCULite – Display Control Unit Lite
DSPI – Serial Peripherals Interface
eMIOS – Enhanced Modular Input/Output System
FlexCAN – Controller Area Network Controller
FMPLL – Frequency-Modulated Phase-Locked Loop
GFX2D – OpenVG Graphics Accelerator
INTC – Interrupt Controller
JTAG – Joint Test Action Group interface
MMU – Memory Management Unit
QuadSPI – Quad IO serial flash interface
PBRIDGE – Peripheral Bridge
PIT – Periodic Interrupt Timer
RLE – Run Length Encoding
RSDS – Reduced-Swing Differential Signal interface
RTC Real Time Clock
SGM Sound Generator Module
SMC – Stepper Motor Controller
SSD – Stepper Stall Detect
STM System Timer Module
SWT – Software Watchdog Timer
TCON – Timing Controller
VIU2 – Video Input Unit
VReg – Voltage regulator
MMU
I-CACHE
e200z4d
Crossbar Switch
System
integration
VReg
Oscillator
FMPLL 0
FMPLL 1
RTC/32Kosc
INTC
Debug
JTAG
Nexus 3+
eDMA
Crossbar switch masters
GFX2D
VIU2
DCULite
DCU3
TCON / RSDS
Memory Protection Unit
Flash
memory
2MB
EEE
SRAM
64 KB
Graphics
1MB
SRAM
PBRIDGE
RLE decoder
QuadSPI DRA M interface
Crossbar switch slaves
Communication I/O system
SMC 0
SMC 1
SMC 2
SMC 3
SMC 4
SMC 5
I
2
C 0
I
2
C 1
I
2
C 2
I
2
C 3
SGM
ADC
LINFlex 0
LINFlex 1
LINFlex 2
LINFlex 3
DSPI 0
DSPI 1
DSPI 2
eMIOS 0
eMIOS 1
FlexCAN 0
FlexCAN 1
FlexCAN 2
PIT
STM
SWT
BAM
SSD
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 5
1.3 Feature list
Dual-issue, 32-bit Power Architecture Book E compliant CPU core complex (e200z4d)
Memory Managem ent Unit (MMU)
4 KB, 2/4-way instruction cache
2 MB on-chip ECC flash memory with:
Flash memory contro l ler
Prefetch buffers
64 KB on-chip ECC SRAM
1 MB on-chip non-ECC graphics SRAM with two-port graphi cs SRAM controller
Memory Protection Unit (MPU) with up to 16 regi on descriptors and 32-byte region granularity to provide basic
memory access permission and ensure separation between different codes and data
Interrupt Controller (INTC) with 163 perip heral interrup t sources and eight software interrupts
Two Frequ ency-Modu lated Phase-Locked Loops (FMPLLs)
Primary FMPLL (FMPLL0) provides a system clock up to 125 MHz
Auxiliary FMPLL (FMPLL1) is available for use as an alternate, modulated or non-modulated clock source to
eMIOS modules, QuadSPI and as alternate clock to the DCU and DCU-Lite for pixel clock generation
Crossbar switch architecture enables concurrent access of peripherals, flash memory or RAM from multiple bus
masters
16-channel Enhanced Direct Memory Access controller (eDMA) with multiple transfer request sources using a DMA
channel multiplexer
Boot Assist Module (BAM) with 8 KB dedicated ROM for embedded boot code supports boot options including
download of boot code via a serial link (C AN or SCI)
Two Di splay Control Units (DCU3 and DCULite) for direct drive of up to two TFT LCD displa ys up to XGA
resolution
Timing Controller (TCON) and RSDS interface for the DCU3 module
2D OpenVG 1.1 and raster graphics accelerator (GFX2D)
Video Input Unit (VIU2) supporting 8/10-bit ITU656 video input, YUV to RGB conversion, video down-scaling,
de-interlacing, contrast adjustment and brightness adjustment.
DRAM controller supporting DDR1, DDR2, and LPDDR1 DRAMs
Stepper Motor Controller (SMC)
High-current drivers for up to six instrume nt cluster gauges driven in full dual H-bridge configuration
Stepper motor return-to-zero and stall detection module
Stepper motor short circuit detection
Sound Generator Module (SGM)
4-channel mixer
Supports PCM wave playback and synthesized tones
Optional PWM or I2S outputs
Two 16 -channel Enhanced Modular Input Output System (eMIOS) mo dules
Support a range of 16-bit Input Capture, Output Compare, Pulse Width Modulation and Quadrat ure Decod e
functions
10-bit Analog-to-Digital Converter (ADC) with a maximum conversion time of 1 μs
Up to 20 internal channels
Up to 8 external channels
Three Deserial Serial Peripheral Interface (DSPI) modules for full-duplex, synchronous, communications with
external devices
QuadSPI serial flash memory controller
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
6Freescale Semiconductor
Supports single, dual and quad IO serial flash memory
Interfaces to external, memory-mapped serial flash memories
Supports simultaneous addressi ng of 2 external serial flashes to achieve up 80 MB/s read bandwidth
RLE decoder supporting me mory to memory deco ding of RLE data in conjunction with eDMA
Four local interconnect network (LINFlex) controller modules
Capable of autonomous message hand ling (master), autonomous header handling (slave mode), and UART
support
Compliant with LIN protoc ol rev 2.1
Three controller-area network (FlexCAN) modules
Compliant with the CAN prot ocol version 2.0 C
64 configurable buffers
Programmable bit rate of up to 1 Mb/s
Four Inter-Integrated Circuit (I2C) internal bus controllers with master/slave bus interface
Low-power loop controlled pierce crystal oscillator supporting 4–16MHz external crystal or resonator
Real Time Counter (RTC) with clock source from internal 128 kHz or 16 MHz oscillator supporting autono mous
wake-up with 1 ms resolution with maximum timeout of 2 seconds
Support for real time counter (RTC) with clock source from external 32 KHz crystal oscillator, supporting
wake-up with 1 s resolution and maximum timeout of one hour
RTC optionally clocked by fast 4–16 MHz external oscillator
System timers:
Four-channel 32-bit System Timer Module (STM)
Eight-channel 32-bi t Periodic Interrupt Timer (PIT) module (including ADC trigger)
Software Watchdog Timer (SWT)
System Integration Unit Lite (SIUL) module to manage external interrupts, GPIO and pad control
System Status and Configuration Module (SSCM)
Provides information for ident ification of the device, last boot mode, or debug status
Provides an entry point for the censorship password mechanism
Clock Generation Module (MC_CGM) to generate system clock sources and provide a unified register interface,
enabling access to all clock sources
Clock Monit o r Unit (CMU)
Monitors the integrity of the fast (4–16 MHz) exte rnal crystal oscillator and the primary FMPLL (FMPLL0)
Acts as a frequency meter, measuring the frequency of one clock source and comparing it to a reference clock
Mode Entry Module (MC_ME)
Controls the device power mode, i.e., RUN, HALT, STOP, or STANDBY
Controls mode transition sequences
Manages the power control, voltage regulator, clock generation and clock management modules
Power Control Unit (MC_PCU) to implement standby mode entry/exit and control connections to power domains
Reset Generation Module (MC_RGM) to manage reset assertion and release to the device at initial power-up
Nexus Development Interface (NDI) per IEEE-ISTO 5001-2008 Class 3 standard with additional Class 4 features:
Watchpoint Triggeri ng
Processor Overrun Control
Device/board boundary-scan testing supported per Joint Test Action Group (JTAG) of IEEE (IEEE 1149.1)
On-chip voltage regulator controller for regulating the 3.3–5 V supply voltage down to 1.2 V for core logic (requires
external ballast transistor)
Package:1
176 LQFP, 0.5 mm pitch, 24 mm × 24 mm outlin e
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 7
208 LQFP, 0.5 mm pitch, 28 mm × 28 mm outlin e
416 TEPBGA, 1mm ball pitch, 27 mm × 27 mm outline
1.4 Feature details
1.4.1 Low-power operation
The MPC5645S is designed for optimized low-power operation and dynamic power management of the CPU and peripherals.
Power management features include software-controlled clock gating of peripherals and multiple power domains to minimize
leakage in low-power modes.
There are three low-power modes:
STANDBY
•STOP
HALT
and five dynamic power modes — RUN[0..3] and DRUN. All low-power modes use clock gating to halt the clock for all or part
of the device.
STANDBY mode turns off the power to the majority of the chip to offer the lowest power consumption mode.
The device can be awakened from STANDBY mode via from any of up to 23 I/O pins, a reset or from a periodic wake-up using
a low power oscillator . If required, it is possible to enable the internal 16 MHz oscillator , the external 4–16 MHz oscillator, and
the external 32 KHz oscillator.
In STANDBY mode the contents of the CPU, on-chip peripheral registers, and potentially some of the volatile memory are lost.
The two possible configurations in STANDBY mode are:
The device retains 64 KB of the on-chip SRAM, but the content of the graphics SRAM is lost.
The device retains 8 KB of the on-chip SRAM, but the content of the graphics SRAM is lost.
STOP mode maintains power to the entire device allowin g the re tention of all on-chip registers and memory, and providing a
faster recovery low power mode than the lowest-power STANDBY mode. There is no need to reconfigure the device before
executing code. The clocks to the CPU and peripherals are halted and can be optionally stopped to the oscillator or PLL at the
expense of a slower start-up time.
STOP is entered from RUN mode only. Wake-up from STOP mode is triggered by an external event or by the internal periodic
wake-up, if enabled.
RUN modes are the main operating modes where the entire device can be powered and clocked and from which most processing
activity is done. Four dynamic RUN modes are supported—RUN0 - RUN3. The ability to configure and select different RUN
modes enables different clocks and power configurations to be supported with respect to each other and to allow switching
between different operating conditions. The necessary peripherals, clock sources, clock speed, and system clock prescalers can
be independently configured for each of the four RUN modes of the device.
HALT mode is a reduced activity , low power mode intended for moderate periods of lower processing activity . In this mode the
CPU system clocks are stopped but user-selected peripheral tasks can continue to run. It can be configured to provide more
efficient power management features (switch-off PLL, flash memory , main regulator, etc.) at the cost of longer wake up latency .
The system returns to RUN mo de as soon as an event or interrupt is pendi ng.
The following table summarizes the operati ng modes of the MPC5645S.
1. See the device comparison table for package offerings for each device in the family.
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
8Freescale Semiconductor
Additional notes on low power op eration:
Fast wake-up using the on-chip 16 MHz in ternal RC oscillator allows rapid execution from RAM on exit from low
power modes
The 16 MHz internal RC oscillator supports low speed code execution and clocking of peripherals when it is selected
as the system clock and can also be used as the PLL input clock source to provide fast start-up without the external
oscillator delay
The device includes an internal voltage regulator that includes the following features:
Regulates input to generate all internal supplies
Manages power gating
External ballast transist or for hi gh power regulator
Table 2. Operating mode summary
Operating mode
SoC features Clock sources
Periodic Wake-up
Wake-up inp ut
VREG mode
Wake-up time1
1A high level summary of some key durations that need to be considered when recovering from low power modes. This
does not account for all durations at wake up. Other delays will be necessary to consider including, but not limited to the
external supply start-up time.
IRC Wake-up time must not be added to the overall wake-up time as it starts in parallel with the VREG.
All other wake-up times must be added to determi ne the total start-up time.
CPU
GFX accelerator
DRAM controller
Peripherals
Flash
SRAM
Graphics RAM
Primary PLL
Auxiliary PLL
16MHz IRC
4-16MHz OSC
128KHz IRC
32KHz X OSC
VREG start-up
IRC Wake-up
Flash Recovery
OSC S tabilization
PLL Lock
S/W Reconfig
Mode switch over
RUN On OP OP OP2
2Either 64 KB or 8 KB available.
On OP OP On OP On OP — FP
HALT CG OP OP OP2 On OP OP On OP On OP OP OP FP 30 µs
3
3Flash configured in disabled mode.
STOP CG CG CG OP2 CG CG CG OP OP On OP OP OP LP 350 µs 4 µs 20 µs 1 ms 200 µs 30 µs
3
STAND
BY Off Off Off 64K
4
464 KB of the RAM contents is retained, but not accessible in STANDBY mode.
Off Off Off OP OP On OP OP OP LP 350 µs 8 µs 100 µs 1 ms 200 µs Var 28 µs
Off Off Off 8K5
58 KB of the RAM contents is retained, but not accessible in STANDBY mode.
Off Off Off OP OP On OP OP OP LP 200 µs 8 µs 100 µs 1 ms 200 µs Var 28 µs
POR 500 µs 8 µs 100 µs 1 ms 200 µs BAM6
6Dependent on boot option after reset.
Table key:
On — Powered and clocked
OP — Optionally configurable to be enabled or disabled (cl ock gated)
CG — Clock Gated, Powered but clock stopped
Off — Powered off and clock gated
FP — VREG Full Performance mode
LP — VREG Low Power mode, reduced output capability of VREG but lower power consumption
Var — Variable duration, based on the required reconfiguration and ex ecution clock speed
BAM — Boot Assist Module Software and Hardware used for device start-up and configuration
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 9
Low-Power and Ultra-Low-Power regulators support operation when in STOP and STANDBY modes,
respectively, to minimize power consumption
Startup on-chip regulators in <350μs for rapid exit of STOP and STANDBY modes
Low voltage detection on main supply and 1.2 V regulated supplies
1.4.2 e200z4d core
The e200z4d Power Architecture® core provides the following features:
Dual issue, 32-bit Power Architecture Book E compliant CPU
Implements the VLE APU for reduced code footprint
In-order execution and retirement
Precise exception handling
Branch processing uni t
Dedicated branch address calculation adder
Branch target prefetching using 8-entry BTB
Supports independent instruction and data accesses to different memory subsystems, such as SRAM and Flash memory
via independent Instruction and Data BIUs.
Load/store unit
2 cycle load latency
Fully pipelined
Big and Little endian support
Misaligned access support
64-bit General Purpose Register file
Dual AHB 2.v6 64-bit System buses
Memory Management Unit (MMU) with 16-entry fully-associative TLB and multiple page size support
4 KB, 2/4-Way Set Associative Instruction Cache
Signal Processing Extension (SPE1.1) APU supporting SIMD fixed-point operations using the 64-bit General Purpose
Register file
Embedded Floating-Point (EFP2) APU supporting scalar and vector SIMD single-precision floating-point operations,
using the 64-bit General Purpose Register file
Nexus Class 3 real-time Development Unit
Dynamic power management of execution units, cache and MMU
1.4.3 Crossbar switch (XBAR)
The XBAR multi-port crossbar switch supports simultaneous connections betw een sev e n master port s and eight slave ports.
The crossbar supports a 32-bit address bus wid th and a 64-bit data bus width.
The crossbar allows concurrent transactions to occur from any master port to any slave port but one of those transfers must be
an instruction fetch from internal flash. If a slave port is simultan eously requested by more than one master port, arbitration
logic selects the higher priority master and grants it ownership of the slave port. All other masters requesting that slave port are
stalled until the higher priority master completes its transactions. Requesting masters having equal priority are granted access
to a slave port in round-robin fashion, based upon the ID of the last master to be granted access.
The crossbar provides the following features:
Seven master ports:
e200z4d core instruction port
e200z4d core complex load/store data port
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
10 Freescale Semiconductor
eDMA controller
—DCU
—DCULite
—VIU
2D Graphics Accelerator (GFX2D)
Seven slave ports:
Platform Flash Controll er (2 Ports)
Platform SRAM Controller
Graphics SRAM Controller (2 Ports)
QuadSPI serial flash Controller and RLE Decoder
Peripheral Bridge
32-bit internal address bus, 64-bit internal data bus
Programmable Arbitration Priority
Requesting masters can be treated with equal priority and will be granted access to a slave port in round-robin
fashion, based upon the ID of the last master to be granted access, or a priority order can be assigned by software
at application run time
Temp orary dynamic priority elevation of masters
1.4.4 Enhanced Direct Memory Access (eDMA)
The eDMA module is a controller capable of performing com plex dat a movem e nts via 16 programmable channels, with
minimal intervention from the host processor . The hardware micro architecture includes a DMA engine which performs source
and destination address calculations, and the actual data movement operations, along with an SRAM-based memory containing
the transfer control descriptors (TCD) for the channels. This implementation is utilized to minimize the overall block size. The
eDMA module provides the following features:
16 channels support independent 8-, 16-, or 32-bit single value or block transfers
Supports variable sized queues and circular queues
Source and destination address registers are independently configured to post-increment or remain constant
Each transfer is initiated by a peripheral, CPU, periodic tim er interrupt or eDMA channel request
Each DMA channel can optionally send an interrupt request to the CPU on completion of a single value or block
transfer
DMA transfers possible between system memories, QuadSPI, RLE Decoder, DSPIs, I2C, ADC, eMIOS, and General
Purpose I/Os (GPIOs)
Programmable DMA Channel Mux allows assignment of any DMA source to any available DMA channel with up to
a total of 64 potential request sources
1.4.5 Interrupt Controller (INTC)
The INTC (interrupt controller) provides priority-based preemptive scheduling of interrupt requests, suitable for statically
scheduled hard real-time systems.
For high priority interrupt requests, the time from the assertion of the interrupt request from the peripheral to when the processor
is executing the interrupt service routine (ISR) has been minimized. The INTC provides a unique vector for each interrupt
request source for quick determination of which ISR needs to be executed. It also provides an ample number of priorities so that
lower priority ISRs do not delay the execution of higher priority ISRs. To allow the appropriate priorities for each source of
interrupt request, the priority of each interrupt request is software configurable.
When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC supports the priority
ceiling protocol for coherent accesses. By providing a modifiable priority mask, the priority can be raised temporarily so that
all tasks which share the resource can not preempt each other.
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 11
Multiple processors can assert interrupt reques ts to each other through software setable interrupt requests. These same software
setable interrupt requests also can be used to break the work involved in servicing an interrupt request into a high priority portion
and a low priority portion. The high priority po rtion is initiated by a peripheral interrupt request, but then the ISR asserts a
software setable interrupt request to fin ish the servi cing in a lower priority ISR. Therefore these software setable interrupt
requests can be used instead of the peripheral ISR schedu lin g a task through the RTOS. The INTC provides the fo llowing
features:
Unique 9-bit vector for each of the possible 128 separate interrupt sources
Eight software triggerable in terrupt sources
16 priority levels with fixed hardware arbitration within priority levels for each interrupt source
Ability to modify the ISR or task priority
Modifying the priority can be used to implement the Priority Ceiling Protocol for accessing shared resources
External non maskable interrupt directly accessing the main CPU critical interrupt mechanism
32 external interrupts
1.4.6 QuadSPI serial flash memory controller
The QuadSPI module enables use of external serial flash memories supportin g single, dual , and qu ad modes of operation. It
features the following:
Maximum serial clock frequency 80 MHz
Memory mapped read access for AHB crossbar switch masters
Automatic serial flash read command generation by CPU, eDMA, DCU, or DCULite read access on AHB bus
Supports single, dual, and quad serial flash read commands
Simult a neous mode:
Supports concurrent read of two external serial flash e s
The quad data streams from the two flashes can be recombined in the QuadSPI to achieve up to 80 MB/s read
bandwidth with 80 MHz serial flash
•16×64-bit buffer with speculative fetch and buffer flush mechanisms to maximize read bandwidth of serial flash
DMA support
All Serial Flash program, erase, read, and configuration commands available via IP bus interface
1.4.7 System Integration Unit Lite (SIUL)
The SIUL controls MCU reset configuration, pad configuration, external interrupt , general purpose I/O (GPIO), internal
peripheral multiplexing, and the system reset operation.
The GPIO features the following:
Up to four levels of internal pin multiplexing, allowing exceptional flexibility in the allocation of device functions for
each package
Centralized general purpose input output (GPIO) control
All GPIO pins can be independently configured to suppo rt pull-up, pull down, or no pull
Reading and writing to GPIO supported both as individual pins and 16-bit wide po rts
All peripheral pins can be alternatively configured as both general purpose input or output pins except ADC channels
which support alternative configuration as general purpose input s
Direct readback of the pin value supported on all digital output pins through the SIU
Configurable digital in put filter that can be appl ied to up to 24 general purpose input pi ns for noise elim inati on on
external interrupts
Register configuration protected against change with soft lock for temporary guard or hard lock to prevent
modification until next reset
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
12 Freescale Semiconductor
1.4.8 On-chip flash memory with ECC
The MPC5645S microcontroller has the following flash mem ory features:
2 MB of flash memory
Typical flash memory access time: 0 wait-state for buffer hits, 3 wait-states for page buffer miss at 125 MHz
—Two 4×128-bit page buffers with programmable prefetch control
One set of page buffers can be allocated for code-only, fixed partitions of code and data, all available for any
access
One set of page buffers allocated to Display Controller Units, Graphics Accelerator, and the eDMA
64-bit ECC with single-bit correction, double-bit detection for data integrit y
Small block flash arrangement to support features such as boo t block , EEPROM Emulati on, operating system block
—8×16 KB
—2×64 KB
—2×128 KB
—6×256 KB
Hardware managed flash writes, erase and verify sequence
Censorship protection scheme to prevent Flash conten t visibility
1.4.9 SRAM
The MPC5645S microcontroller has 64 KB general-purpose on-ch ip SRAM wit h the fol lowing features:
Typical SRAM access time: 1 wait-state for reads and 32-bit writes
32-bit ECC with single-bit correction, double bit detection for data integrity
Supports byte (8-bit), half word (16-bit), word (32-bit), and double-word (64-bit) writes for optimal use of memory
User transparent ECC encoding and decoding for byte, half word, and word accesses
Separate internal power domains applied to 56 KB and 8 KB SRAM blocks during STANDBY modes to retain
contents during low power mode
1.4.10 On-chip graphics SRAM
The MPC5645S microcontroller has 1 MB on-chi p graphics SRAM with the following feat ures:
Two crossbar slave ports:
One dedicated to the 2D Graphics Accelerator (GFX2D) access
One dedicated to all other crossbar masters
Usable as general purpose SRAM
Supports byte (8-bit), half word (16-bit), word (32-bit), and double-word (64-bit) writes for optimal use of memory
RAM controller with hardware RAM fill function supporting all-zeroes or all-o nes SRAM initi alization
Independent data buffers (one per AHB port) for maximum system performance
Optimized for burst transfers (read + write)
Programmable read prefetch capabilities
1.4.11 Memory Protection Unit (MPU)
The MPU features the following:
Sixteen region descriptors for per master protection
Start and end address defined with 32-byte granularity
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 13
Overlapping regions supported
Protection attributes can optionally include process ID
Protection offered for 4 concurrent read ports
Read and write attributes for all masters
Execute and supervisor/user mode attributes for processor masters
1.4.12 2D Graphics Accelerator (GFX2D)
Native vector graphics rendering
Compatible with OpenVG1.1
Complete hardware OpenVG 1.1 rendering pipeline
Both geometry and pixel processing
Adaptive processing of Bezier curves and strokes
16-sample edge anti-aliasing
High image quality, font scalability, etc.
—4× Rotated Grid Supersampling (RGSS) AA for Flash
3D perspective texturing, reflections, and shadow ing
Shading (linear or radial gradient)
Separate 2D engine for BitBlt, fill, and ROP operations
Significant performance improvement when compared to software or 3D GPU-based OpenVG implementations
1.4.13 Display Control Unit (DCU3)
The DCU3 is a display controller designed to drive TFT LCD displays up to WVGA resolut ion using direct blit graphics and
video.
The DCU3 generates all the necessary signals required to drive the TFT LCD displays: up to 24-bit RGB data bus, Pixel Clock,
Data Enable, Horizontal-Sync, and Vertical-Sync.
The flexible architecture of the DCU3 enables the display of OpenVG-rendered frame buffer content and direct blit rendered
graphics simultaneously.
An optional Timing Controller (TCON) and RSDS interface is available to directly drive the row and column drivers of a
display panel.
Internal memory resource of the device allows to easily handle complex graphics contents (pictures, icons, languages, fonts).
The DCU3 supports 4-plane blending and 16 graphics layers. Control Descriptors (CDs) associated with each of the 16 layers
enable effective merging of different resolutions into one plane to optimize use of internal memory buffers. A layer may be
constructed from graphic content of various resolutions including indexed colors of 1, 2, 4, and 8 bpp, direct colors of 16, 24,
and 32 bpp, and a YUV 4:2:2 color space. The ability of the DCU3 to handle input data in resolutions as low as 1bpp, 2bpp,
and 4bpp enables a highly efficient use of internal memory resources of the MPC5645S. A special tiled mode can be enabled
on any of the 16 layers to repeat a pattern optimizing graphic memory usage.
A hardware cursor can be managed independently of the layers at blending level increasing the efficient use of the internal
DCU3 resources.
To secure the content of all critical information to be displayed, a safety mode can be activated to check the integrity of critical
data along the whole system data path from the memory to the TFT pads.
The DCU3 features the following:
Display color depth: up to 24 bpp
Generation of all RGB and control signals for TFT
Four-plane blending
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
14 Freescale Semiconductor
Maximum number of Input Layers: 16 (fixed priority)
Dynamic Look-Up-Table (Color and Gamma Look-Up)
α−blending range: up to 256 levels
Transparency Mode
Gamma Correction
Tiled mode on all the layers
Hardware Cursor
Supports YCrCb 4:2:2 input data format
RLE decode inline supporting direct read of RLE compressed images from system memory
Critical display content integrity monitoring for Functional Safety support
Internal Direct Memory Access (DMA) module to transfer data from internal and / or external memory
Support displays up to 800 x 480 pixel resolutions
The DCU3 also features a Parallel Data In terface (PDI) to receive external digital video or graphic content into the DCU3. The
PDI input is directly injected into the DCU3 background plane FIFO. When the PDI is activated, all the DCU3 synchronization
is extracted from the external video stream to guarantee the synchronization of the two vid eo sources.
The PDI can be used to:
Connect a video camera output directly to the PDI
Connect a secondary display driver as slave with a minimum of extra cost
Connect a device gathering various Video sources
Provide flexibility to allow the DCU to be used in slave mode (external synchronization)
The PDI features the following:
Supported color modes:
8-bit mono
8-bit color multipl ex ed
RGB565
16-bit/18-bit RAW color
Supported synchronizat ion modes:
embedded ITU-R BT.656-4 (RGB565 mode 2)
HSYNC, VSYNC
Data Enable
Direct interface with DCU3 background plane FIFO
Synchronization generation for the DCU3
1.4.14 Display Control Unit Lite (DCU Lite)
The DCULite is a display controller designed to enable the MPC5645S to drive a seco nd TFT LCD display up to XGA
resolution using direct blit graphics an d video. The DCULite includes all features of the DCU3, including the PDI with the
following exceptions:
Reduced from 4-plane to 2-plane blending
Reduced from 16 layers to 4 layers
Reduced CLUT size
1.4.15 Timing Controller (T CON) and RSDS interface
The TCON enables direct drive of the row and column drivers of display panels enabling emulation of TCON ICs used in
display panels.
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 15
Programmable T iming Generation unit featuring 12 waveform generators allowing high degree of flexibility in panel
waveform generation
Reduced Swing Differential Signaling (RSDS) interface for RGB data and pixel clock
Conforms to “RSDS ‘Intra Panel’ Interface Specification” Rev. 1.0 (Natio nal Semiconductor)
1.4.16 RLE decoder
The RLE decoder is a crossbar slave sharing a slave port with the QuadSPI module. The platform eDMA is used to stream
compressed image data into and extract decompressed data out of the RLE Decoder.
Lossless decompression
Pixel formats supported : 8 b pp, 16 bpp, 24 bpp, and 32 bpp
AHB mapped read and write registers in RLE_DEC to achieve high er throughput
Programmable fill levels of read and write buffers for initiating burst transfers
Crop feature: Support for selectively reading out a part of decompressed image data taking complete compressed data
for the full image as input
1.4.17 DRAM controller
The DRAM controller is a multi-port DRAM controller supporting LPDDR1, DDR-1, and DDR-2 memories. The DRAM
controller listens to the incoming requests to the seven buses in parallel and then sends commands to the DRAM from the
highest priority bus at the current tim e
The seven incoming 64-bit buses are:
•DCU3
•DCULite
e200z4d core — instruction bus
e200z4d core — data bus
•VIU2
•GFX2D
•eDMA
The DRAM controller features the following:
Supports CAS latency of 2, 3, and 4 clock cycles
Master buses
7 incoming master buses
Supports 16-byte and 32-byte bursts
Supports byte enables
Supports 4-bit priority signal for each bus
Write buffer contains five 32-byte entries
Supports 16-wide and 32-wide DDR1, DDR2, and LPDDR1 DRAM dev ices
Controller supports one chip select, 8-bank DRAM system
Supports dynamic on-d ie te rm ination in the host device and in the DRAM
Supports memory sizes as small as 64 Mbit
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
16 Freescale Semiconductor
1.4.18 Video Input Unit (VIU2)
The VIU2 is a crossbar master module accepting an ITU656 compatible video input stream on a parallel interface, convertin g
the pixel data to RGB or YUV format and transferring the video image to internal frame buffer memory or external DRAM i f
available.
Supports 8-bit/10-bit ITU656 video input
Output formats:
RGB888
RGB565
8-bit monochrome
YCrCb 4:2:2
Video downscaling
Contrast and Brightness adjustment
De-interlace for interlaced video image
Internal DMA engine for data transfer to memory
1.4.19 Boot Assist Module (BAM)
The BAM is a block of read-only memory that is programmed once by Freescale. The BAM program is executed every time
the MCU is powered-on or reset in normal mode. The BAM supports different modes of booting. They are:
Booting from internal flash memory
Serial boot loading (A program is downloaded into RAM via FlexCAN or LINFlex and then executed)
Booting from external memory
Additionally the BAM:
Enables and manages the transition of the MCU from reset to user code execution
Configures device for serial bootload
Enables multiple bootcode starting locations out of reset through implementation of search for valid Reset
Configuration Halfword
1.4.20 Enhanced Modular Input/Output System (eMIOS)
This device has two eMIOS modules, each with 16 channels supporting a range of 16-bit Input Capture, Output Compare, Pulse
Width Modulation, and Quadrat ure Deco de function s.
Selectable clock source from primary FMPLL, secondary FMPLL, external 4 - 16 MHz oscillator or 16 MHz Internal
RC oscillator on a per module basis
Timed I/O channels wit h 16-bit counter resolution
Buffered updates
Support for shifted PWM outputs to mini mize occurrence of concurrent edges
Edge aligned output pulse width modulation
Programmable pulse period and duty cycle
Supports 0% and 100% duty cycle
Shared or independent time bases
Programmable phase shift between channels
4 channels of Quadrature Decode
DMA transfer support
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 17
1.4.21 Analog-to-Digital Converter (ADC)
The ADC features the following:
10-bit A/D resolution
0–5 V or 0–3.3 V common mode conversion range
Supports conversions speeds of up to 1μs
20 internal and 8 external channels support
Up to 20 single-ended inputs channels
10 channels configured as input only pins
10-bit ± 2 counts accuracy (TUE)
10 channels configured to have alternate function as general purpose input/outp ut pin s
10-bit ± 3 counts accuracy (TUE)
External multiplexer su pport to increase up to 27 channels
Automatic 1 × 8 mult iplexer control
External multiplexer connected to a dedicated input channel
Shared register between the 8 external channels
Result register available for every non-multiplexed channel
Configurable Left or Right aligned result format
Supports for one-shot, scan, and injection conversion modes
Injection mode status bit implemented on adjacent 16-bit register for each result
Supports Access to Result and injection status with single 32-bit read
Independently enabling of function for channels:
Pre-sampling
Offset error cancellation
—Offset Refresh
Conversion Triggering support
Internal conversion triggering from periodic interrupt timer (PIT)
Four configurable analog comparator channels offering range comparison with triggered alarm
Greater than
Less than
Out of range
All unused analog pins available as general purpose input pins
Selected unused analog pins available as general purpose pins
Power Down mode
Optional support for DMA transfer of results
1.4.22 Deserial Serial Peripheral Interface (DSPI)
The DSPI modules provide a synchronous serial interface for communication between the MCU and external devices.
The DSPI features:
Full duplex, synchronous transfers
Master or slave operation
Programmable master bit rates
Programmable clock polarity and phase
End-of-transmission interrupt flag
Programmable transfer baud rate
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
18 Freescale Semiconductor
Programmable data frames from 4 to 16 bits
Up to 3 chip select lines available, depending on package and pin multiplexing, enable 8 external devices to be selected
using external muxing from a single DSPI
Eight clock and transfer attributes registers
Chip select strobe available as alternate function on one of the chip select pins for de-glitching
FIFOs for buffering up to 4 transfer s on the transmit and receive side
General purpose I/O functionality on pins when not used for SPI
Queueing operation possible through use of eDMA
1.4.23 FlexCAN
The MPC5645S includes up to three controller area net work (FlexCAN) modules. The FlexCAN module is a communication
controller implementing the CAN protocol according to Bosch Specification version 2.0B. The CAN protocol was designed to
be used primarily as a vehicle serial data bus, meeting the specific requirements of this field: real-time processing, reliable
operation in the EMI environment of a vehicle, cost -effectiveness, and required bandwidt h.
Each FlexCAN module offers the following:
Compliant with CAN protocol specificati on, Version 2.0B active
64 mailboxes, each configurable as transmit or receive
Mailboxes configurable while module rem ains synchronized to CAN bus
Transmit features
Supports configuration of multiple mailboxes to form message queues of scalable depth
Arbitration scheme according to message ID or message buffer number
Internal arbitration to guarantee no inner or outer priorit y inversion
Transmit abort procedure and notification
Receive features
Individual programmable filters for each mailbox
8 mailboxes configurable as a 6-entry receive FIFO
8 programmable acceptance filters for receive FIFO
Programmable clock source
System clock
Direct oscillator clock to avoid PLL jitter
Listen only mode capabilities
CAN Sampler
Can catch the 1st message sent on the CAN network while the MCU is stopped, which guarantees a clean startup
of the system without missing messages on the CAN network
The CAN sampler is connected to one of the CAN RX pins
1.4.24 Serial communication interface module (LINFlex)
The MPC5645S devices include up to four LINFlex modules and support for LIN Master mode, LIN Slave mode , and UART
mode. The modules are LIN state machine compliant to the LIN 1.3, 2.0, and 2.1 Specifications and handle LIN frame
transmission and reception without CPU intervention.
Other features include:
Autonomous LIN frame handling
Message buffer to store identifier and up to eight data bytes
Supports message length of up to 64 bytes
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 19
Detection and flagging of LIN errors
Sync field; Delimiter; ID parity; Bit, Framing; Checksum and Timeout errors
Classic or extended checksum calculation
Configurable Break durati on of up to 36-bit tim es
Programmable Baud rate prescalers (13-bit mantissa, 4-bit fractional)
Diagnostic features
Loop back
—Self Test
LIN bus stuck dom inant de tection
Interrupt driven operation with 16 interrupt sources
LIN slave mode features
Autonomous LIN header handling
Autonomous LIN response handling
Discarding of irrelevant LIN responses using up to 16 ID filters
UART mode
Full-duplex operation
Standard non return-to-zero (NRZ) mark/space format
Data buffers with 4-byte receive, 4-byte transmit
Configurable word lengt h (8-bit or 9-bit wo rds)
Error detection and flagging
Parity, noise, and framing errors
Interrupt driven operation with 4 interrupts sources
Separate transmitter and receiver CPU interrupt sources
16-bit programmable baud-rate modulus coun ter and 16-bit fractional
Two receiver wakeup methods
1.4.25 Inter-Integrated Circuit (I2C) controller modules
The MPC5645S includes four I2C modules. Each module features the following:
Two-wire bi-directional serial bus for on-board communications
Compatibility with I2C bus standard
Multi-master operation
Software-programmable for one of 256 different serial clock frequencies
Software-selectable acknowledge bit
Interrupt-driven, byte-by-byte data transfer
Arbitration-lost interrupt with autom atic mode switching from master to slave
Calling address identification interrupt
Start and stop signal generation/detection
Repeated START signal generation
Acknowledge bit generation/detection
Bus-busy detection
1.4.26 System clocks and clock generation modules
The system clock on the MPC5645S can be derived from an external oscillator, an on-chip FMPLL, or the internal 16 MHz
oscillator.
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
20 Freescale Semiconductor
The source system clock frequency can be changed via an on-chip program mab le clock divider (÷1 to ÷32). An additional
programmable peripheral bus clock divider (ratios ÷1 to ÷15) is also available.
The MPC5645S has two on-chip FMPLLs (primary and secondary). Each features the following:
Input clock frequency from 4 MHz to 16 MHz
Lock detect circuitry continuously monitors lock status
Loss Of Clock (LOC) detection for reference and feedback clocks
On-chip loop filter (for improved electromagnetic interference performance and reduction of number of external
components required)
Support for frequency ramping from PLL
The primary FMPLL module is for use as a system clock source. The secondary FMPLL is available for use as an alternate,
modulated or non-modulated clock source to eMIOS modules and as alternate clock to the DCU for pixel clock gen eration.
The fast external oscillator provides the following features:
Input frequency range 4–16 MHz
Square-wave input mode
Oscillator input mode 3.3 V (5.0 V)
Automatic level control
Low power consumption
PLL reference
The MPC5645S also includes the following oscillat ors:
32 KHz low power external oscillator for slow execution, low power, and RTC
Dedicated internal 128 kHz RC oscillator for low power mode operation and self wake-up
±10% accuracy across voltage and temperature (after factory trimming)
Trimming registers to support improved accuracy with in-application calibration
Dedicated 16 MHz internal RC oscillator
Used as default clock source out of reset
Provides a clock for rapid start-up from low power modes
Provides a back-up clock in the event of PLL or External Oscillator clock failure
Offers an independent clock source for the SWT
±5% accuracy across voltage and temperature (after factory trimming)
Trimming registers to support frequency adjustment with in-application calibration
1.4.27 Periodic Interrupt Timer (PIT)
The PIT features the following:
Eight general purpose interrupt timers
Two ded icated in terrupt timers for triggering ADC conversions
32-bit counter resolution
Clocked by system clock frequency
1.4.28 Real Time Counter (RTC)
The Real Timer Counter supports wake-up from Low Power modes or Real Time Clock generation
Configurable resolution for different timeout periods
1 s resolution for >1 hour period
1 ms resolution for 2 seco nd period
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 21
Selectable clock sources from external 32 KHz crystal, external 4–16 MHz crystal, internal 128 kHz RC oscillator or
divided internal 16 MHz RC oscillator
1.4.29 System Timer Module (STM)
The STM is a 32-bit timer designed to support commonly required system and application software timing functions. The STM
includes a 32-bit up counter and four 32-bit compare channels with a separate interrupt source for each channel. The counter is
driven by the system clock divided by an 8-bit prescale value (1 to 256).
One 32-bit up counter with 8-bit prescaler
Four 32-bit compare channels
Independent interrupt source for each channel
Counter can be stopped in debug mode
1.4.30 Software Watchdog Timer (SWT)
The SWT features the following:
Watchdog suppo rt ing software activati on or enabled out of Reset
Supports normal or window ed mode
Watchdog timer value writable once after reset
Watchdog suppo rts optional halting du ring low power modes
Configurable respon se on timeout: reset, interrupt, or interrupt followed by reset
Clock source: 128 kHz RC oscillator
1.4.31 Stepper Motor Controller (SMC)
The SMC module is a PWM motor controller suitable to drive instruments in a cluster configuration or any other loads requiring
a PWM signal. The motor controller has twelve PWM channels associated with two pins each (24 pins in total) driving up to 6
stepper motors.
The SMC module includes the following features:
10/11-bit PWM counter
11-bit resolution with selectable PWM dithering function
Left, right, or center aligned PWM
Output slew rate control
Output Short Circuit Detection
This module is suited for , but not limited to, driving small stepper and air core motors used in instrumentation applications. This
module can be used for other motor control or PWM applications that match the frequency, resolution, and output drive
capabilities of the module.
1.4.32 Stepper Stall Detect (SSD)
The SSD module provides a circuit to measure and integrate the induced voltage on the non-driven coil of a stepper motor using
full steps when the gauge pointer is returning to zero (RTZ).
The SSD module features the following:
Programmable full step state
Programmable integration polarity
Blanking (recirculation) state
16-bit integration accumulator register
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
22 Freescale Semiconductor
16-bit modulus down counter with interrupt
1.4.33 Sound Generator Module (SGM)
The SGM features the following:
4-channel audio mixer
Each channel capable of independent Tone generation or Wave playback
Individual channel volume contro l (8-bit resolution)
Tone Mode:
Programmable Tone frequency
Programmable amplitude envelope: attack, duration, and decay
Programmable number of tone pulses and inte r-tone duration
Wave Mode:
One FIFO per channel working in conjunction with eDMA
Supports standard audio sampling rates (4 kHz, 8 kHz, 11.025 kHz, 16 kHz, 22.050 kHz, 32 kHz, 44.100 kHz,
48 kHz)
Same sample rate applies to all channels
8-bit, 12-bit, 16-bit input data formats
Programmable wave duration and inter-wave duration
Repeat mode with program mab le number of wave playbacks
SGM Output:
16-bit PWM channel
Integrated I2S master interface for connection to external audio DAC
1.4.34 IEEE 1149.1 JTAG controller (JTAGC)
JTAGC features the following:
Backward compatible to standard JTAG IEEE 1149.1-2001 test access port (TAP) interface
Support for boundary scan testing
1.4.35 Nexus Development Interface (NDI)
The Nexus 3 module is compliant with Class 3 of the IEEE-ISTO 5001-2008 standard, with additional Class 4 features
available. The following features are implemented:
Program Trace via Branch Trace Messaging (BTM). Branch trace messaging displays program flow discontinuities
(direct and indirect branches, exceptions, etc.), allowing the development tool to interpolate what transpires between
the discontinuities. Thus static code may be traced.
Data T race via Data Write Messaging (DWM) and Data Read Messaging (DRM). This provides the capability for the
development tool to trace reads and/or writes to selected internal memory resources.
Ownership T race via Ownership T race Messaging (OTM). OTM facilitates ownership trace by providing visibility of
which process ID or operating system task is activated. An Ownership Trace Message is transmitted when a new
process/task is activated, allowing the development tool to trace ownership flow.
Run-time access to embedded processor memory map via the JTAG port. This allows for enhanced download/upload
capabilities.
Watchpoint Messaging via th e auxiliary pins provides visibility wh en debugging.
Watchpoint Trigger enablement of Program and/or Data Trace Messaging enhances debug capability.
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 23
Data Acquisition Messaging (DQM) allows code to be instrum ented to export customized information to the Nexus
Auxiliary Output Port.
Address T ranslation Messaging via program correlation messages displays updates to the TLB for use by the debugger
in correlating virtual and ph ysical address information.
Auxiliary interface for higher data input/output.
Registers for Program Tr ace, Data Trace, Ownership Tr ace, and Watchpoint Trigger.
All features are controllable and configurabl e via the JTAG port.
Nexus Auxiliary port is support e d on the 416BGA package.
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
24 Freescale Semiconductor
2 Pinout and signal descriptions
2.1 176 LQFP package pinout
Figure 2 shows the pinout for the 17 6-pin LQFP package.
Figure 2. 176-pin LQFP pinout
MPC5645S
176 LQFP
Top view
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
VSS
VDD12
PF15 / QSPI_CLK_0 / CLKOUT / MCKO
PF14 / QSPI_IO1_0 / MDO3
PF13 / QSPI_IO0_0 / MDO2
PF12 / QSPI_IO3_0 / MDO1
PF11 / QSPI_IO2_0 / MDO0
PF10 / QSPI_PCS_0 / EVTI
PG12 / CS0_1 / PDI_DE
VSS
VDDE_B
PF9 / SCL_0 / CS1_1 / TXD_1
PF8 / SDA_0 / CS2_1 / RXD_1
PF7 / eMIOS1[15] / SCL_1
PF6 / QSPI_IO0_1 / eMIOS1[16] / PDI17_VIU9
PF5 / QSPI_IO1_1 / eMIOS1[15] / PDI16_VIU8
PF4 / eMIOS1[14] / SDA_1
PF3 / eMIOS1[21] / MSEO2
PF1 / eMIOS1[20] / MSEO
PF0 / eMIOS1[19] / EVTO
PK1 / QSPI_IO2_1 / eMIOS1[14] / PDI15_VIU7
PK0 / eMIOS1[18]
VSS
PB2 / TXD_0
PB3 / RXD_0
PJ15 / QSPI_IO3_1 / eMIOS1[9] / PDI14_VIU6
PJ14 / QSPI_CLK_1 / eMIOS1[17] / PDI_PCLK
PJ13 / QSPI_PCS_1 / eMIOS1[8] / PDI13_VIU5
PJ12 / DCU_TAG
PG11 / DCU_PCLK
PG7 / DCU_B7
PG6 / DCU_B6
PG5 / DCU_B5
PG4 / DCU_B4
PG3 / DCU_B3
PG2 / DCU_B2
VDDE_B
VSS
VDD12
PG1 / DCU_B1 / SDA_3 / eMIOS0[22]
PG0 / DCU_B0 / SCL_3 / eMIOS0[21]
PA15 / DCU_G7
PA14 / DCU_G6
VSS
NMI/PF2
CS2_0 / eMIOS1[10] / RXD_1 / PB12
CS1_0 / eMIOS1[11] / TXD_1 / PB13
VDDE_B
VSS
VDD12
eMIOS1[12] / SDA_1 / PK10
DCU_TAG / eMIOS1[13] / SCL_1 / PK11
I2S_FS/eMIOS1[18]/SCK_0/PB9
I2S_DO / eMIOS1[19] / SOUT_0 / PB8
I2S_SCK / eMIOS1[20] / SIN_0 / PB7
eMIOS0[23] / eMIOS0[21] / PDI0_VIU2 / PJ4
eMIOS0[16] / eMIOS0[20] / PDI1_VIU3 / PJ5
eMIOS0[15] / eMIOS0[19] / PDI2_VIU4 / PJ6
eMIOS0[14] / eMIOS0[18] / PDI3_VIU5 / PJ7
PDI_DE / eMIOS0[22] / VIU_PCLK / PJ3
eMIOS1[21] / CS0_0 / PH4
MA0 / SCK_1 / PB4
FABM / MA1 / SOUT_1 / PB5
ABS[0]/MA2/SIN_1/PB6
VDDE_B
VSS
VDD12
VSS
XTAL32 / AN15 / PC15
EXTAL32 / AN14 / PC14
CS0_1 / MA2 / AN13 / PC13
CS1_1 / MA1 / AN12 / PC12
CS2_1 / MA0 / AN11 / PC11
I2S_DO / AN10_MUX / PC10
AN9 / PC9
AN8 / PC8
VDDE_A
VSSE_A
VDDA
VSSA
AN7 / PC7
AN6 / PC6
AN5 / PC5
AN4 / PC4
AN3 / PC3
AN2 / PC2
AN1 / PC1
AN0 / PC0
VDDE_B
PA13 / DCU_G5
PA12 / DCU_G4
PA11 / DCU_G3
PA10 / DCU_G2
PA9 / DCU_G1 / SDA_2 / eMIOS0[19]
PA8 / DCU_G0 / SCL_2 / eMIOS0[20]
PA7 / DCU_R7
PA6 / DCU_R6
VSS
VDDE_B
PA5 / DCU_R5
PA4 / DCU_R4
PA3 / DCU_R3
PA2 / DCU_R2
PA1 / DCU_R1 / SCL_1 / eMIOS0[17]
PA0 / DCU_R0 / SDA_1 / eMIOS0[18]
PM11 / TXD_2 / CNTX_2 / eMIOS0[23]
PM10 / RXD_2 / CNRX_2 / eMIOS0[16]
PM9/ PDI_PCLK/ SGM_MCLK/ eMIOS0[8]
VDDE_B
VSS
VDD12
PD15 / M3C1P / SSD3_3 / eMIOS0[15]
PD14 / M3C1M / SSD3_2 / eMIOS0[14]
PD13 / M3C0P / SSD3_1 / eMIOS0[13]
PD12 / M3C0M / SSD3_0 / eMIOS0[12]
VSSM
VDDM
PD11 / M2C1P / SSD2_3 / eMIOS0[11]
PD10 / M2C1M / SSD2_3 / eMIOS0[10]
PD9 / M2C0P / SSD2_1 / eMIOS0[9]
PD8 / M2C0M / SSD2_0
PD7 / M1C1P / SSD1_3
PD6 / M1C1M / SSD1_2 / eMIOS0[23]
PD5 / M1C0P / SSD1_1 / eMIOS0[16]
PD4 / M1C0M / SSD1_0 / eMIOS0[8]
VSSM
VDDM
PD3 / M0C1P / SSD0_3 / eMIOS0[9]
PD2 / M0C1M / SSD0_2 / eMIOS1[23]
PD1 / M0C0P / SSD0_1 / eMIOS1[16]
PD0 / M0C0M / SSD0_0 / eMIOS1[8]
VDDE_B
DCU_VSYNC / PG8
DCU_HSYNC / PG9
DCU_DE / PG10
eMIOS0[8] / eMIOS1[9] / PDI_HSYNC_VIU1 / PJ1
eMIOS0[9] / eMIOS1[14] / PDI_VSYNC_VIU0 / PJ2
VDDE_B
VSS
eMIOS0[13] / eMIOS0[17] / PDI4_VIU6 / PJ8
eMIOS0[12] / eMIOS1[22] / PDI5_VIU7 / PJ9
eMIOS0[11] / eMIOS1[17] / PDI6_VIU8 / PJ10
eMIOS0[10] / eMIOS1[15] / PDI7_VIU9 / PJ11
RXD_0 / CNRX_0 / PB1
TXD_0 / CNTX_0 / PB0
I2S_DO / CNRX_1 / PB10
SGM_MCLK / CNTX_1 / PB11
DCU_TAG / eMIOS1[22] / PDI13_VIU5 / PM5
eMIOS1[23] / PDI14_VIU6 / PM6
VSS
VDDE_B
VDDR
VSSR
VSUP_TEST
VDD12
VSS
VDDPLL
VREG_BYPASS
EXTAL
XTAL
VRC_CTRL
RESET
eMIOS1[10] / PDI8_VIU0 / PK2
eMIOS1[11] / PDI9_VIU1 / PK3
eMIOS1[12] / PDI10_VIU2 / PK4
eMIOS1[13] / PDI11_VIU3 / PK5
eMIOS1[9] / PDI12_VIU4 / PK6
VSS
VDDE_B
eMIOS1[8] / I2S_FS / PDI15_VIU7 / PH5
eMIOS1[16] / I2S_DO / PDI16_VIU8 / PM7
eMIOS1[23] / I2S_SCK / PDI17_VIU9 / PM8
TCK / PH0
TDI/PH1
TDO/PH2
TMS / PH3
Note: Functions in bold are
available only on this package.
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 25
2.2 208 LQFP package pinout
Figure 3 shows the pinout for the 20 8-pin LQFP package.
Figure 3. 208-pin LQFP pinout
MPC5645S
208 LQFP
Top view
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
208
207
206
205
204
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
DCU_VSYNC_TCON2 / PG8
DCU_HSYNC_TCON1 / PG9
DCU_DE_TCON3 / PG10
eMIOS0[8] / eMIOS1[9] / PDI_HSYNC_VIU1 / PJ1
eMIOS0[9] / eMIOS1[14] / PDI_VSYNC_VIU0 / PJ2
VDDE_B
VSS
eMIOS0[13] / eMIOS0[17] / PDI4_VIU6 / PJ8
eMIOS0[12] / eMIOS1[22] / PDI5_VIU7 / PJ9
eMIOS0[11]/eMIOS1[17]/PDI6_VIU8/PJ10
eMIOS0[10] / eMIOS1[15] / PDI7_VIU9 / PJ11
RXD_0 / CNRX_0 / PB1
TXD_0 / CNTX_0 / PB0
I2S_DO / CNRX_1 / PB10
SGM_MCLK / CNTX_1 / PB11
TCON4 / RXD_3 / CNRX_2 / PM3
TCON5 / TXD_3 / CNTX_2 / PM4
VSS
VDDE_B
VDDR
VSSR
VSUP_TEST
VDD12
VSS
VDDPLL
VREG_BYPASS
EXTAL
XTAL
VRC_CTRL
RESET
TCON6 / PDI13_VIU5 / CS2_2 / PL4
TCON7 / PDI14_VIU6 / CS1_2 / PL5
eMIOS1[18] / PDI15_VIU7 / CS0_2 / PL6
eMIOS1[19] / PDI16_VIU8 / SIN_2 / PL7
eMIOS1[20] / PDI17_VIU9 / SOUT_2 / PL8
eMIOS1[21] / PDI_PCLK / SCK_2 / PL9
VDDE_B
VSS
DCULITE_TAG / eMIOS1[10] / PDI8_VIU0 / PK2
DCULITE_DE / eMIOS1[11] / PDI9_VIU1 / PK3
DCULITE_HSYNC / eMIOS1[12] / PDI10_VIU2 / PK4
DCULITE_VSYNC / eMIOS1[13] / PDI11_VIU3 / PK5
DCULITE_PCLK / eMIOS1[9] / PDI12_VIU4 / PK6
TCON8 / DCULITE_R2 / RXD_2 / PK7
TCON9 / DCULITE_R3 / TXD_2 / PK8
TCON10 / DCULITE_R4 / I2S_DO / PK9
VSS
VDDE_B
TCK / PH0
TDI / PH1
TDO / PH2
TMS / PH3
VDDE_B
PA13 / DCU_G5 / RSDS6M
PA12 / DCU_G4 / RSDS6P
PA11 / DCU_G3 / RSDS5M
PA10 / DCU_G2 / RSDS5P
PA9 / DCU_G1 / SDA_2 / eMIOS0[19] / RSDS4M
PA8 / DCU_G0 / SCL_2 / eMIOS0[20] / RSDS4P
PA7 / DCU_R7 / RSDS3M
PA6 / DCU_R6 / RSDS3P
VSS
VDDE_B
VREF_RSDS
PA5 / DCU_R5 / RSDS2M
PA4 / DCU_R4 / RSDS2P
PA3 / DCU_R3 / RSRS1M
PA2 / DCU_R2 / RSDS1P
PA1/DCU_R1/SCL_1/eMIOS0[17]/RSDS0M
PA0 / DCU_R0 / SDA_1 / eMIOS0[18] / RSDS0P
VDDE_B
VSS
VDD12
PE7 / M5C1P / SSD5_3
PE6 / M5C1M / SSD5_2
PE5 / M5C0P / SSD5_1
PE4 / M5C0M / SSD5_0
VSSM
VDDM
PE3 / M4C1P / SSD4_3
PE2 / M4C1M / SSD4_2
PE1 / M4C0P / SSD4_1
PE0 / M4C0M / SSD4_0
PD15 / M3C1P / SSD3_3 / eMIOS0[15]
PD14 / M3C1M / SSD3_2 / eMIOS0[14]
PD13 / M3C0P / SSD3_1 / eMIOS0[13]
PD12 / M3C0M / SSD3_0 / eMIOS0[12]
VSSM
VDDM
PD11 / M2C1P / SSD2_3 / eMIOS0[11]
PD10 / M2C1M / SSD2_2 / eMIOS0[10]
PD9 / M2C0P / SSD2_1 / eMIOS0[9]
PD8 / M2C0M / SSD2_0
PD7 / M1C1P / SSD1_3
PD6 / M1C1M / SSD1_2 / eMIOS0[23]
PD5 / M1C0P / SSD1_1 / eMIOS0[16]
PD4 / M1C0M / SSD1_0 / eMIOS0[8]
VSSM
VDDM
PD3 / M0C1P / SSD0_3 / eMIOS0[9]
PD2 / M0C1M / SSD0_2 / eMIOS1[23]
PD1 / M0C0P / SSD0_1 / eMIOS1[16]
PD0 / M0C0M / SSD0_0 / eMIOS1[8]
VDDE_B
NMI / PF2
CS2_0 / eMIOS1[10] / RXD_1 / PB12
CS1_0 / eMIOS1[11] / TXD_1 / PB13
VDDE_B
VSS
VDD12
DCULITE_TAG/eMIOS1[12]/SDA_1/PK10
DCU_TAG/eMIOS1[13]/SCL_1/PK11
TCON11 / DCULITE_R5 / I2S_SCK/ PM0
DCULITE_R6 / I2S_FS / PM1
VDDE_B
VSS
I2S_FS/eMIOS1[18]/SCK_0/PB9
I2S_DO/eMIOS1[19]/SOUT_0/PB8
I2S_SCK / eMIOS1[20] / SIN_0 / PB7
eMIOS0[23] / eMIOS0[21] / PDI0_VIU2 / PJ4
eMIOS0[16] / eMIOS0[20] / PDI1_VIU3 / PJ5
eMIOS0[15] / eMIOS0[19] / PDI2_VIU4 / PJ6
eMIOS0[14] / eMIOS0[18] / PDI3_VIU5 / PJ7
PDI_DE / eMIOS0[22] / VIU_PCLK / PJ3
DCULITE_G6 / eMIOS1[21] / CS0_0 / PH4
MA0 / SCK_1 / PB4
FABM/MA1/SOUT_1/PB5
ABS[0]/MA2/SIN_1/PB6
VDDE_B
VSS
VDD12
VSS
SDA_1/CNRX_1 / AN19 / PL0
SCL_1/CNTX_1 / AN18 / PL1
eMIOS1[22] / CNRX_0 / AN17 / PL2
eMIOS1[23] / CNTX_0 / AN16 / PL3
XTAL32 / AN15 / PC15
EXTAL32 / AN14 / PC14
CS0_1 / MA2 / AN13 / PC13
CS1_1 / MA1 / AN12 / PC12
CS2_1/MA0/AN11/PC11
I2S_DO / AN10_MUX / PC10
AN9 / PC9
AN8 / PC8
VDDE_A
VSSE_A
VDDA
VSSA
AN7 / PC7
AN6 / PC6
AN5 / PC5
AN4 / PC4
AN3 / PC3
AN2 / PC2
AN1 / PC1
AN0 / PC0
VSS
VDD12
PF15 / QSPI_CLK_0 / CLKOUT / MCKO
PF14 / QSPI_IO1_0 / MDO3
PF13 / QSPI_IO0_0 / MDO2
PF12 / QSPI_IO3_0 / MDO1
PF11 / QSPI_IO2_0 / MDO0
PF10 / QSPI_PCS_0 / EVTI
PG12 / CS0_1 / PDI_DE / DCULITE_B7
VSS
VDDE_B
PF9 / SCL_0 / CS1_1 / TXD_1
PF8 / SDA_0 / CS2_1 / RXD_1
PF7 / eMIOS1[15] / SCL_1 / DCULITE_B6
PF6 / QSPI_IO0_1 / eMIOS1[16] / PDI17_VIU9
PF5 / QSPI_IO1_1 / eMIOS1[15] / PDI16_VIU8
PF4 / eMIOS1[14] / SDA_1 / DCULITE_B5
PF3 / eMIOS1[21] / MSEO2 / DCULITE_B4
PF1/eMIOS1[20]/MSEO/DCULITE_B3
PF0 / eMIOS1[19] / EVTO /DCULITE_B2
PK1 / QSPI_IO2_1 / eMIOS1[14] / PDI15_VIU7
PK0 / eMIOS1[18] / DCULITE_G7
VDD12
VSS
VDDE_B
PB2 / TXD_0
PB3 / RXD_0
PJ15 / QSPI_IO3_1 / eMIOS1[9] / PDI14_VIU6
PJ14 / QSPI_CLK_1 / eMIOS1[17] / PDI_PCLK
PJ13 / QSPI_PCS_1 / eMIOS1[8] / PDI13_VIU5
PJ12 / DCU_TAG_TCON0 / DCULITE_G6
PL13 / eMIOS1[13] / DCULITE_G5
PL12 / eMIOS1[12] / DCULITE_G4
PL11 / eMIOS1[11] / DCULITE_G3
PL10 / eMIOS1[10] / DCULITE_G2
PM2 / eMIOS1[17] / DCULITE_R7/DCULITE_DE/RSDSLCKM
PG11 / DCU_PCLK / RSDSLCKP
PG7/ DCU_B7 / RSDS11M
PG6 / DCU_B6 / RSDS11P
PG5 / DCU_B5 / RSDS10M
PG4 / DCU_B4 / RSDS10P
PG3 / DCU_B3 / RSDS9M
PG2 / DCU_B2 / RSDS9P
VREF_RSDS
VDDE_B
VSS
VDD12
PG1/DCU_B1/SDA_3/eMIOS0[22]/RSDS8M
PG0 / DCU_B0 / SCL_3 / eMIOS0[21] / RSDS8P
PA15 / DCU_G7 / RSDS7M
PA14 / DCU_G6 / RSDS7P
VSS
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Pinout and signal descriptions
Freescale Semiconductor26
2.3 416 TEPBGA package pinout
Figure 4 shows the pinout for the 416 TEPBGA package.
416 TEPBGA pinout Figure 4. 416 TEPBGA package pinout
1234567891011121314151617181920212223242526
A
ddr_dq[2
6] ddr_dq[2
7] ddr_dq[2
8] ddr_dq[2
9] 30] 31] ddr_ba[0]ddr_ba[1]ddr_ba[2] ddr_addr
ess[0] ddr_addr
ess[4] ddr_addr
ess[6] ddr_addr
ess[8] ddr_addr
ess[12] PG12 PF14 PF10 PF8 PF5 PF3 PK0 PB3 PJ12 PL11 PG7 PG6
A
B
ddr_dq[2
5] VSS ddr_dqs[
3] ddr_dm[3
]VSS ddr_cas ddr_ras VSS ddr_web ddr_addr
ess[1] VSS ddr_addr
ess[7] ddr_addr
ess[9] VSS ddr_addr
ess[15] PF13 VDDE PF15 VSS PF1 VDDE PJ15 PL13 VDDE VSS PG5
B
C
ddr_dq[2
3]] VDDE_DD
RVSS ddr_dq[2
4] VDDE_DD
RVSS ddr_dram
_clk VDDE_DD
DR VSS ddr_addr
ess[2] VDDE_DD
RVSS ddr_addr
ess[10] VDDE_DD
RVSS PF12 VSS PF7 VDDE PF0 VSS PJ14 PL12 PL10 PG3 PG4
C
D
ddr_dq[1
9] ddr_dq[2
0] ddr_dq[2
1] ddr_dq[2
2]
ddr_odt
VDD33_D
DR ddr_dram
_clkb ddr_cke ddr_cs ddr_addr
ess[3] ddr_addr
ess[5] VDD33_D
DR ddr_addr
ess[11] ddr_addr
ess[13] ddr_addr
ess[14] PF11 PF9 PF6 PF4 PK1 PB2 PJ13 PM2
VREF_RS
DS2
PG2 PG1
D
E
ddr_dq[1
7] VSS VDDE_DD
Rddr_dq[1
8] PG11 VSS VDDE PG0
E
F
ddr_dq[1
6]
MVTT3
VSS VDD33_D
DR PA15 PA14 PA13 PA12
F
G
ddr_dq[1
5] ddr_dqs[
2] ddr_dm[2
]ddr_dq[1
4] PA11 PA9 PA8 PA7
G
H
ddr_dq[1
3] VSS VDDE_DD
Rddr_dq[1
2] PA10 VDDE VSS VA6
H
J
ddr_dq[1
1]
MVTT2
VSS MVREF PA3
VREF_RS
DS1
PA5 PA4
J
K
ddr_dq[9] ddr_dqs[
1] ddr_dm[1
]ddr_dq[1
0] VDD12 VSS VDD12 VSS VDD12 VSS VDD12 VSS PA2 VSS PA1 PA0
K
L
ddr_dq[8] VSS VDDE_DD
Rddr_dq[7] VSS VDD12 VSS VDD12 VSS VDD12 VSS VDD12 PM13 PM12 VDDE PJ0
L
M
ddr_dq[5]
MVTT1
VSS ddr_dq[6] VDD12 VSS VSS VSS VSS VSS VDD12 VSS PO7 PO6 PO5 PO4
M
N
ddr_dq[3] ddr_dqs[
0] VDDE_DD
Rddr_dq[4] VSS VDD12 VSS VSS VSS VSS VSS VDD12 PO3 VDDE PO2 PO1
N
P
ddr_dq[1] VSS ddr_dm[0
]ddr_dq[2] VDD12 VSS VSS VSS VSS VSS VDD12 VSS PO0 PN15 VSS PN14
P
R
ddr_dq[0]
MVTT0
VSS VDD33_D
DR VSS VDD12 VSS VSS VSS VSS VSS VDD12 PE7 PE6 PN13 PN12
R
T
PG10 PG9 VDDE_DD
RPG8 VDD12 VSS VDD12 VSS VDD12 VSS VDD12 VSS PE5 PE4 PE3 PE2
T
U
PJ9 PJ8 PJ2 PJ1 VSS VDD12 VSS VDD12 VSS VDD12 VSS VDD12 PE1 VSSM VDDM PE0
U
V
PB1 VSS PJ11 PJ10 PD15 PD14 PD13 PD12
V
W
RESET
PB10 VDDE PB0 PD11 VDDM VSSM PD10
W
Y
VSS PM4 PM3 PB11 PD9 PD8 PD7 PD6
Y
AA
XTAL VREG_BY
PASS VRC_CTR
LVDDREG
PD5 VSSM VDDM PD4
AA
AB
EXTAL
PL4 VSS
VDDPLL
PD3 PD2 PD1 PD0
AB
AC
VSUP_TE
ST
PL5
PN0 PK4 PK6 PH0
PF2 PB13 PK11 PN2 PN4 PN8 PB9 PB7 PJ7 PB5 MCKO MDO6 MDO10 MVO0 PC0 VDDA VSSEH_A
DC PC3 PC1 PC2
AC
AD
PL6
VDDE
PN1
VSS
PK7
PH1 VDDE EVTI MSEO VSS PN5 PN9 VDDE PJ4 PJ3 VSS MSEO2 MDO7 VDDE MDO1 PC6 VSSA VDDEH_A
DC PC4 PC7 PC5
AD
AE
PL7
VSS
PK2
VDDE
PK8
PH2 VSS EVTO PM0 VDDE PN6 PN10 VSS PJ5 PH4 VDDE MDO4 MDO8 VSS MDO2 PL1 PL0 PC10 PC11 PC9 PC8
AE
AF
PL8 PL9 PK3 PK5 PK9 PH3
PB12 PK10 PM1 PN3 PN7 PN11 PB8 PJ6 PB4 PB6 MDO5 MDO9 MDO11 MDO3 PL3 PL2
PC15 PC14
PC13 PC12
AF
123
4567891011
12 13
14
15
16 17 18
19
20 21 22
23 24
25
26
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 27
2.4 Signal description
The following sections provide signal descriptions and related information about the signals’ functionality and configuration.
2.4.1 Pad configuration during reset phases
All pads have a fixed configuration under reset.
During the power-up phase, all pads are forced to tristate.
After power-up phase, all pads are floating with the following exceptions:
PB[5] (FAB) is pull-down. Without external strong pul l-up the dev ice starts fetching from flash memory.
RESET pad is driven low. This is released only after PHASE2 reset completion.
•Fast (4
-16 MHz) external oscillator pads (EXTAL, XTAL) are tristate.
The following pads are pull-up:
—PB[6]
—PH[0]
—PH[1]
—PH[3]
NOTE
TCK pin must have an external pull-down resistor of 4.7 K.
2.4.2 Voltage supply pins
Voltage supply pins are used to provide power to the devi ce. Two dedicated pins are used for 1.2 V regulator stabilization.
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
28 Freescale Semiconductor
Table 3. Voltage supply pin descriptions
Supply pin Function Pin number
176 LQFP 208 LQFP 416 TEPBGA
VDD1211.2 V core supply (1.08 V - 1.32 V) 23, 50, 67, 110, 138,
175 23, 58, 79, 136, 162,
186, 207 K10,K12,K14,K16,L
11,L13,L15,L17,M1
0,M16,N11,N17,P1
0,P16,R11,R17,T10
,T12,T14,T16,U11,
U13,U15,U17
VSS 1.2 V ground 7, 18, 36, 49, 66, 68,
111, 123, 133, 139,
154, 167, 176
7, 18, 38, 47, 57, 64,
78, 80, 137, 147,
157, 163, 185, 199,
208
AB3,AD10,AD16,A
D4,AE13,AE19,AE2
,AE7,B11,B14,B19,
B2,B25,B5,B8,C12,
C15,C17,C21,C3,C
6,C9,E2,E24,F3,H2
,H25,J3,K11,K13,K
15,K17,K24,L10,L1
2,L14,L16,L2,M11,
M12,M13,M14,M15,
M17,M3,N10,N12,N
13,N14,N15,N16,P
11,P12,P13,P14,P1
5,P17,P2,P25,R10,
R12,R13,R14,R15,
R16,R3,T11,T13,T1
5,T17,U10,U12,U14
,U16,V2,Y1
VDD12 ground and VDDPLL ground
(VSSPLL) 24 24
VDDE_B 3.3 V I/O supply. This supply is shared with
internal flash, 16 MHz IRC oscillator and
4–16MHz crystal oscillator.
6, 19, 37, 48, 65, 89,
112, 122, 132, 140,
166
6, 19, 37, 48, 56, 63,
77, 105, 138, 146,
156, 164, 184, 198
AD13,AD19,AD2,A
D7,AE10,AE16,AE4
,B17,B21,B24,C19,
E25,H24,L25,N24,
W3
VDDA23.3 V/5 V reference voltage and analog
supply for A/D converter. This supply is
shared with the SXOSC.
79 95 AC22
VSSA Reference ground and analog ground for A/D
converter 80 96 AD22
VDDR Voltage regulator VREG supply 20 20 AA4
VSSR Voltage regulator ground 21 21
VDDE_A23.3 V/5 V I/O supply. This supply is shared
with the SXOSC. 77 93 AD23
VSSE_A 3.3 V/5 V I/O supply ground 78 94 AC23
VDDM Stepper motor 3.3 V/5 V pad supply. SSD
shares this supply. 94, 104 110, 120, 130 U25,W24,AA25
VSSM Stepper motor ground 95, 105 111, 121, 131 U24,W24,AA24
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 29
2.4.3 System pins
The system pins are listed in Table 4.
VDDPLL 1.2 V PLL supply 25 25 AB4
VSUP_TEST39 V - 12 V flash test analog write signal 22 22 AC1
VDD_DR 1.8V, 2.5V, and 3.3V DDR SDRAM supply C2,C5,C8,C11,C14,
E3,H3,L3,N3,T3
VDD33_DR Functional supply for SDRAM pads (where
available must be >= VDD_DR) D6, D12, F4, R4
1Decoupling capacitors must be connected between these pins and the nea rest VSS pin.
2VDDA must be at the same voltage as VDDE_A.
3This signal needs to be connected to ground during normal operatio n.
Table 4. System pin descriptions
System pin Function I/O
direction Pad
type RESET
configuration1
Pin number
176 LQFP 208 LQFP 416 TEPBGA
RESET Bidirectional reset with
Schmitt-Trigger
characteristics and noise
filter.
I/O M Input, weak pull
up 30 30 W1
EXT AL Analog input to the oscillator
amplifier circuit. Input for the
clock generator in bypass
mode.
I X 27 27 AB1
XTAL Analog output of the
oscillator amplifier circuit.
Needs to be grounded if
oscillator bypass mode is
used.
O X 28 28 AA1
EXTAL32 Analog input of the 32KHz
oscillator amplifier circuit. OS 70 86 AF24
XT AL32 Analog output of the 32 KHz
oscillator amplifier circuit.
Input for the clock generator
in bypass mode.
IS 69 85 AF23
Table 3. Voltage supply pin descriptions (continued)
Supply pin Function Pin number
176 LQFP 208 LQFP 416 TEPBGA
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
30 Freescale Semiconductor
2.4.4 Nexus pins
On the 176 LQFP and the 208 LQFP package option s a redu ced set of Nexu s pins are optionally available, multiplexed with
GPIO pins.
On the 416 TEPBGA package option all Nexus pins are dedicated to Nexus only.
NMI Non-Maskable Interrupt I/O S Input, none 45 53 AC7
VRC_CTRL Voltage Regulator external
NPN Ballast base control
pin
Analo
g 29 29 AA3
VREF_
RSDS2RSDS interface reference
voltage Analo
g 145, 165 J24,D24
VREG_
BYPASS3Pin used for factory testing I 26 26 AA2
1Reset configuration is given as I/O direction and pull direction (for example, “Input, pullup”).
2Although this signal is not a supply for RSDS pads, it needs to be terminated in an external capacitor with a value of 47 pF.
3VREG_BYPASS should be connected to ground during normal operation.
Table 5. Nexus pins
System pin Function Pad
type PCR Pin number1
176 LQFP 208 LQFP 416 TEPBGA
EVTI Nexus Event In M PCR[80] 169 201 A17
EVTO Nexus Event Out M PCR[70] 157 189 C20
MCKO Nexus Msg Clock Out F PCR[85] 174 206 B18
MSEO[0] Nexus Msg Start/End Out M PCR[71] 158 190 B20
MSEO[2] Nexus Msg Start/End Out M PCR[73] 159 191 A20
MDO[0] Nexus Msg Data Out M PCR[81] 170 202 D16
MDO[1] Nexus Msg Data Out M PCR[82] 171 203 C16
MDO[2] Nexus Msg Data Out M PCR[83] 172 204 B16
MDO[3] Nexus Msg Data Out M PCR[84] 173 205 A16
EVTI Nexus Event In M PCR[197] n/a n/a AD8
EVTO Nexus Event Out M PCR[198] n/a n/a AE8
MCKO Nexus Msg Clock Out F PCR[200] n/a n/a AC17
MSEO[0] Nexus Msg Start/End Out M PCR[199] n/a n/a AD9
MSEO[2] Nexus Msg Start/End Out M PCR[201] n/a n/a AD17
MDO[0] Nexus Msg Data Out M PCR[185] n/a n/a AC20
Ta bl e 4. Syst em pi n d es cri pt io n s (con t in u ed )
System pin Function I/O
direction Pad
type RESET
configuration1
Pin number
176 LQFP 208 LQFP 416 TEPBGA
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 31
2.4.5 DRAM interface
The DRAM interface pins are listed in Table 6.
MDO[1] Nexus Msg Data Out M PCR[186] n/a n/a AD20
MDO[2] Nexus Msg Data Out M PCR[187] n/a n/a AE20
MDO[3] Nexus Msg Data Out M PCR[188] n/a n/a AF20
MDO[4] Nexus Msg Data Out M PCR[189] n/a n/a AE17
MDO[5] Nexus Msg Data Out M PCR[190] n/a n/a AF17
MDO[6] Nexus Msg Data Out M PCR[191] n/a n/a AC18
MDO[7] Nexus Msg Data Out M PCR[192] n/a n/a AD18
MDO[8] Nexus Msg Data Out M PCR[193] n/a n/a AE18
MDO[9] Nexus Msg Data Out M PCR[194] n/a n/a AF18
MDO[10] Nexus Msg Data Out M PCR[195] n /a n/a AC 19
MDO[11] Nexus Msg Data Out M PCR[196] n/a n/a AF19
1On the 176 LQFP and 208 LQFP package options the Nexus pins are multiplexed with other GPIO. On the 416 TEPBGA
package, there are additional dedicated Nexus pins.
Table 6. DRAM interface pin summary
Port pin1Function I/O
direction Pad
type PCR RESET
config2
Pin number
416 TEPBGA
DRAM Data Bus
DDR_DQ[31] DRAM Data Bus [31] I/O DDR PCR[237] None, None A6
DDR_DQ[30] DRAM Data Bus [30] I/O DDR PCR[238] None, None A5
DDR_DQ[29] DRAM Data Bus [29] I/O DDR PCR[239] None, None A4
DDR_DQ[28] DRAM Data Bus [28] I/O DDR PCR[240] None, None A3
DDR_DQ[27] DRAM Data Bus [27] I/O DDR PCR[241] None, None A2
DDR_DQ[26] DRAM Data Bus [26] I/O DDR PCR[242] None, None A1
DDR_DQ[25] DRAM Data Bus [25] I/O DDR PCR[243] None, None B1
DDR_DQ[24] DRAM Data Bus [24] I/O DDR PCR[244] None, None C4
DDR_DQ[23] DRAM Data Bus [23] I/O DDR PCR[245] None, None C1
DDR_DQ[22] DRAM Data Bus [22] I/O DDR PCR[246] None, None D4
DDR_DQ[21] DRAM Data Bus [21] I/O DDR PCR[247] None, None D3
DDR_DQ[20] DRAM Data Bus [20] I/O DDR PCR[248] None, None D2
DDR_DQ[19] DRAM Data Bus [19] I/O DDR PCR[249] None, None D1
Table 5. Nexus pins (continued)
System pin Function Pad
type PCR Pin number1
176 LQFP 208 LQFP 416 TEPBGA
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
32 Freescale Semiconductor
DDR_DQ[18] DRAM Data Bus [18] I/O DDR PCR[250] None, None E4
DDR_DQ[17] DRAM Data Bus [17] I/O DDR PCR[251] None, None E1
DDR_DQ[16] DRAM Data Bus [16] I/O DDR PCR[252] None, None F1
DDR_DQ[15] DRAM Data Bus [15] I/O DDR PCR[253] None, None G1
DDR_DQ[14] DRAM Data Bus [14] I/O DDR PCR[254] None, None G4
DDR_DQ[13] DRAM Data Bus [13] I/O DDR PCR[255] None, None H1
DDR_DQ[12] DRAM Data Bus [12] I/O DDR PCR[256] None, None H4
DDR_DQ[11] DRAM Data Bus [11] I/O DDR PCR[257] None, None J1
DDR_DQ[10] DRAM Data Bus [10] I/O DDR PCR[258] None, None K4
DDR_DQ[9] DRAM Data Bus [9] I/O DDR PCR[259] None, None K1
DDR_DQ[8] DRAM Data Bus [8] I/O DDR PCR[260] None, None L1
DDR_DQ[7] DRAM Data Bus [7] I/O DDR PCR[261] None, None L4
DDR_DQ[6] DRAM Data Bus [6] I/O DDR PCR[262] None, None M4
DDR_DQ[5] DRAM Data Bus [5] I/O DDR PCR[263] None, None M1
DDR_DQ[4] DRAM Data Bus [4] I/O DDR PCR[264] None, None N4
DDR_DQ[3] DRAM Data Bus [3] I/O DDR PCR[265] None, None N1
DDR_DQ[2] DRAM Data Bus [2] I/O DDR PCR[266] None, None P4
DDR_DQ[1] DRAM Data Bus [1] I/O DDR PCR[267] None, None P1
DDR_DQ[0] DRAM Data Bus [0] I/O DDR PCR[268] None, None R1
DRAM Data Strobes
DDR_DQS[3] DRAM Data Strobe [3] I/O DDR PCR[232] None, None B3
DDR_DQS[2] DRAM Data Strobe [2] I/O DDR PCR[231] None, None G2
DDR_DQS[1] DRAM Data Strobe [1] I/O DDR PCR[230] None, None K2
DDR_DQS[0] DRAM Data Strobe [0] I/O DDR PCR[229] None, None N2
DRAM Data Enables
DDR_DM[3] DRAM Data Enable [3] Output DDR PCR[236] Output,
None B4
DDR_DM[2] DRAM Data Enable [2] Output DDR PCR[235] Output,
None G3
DDR_DM[1] DRAM Data Enable [1] Output DDR PCR[234] Output,
None K3
DDR_DM[0] DRAM Data Enable [0] Output DDR PCR[233] Output,
None P3
DRAM Address
Table 6. DRAM interface pin summary (continued)
Port pin1Function I/O
direction Pad
type PCR RESET
config2
Pin number
416 TEPBGA
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 33
DDR_A[15] DRAM address [15] Output DDR PCR[217] Output,
None B15
DDR_A[14] DRAM address [14] Output DDR PCR[216] Output,
None D15
DDR_A[13] DRAM address [13] Output DDR PCR[215] Output,
None D14
DDR_A[12] DRAM address [12] Output DDR PCR[214] Output,
None A14
DDR_A[11] DRAM address [11] Output DDR PCR[213] Output,
None D13
DDR_A[10] DRAM address [10] Output DDR PCR[212] Output,
None C13
DDR_A[9] DR AM address [9] Output DDR PCR[211] Output,
None B13
DDR_A[8] DRAM address [8] Output DDR PCR[210] Output,
None A13
DDR_A[7] DRAM address [7] Output DDR PCR[209] Output,
None B12
DDR_A[6] DRAM address [6] Output DDR PCR[208] Output,
None A12
DDR_A[5] DRAM address [5] Output DDR PCR[207] Output,
None D11
DDR_A[4] DRAM address [4] Output DDR PCR[206] Output,
None A11
DDR_A[3] DRAM address [3] Output DDR PCR[205] Output,
None D10
DDR_A[2] DRAM address [2] Output DDR PCR[204] Output,
None C10
DDR_A[1] DRAM address [1] Output DDR PCR[203] Output,
None B10
DDR_A[0] DRAM address [0] Output DDR PCR[202] Output,
None A10
DRAM Bank Address
DDR_BA[2] DRAM Bank Address[2] Output DDR PCR[220] Output,
None A9
DDR_BA[1] DRAM Bank Address[1] Output DDR PCR[219] Output,
None A8
DDR_BA[0] DRAM Bank Address[0] Output DDR PCR[218] Output,
None A7
DRAM Control
Table 6. DRAM interface pin summary (continued)
Port pin1Function I/O
direction Pad
type PCR RESET
config2
Pin number
416 TEPBGA
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
34 Freescale Semiconductor
2.4.6 VIU muxing
The DCU3, DCULite and VIU2 modules share the same pins for input video. It is, however , possible to feed independent video
streams to VIU2 and DCU3 (operating in narrow mode). Figure 5 explains the pin sharing arrangement.
DDR_CAS Column Address Strobe Output DDR PCR[221] Output,
None B6
DDR_RAS Row Address Strobe Output DDR PCR[227] Output,
None B7
DDR_WEB Write Enable Output DDR PCR[228] Output,
None B9
DDR_ODT DRAM On-die termination Output DDR PCR[226] Output,
Pull Down D5
DDR_CLK DRAM Clock Output DDR PCR[225] Output,
None C7
DDR_CLKB DRAM Clock bar Output DDR NA Output,
None D7
DDR_CK DRAM Clock Enable Output DDR PCR[222] Output,
Pull Down D8
DDR_CS DRAM Chip Select Output DDR PCR[223] Output,
None D9
MVREF DDR Reference Voltage Input NA J4
MVTT DRAM Termination Voltage Input NA F2,J2,M2,R2
1These port pins are disabled and unpowered on packages where the DRAM interface is not bonded out.
2Reset configuration is given as I/O direction and pull direction (for example, “Input, pullup”).
Table 6. DRAM interface pin summary (continued)
Port pin1Function I/O
direction Pad
type PCR RESET
config2
Pin number
416 TEPBGA
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 35
Figure 5. VIU2, DCU3, and DCULite pin sharing
VIU input data selection is done based on select bit (bit 0) of Miscellaneo us control reg ister (0xC3FE0340).
VIU pix data: VIU[9:0]
Select bit 1’b0: PDI[7:0],HSYNC,VSYNC
Select bit 1’b1: PDI[17:8]
2.4.7 SGM muxing
The SGM shares pins between the PWM output signals and the I2S bus signals as shown in the “Port pin summary” table. When
the PWM function is enabled in the SGM (SGMCTL[PWME]) the PWM (PWMO, PWMOA) signals are available. When the
PWM function is disabled the I2S bus signals (I2S_DO, I2S_SCK) are available.
2.4.8 RSDS special function muxin g
Ports PA[0:15], PG[0:7], PG[11] and PM[2] have the RSDS signalling option as a special function. The SIUL allocates pad
control registers to these functions (PCR[270:282]), but because these pads share a common pin with the normal GPIO pins
they do not operate in the same way as th e normal GPIO ports. PG[11] in particular has a special configuration separate from
the other pads.
The special-function pads are output-only, and the associated PCR[OBE] bit is controlled by the TCON_CTRL1 register
(TCON_BYPASS and RSDS_MODE bits). However , the alternate function selection is taken from the associated normal GPIO
pad. This allows selection of the DCU3 function as the alternate function of the pad and then the TCON module to select if the
output style is TCON/RSDS or digital RGB format.
Therefore, when the TCON bypass is active (bypass disabled with or without RSDS active), it is important not to configure the
normal GPIO ports for output operation with a non-DCU3 alternate function on ports PA[0:15] and PG[0:7].
For PG[11], the PCR[282] OBE bit is fully controlled by the TCON module and will become an ou tput whenever the DCU3
alternate option is selected. Therefore, only select the DCU3 function on this pin when ready to configure it as a clock for a TFT
panel.
VIU2 DCU3 DCULite
PDI PDI
VIU[9:0]
DE
PDI_PCLK
VSYNC
HSYNC
DATA[17:0]
VIU_PCLK
DATA[17:8]
DATA[7:0]
XBAR
Direct feed of PDI interface
to DCU3 or DCULite
RGB565
RGB888
8-bit mono
YUV422
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Pinout and signal descriptions
Freescale Semiconductor36
2.4.9 Functional ports
The functional port pins are listed in Table 7. Table 7. Port pin summary
Port
pin PCR Alternate
function1Function Special
function2Peripheral3I/O
direction Pad
Type4RESET
config5
Pin number
176 LQFP 208 LQFP 416 TEPBGA
PORT A
PA[0] PCR [0] Option 0
Option 1
Option 2
Option 3
GPIO[0]
DCU_R0
SDA_1
eMIOS0[18]
RSDS0P SIUL
DCU3
I2C_1
PWM/Timer
I/O M /
RSDS None,
none 116 139 K26
PA[1] PCR [1] Option 0
Option 1
Option 2
Option 3
GPIO[1]
DCU_R1
SCL_1
eMIOS0[17]
RSDS0M SIUL
DCU3
I2C_1
PWM/Timer
I/O M /
RSDS None,
none 117 140 K25
PA[2] PCR [2] Option 0
Option 1
Option 2
Option 3
GPIO[2]
DCU_R2
RSDS1P SIUL
DCU3
I/O M /
RSDS None,
none 118 141 K23
PA[3] PCR [3] Option 0
Option 1
Option 2
Option 3
GPIO[3]
DCU_R3
RSDS1M SIUL
DCU3
I/O M /
RSDS None,
none 119 142 J23
PA[4] PCR [4] Option 0
Option 1
Option 2
Option 3
GPIO[4]
DCU_R4
RSDS2P SIUL
DCU3
I/O M /
RSDS None,
none 120 143 J26
PA[5] PCR [5] Option 0
Option 1
Option 2
Option 3
GPIO[5]
DCU_R5
RSDS2M SIUL
DCU3
I/O M /
RSDS None,
none 121 144 J25
PA[6] PCR [6] Option 0
Option 1
Option 2
Option 3
GPIO[6]
DCU_R6
RSDS3P SIUL
DCU3
I/O M /
RSDS None,
none 124 148 H26
PA[7] PCR [7] Option 0
Option 1
Option 2
Option 3
GPIO[7]
DCU_R7
RSDS3M SIUL
DCU3
I/O M /
RSDS None,
none 125 149 G26
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Pinout and signal descriptions
Freescale Semiconductor37
PA[8] PCR [8] Option 0
Option 1
Option 2
Option 3
GPIO[8]
DCU_G0
SCL_2
eMIOS0[20]
RSDS4P SIUL
DCU3
I2C_2
PWM/Timer
I/O M /
RSDS None,
none 126 150 G25
PA[9] PCR [9] Option 0
Option 1
Option 2
Option 3
GPIO[9]
DCU_G1
SDA_2
eMIOS0[19]
RSDS4M SIUL
DCU3
I2C_2
PWM/Timer
I/O M /
RSDS None,
none 127 151 G24
PA[10] PCR[10] Option 0
Option 1
Option 2
Option 3
GPIO[10]
DCU_G2
RSDS5P SIUL
DCU3
I/O M /
RSDS None,
none 128 152 H23
PA[11] PCR[11] Option 0
Option 1
Option 2
Option 3
GPIO[11]
DCU_G3
RSDS5M SIUL
DCU3
I/O M /
RSDS None,
none 129 153 G23
PA[12] PCR[12] Option 0
Option 1
Option 2
Option 3
GPIO[12]
DCU_G4
RSDS6P SIUL
DCU3
I/O M /
RSDS None,
none 130 154 F26
PA[13] PCR[13] Option 0
Option 1
Option 2
Option 3
GPIO[13]
DCU_G5
RSDS6M SIUL
DCU3
I/O M /
RSDS None,
none 131 155 F25
PA[14] PCR[14] Option 0
Option 1
Option 2
Option 3
GPIO[14]
DCU_G6
RSDS7P SIUL
DCU3
I/O M /
RSDS None,
none 134 158 F24
PA[15] PCR[15] Option 0
Option 1
Option 2
Option 3
GPIO[15]
DCU_G7
RSDS7M SIUL
DCU3
I/O M /
RSDS None,
none 135 159 F23
PORT B
PB[0] PCR[16] Option 0
Option 1
Option 2
Option 3
GPIO[16]
CANTX_0
TXD_0
—SIUL
FlexCAN_0
LINFlex_0
I/O S None,
none 13 13 W4
Table 7. Port pin summary (continued)
Port
pin PCR Alternate
function1Function Special
function2Peripheral3I/O
direction Pad
Type4RESET
config5
Pin number
176 LQFP 208 LQFP 416 TEPBGA
Pinout and signal descriptions
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 38
PB[1] PCR[17] Option 0
Option 1
Option 2
Option 3
GPIO[17]
CANRX_0
RXD_0
—SIUL
FlexCAN_0
LINFlex_0
I/O S None,
none 12 12 V1
PB[2] PCR[18] Option 0
Option 1
Option 2
Option 3
GPIO[18]
TXD_0
—SIUL
LINFlex_0
I/O S None,
none 153 183 D21
PB[3] PCR[19] Option 0
Option 1
Option 2
Option 3
GPIO[19]
RXD_0
—SIUL
LINFlex_0
I/O S None,
none 152 182 A22
PB[4] PCR[20] Option 0
Option 1
Option 2
Option 3
GPIO[20]
SCK_1
MA0
—SIUL
DSPI_1
ADC
I/O S None,
none 62 74 AF15
PB[5] PCR[21] Option 0
Option 1
Option 2
Option 3
GPIO[21]
SOUT_1
MA1
FABM
—SIUL
DSPI_1
ADC
Control
I/O S Input,
pull-
down
63 75 AC16
PB[6] PCR[22] Option 0
Option 1
Option 2
Option 3
GPIO[22]
SIN_1
MA2
ABS[0]
—SIUL
DSPI_1
ADC
Control
I/O S Input,
pull-
up
64 76 AF16
PB[7] PCR[23] Option 0
Option 1
Option 2
Option 3
GPIO[23]
SIN_0
eMIOS1[20]
I2S_SCK/PWMO
—SIUL
DSPI_0
PWM/Timer
SGM
I/O S None,
none 55 67 AC14
PB[8] PCR[24] Option 0
Option 1
Option 2
Option 3
GPIO[24]
SOUT_0
eMIOS1[19]
I2S_DO/PWMOA
—SIUL
DSPI_0
PWM/Timer
SGM
I/O S None,
none 54 66 AF13
PB[9] PCR[25] Option 0
Option 1
Option 2
Option 3
GPIO[25]
SCK_0
eMIOS1[18]
I2S_FS
—SIUL
DSPI_0
PWM/Timer
SGM
I/O M None,
none 53 65 AC13
Table 7. Port pin summary (continued)
Port
pin PCR Alternate
function1Function Special
function2Peripheral3I/O
direction Pad
Type4RESET
config5
Pin number
176 LQFP 208 LQFP 416 TEPBGA
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Pinout and signal descriptions
Freescale Semiconductor39
PB[10] PCR[26] Opti on 0
Option 1
Option 2
Option 3
GPIO[26]
CANRX_1
I2S_DO/PWMOA
—SIUL
FlexCAN_1
SGM
I/O S None,
none 14 14 W2
PB[11] PCR[27] Option 0
Option 1
Option 2
Option 3
GPIO[27]
CANTX_1
SGM_MCLK
—SIUL
FlexCAN_1
SGM
I/O S None,
none 15 15 Y4
PB[12] PCR[28] Opti on 0
Option 1
Option 2
Option 3
GPIO[28]
RXD_1
eMIOS1[10]
CS2_0
—SIUL
LINFlex_1
PWM/Timer
DSPI_0
I/O S None,
none 46 54 AF7
PB[13] PCR[29] Opti on 0
Option 1
Option 2
Option 3
GPIO[29]
TXD_1
eMIOS1[11]
CS1_0
—SIUL
LINFlex_1
PWM/Timer
DSPI_0
I/O S None,
none 47 55 AC8
PB[14] Reserved
PB[15] Reserved
PORT C
PC[0] PCR[30] Option 0
Option 1
Option 2
Option 3
GPIO[30]
ANS[0] SIUL
I/O J None,
none 88 104 AC21
PC[1] PCR[31] Option 0
Option 1
Option 2
Option 3
GPIO[31]
ANS[1] SIUL
I/O J None,
none 87 103 AC25
PC[2] PCR[32] Option 0
Option 1
Option 2
Option 3
GPIO[32]
ANS[2] SIUL
I/O J None,
none 86 102 AC26
PC[3] PCR[33] Option 0
Option 1
Option 2
Option 3
GPIO[33]
ANS[3] SIUL
I/O J None,
none 85 101 AC24
Table 7. Port pin summary (continued)
Port
pin PCR Alternate
function1Function Special
function2Peripheral3I/O
direction Pad
Type4RESET
config5
Pin number
176 LQFP 208 LQFP 416 TEPBGA
Pinout and signal descriptions
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 40
PC[4] PCR[34] Option 0
Option 1
Option 2
Option 3
GPIO[34]
ANS[4] SIUL
I/O J None,
none 84 100 AD24
PC[5] PCR[35] Option 0
Option 1
Option 2
Option 3
GPIO[35]
ANS[5] SIUL
I/O J None,
none 83 99 AD26
PC[6] PCR[36] Option 0
Option 1
Option 2
Option 3
GPIO[36]
ANS[6] SIUL
I/O J None,
none 82 98 AD21
PC[7] PCR[37] Option 0
Option 1
Option 2
Option 3
GPIO[37]
ANS[7] SIUL
I/O J None,
none 81 97 AD25
PC[8] PCR[38] Option 0
Option 1
Option 2
Option 3
GPIO[38]
ANS[8] SIUL
I/O J None,
none 76 92 AE26
PC[9] PCR[39] Option 0
Option 1
Option 2
Option 3
GPIO[39]
ANS[9] SIUL
I/O J None,
none 75 91 AE25
PC[10] PCR[40] Option 0
Option 1
Option 2
Option 3
GPIO[40]
I2S_DO/PWMO
ANS[10] SIUL
SGM
I/O J None,
none 74 90 AE23
PC[11] PCR[41] Option 0
Option 1
Option 2
Option 3
GPIO[41]
MA0
CS2_1
ANS[11] SIUL
ADC
DSPI_1
I/O J None,
None 73 89 AE24
PC[12] PCR[42] Option 0
Option 1
Option 2
Option 3
GPIO[42]
MA1
CS1_1
ANS[12] SIUL
ADC
DSPI_1
I/O J None,
None 72 88 AF26
Table 7. Port pin summary (continued)
Port
pin PCR Alternate
function1Function Special
function2Peripheral3I/O
direction Pad
Type4RESET
config5
Pin number
176 LQFP 208 LQFP 416 TEPBGA
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Pinout and signal descriptions
Freescale Semiconductor41
PC[13] PCR[43] Option 0
Option 1
Option 2
Option 3
GPIO[43]
MA2
CS0_1
ANS[13] SIUL
ADC
DSPI_1
I/O J None,
None 71 87 AF25
PC[14] PCR[44] Option 0
Option 1
Option 2
Option 3
GPIO[44]
ANS[14]
EXTAL32 SIUL
I/O J None,
None 70 86 AF24
PC[15] PCR[45] Option 0
Option 1
Option 2
Option 3
GPIO[45]
ANS[15]
XTAL32 SIUL
I/O J None,
None 69 85 AF23
PORT D
PD[0] PCR[46] Option 0
Option 1
Option 2
Option 3
GPIO[46]
M0C0M
SSD0_0
eMIOS1[8]
—SIUL
SMD
SSD
PWM/Timer
I/O SMD None,
None 90 106 AB26
PD[1] PCR[47] Option 0
Option 1
Option 2
Option 3
GPIO[47]
M0C0P
SSD0_1
eMIOS1[16]
—SIUL
SMC
SSD
PWM/Timer
I/O SMD None,
None 91 107 AB25
PD[2] PCR[48] Option 0
Option 1
Option 2
Option 3
GPIO[48]
M0C1M
SSD0_2
eMIOS1[23]
—SIUL
SMC
SSD
PWM/Timer
I/O SMD None,
None 92 108 AB24
PD[3] PCR[49] Option 0
Option 1
Option 2
Option 3
GPIO[49]
M0C1P
SSD0_3
eMIOS0[9]
—SIUL
SMC
SSD
PWM/Timer
I/O SMD None,
None 93 109 AB23
PD[4] PCR[50] Option 0
Option 1
Option 2
Option 3
GPIO[50]
M1C0M
SSD1_0
eMIOS0[8]
—SIUL
SMC
SSD
PWM/Timer
I/O SMD None,
None 96 112 AA26
PD[5] PCR[51] Option 0
Option 1
Option 2
Option 3
GPIO[51]
M1C0P
SSD1_1
eMIOS0[16]
—SIUL
SMC
SSD
PWM/Timer
I/O SMD None,
None 97 113 AA23
Table 7. Port pin summary (continued)
Port
pin PCR Alternate
function1Function Special
function2Peripheral3I/O
direction Pad
Type4RESET
config5
Pin number
176 LQFP 208 LQFP 416 TEPBGA
Pinout and signal descriptions
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 42
PD[6] PCR[52] Option 0
Option 1
Option 2
Option 3
GPIO[52]
M1C1M
SSD1_2
eMIOS0[23]
—SIUL
SMC
SSD
PWM/Timer
I/O SMD None,
None 98 114 Y26
PD[7] PCR[53] Option 0
Option 1
Option 2
Option 3
GPIO[53]
M1C1P
SSD1_3
—SIUL
SMC
SSD
I/O SMD None,
None 99 115 Y25
PD[8] PCR[54] Option 0
Option 1
Option 2
Option 3
GPIO[54]
M2C0M
SSD2_0
—SIUL
SMC
SSD
I/O SMD None,
None 100 116 Y24
PD[9] PCR[55] Option 0
Option 1
Option 2
Option 3
GPIO[55]
M2C0P
SSD2_1
eMIOS0[9]
—SIUL
SMC
SSD
PWM/Timer
I/O SMD None,
None 101 117 Y23
PD[10] PCR[56] Option 0
Option 1
Option 2
Option 3
GPIO[56]
M2C1M
SSD2_2
eMIOS0[10]
—SIUL
SMC
SSD
PWM/Timer
I/O SMD None,
None 102 118 W26
PD[11] PCR[57] Option 0
Option 1
Option 2
Option 3
GPIO[57]
M2C1P
SSD2_3
eMIOS0[11]
—SIUL
SMC
SSD
PWM/Timer
I/O SMD None,
None 103 119 W23
PD[12] PCR[58] Option 0
Option 1
Option 2
Option 3
GPIO[58]
M3C0M
SSD3_0
eMIOS0[12]
—SIUL
SMC
SSD
PWM/Timer
I/O SMD None,
None 106 122 V26
PD[13] PCR[59] Option 0
Option 1
Option 2
Option 3
GPIO[59]
M3C0P
SSD3_1
eMIOS0[13]
—SIUL
SMC
SSD
PWM/Timer
I/O SMD None,
None 107 123 V25
PD[14] PCR[60] Option 0
Option 1
Option 2
Option 3
GPIO[60]
M3C1M
SSD3_2
eMIOS0[14]
—SIUL
SMC
SSD
PWM/Timer
I/O SMD None,
None 108 124 V24
Table 7. Port pin summary (continued)
Port
pin PCR Alternate
function1Function Special
function2Peripheral3I/O
direction Pad
Type4RESET
config5
Pin number
176 LQFP 208 LQFP 416 TEPBGA
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Pinout and signal descriptions
Freescale Semiconductor43
PD[15] PCR[61] Option 0
Option 1
Option 2
Option 3
GPIO[61]
M3C1P
SSD3_3
eMIOS0[15]
—SIUL
SMC
SSD
PWM/Timer
I/O SMD None,
None 109 125 V23
PORT E
PE[0] PCR[62] Option 0
Option 1
Option 2
Option 3
GPIO[62]
M4C0M
SSD4_0
—SIUL
SMC
SSD
I/O SMD None,
None 126 U26
PE[1] PCR[63] Option 0
Option 1
Option 2
Option 3
GPIO[63]
M4C0P
SSD4_1
—SIUL
SMC
SSD
I/O SMD None,
None 127 U23
PE[2] PCR[64] Option 0
Option 1
Option 2
Option 3
GPIO[64]
M4C1M
SSD4_2
—SIUL
SMC
SSD
I/O SMD None,
None 128 T26
PE[3] PCR[65] Option 0
Option 1
Option 2
Option 3
GPIO[65]
M4C1P
SSD4_3
—SIUL
SMC
SSD
I/O SMD None,
None 129 T25
PE[4] PCR[66] Option 0
Option 1
Option 2
Option 3
GPIO[66]
M5C0M
SSD5_0
—SIUL
SMC
SSD
I/O SMD None,
None 132 T24
PE[5] PCR[67] Option 0
Option 1
Option 2
Option 3
GPIO[67]
M5C0P
SSD5_1
—SIUL
SMC
SSD
I/O SMD None,
None 133 T23
PE[6] PCR[68] Option 0
Option 1
Option 2
Option 3
GPIO[68]
M5C1M
SSD5_2
—SIUL
SMC
SSD
I/O SMD None,
None 134 R24
PE[7] PCR[69] Option 0
Option 1
Option 2
Option 3
GPIO[69]
M5C1P
SSD5_3
—SIUL
SMC
SSD
I/O SMD None,
None 135 R23
Table 7. Port pin summary (continued)
Port
pin PCR Alternate
function1Function Special
function2Peripheral3I/O
direction Pad
Type4RESET
config5
Pin number
176 LQFP 208 LQFP 416 TEPBGA
Pinout and signal descriptions
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 44
PORT F
PF[0] PCR[70] Option 0
Option 1
Option 2
Option 3
GPIO[70]
eMIOS1[19]
EVTO
DCULITE_B2
—SIUL
PWM/Timer
NEXUS
DCULite
I/O M None,
None 157 189 C20
PF[1] PCR[71] Option 0
Option 1
Option 2
Option 3
GPIO[71]
eMIOS1[20]
MSEO
DCULITE_B3
—SIUL
PWM/Timer
NEXUS
DCULite
I/O M None,
None 158 190 B20
PF[2] PCR[72] Option 0
Option 1
Option 2
Option 3
GPIO[72]
NMI
—SIUL
NMI
I/O S None,
None 45 53 AC7
PF[3] PCR[73] Option 0
Option 1
Option 2
Option 3
GPIO[73]
eMIOS1[21]
MSEO
DCULITE_B4
—SIUL
PWM/Timer
NEXUS
DCULite
I/O M None,
None 159 191 A20
PF[4] PCR[74] Option 0
Option 1
Option 2
Option 3
GPIO[74]
eMIOS1[14]
SDA_1
DCULITE_B5
—SIUL
PWM/Timer
I2C_1
DCULite
I/O M None,
None 160 192 D19
PF[5] PCR[75] Option 0
Option 1
Option 2
Option 3
GPIO[75]
QUADSPI_IO1_B
eMIOS1[15]
VIU8_PDI16
—SIUL
QuadSPI
PWM/Timer
VIU2/PDI
I/O M None,
None 161 193 A19
PF[6] PCR[76] Option 0
Option 1
Option 2
Option 3
GPIO[76]
QUADSPI_IO0_B
eMIOS1[16]
VIU9_PDI17
—SIUL
QuadSPI
PWM/Timer
VIU2/PDI
I/O M None,
None 162 194 D18
PF[7] PCR[77] Option 0
Option 1
Option 2
Option 3
GPIO[77]
eMIOS1[15]
SCL_1
DCULITE_B6
—SIUL
PWM/Timer
I2C_1
DCULite
I/O M None,
None 163 195 C18
PF[8] PCR[78] Option 0
Option 1
Option 2
Option 3
GPIO[78]
SDA_0
CS2_1
RXD_1
—SIUL
I2C_0
DSPI_1
LINFlex_1
I/O S None,
None 164 196 A18
Table 7. Port pin summary (continued)
Port
pin PCR Alternate
function1Function Special
function2Peripheral3I/O
direction Pad
Type4RESET
config5
Pin number
176 LQFP 208 LQFP 416 TEPBGA
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Pinout and signal descriptions
Freescale Semiconductor45
PF[9] PCR[79] Option 0
Option 1
Option 2
Option 3
GPIO[79]
SCL_0
CS1_1
TXD_1
—SIUL
I2C_0
DSPI_1
LINFlex_1
I/O S None,
None 165 197 D17
PF[10] PCR[80] Option 0
Option 1
Option 2
Option 3
GPIO[80]
QUADSPI_PCS_A
EVTI
—SIUL
QuadSPI
NEXUS
I/O M None,
None 169 201 A17
PF[11] PCR[81] Option 0
Option 1
Option 2
Option 3
GPIO[81]
QUADSPI_IO2_A
MDO0
—SIUL
QuadSPI
NEXUS
I/O M None,
None 170 202 D16
PF[12] PCR[82] Option 0
Option 1
Option 2
Option 3
GPIO[82]
QUADSPI_IO3_A
MDO1
—SIUL
QuadSPI
NEXUS
I/O M None,
None 171 203 C16
PF[13] PCR[83] Option 0
Option 1
Option 2
Option 3
GPIO[83]
QUADSPI_IO0_A
MDO2
—SIUL
QuadSPI
NEXUS
I/O M None,
None 172 204 B16
PF[14] PCR[84] Option 0
Option 1
Option 2
Option 3
GPIO[84]
QUADSPI_IO1_A
MDO3
—SIUL
QuadSPI
NEXUS
I/O M None,
None 173 205 A16
PF[15] PCR[85] Option 0
Option 1
Option 2
Option 3
GPIO[85]
QUADSPI_CLK_A
CLKOUT
MCKO
—SIUL
QuadSPI
Control
NEXUS
I/O F None,
None 174 206 B18
PORT G
PG[0] PCR[86] Option 0
Option 1
Option 2
Option 3
GPIO[86]
DCU_B0
SCL_3
eMIOS0[21]
RSDS8P SIUL
DCU3
I2C_3
PWM/Timer
I/O M None,
None 136 160 E26
PG[1] PCR[87] Option 0
Option 1
Option 2
Option 3
GPIO[87]
DCU_B1
SDA_3
eMIOS0[22]
RSDS8M SIUL
DCU3
I2C_3
PWM/Timer
I/O M None,
None 137 161 D26
Table 7. Port pin summary (continued)
Port
pin PCR Alternate
function1Function Special
function2Peripheral3I/O
direction Pad
Type4RESET
config5
Pin number
176 LQFP 208 LQFP 416 TEPBGA
Pinout and signal descriptions
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 46
PG[2] PCR[88] Option 0
Option 1
Option 2
Option 3
GPIO[88]
DCU_B2
RSDS9P SIUL
DCU3
I/O M None,
None 141 166 D25
PG[3] PCR[89] Option 0
Option 1
Option 2
Option 3
GPIO[89]
DCU_B3
RSDS9M SIUL
DCU3
I/O M None,
None 142 167 C25
PG[4] PCR[90] Option 0
Option 1
Option 2
Option 3
GPIO[90]
DCU_B4
RSDS10P SIUL
DCU3
I/O M None,
None 143 168 C26
PG[5] PCR[91] Option 0
Option 1
Option 2
Option 3
GPIO[91]
DCU_B5
RSDS10M SIUL
DCU3
I/O M None,
None 144 169 B26
PG[6] PCR[92] Option 0
Option 1
Option 2
Option 3
GPIO[92]
DCU_B6
RSDS11P SIUL
DCU3
I/O M None,
None 145 170 A26
PG[7] PCR[93] Option 0
Option 1
Option 2
Option 3
GPIO[93]
DCU_B7
RSDS11M SIUL
DCU3
I/O M None,
None 146 171 A25
PG[8] PCR[94] Option 0
Option 1
Option 2
Option 3
GPIO[94]
DCU_VSYNC
—SIUL
DCU3
I/O M None,
None 11 T4
PG[9] PCR[95] Option 0
Option 1
Option 2
Option 3
GPIO[95]
DCU_HSYNC
—SIUL
DCU3
I/O M None,
None 22 T2
PG[10] PCR[96] Option 0
Option 1
Option 2
Option 3
GPIO[96]
DCU_DE
—SIUL
DCU3
I/O M None,
None 33 T1
Table 7. Port pin summary (continued)
Port
pin PCR Alternate
function1Function Special
function2Peripheral3I/O
direction Pad
Type4RESET
config5
Pin number
176 LQFP 208 LQFP 416 TEPBGA
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Pinout and signal descriptions
Freescale Semiconductor47
PG[11] PCR[97] Option 0
Option 1
Option 2
Option 3
GPIO[97]
DCU_PCLK
RSDSCLKP SIUL
DCU3
I/O F None,
None 147 172 E23
PG[12] PCR[98] Option 0
Option 1
Option 2
Option 3
GPIO[98]
CS0_1
PDI_DE
DCULITE_B7
—SIUL
DSPI_1
PDI
DCULite
I/O M None,
None 168 200 A15
PG[13] Reserved
PG[14] Reserved
PG[15] Reserved
PORT H
PH[0]6PCR[99] Option 0
Option 1
Option 2
Option 3
GPIO[99]
TCK
—SIUL
JTAG
I/O S Input,
Pull Up 41 49 AC6
PH[1]6PCR[100] Option 0
Option 1
Option 2
Option 3
GPIO[100]
TDI
—SIUL
JTAG
I/O S Input,
Pull Up 42 50 AD6
PH[2]6PCR[101] Option 0
Option 1
Option 2
Option 3
GPIO[101]
TDO
—SIUL
JTAG
I/O M Output,
None 43 51 AE6
PH[3]6PCR[102] Option 0
Option 1
Option 2
Option 3
GPIO[102]
TMS
—SIUL
JTAG
I/O S Input,
Pull Up 44 52 AF6
PH[4] PCR[103] Option 0
Option 1
Option 2
Option 3
GPIO[103]
CS0_0
eMIOS1[21]
DCULITE_G6
—SIUL
DSPI_0
PWM/Timer
DCULite
I/O M None,
None 61 73 AE15
PH[5] PCR[104] Option 0
Option 1
Option 2
Option 3
GPIO[104]
VIU7_PDI15
I2S_FS
eMIOS1[8]
—SIUL
VIU2/PDI
SGM
PWM/Timer
I/O S None,
None 38
Table 7. Port pin summary (continued)
Port
pin PCR Alternate
function1Function Special
function2Peripheral3I/O
direction Pad
Type4RESET
config5
Pin number
176 LQFP 208 LQFP 416 TEPBGA
Pinout and signal descriptions
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 48
PH[6] Reserved
PH[7] Reserved
PH[8] Reserved
PH[9] Reserved
PH[10] Reserved
PH[11] Reserved
PH[12] Reserved
PH[13] Reserved
PH[14] Reserved
PH[15] Reserved
PORT J
PJ[0] PCR[105] Option 0
Option 1
Option 2
Option 3
GPIO[105]
DCULITE_B6
I2S_DO / PWMO
—SIUL
DCULite
SGM
I/O M None,
None L26
PJ[1] PCR[106] Option 0
Option 1
Option 2
Option 3
GPIO[106]
VIU1_PDI_HSYNC
eMIOS1[9]
eMIOS0[8]
—SIUL
VIU2/PDI
PWM/Timer
PWM/Timer
I/O S None,
None 44 U4
PJ[2] PCR[107] Option 0
Option 1
Option 2
Option 3
GPIO[107]
VIU0_PDI_VSYNC
eMIOS1[14]
eMIOS0[9]
—SIUL
VIU2/PDI
PWM/Timer
PWM/Timer
I/O S None,
None 55 U3
PJ[3] PCR[108] Option 0
Option 1
Option 2
Option 3
GPIO[108]
VIU_PCLK
eMIOS0[22]
PDI_DE
—SIUL
VIU2
PWM/Timer
PDI
I/O S None,
None 60 72 AD15
PJ[4] PCR[109] Option 0
Option 1
Option 2
Option 3
GPIO[109]
VIU2_PDI0
eMIOS0[21]
eMIOS0[23]
—SIUL
VIU2/PDI
PWM/Timer
PWM/Timer
I/O S None,
None 56 68 AD14
Table 7. Port pin summary (continued)
Port
pin PCR Alternate
function1Function Special
function2Peripheral3I/O
direction Pad
Type4RESET
config5
Pin number
176 LQFP 208 LQFP 416 TEPBGA
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Pinout and signal descriptions
Freescale Semiconductor49
PJ[5] PCR[110] Option 0
Option 1
Option 2
Option 3
GPIO[110]
VIU3_PDI1
eMIOS0[20]
eMIOS0[16]
—SIUL
VIU2/PDI
PWM/Timer
PWM/Timer
I/O M None,
None 57 69 AE14
PJ[6] PCR[111] Option 0
Option 1
Option 2
Option 3
GPIO[111]
VIU4_PDI2
eMIOS0[19]
eMIOS0[15]
—SIUL
VIU2/PDI
PWM/Timer
PWM/Timer
I/O S None,
None 58 70 AF14
PJ[7] PCR[112] Option 0
Option 1
Option 2
Option 3
GPIO[112]
VIU5_PDI3
eMIOS0[18]
eMIOS0[14]
—SIUL
VIU2/PDI
PWM/Timer
PWM/Timer
I/O S None,
None 59 71 AC15
PJ[8] PCR[113] Option 0
Option 1
Option 2
Option 3
GPIO[113]
VIU6_PDI4
eMIOS0[17]
eMIOS0[13]
—SIUL
VIU2/PDI
PWM/Timer
PWM/Timer
I/O S None,
None 88 U2
PJ[9] PCR[114] Option 0
Option 1
Option 2
Option 3
GPIO[114]
VIU7_PDI5
eMIOS1[22]
eMIOS0[12]
—SIUL
VIU2/PDI
PWM/Timer
PWM/Timer
I/O S None,
None 99 U1
PJ[10] PCR[115] Option 0
Option 1
Option 2
Option 3
GPIO[115]
VIU8_PDI6
eMIOS1[17]
eMIOS0[11]
—SIUL
VIU2/PDI
PWM/Timer
PWM/Timer
I/O S None,
None 10 10 V4
PJ[11] PCR[116] Option 0
Option 1
Option 2
Option 3
GPIO[116]
VIU9_PDI7
eMIOS1[15]
eMIOS0[10]
—SIUL
VIU2/PDI
PWM/Timer
PWM/Timer
I/O S None,
None 11 11 V3
PJ[12] PCR[117] Option 0
Option 1
Option 2
Option 3
GPIO[117]
DCU_TAG
DCULITE_G6
—SIUL
DCU3
DCULite
I/O M None,
None 148 178 A23
PJ[13] PCR[118] Option 0
Option 1
Option 2
Option 3
GPIO[118]
QUADSPI_PCS_B
eMIOS1[8]
VIU5_PDI13
—SIUL
QuadSPI
PWM/Timer
VIU2/PDI
I/O M None,
None 149 179 D22
Table 7. Port pin summary (continued)
Port
pin PCR Alternate
function1Function Special
function2Peripheral3I/O
direction Pad
Type4RESET
config5
Pin number
176 LQFP 208 LQFP 416 TEPBGA
Pinout and signal descriptions
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 50
PJ[14] PCR[119] Option 0
Option 1
Option 2
Option 3
GPIO[119]
QUADSPI_CLK_B
eMIOS1[17]
PDI_PCLK
—SIUL
QuadSPI
PWM/Timer
PDI
I/O F None,
None 150 180 C22
PJ[15] PCR[120] Option 0
Option 1
Option 2
Option 3
GPIO[120]
QUADSPI_IO3_B
eMIOS1[9]
VIU6_PDI14
—SIUL
QuadSPI
PWM/Timer
VIU2/PDI
I/O M None,
None 151 181 B22
PORT K
PK[0] PCR[121] Option 0
Option 1
Option 2
Option 3
GPIO[121]
eMIOS1[18]]
DCULITE_G7
—SIUL
PWM/Timer
DCULite
I/O M None,
None 155 187 A21
PK[1] PCR[122] Option 0
Option 1
Option 2
Option 3
GPIO[122]
QUADSPI_IO2_B
eMIOS1[14]
VIU7_PDI15
—SIUL
QuadSPI
PWM/Timer
VIU2/PDI
I/O M None,
None 156 188 D20
PK[2] PCR[123] Option 0
Option 1
Option 2
Option 3
GPIO[123]
VIU0_PDI8
eMIOS1[10]
DCULITE_TAG
—SIUL
VIU2/PDI
PWM/Timer
DCULite
I/O M None,
None 31 39 AE3
PK[3] PCR[124] Option 0
Option 1
Option 2
Option 3
GPIO[124]
VIU1_PDI9
eMIOS1[11]
DCULITE_DE
—SIUL
VIU2/PDI
PWM/Timer
DCULite
I/O M None,
None 32 40 AF3
PK[4] PCR[125] Option 0
Option 1
Option 2
Option 3
GPIO[125]
VIU2_PDI10
eMIOS1[12]
DCULITE_HSYNC
—SIUL
VIU2/PDI
PWM/Timer
DCULite
I/O M None,
None 33 41 AC4
PK[5] PCR[126] Option 0
Option 1
Option 2
Option 3
GPIO[126]
VIU3_PDI11
eMIOS1[13]
DCULITE_VSYNC
—SIUL
VIU2/PDI
PWM/Timer
DCULite
I/O M None,
None 34 42 AF4
PK[6] PCR[127] Option 0
Option 1
Option 2
Option 3
GPIO[127]
VIU4_PDI12
eMIOS1[9]
DCULITE_PCLK
—SIUL
VIU2/PDI
PWM/Timer
DCULite
I/O F None,
None 35 43 AC5
Table 7. Port pin summary (continued)
Port
pin PCR Alternate
function1Function Special
function2Peripheral3I/O
direction Pad
Type4RESET
config5
Pin number
176 LQFP 208 LQFP 416 TEPBGA
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Pinout and signal descriptions
Freescale Semiconductor51
PK[7] PCR[128] Option 0
Option 1
Option 2
Option 3
GPIO[128]
RXD_2
DCULITE_R2
TCON[8]
—SIUL
LINFlex_2
DCULite
TCON
I/O M None,
None —44 AD5
PK[8] PCR[129] Option 0
Option 1
Option 2
Option 3
GPIO[129]
TXD_2
DCULITE_R3
TCON[9]
—SIUL
LINFlex_2
DCULite
TCON
I/O M None,
None 45 AE5
PK[9] PCR[130] Option 0
Option 1
Option 2
Option 3
GPIO[130]
I2S_DO / PWMO
DCULITE_R4
TCON[10]
—SIUL
SGM
DCULite
TCON
I/O M None,
None —46 AF5
PK[10] PCR[131] Option 0
Option 1
Option 2
Option 3
GPIO[131]
SDA_1
eMIOS1[12]
DCULITE_TAG
—SIUL
I2C_1
PWM/Timer
DCULite
I/O S None,
None 51 59 AF8
PK[11] PCR[132] Opti on 0
Option 1
Option 2
Option 3
GPIO[132]
SCL_1
eMIOS1[13]
DCU_TAG
—SIUL
I2C_1
PWM/Timer
DCU3
I/O S None,
None 52 60 AC9
PK[12] Reserved
PK[13] Reserved
PK[14] Reserved
PK[15] Reserved
PORT L
PL[0] PCR[133] Option 0
Option 1
Option 2
Option 3
GPIO[133]
CANRX_1
SDA_1
ANS[19] SIUL
FlexCAN_1
I2C1
I/O M /
ANALO
G
None,
None 81 AE22
PL[1] PCR[134] Option 0
Option 1
Option 2
Option 3
GPIO[134]
CANTX_1
SCL_1
ANS[18] SIUL
FlexCAN_1
I2C1
I/O M /
ANALO
G
None,
None 82 AE21
Table 7. Port pin summary (continued)
Port
pin PCR Alternate
function1Function Special
function2Peripheral3I/O
direction Pad
Type4RESET
config5
Pin number
176 LQFP 208 LQFP 416 TEPBGA
Pinout and signal descriptions
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 52
PL[2] PCR[135] Option 0
Option 1
Option 2
Option 3
GPIO[135]
CANRX_0
eMIOS1[22]
ANS[17] SIUL
FlexCAN_0
PWM/Timer
I/O S /
ANALO
G
None,
None —83 AF22
PL[3] PCR[136] Option 0
Option 1
Option 2
Option 3
GPIO[136]
CANTX_0
eMIOS1[23]
ANS[16] SIUL
FlexCAN_0
PWM/Timer
I/O S /
ANALO
G
None,
None —84 AF21
PL[4] PCR[137] Option 0
Option 1
Option 2
Option 3
GPIO[137]
CS2_2
VIU5_PDI13
TCON[6]
—SIUL
DSPI_2
VIU2/PDI
TCON
I/O M None,
None 31 AB2
PL[5] PCR[138] Option 0
Option 1
Option 2
Option 3
GPIO[138]
CS1_2
VIU6_PDI14
TCON[7]
—SIUL
DSPI_2
VIU2/PDI
TCON
I/O M None,
None —32 AC2
PL[6] PCR[139] Option 0
Option 1
Option 2
Option 3
GPIO[139]
CS0_2
VIU7_PDI15
eMIOS1[18]
—SIUL
DSPI_2
VIU2/PDI
PWM/Timer
I/O S None,
None —33 AD1
PL[7] PCR[140] Option 0
Option 1
Option 2
Option 3
GPIO[140]
SIN_2
VIU8_PDI16
eMIOS1[19]
—SIUL
DSPI_2
VIU2/PDI
PWM/Timer
I/O S None,
None 34 AE1
PL[8] PCR[141] Option 0
Option 1
Option 2
Option 3
GPIO[141]
SOUT_2
VIU9_PDI17
eMIOS1[20]
—SIUL
DSPI_2
VIU2/PDI
PWM/Timer
I/O S None,
None —35 AF1
PL[9] PCR[142] Option 0
Option 1
Option 2
Option 3
GPIO[142]
SCK_2
PDI_PCLK
eMIOS1[21]
—SIUL
DSPI_2
PDI
PWM/Timer
I/O S None,
None —36 AF2
PL[10] PCR[143] Option 0
Option 1
Option 2
Option 3
GPIO[143]
eMIOS1[10]
DCULITE_G2
—SIUL
PWM/Timer
DCULite
I/O M None,
None 174 C24
Table 7. Port pin summary (continued)
Port
pin PCR Alternate
function1Function Special
function2Peripheral3I/O
direction Pad
Type4RESET
config5
Pin number
176 LQFP 208 LQFP 416 TEPBGA
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Pinout and signal descriptions
Freescale Semiconductor53
PL[11] PCR[14 4] Option 0
Option 1
Option 2
Option 3
GPIO[144]
eMIOS1[11]
DCULITE_G3
—SIUL
PWM/Timer
DCULite
I/O M None,
None 175 A24
PL[12] PCR[145] Option 0
Option 1
Option 2
Option 3
GPIO[145]
eMIOS1[12]
DCULITE_G4
—SIUL
PWM/Timer
DCULite
I/O M None,
None 176 C23
PL[13] PCR[146] Option 0
Option 1
Option 2
Option 3
GPIO[146]
eMIOS1[13]
DCULITE_G5
—SIUL
PWM/Timer
DCULite
I/O M None,
None 177 B23
PL[14] Reserved
PL[15] Reserved
PORT M
PM[0] PCR[147] Option 0
Option 1
Option 2
Option 3
GPIO[147]
I2S_SCK / PWMO
DCULITE_R5
TCON[11]
—SIUL
SGM
DCULite
TCON
I/O M None,
None 61 AE9
PM[1] PCR[148] Option 0
Option 1
Option 2
Option 3
GPIO[148]
I2S_FS
DCULITE_R6
—SIUL
SGM
DCULite
I/O M None,
None —62 AF9
PM[2] PCR[149] Option 0
Option 1
Option 2
Option 3
GPIO[149]
eMIOS1[17]
DCULITE_R7
DCULITE_DE
RSDSCLKM SIUL
PWM/Timer
DCULite
DCULite
I/O M None,
None 173 D23
PM[3] PCR[150] Option 0
Option 1
Option 2
Option 3
GPIO[150]
CANRX_2
RXD_3
TCON[4]
—SIUL
FlexCAN_2
LINFlex_3
TCON
I/O M None,
None —16 Y3
PM[4] PCR[151] Option 0
Option 1
Option 2
Option 3
GPIO[151]
CANTX_2
TXD_3
TCON[5]
—SIUL
FlexCAN_2
LINFlex_3
TCON
I/O M None,
None —17 Y2
Table 7. Port pin summary (continued)
Port
pin PCR Alternate
function1Function Special
function2Peripheral3I/O
direction Pad
Type4RESET
config5
Pin number
176 LQFP 208 LQFP 416 TEPBGA
Pinout and signal descriptions
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 54
PM[5] PCR[152] Option 0
Option 1
Option 2
Option 3
GPIO[152]
VIU5_PDI13
eMIOS1[22]
DCU_TAG
—SIUL
VIU2/PDI
PWM/Timer
DCU3
I/O M None,
None 16
PM[6] PCR[153] Option 0
Option 1
Option 2
Option 3
GPIO[153]
VIU6_PDI14
eMIOS1[23]
DCULITE_TAG
—SIUL
VIU2/PDI
PWM/Timer
DCULite
I/O M None,
None 17
PM[7] PCR[154] Option 0
Option 1
Option 2
Option 3
GPIO[154]
VIU8_PDI16
I2S_DO / PWMOA
eMIOS1[16]
—SIUL
VIU2/PDI
SGM
PWM/Timer
I/O S None,
None 39
PM[8] PCR[155] Option 0
Option 1
Option 2
Option 3
GPIO[155]
VIU9_PDI17
I2S_SCK / PWMO
eMIOS1[23]
—SIUL
VIU2/PDI
SGM
PWM/Timer
I/O S None,
None 40
PM[9] PCR[156] Option 0
Option 1
Option 2
Option 3
GPIO[156]
PDI_PCLK
SGM_MCLK
eMIOS0[8]
—SIUL
PDI
SGM
PWM/Timer
I/O M None,
None 113
PM[10] PCR[157] Option 0
Option 1
Option 2
Option 3
GPIO[157]
RXD_2
CANRX_2
eMIOS0[16]
—SIUL
LINFlex_2
FlexCAN_2
PWM/Timer
I/O S None,
None 114
PM[11] PCR[158] Option 0
Option 1
Option 2
Option 3
GPIO[158]
TXD_2
CANTX_2
eMIOS0[23]
—SIUL
LINFlex_2
FlexCAN_2
PWM/Timer
I/O S None,
None 115
PM[12] PCR[159] Option 0
Option 1
Option 2
Option 3
GPIO[159]
DCULITE_B7
I2S_SCK / PWMO
—SIUL
DCULite
SGM
I/O M None,
None L24
PM[13] PCR[160] Option 0
Option 1
Option 2
Option 3
GPIO[160]
DCULITE_PCLK
SGM_MCLK
—SIUL
DCULite
SGM
I/O F None,
None L23
PM[14] Reserved
Table 7. Port pin summary (continued)
Port
pin PCR Alternate
function1Function Special
function2Peripheral3I/O
direction Pad
Type4RESET
config5
Pin number
176 LQFP 208 LQFP 416 TEPBGA
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Pinout and signal descriptions
Freescale Semiconductor55
PM[15] Reserved
PORT N
PN[0] PCR[161] Option 0
Option 1
Option 2
Option 3
GPIO[161]
DCULITE_HSYNC
TCON[4]
—SIUL
DCULite
TCON
I/O M None,
None —— AC3
PN[1] PCR[162] Option 0
Option 1
Option 2
Option 3
GPIO[162]
DCULITE_VSYNC
TCON[5]
—SIUL
DCULite
TCON
I/O M None,
None —— AD3
PN[2] PCR[163] Option 0
Option 1
Option 2
Option 3
GPIO[163]
DCULITE_R0
RXD_2
VIU0_PDI8
—SIUL
DCULite
LINFlex_2
VIU2/PDI
I/O M None,
None ——AC10
PN[3] PCR[164] Option 0
Option 1
Option 2
Option 3
GPIO[164]
DCULITE_R1
TXD_2
VIU1_PDI9
—SIUL
DCULite
LINFlex_2
VIU2/PDI
I/O M None,
None —— AF10
PN[4] PCR[165] Option 0
Option 1
Option 2
Option 3
GPIO[165]
DCULITE_R2
TCON[6]
—SIUL
DCULite
TCON
I/O M None,
None —— AC11
PN[5] PCR[166] Option 0
Option 1
Option 2
Option 3
GPIO[166]
DCULITE_R3
TCON[7]
—SIUL
DCULite
TCON
I/O M None,
None —— AD11
PN[6] PCR[167] Option 0
Option 1
Option 2
Option 3
GPIO[167]
DCULITE_R4
TCON[8]
—SIUL
DCULite
TCON
I/O M None,
None AE11
PN[7] PCR[168] Option 0
Option 1
Option 2
Option 3
GPIO[168]
DCULITE_R5
TCON[9]
—SIUL
DCULite
TCON
I/O M None,
None —— AF11
Table 7. Port pin summary (continued)
Port
pin PCR Alternate
function1Function Special
function2Peripheral3I/O
direction Pad
Type4RESET
config5
Pin number
176 LQFP 208 LQFP 416 TEPBGA
Pinout and signal descriptions
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 56
PN[8] PCR[169] Option 0
Option 1
Option 2
Option 3
GPIO[169]
DCULITE_R6
TCON[10]
—SIUL
DCULite
TCON
I/O M None,
None ——AC12
PN[9] PCR[170] Option 0
Option 1
Option 2
Option 3
GPIO[170]
DCULITE_R7
TCON[11]
—SIUL
DCULite
TCON
I/O M None,
None ——AD12
PN[10] PCR[171] Option 0
Option 1
Option 2
Option 3
GPIO[171]
DCULITE_G0
RXD_3
VIU2_PDI10
—SIUL
DCULite
LINFlex_3
VIU2/PDI
I/O M None,
None AE12
PN[11] PCR[172] Option 0
Option 1
Option 2
Option 3
GPIO[172]
DCULITE_G1
TXD_3
VIU3_PDI11
—SIUL
DCULite
LINFlex_3
VIU2/PDI
I/O M None,
None —— AF12
PN[12] PCR[173] Option 0
Option 1
Option 2
Option 3
GPIO[173]
DCULITE_G2
eMIOS0[17]
—SIUL
DCULite
PWM/Timer
I/O M None,
None —— R26
PN[13] PCR[174] Option 0
Option 1
Option 2
Option 3
GPIO[174]
DCULITE_G3
eMIOS0[18]
—SIUL
DCULite
PWM/Timer
I/O M None,
None —— R25
PN[14] PCR[175] Option 0
Option 1
Option 2
Option 3
GPIO[175]
DCULITE_G4
eMIOS0[19]
—SIUL
DCULite
PWM/Timer
I/O M None,
None —— P26
PN[15] PCR[176] Option 0
Option 1
Option 2
Option 3
GPIO[176]
DCULITE_G5
eMIOS0[20]
—SIUL
DCULite
PWM/Timer
I/O M None,
None —— P24
PORT P
PP[0] PCR[177] Option 0
Option 1
Option 2
Option 3
GPIO[177]
DCULITE_G6
eMIOS0[21]
—SIUL
DCULite
PWM/Timer
I/O M None,
None —— P23
Table 7. Port pin summary (continued)
Port
pin PCR Alternate
function1Function Special
function2Peripheral3I/O
direction Pad
Type4RESET
config5
Pin number
176 LQFP 208 LQFP 416 TEPBGA
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Pinout and signal descriptions
Freescale Semiconductor57
PP[1] PCR[178] Option 0
Option 1
Option 2
Option 3
GPIO[178]
DCULITE_G7
eMIOS0[22]
—SIUL
DCULite
PWM/Timer
I/O M None,
None —— N26
PP[2] PCR[179] Option 0
Option 1
Option 2
Option 3
GPIO[179]
DCULITE_B0
CANRX_2
VIU4_PDI12
—SIUL
DCULite
FlexCAN_2
VIU2/PDI
I/O M None,
None —— N25
PP[3] PCR[180] Option 0
Option 1
Option 2
Option 3
GPIO[180]
DCULITE_B1
CANTX_2
PDI_DE
—SIUL
DCULite
FlexCAN_2
PDI
I/O M None,
None —— N23
PP[4] PCR[181] Option 0
Option 1
Option 2
Option 3
GPIO[181]
DCULITE_B2
eMIOS0[11]
—SIUL
DCULite
PWM/Timer
I/O M None,
None —— M26
PP[5] PCR[182] Option 0
Option 1
Option 2
Option 3
GPIO[182]
DCULITE_B3
eMIOS0[13]
—SIUL
DCULite
PWM/Timer
I/O M None,
None —— M25
PP[6] PCR[183] Option 0
Option 1
Option 2
Option 3
GPIO[183]
DCULITE_B4
eMIOS0[15]
—SIUL
DCULite
PWM/Timer
I/O M None,
None —— M24
PP[7] PCR[184] Option 0
Option 1
Option 2
Option 3
GPIO[184]
DCULITE_B5
I2S_FS
—SIUL
DCULite
SGM
I/O M None,
None —— M23
PP[8] Reserved
PP[9] Reserved
PP[10] Reserved
PP[11] Reserved
Table 7. Port pin summary (continued)
Port
pin PCR Alternate
function1Function Special
function2Peripheral3I/O
direction Pad
Type4RESET
config5
Pin number
176 LQFP 208 LQFP 416 TEPBGA
Pinout and signal descriptions
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 58
The location of TCON[0:3] pins is mentioned in the following table.
PP[12] Reserved
PP[13] Reserved
PP[14] Reserved
PP[15] Reserved
1Alternate functions are chosen by setting the values of the PCR[PA] bitfields inside the SIUL module.
PCR[PA] = 00 selects Option 0
PCR[PA] = 01 selects Option 1
PCR[PA] = 10 selects Option 2
PCR[PA] = 11 selects Option 3
This is intended to select the output fu nctions. To use one of the input functions, the PCR[IBE] bit must be written to ‘1’, regardless of the values selected in
the PCR[PA] bitfields. For this reason, the value corresponding to an input only function is reported as “—”.
2Special functions are enabled independently from the standard digital pin functions. Enabling standard I/O functions in the PCR registers may interfere with
their functionality. ADC functions are enabled using the PCR[APC] bit; other functions are enabled by enabling the respective m odule.
3Using the PSMI registers in the System Integration Unit Lite (SIUL), different pads can be multiplexed to the same peripheral input. Please see the SIUL chapter
of the MPC5645S Micro c ontroller Reference Manual for details.
4See the “Pad types” table for an explanation of the letters in this column.
5Reset configuration is given as I/O direction and pull, e.g., “Input, pullup”.
6Out of reset pins PH[0:3] are available as JTAG pins (TCK, TDI, TDO and TMS respectively). It is up to the user to configure pins PH[0:3] when needed.
Table 8. Location of TCON[0:3] Pins
Function Port Name PCR Ball Number
DCU_TAG / TCON0 PK11 PCR[132] Ball No: AC09
DCU_TAG / TCON0 PJ12 PCR[117] Ball No: A23
DCU_HSYNC/TCON1 PG9 PCR[95] Ball No: T02
DCU_VSYNC / TCON2 PG8 PCR[94] Ba ll No: T04
DCU_DE / TCON3 PG10 PCR[96] Ball No: T01
DCU_TAG/TCON3 PM5 PCR[152] NC (only on 176)
Table 7. Port pin summary (continued)
Port
pin PCR Alternate
function1Function Special
function2Peripheral3I/O
direction Pad
Type4RESET
config5
Pin number
176 LQFP 208 LQFP 416 TEPBGA
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
59 Freescale Semiconductor
The following pad types are available for system pins and functional port pins:
Table 9. Pad Types
Pad Function
S Slow (pad_ssr, p a d_ssr_hv)
M Medium (pad_msr, pad_msr_hv)
F Fast (pad_fc)
J Input/output with analog features (pad_tgate, pad_tgate_hv)
Analog Input only with analog features (pad_ae, pad_ae_hv)
SMD Stepper Motor Detector
DDR DDR pads
RSDS RSDS pads
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
60 Freescale Semiconductor
3 System design information
3.1 Power-up sequencing
The preferred power-up sequence for MPC5645S is as follows:
1. Generic IO supplies or noise-free supplies, consisting of:
VDDA
VDDE_A
VDDE_B
VDDM
VDD_DR
VDD33_DR
VDDPLL
2. All 3.3V supplies (VDDE_B & VDD33_DR) should be ramped up first, and then the rest of the I/O supplies should
be ramped up (VDDA, VDDE_A, VDDM, VDD_DR).
3. VDDR, the regulator input supply , should be the last supply to ramp up; all supplies can be ramped up together as long
as VDDR is included. So all 5V supplies should be ramped up after the 3.3V supplies, and if all the supplies are of the
same level, they can be ramped up together as well.
4. LV supply (VDD12). If Vreg is in bypass mode and the core supply (1.2V) is supplied externally, then this should be
the last supply given.
NOTE
For DDR, the 3.3 V supply (VD D33_DR) should come before VDD_DR.
NOTE
Vreg by pass mode is for factory testi n g on ly.
This sequence ensures that when VREG releases its LVDs, the IO and other HV segments are powered properly. This is
important because MPC5645S doesn't monitor LVDs on IO HV supplies.
4 Electrical characteristics
4.1 Introduction
This section contains electrical characteristics of the device as well as temperature and power considerations.
This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take
precautions to avoid application of any voltage higher than the specified maximum rated voltages.
To enhan ce reliabilit y, unused inputs can be driven to an appropriate logi c voltage level (VDD or VSS). This could be done by
internal pull up and pull down, which is provided by the product for most general purpose pins.
The parameters listed in the following tables represent the characteristics of the device and its demands on the system.
In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller
Characteristics is included in the Symbol column.
In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol
“SR” for System Requirement is included in the Symbol column.
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 61
4.2 Parameter classification
The electrical parameters shown in this supplement are guaranteed by various methods. To give the
customer a better understanding, the classifications listed in Table 10 are used and the parameters are
tagged accordingly in the tables where appropriate.
NOTE
The classification is shown in the column labeled “C” in the parameter
tables where appropriate.
4.3 Absolute maximum ratings
Table 10. Parameter Classifications
Classification tag Tag description
P Those parameters are guaranteed during production testing on each individual device.
C Those parameters are achieved by the design characterization by measuring a statistically
relevant sample size across process variations.
T Those parameters are achieved by design characterization on a small sample size from typical
devices under typical conditions unless otherwise noted. All values shown in the typical column
are within this category.
D Those parameters are derived mainly from simulations.
Table 11. Absolute maximum ratings
Symbol C Parameter Conditions Value Unit SpecID
Min Max
VDDA SR D Voltage on VDDA pin (ADC reference) with
respect to ground (VSSA) –0.3 +5.5 V D1.1
Relative to VDD VDD–0.3 VDD+0.3
VSSA SR D Voltage on VSSA (ADC reference) pin with
respect VSS
—V
SS–0.1 VSS+0.1 V D1.2
VDDPLL CC D Voltage on VDDPLL (1.2 V PLL supply) pin with
respect to ground (VSSPLL)—1.081.4VD1.3
Relative to VDD VDD–0.3 VDD+0.3
VDDR SR D Voltage on VDDR pin (regulator supply) with
respect to ground (VSSR) –0.3 +5.5 V D1.4
Relative to VDD VDD–0.3 VDD+0.3
VSSR SR D Voltage on VSSR (regulator ground) pin with
respect to VSS
—V
SS–0.1 VSS+0.1 V D1.5
VDD12 CC D Voltage on VDD12 pin with respect to ground
(VSS12)—1.081.4VD1.6
VSS12 CC D Voltage on VSS12 pin with respect to VSS —V
SS–0.1 VSS+0.1 V D1.7
VDDE_A1SR D Voltage on VDDE_A (I/O supply) pin with
respect to ground (VSSE_A) –0.3 +5.5 V D1.8
VDDE_B1SR D Voltage on VDDE_B (I/O supply) pin with
respect to ground (VSS) –0.3 +3.6 V D1.9
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
62 Freescale Semiconductor
NOTE
Stresses exceeding the recommended absolute maximum ratings may cause permanent
damage to the device. This is a stress rating only and functional operation of the device at
these or any other conditions above those indicated in the operational sections of this
specification are not implied. Exposure to absolute maxi mum rating conditions for
extended periods may affect device reliability. During overload conditions (VIN >V
DD or
VIN <V
SS), the voltage on pins with respect to ground (VSS) must not exceed the
recommended values.
4.4 Recommended operating conditions
VDDM1SR D Voltage on VDDM (stepper motor supply) pin
with respect to groun d (VSSM) –0.3 +5.5 V D1.10
VSS2SR D I/O supply ground 0 0 V D1.11
VDD_DR D Voltage on VDDDDR with respect to VSS –0.3 3.6 V D1.12
VRSDS D Voltage on VDDRSDS with respect to VSS –0.3 3.6 V D1.13
VIN SR D V oltage on any GPIO pin with respect to ground
(VSS) –0.3 VDDmax
(VDDE max of
that
segment)
V—
IINJPAD SR D Injected input current on any pin during
overload condition –10 10 mA D1.15
IINJSUM SR D Absolute sum of all injected input currents
during overload condition –50 50 D1.16
TSTORAGE SR T Storage temperature –55 150 °C D1.17
ESDHBM SR T ESD Susceptibility (Human Body Model) 2000 V D1.18
1Throughout the remainder of this docu me nt VDD refers collectively to I/O voltage supplies, i.e., VDDE_A, VDDE_B, and VDDM,
unless otherwise noted.
2Throughout the remainder of this docu me nt VSS refe rs collectively to I/O voltage supply grounds, i.e., VSSE_A, VSSPLL, and
VSSM, unless otherwise noted.
Table 12. Recommended operating conditions (3.3 V)
Symbol C Parameter Conditions Value Unit SpecID
Min Max
VDDA1SR P V oltage on VDDA pin (ADC reference) with re-
spect to ground (VSS)—+3.0+3.6VD2.1
D Relative to VDD VDD–0.1 VDD+0.1
VSSA SR P Voltage on VSSA (ADC reference) pin with
respect VSS
—V
SS–0.1 VSS+0.1 V D2.2
VDDPLL CC P Voltage on VDDPLL (1.2 V PLL supply) pin
with respect to ground (VSSPLL) 1.08 1.32 V D2.3
Table 11. Absolute maximum ratings (continued)
Symbol C Parameter Conditions Value Unit SpecID
Min Max
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 63
VDDR2SR P Voltage on VDDR pin (regulator supply) with
respect to ground (VSSR)—+3.0+3.6VD2.4
D Relative to VDD VDD–0.1 VDD+0.1
VSSR SR D Voltage on VSSR (regulator ground) pin with
respect to VSS
—V
SS–0.1 VSS+0.1 V D2.5
VDD123,4 CC P Volt age on VDD12 pin with respect to ground
(VSS12)—1.081.4VD2.6
VSS12 CC D Voltage on VSS12 pin with respect to VSS —V
SS–0.1 VSS+0.1 V D2.7
VDD5,6,7 SR P Voltage on VDD pins (VDDE_A, VDDE_B,
VDD_DR, VDDM) with respect to ground (VSS)—V
DDmin5VDDmax5VD2.8
VSS8SR D I/O supply ground 0 0 V D2.9
VDDE_A9SR P Voltage on VDDE_A (I/O supply) pin with
respect to ground (VSSE_A)—+3.0+3.6VD2.10
VDDE_B SR P Voltage on VDDE_B (I/O supply) pin with
respect to ground (VSSE_B)—+3.0+3.6VD2.11
VDDM SR P Voltage on VDDM (stepper motor supply) pin
with respect to ground (VSSM)—+3.0+3.6VD2.12
VDD_DR P Voltage on VDDDDR with respect to VSS +1.62 +3.6 V D2.13
VSS_DR D Voltage on VSSRSDS with respect to VSS +1.62 +3.6 V D2.14
VRSDS P Voltage on VDDDDR with respect to VSS —+3.0+3.6VD2.15
TVDD SR D VDD slope to ensure correct power up10 ——12V/msD2.16
TASR P Ambient temperature under bias -40 +105 °C D2.17
TJSR D Junction temperature under bias -40 +140 D2.18
1100 nF capacitance needs to be provided between VDDA/VSSA pair.
210 μF capacitance must be connected between VDDR and VSS12 because of a sharp surge due to external ballast.
3VDD12 cannot be used to drive any external component.
4Each VDD12/VSS12 supply pair should have a 10 μF capacitor . Absolute combined maximum cap acitance is 40 μF. Preferably ,
all the VDD12 supply pads should be shorted and then connected to a 4×10 μF capacitance. This is to ensure the ESR of
external capacitance does not exceed 0.2 Ω. A 100 nF capacitor must be placed close to the pin.
5VDD refers collectively to I/O voltage supplies, i.e., VDDE_A, VDDE_B, VDD_DR, and VDDM.
6100 nF capacitance needs to be provided between each VDD/VSS pair . VDDmin value for is 3 V for VDDE_A & VDDM as well
as for VDDE_B, while it is 1.62 V for VDD_DR. VDD max value is 3.6 V for VDDE_A & VDDM as well as for VDDE_B &
VDD_DR.
7Full electrical specification cannot be guaranteed when voltage drops below 3.0V. In particular, ADC electrical characteristics
and I/O’s DC electrical specification may not be guaranteed.
When voltage drops below VLVDHVL device is reset.
8VSS refers collectively to I/O voltage supply grounds, i.e., VSSE_A, VSS, and VSSM unless otherwise noted.
9VDDE_A should not be less than VDDA.
10 Guaranteed by device validation.
Table 12. Recommended operating cond itions (3.3 V) (continued)
Symbol C Parameter Conditions Value Unit SpecID
Min Max
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
64 Freescale Semiconductor
4.5 Thermal characteristics
Table 13. Recommended operating conditions (5.0 V)
Symbol C Parameter Conditions Value Unit SpecID
Min Max
VDDA1
1100 nF capacitance needs to be provided between VDDA/VSSA pair.
SR P V oltage on VDDA pin (ADC reference) with re-
spect to groun d (VSS) +4.5 +5.5 V D2.19
D Voltage drop2
2Full functionality cannot be guaranteed when voltage drops below 4.5 V. In particular, I/O DC and ADC electrical
characteristics may not be gua ranteed below 4.5 V during the voltage drop sequence.
+3.0 +5.5
D Relative to VDD VDD–0.1 VDD+0.1
VSSA SR D Voltage on VSSA (ADC reference) pin with
respect VSS
—V
SS–0.1 VSS+0.1 V D2.20
VDDPLL CC P Voltage on VDDPLL (1.2 V PLL supply) pin
with respect to ground (VSSPLL) 1.08 1.32 V D2.21
VDDR3
310 μF capacitance must be connected between VDDR and VSS12. It is recommended that this cap should be placed, as close
as possible to the DUT pin on board.
SR P Voltage on VDDR pin (regulator supply) with
respect to ground (VSSR) +4.5 +5.5 V D2.22
D Voltage drop2+4.5 +5.5
D Relative to VDD VDD–0.1 VDD+0.1
VSSR SR D Voltage on VSSR (regulator ground) pin with
respect to VSS
—V
SS–0.1 VSS+0.1 V D2.23
VDD124,5 CC P Voltage on VDD12 pin with respect to ground
(VSS12) 1.08 1.4 V D2.24
VSS12 CC D Voltage on VSS12 pin with respect to VSS —V
SS–0.1 VSS+0.1 V D2.25
VDD6,7 SR P Voltage on VDD pins (VDDE_A, VDDE_B,
VDD_DR, VDDMA, VDDMB, VDDMC) with
respect to ground (VSS)
Voltage drop2VDDmin6VDDmax6V D2.26
VSS8SR D I /O supply ground 0 0 V D2.27
VDDE_A9SR P Voltage on VDDE_A (I/O supply) pin with
respect to ground (VSSE_A) +4.5 +5.5 V D2.28
VDDE_B10 SR P Voltage on VDDE_B (I/O supply) pin with
respect to ground (VSSE_B) +3.0 +3.6 V D2.29
VDDM SR P Voltage on VD DMA (stepper motor supply)
pin with respect to ground (VSSMA) +4.5 +5.5 V D2.30
VDD_DR11 P Voltage on VDD_DR with respect to VSS +1.62 +3.6 V D2.31
VSS_DR D V oltage on VSSRSDS with respect to VSS +1.62 +3.6 V D2.32
VRSDS P Voltage on VDD_DR with respect to VSS +3.0 +3.6 V D2.33
TVDD SR D VDD slope to ensure correct power up12 ——12V/msD2.34
TASR P Ambient temperature under bias 40 +105 °C D2.35
–40 +105
TJSR D Junction temperature under bias –40 +140 D2.36
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 65
4VDD12 cannot be used to drive any external component.
5Each VDD12/VSS12 supply pair should have a 10 μF capacitor . Absolute combined maximum capacitance is 40 μF. Preferably ,
all the VDD12 supply pads should be shorted and th en connected to a 4×10 μF capacitance. This is to ensure the ESR of
external capacitance does not exceed 0.2 Ω. A 100 nF capacitor must be placed cl ose to the pin.
6VDD refers collectively to I/O voltage supplies, i.e., VDDE_A, VDDE_B, VDD_DR, VDDMA, VDDMB and VDDMC. VDDmin value for
is 4.5 V for VDDE_A & VDDM, 3 V VDDE_B, while it is 1.62 V for VDD_DR. VDD max value is 5.5 V for VDDE_A & VDDM
and 3.6 V for VDDE_B & VDD_DR.
7100 nF capacitance needs to be provided between each VDD/VSS pair.
8VSS refers collectively to I/O voltage supply grounds, i.e., VSSE_A, VSSE_B, VSSE_A, VSSE_E, VSSMA, VSSMB and VSSMC)
unless otherwise noted.
9VDDE_A should not be less than VDDA.
10 VDDE_B cannot go beyond 3.6V under any operating condition.
11 VDD_DR can be 1.8, 2.5 and 3.3V (typical) based on type of SDR memory.
12 Guaranteed by device validation.
Table 14. Thermal characteristics for 176-pin LQFP1
1Thermal characteristics are targets based on simulation that are subject to change per device characterizatio n.
Symbol C Parameter Conditions Value Unit SpecID
RθJA CC D Junction to Ambient Natural Convection2
2Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC
specification for this package.
Single layer board - 1s 36 °C/W D3.1
RθJA CC D Junction to Ambient Natural Convection2Four layer board - 2s2p 29 °C/W D3.2
RθJMA CC D Junction to Ambient2@200 ft./min., single layer
board - 1s 28 °C/W D3.3
RθJMA CC D Junction to Ambient2@200 ft./min., Four layer
board - 2s2p 23 °C/W D3.4
RθJB CC D Junction to Board3
3Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for
the specified package.
—18°C/WD3.5
RθJCtop CC D Junction to Case (Top) 4
4Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used
for the case temperature. Reported value includes the thermal resistance of the interface layer .
—5°C/WD3.6
ΨJT CC D Junction to Package Top Natural Convec-
tion5
5Thermal characterization parameter indicating the temperature difference between the package top and the junction
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written
as Psi-JT.
—2°C/WD3.7
Table 15. Thermal characteristics for 208-pin LQFP1
Symbol C Parameter Conditions Value Unit SpecID
RθJA CC D Junction to Ambient Natural Convection2Single layer board - 1s 34 °C/W D3.8
RθJA CC D Junction to Ambient Natural Convection2Four layer board - 2s2p 27 °C/W D3.9
RθJMA CC D Junction to Ambient2@200 ft./min., single layer
board - 1s 27 °C/W D3.10
RθJMA CC D Junction to Ambient2@200 ft./min., Four layer
board - 2s2p 22 °C/W D3.11
RθJB CC D Junction to Board3 18 °C/W D3.12
RθJCtop CC D Junction to Case (Top)4—5°C/WD3.13
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
66 Freescale Semiconductor
4.5.1 General notes for specifications at maximum junction temperature
An estimate of the chip junction temperature, TJ, can be obtained from the equation:
TJ = TA + (RθJA * PD)Eqn. 1
where:
TA= ambient temperature for the package (oC)
RθJA= junction to ambient thermal resistance (oC/W)
PD= power dissipation in the package (W)
ΨJT CC D Junction to Package Top Natural Convec-
tion5—2°C/WD3.14
1Thermal characteristics are targets based on simulation that are subject to change per device characterization.
2Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC
specification for this package.
3Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for
the specified package.
4Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used
for the case temperature. Reported value incl udes the thermal resistance of the interface layer.
5Thermal characterization parameter indicating the temperature difference between the package top and the junction
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as
Psi-JT.
Table 16. Thermal characteristics for 416-pin TEPBGA1
1Thermal characteristics are targets based on simulation that are subject to change per device characterizatio n.
Symbol C Parameter Conditions Value Unit SpecID
RθJA CC D Junction to Ambient Natural Convection2
2Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test bo ard meets
JEDEC specification for this package.
Single layer board - 1s 26 °C/W D3.15
RθJA CC D Junction to Ambient Natural Convection2Four layer board - 2s2p 1 8 °C/W D3.16
RθJMA CC D Junction to Ambient2@200 ft./min., single layer
board - 1s 20 °C/W D3.17
RθJMA CC D Junction to Ambient2@200 ft./min., Four layer
board - 2s2p 15 °C/W D3.18
RθJB CC D Junction to Board3
3Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for
the specified package.
10 °C/W D3.19
RθJCtop CC D Junction to Case (Top)4
4Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used
for the case temperature. Reported value includes the thermal resistance of the interface layer.
6 °C/W D3.20
ΨJT CC D Junction to Package Top Natural Convec-
tion5
5Thermal characterization parameter indicating the temperature difference between the package top and the junction
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written
as Psi-JT.
2 °C/W D3.21
Table 15. Thermal characteristics for 208-pin LQFP1 (continued)
Symbol C Parameter Conditions Value Unit SpecID
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 67
The thermal resistance values used are based on the JEDEC JESD51 series of standards to provide consistent values for
estimations and comparisons. The difference between the values determined for the single-layer (1s) board compared to a
four-layer board that has two signal layers, a power and a ground plane (2s2p), demonstrate that the effective thermal resistance
is not a constant. The thermal resistance depends on the:
Construction of the applicati on board (number of planes)
Effective size of the board which cools the component
Quality of the thermal and electrical connections to the planes
Power dissipated by adjacent components
Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package
to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance
between the vias leave the planes virtually disconnected, the thermal performance is also greatly reduced.
As a general rule, the value obtained on a single-layer board is within the normal range for the tightl y packed print e d circuit
board. The value obtained on a board with the internal planes is usually within the normal range if the application board has:
One oz. (35 micron nominal thickness) internal planes
Components are well separated
Overall power dissipation on the bo ard is less than 0.02 W/cm 2
The thermal performance of any component depends on the power dissipation of the surrounding components. In addition, the
ambient temperature varies widely within the application. For many natural convection and especially closed box applications,
the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the
device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the
local ambient conditions that determine the temperature of the device.
At a known board temperature, the junctio n temperature is estimated using the following equation:
TJ = TB + (RθJB * PD)Eqn. 2
where:
TB= board temperature for the package perimeter (oC)
RθJB= junction-to-board thermal resistance (oC/W) per JESD51-8S
PD= power dissipation in the package (W)
When the heat loss from the package case to the air does not factor into the calculation, an acceptable value for the junction
temperature is predictable. Ensure the application board is similar to the thermal test condition, with the component soldered to
a board with internal planes.
The thermal resistance is expressed as the sum of a junction-to-case thermal resistance plus a case-to-ambient thermal
resistance:
RθJA = RθJC + RθCA Eqn. 3
where:
RθJA = junction to ambient thermal resistance (oC/W)
RθJC= junction to case thermal resistance (oC/W)
RθCA= case to ambient thermal resistance (oC/W)
RθJC s device related and is not affected by other factors. The thermal environment can be controlled to change the
case-to-ambient thermal resistance, RθCA. For example, change the air flow around the device, add a heat sink, change the
mounting arrangement on the printed circu it board, or change the thermal dissipation on the printed circuit board surrounding
the device. This description is most useful for packages with heat sinks where 90% of the heat flow is through the case to heat
sink to ambient. For most packages, a better model is required.
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
68 Freescale Semiconductor
A more accurate two-resistor thermal model can be constructed from the junction-to-board thermal resistance and the
junction-to-case thermal resistance. The junction-to-case thermal resistance describes when using a heat sink or where a
substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the
thermal performance when most of the heat is conducted to the printed circuit board. This model can be used to generate simple
estimations and for computational fluid dynamics (CFD) thermal models.
To determi ne the jun c tio n temperature of the device in the application on a prototype board, use the thermal characterization
parameter (ΨJT) to determine the junction temperature by measuring the temperature at the top center of the package case using
the following equation:
TJ = TT + (ΨJT x PD)Eqn. 4
where:
TT= thermocouple temperature on top of the package (oC)
ΨJT= thermal characterization parameter (oC/W)
PD= power dissipation in the package (W)
The thermal characterization parameter is measured in compliance with the JESD51-2 specification using a 40-gauge type T
thermocouple epoxied to the top center of the package case. Position the thermocouple so that the thermocouple junction rests
on the package. Place a small amount of epoxy on the thermocouple junction and approximately 1 mm of wire extending from
the junction. Place the thermocouple wire flat against the package case to avoid measurement errors caused by the cooling
effects of the thermocouple wire.
References:
Semiconductor Equipment and Materials International
805 East Middlefield Rd.
Mountain View, CA 94043
(415) 964-5111
MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or
303-397-7956.
JEDEC specifications are available on the WEB at http://www.jedec.org.
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 69
4.6 EMI (electromagnetic interference) characteristics
4.7 Power management
4.7.1 Voltage regulator electrical characteristics
The internal voltage regulator requires an external NPN (BCP68 or NJD2873) ballast to be connected as shown in Figure 6 as
well as an external capacitance (CREG) to be connected to the device in order to provide a stable low voltage digit a l supply to
the device. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to
limit the serial inductance of the board to less than 15 nH.
For the MPC5645S microcontroller, 100 nF should be placed between each VDD12/VSS12 supply pair and also between the
VDDPLL/VSSPLL pair. Additionally, 10 μF should be placed between the VDDR pin and the adjacent VSS pin.
VDDR = 3.0 V to 3.6 V / 4.5 V to 5. 5 V, TA = -40 to 105 °C, unless otherwise specified.
Table 17. EMI testing specifications12
1The reported emission level is the value of the maximum emission, roun ded up to the next whole number.
2IEC Level Maximum:, L is less than or equal to 24 dBµV, K is less than or equal to 30 dBµV.
Symbol Parameter Conditions Clocks Frequency
Range Level
(Typ) Unit
Radiated
Emissions VEME Device Configuration,
test conditions and EM
testing per standard
IEC61967-2
FOSC 8MHz, External
Crystal
FCPU 124MHz
FBUS 124MHz
No PLL Frequency
Modulation
150 kHz – 50
MHz 19 dBµV
50 MHz –
150 MHz 30
150 MHz –
500 MHz 25
500 MHz –
1000 MHz 19
IEC Level K
FOSC - 8MHz, External
Crystal
FCPU -124MHz
FBUS -124MHz
2% PLL Frequency
Modulation
150 kHz – 50
MHz 15 dBµV
50 MHz –
150 MHz 24
150 MHz –
500 MHz 17
500 MHz –
1000 MHz 14
IEC Level L
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
70 Freescale Semiconductor
Figure 6. Exter nal NPN ballast connections
Tabl e 18. Voltage re g u lat o r elec trical charact e ri st ic s
Symbol C Parameter Conditions Min Max Unit SpecID
VDDR SR P Power supply 3.0 5.5 V D5.1
TJSR D Junction temperat ure -40 140 °C D5.2
IREG CC T Current consumption Reference included,
@ 55 °C No load
@ Full load
2
11
mA D5.3
ILCC T Output current capacity DC load current 450 mA D5.4
VDD12 CC D Output voltage (value @ IL= 0 @ 27°C) Pre-trimming sigma
< 7 mV —1.330VD5.5
P Post-trimming 1.145 1.32
T Output voltage (value @ IL= Imax) Post-trimming 1.145
SR D External decoupling/stability capacitor 4 capacitances of
10 µF each 10 * 4 µF D5.6
D ESR of external cap 0.05 0.2
D 1 bond wire R + 1
pad R 0.2 1
LBOND CC D Bonding Indu ctance for Bipolar Base Control pad 015nHD5.7
CC D Power supply rejection @ DC @ no load Cload = 10 µF * 4 –30 dB D5.8
D @ 200 kHz @ no load –100
D @ DC @ 400 mA –30
D @ 200 kHz @ 400 mA –30
CC D Load cu rrent transient Cload = 10 µF * 4 10% to 90%
of IL (max) in
100 ns
D5.9
tSU CC T Start-up time after input supply stabilizes1
1T ime af ter the input supply to the voltage regulator has ramped up (VDDR) and the voltage regulator has asserted the Power
OK signal.
Cload = 10 µF * 4 500 µs D5.10
VRC_CTRL
VDDR
VDD12
Ω
Ω
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 71
4.7.2 Voltage monitor electrical characteristics
The device implements a Power On Reset module to ensure correct power-up initialization, as well as four low voltage detectors
to monitor the VDD and the VDD12 voltage while device is supplied:
POR monitors VDD during the power-up phase to ensure device is maintained in a safe reset state
LVDHV3 monitors VDD to ensure device reset below minimum functional supply
LVDHV5 monitors VDD when app lication uses device in the 5.0V ± 10% range
LVDLVCOR monitors pow er domain No. 1
LVDLVBKP monitors power domain No. 0
Table 19. Low-power voltage regulator electrical characteristics
Symbol C Parameter Conditions Min Max Unit SpecID
TJSR D Junction temperat ure –40 140 °C D5.2
IREG CC T Current consumption Reference included,
@ 55 °C No load
@ Full load
5
600
µA D5.3
ILCC T Output current capacity DC load current 15 mA D5.4
VDD12 CC D Output voltage P re-trimming sigma
< 7 mV 1.33 V D5.5
P Post-trimming 1.14 1.32
Table 20. Ultra low-power voltage regulator electrical characteristics
Symbol C Parameter Conditions Min Max Unit SpecID
TJSR D Junction temperat ure –40 140 °C D5.2
IREG CC T Current consumption Reference included,
@ 55 °C No load
@ Full load
2
100
µA D5.3
ILCC T Output current capacity DC load current 5 mA D5.4
VDD12 CC D Output voltage (value @ IL= 0 @ 27°C) Pre-trimming sigma
< 7 mV 1.33 V D5.5
P Post-trimming 1.14 1.32
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
72 Freescale Semiconductor
4.7.3 Low voltage domain power consumption
Table 22 provides DC electrical characteristics for significant application modes. These values are indicative values; actual
consumption depends on the application.
Table 21. Low voltage monitor electrical characteristics
Symbol C Parameter Conditions1
1VDD = 3.3V ± 10% / 5.0V ± 10%, TA = -40 / +105°C, unless otherwise specified
Value2
2All values need to be confirmed during device validation.
Unit SpecID
Min Typ Max
VPORH CC C Power-on reset threshold 1.5 2.7 V D5.11
VLVDHV3H CC C LVDHV3 low voltage detector high threshold 2.9 D5.12
VLVDHV3L CC C LVDHV3 low voltage detector low threshold 2.5 D5.13
VLVDHV5H CC C LVDHV5 low voltage detector high threshold 4.4 D5.14
VLVDHV5L CC C LVDHV5 low voltage detector low threshold 3.9 D5.15
VLVDLVCORH CC C LVDLVCOR low voltage detector high threshold TA = 25°C,
after trimming 1.185 D5.16
VLVDLVCORL CC C LVDLVCOR low voltage detector low threshold 1.095 D5.17
Table 22. DC electrical characteristics
Symbol C Parameter Conditions1Value2
Unit
Min Typ Max
IDDMAX2CC D RUN mode maximum
average current 295 3753mA
IDDRUN4CC P RUN mode typical
average current5fCPU = 125MHz, Dual Display Drive
with external DRAM, 416 TEPBGA
package option only
——275mA
fCPU = 125MHz, Single Display Drive,
no external DRAM, 176 LQFP / 208
LQFP package options
——240
IDDHALT CC C HALT mode current6Slow internal RC oscil lator (128KHz)
running TA = 25 oC 17.5 23.5 mA
PT
A = 105 oC 35 45.5
IDDSTOP CC D STOP mode current7 8Slow internal RC oscillator (128KHz)
running TA = –40oC—645 μA
DT
A = 0oC—1100
PT
A = 25oC 1531 5500
DT
A = 55oC—3.8mA
DT
A = 85oC—9.7
CT
A = 105oC 17.67 36.5
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 73
IDDSTDBY2 CC D STANDBY2 mode
current9
(64K SRAM on)
SXOSC (32KHz) ON and RTC
running TA = –40oC—470 μA
DT
A = 0oC—480
PT
A = 25oC 481 490
DT
A = 55oC—525—
DT
A = 85oC—650—
PT
A = 105oC 870 910
CC D SXOSC (32KHz) and RTC OFF TA = –40oC—63 μA
DT
A = 0oC—85
PT
A = 25oC 93 100
DT
A = 55oC—95
DT
A = 85oC—190—
PT
A = 105oC 390 430
IDDSTDBY1 CC D STANDBY1 mode
current
(8K SRAM on)10
SXOSC (32KHz) ON and RTC
running TA = –40oC—415 μA
DT
A = 0oC—422
PT
A = 25oC 426 430
DT
A = 55oC—575—
DT
A = 85oC—680—
PT
A = 105oC 810 915
CC D SXOSC (32 KHz) and RTC OFF TA = –40oC—20 μA
DT
A = 0oC—22
PT
A = 25oC—2975
DT
A = 55oC—47
DT
A = 85oC—118—
PT
A = 105oC 236 410
1VDD = 3.0V to 5.5V, TA = -40 to 105 °C, unless otherwise specified.
2IDDMAX is composed of the current consumption on all supplies (VDD12, VDDE_A, VDDE_B, VDDA, VDDR, VDDM, VDDPLL,
VDD_DR). It does not include current consumption linked to I/Os toggling which is highly dependent on the application. The
given value is thought to be a worst case value with all peripherals running, and code fetched from code fla s h while modify
operation on-going on data flash. It is to be noticed that this value can be significantly reduced by application; switch-off not
used peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use
low power mode when possible.
3Higher current may be sinked by device during power-up and standby exit. Please refer to inrush current in Table 23.
4RUN current measured with typical application and accesses on both flash and RAM.
5Data and Code Flash in Normal Power. Code fetched from RAM: DCUs running with 20MHz pixel clock, QuadSPI fetching
data at 80MHz, GPU accessing internal SRAM and external DRAM, DMA, RLE, and VIU active, Serial IPs CAN and LIN in
loop back mode, DSPI as Master, PLL as system Clock (4 x Multiplier) peripherals on (eMIOS/ADC/SMD/SSD/SGM) and
running at max frequency, periodic SW/WDG timer reset enabled.
Table 22. DC electrical characteristics (continued)
Symbol C Parameter Conditions1Value2
Unit
Min Typ Max
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
74 Freescale Semiconductor
4.8 DC electrical specifications
4.8.1 DC specification for CMOS090LP2 library @ VDDE = 3.3 V
NOTE
These pad specifications are applicable for pads in the Digital segment Only. See the "GPIO
power bank supplies and functionality" table in the "Voltage Regulators and Power
Supplies" chapter of the reference manual for details.
6Flash in Low Power. RC-osc128KHz & RC-OSC 16MHzon. 10MHz XTAL clock.FlexCAN: instances: 0, 1ON (clocked but no
reception or transmission), LINFLEX: instances 0, 1, 2 ON (clocked but no reception or transmission). eMIOS: instance: 0, 1
ON - 16 channels on with PWM20KHz. DSPI: instance: 0 (clocked but no communication). DCUs, TCON, VIU, GPU clock
gated, RTC/API ON.PIT ON . STM ON. ADC ON but not converting.
7For Tj > 105 0C , HPvreg needs to be kept ON. The consumption increases beyond this temperature and to handle the extra
current, HPvreg should be ON.
8No clock, RC 16MHz off, RCI 128KHz on, PLL off, HPvreg off, ULPVreg/LPVreg on. All possible peripheral s off and clock
gated. Flash in power down mode.
9ULPreg ON, HP/LPVreg off, 64KB RAM on, device configured for minimum consumption, all possible modules switched-off.
10 ULPreg ON, HP/LPVreg off, 8KB RAM on, device configured for minimum consumption, all possi ble modules switched-off.
Table 23. DC electrical specifications
Symbol C Parameter Condition Value Unit SpecID
Min Max
Vdd S R P Core supply voltage 1.08 1.32 V D9.1
Vdde SR P I/O supply voltage 3.0 3.6 V D9.2
Vdd33 SR P I/O pre-driver supply voltage 3.0 3.6 V D9.3
Vih_c SR P CMOS input buffer high
voltage With hysteresis enabled 0.65×Vdde Vdde+0.3 V D9.4
With hysteresis disabled 0.55×Vdde Vdde+0.3
Vil_c SR P CMOS input buffer low
voltage With hysteresis enabled Vss–0.3 0.35×Vdde V D9.5
With hysteresis disabled Vss–0.3 0.40×Vdde
Vhys_c SR T CMOS input buffer
hysteresis —0.1×Vdde V D9.6
Vih_fod_h SR P 5 V tolerant CMOS input
buffer high voltage With hysteresis enabled 0.65×Vdd33 Vdd33+0.3 V D9.7
Vil_fod_h SR P 5 V tolerant CMOS input
buffer low voltage With hysteresis enabled Vss–0.3 0.35×Vdd33 V D9.8
Iact_s SR T Selectable weak
pullup/pulldown current 25 150 μAD9.9
Iinact_d SR P Digital pad input leakage
current Weak pull inactive –2.5 2.5 μA D9.10
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 75
Iinact_a SR P Ana log pad input leakage
current Weak pull inactive –150 150 n A D9.11
Voh SR P Output high voltage Refer to Table 24 0.8 ×Vdde V D9.12
Vol SR P Output low voltage Refer to Table 24 —0.2×Vdde V D9.13
Vol_fod_h SR C Fast open-drain output low
voltage Iol_fod_h = 10 mA 0.2×Vdd33 D9.16
Table 24. Drive current, VDDE=3.3 V (+/- 10%)
Pad C Drive mode Minimum Ioh (mA)1
1Ioh is defined as the current sourced by the pad to drive the output to Voh.
Minimum Iol (mA)2
2Iol is defined as the current sunk by the pad to drive the output to Vo l.
pad_fc C 00 16.1 24
01 31.8 47.9
10 47.2 70.6
11 77 114.5
pad_msr C All 61.9 83.6
pad_ssr C All 61.9 83.6
Table 25. Supply leakage
Pad C VDD VDDE
(Typ/Max) VDD33
(Typ/Max)
pad_fc D 90 μA3nA / 4μA 1 nA / 30 μA
pad_msr
pad_ssr
Table 23. DC electrical specifications (continued)
Symbol C Parameter Condition Value Unit SpecID
Min Max
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
76 Freescale Semiconductor
4.8.2 DC specification for CMOS090LP2fg library @ VDDE = 5.0 V
NOTE
These pad specifications are applicable for pads in the Analog segment Only. See the
"GPIO power bank supplies and functionality" table in the "Voltage Regulators and Power
Supplies" chapter of the reference manual for details.
Table 26. DC electrical specifications
Symbol C Parameter Condition Value Unit SpecID
Min Max
Vdd S R P Co re supply voltage 1.08 1.32 V D9.17
Vdde SR P I/O supply voltage 4.5 5.5 V D9.18
Vdd33 SR P I/O pre-driver supply voltage 3.0 3.6 V D9.19
Vih_hys SR P CMOS input buffer high
voltage With hysteresis enabled 0.65×Vdde Vdde+0.3 V D9.20
Vil_hys SR P CMOS input buffer low
voltage With hysteresis enabled Vss–0.3 0.35×Vdde V D9.21
Vih SR P CMOS input buffer high
voltage With hysteresis disabled 0.55×Vdde Vdde+0.3 V D9.22
Vil SR P CMOS input buffer low
voltage With hysteresis disabled Vss–0.3 0.40×Vdde V D9.23
Vhys SR T CMOS input buffer
hysteresis —0.1×Vdde V D9.24
Pull_Ioh SR P Weak pullup current 35 135 μA D9.25
Pull_Iol SR P Weak pulldown current 35 200 μA D9.26
Iinact_d SR P Digital pad input leakage
current Weak pull inactive –2.5 2.5 μA D9.27
Iinact_a SR P Ana log pad input leakage
current Weak pull inactive –150 150 nA D9.28
Voh SR P Slew rat e co nt rol l ed output
high voltage —0.8×Vdde V D9.29
Vol SR P Slew rate cont rol l e d ou tp u t
low voltage ——0.2×Vdde V D9.30
V oh_ls SR C Low swing output pad output
high voltage 2.64 V D9.31
Ioh_msr SR C pad_msr_hv Ioh 11.6 40.7 mA D9.32
Iol_msr SR C pad_msr_hv Iol 17.7 68.2 mA D9.33
Ioh_ssr SR C pad_ssr_hv Ioh 6.0 21.3 mA D9.34
Iol_ssr SR C pad_ssr_hv Iol 9.2 36.3 mA D9.35
Rtgate SR D Pad_tgate_hv input
resistance 250 800 ΩD9.39
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 77
Table 27. DC electrical specifications
Symbol Parameter Condition Value Unit SpecID
Min Max
Vdd SR Core supply voltage 1.08 1.32 V D9.45
Vdde SR I/O supply voltage 3.0 3.6 V D9.46
Vdd33 SR I /O pre-driver supply voltage 3.0 3.6 V D9.47
Vih_hys SR CMOS input buffer high
voltage With hysteresis enabled 0.65×Vdde Vdde+0.3 V D9.48
Vil_hys SR CMOS input buffer low
voltage With hysteresis enabled Vss–0.3 0.35×Vdde V D9.49
Vih SR CMOS input buffer high
voltage With hysteresis disabled 0.55×Vdde Vdde+0.3 V D9.50
Vil SR CMOS input buffer low
voltage With hysteresis disabled Vss–0.3 0.40×Vdde V D9.51
Vhys SR CMOS input buffer
hysteresis —0.1×Vdde V D9.52
Pull_Ioh SR Weak pullup current 15 70 μA D9.53
Pull_Iol SR Weak pulldown current 15 95 μA D9.54
Iinact_d SR Digital pad input leakage
current Weak pull inactive –2.5 2.5 μA D9.55
Iinact_a SR Analog pad input leakage
current Weak pull inactive –150 150 nA D9.56
Voh SR Slew rate controlled output
high voltage —0.8×Vdde V D9.57
Vol SR Slew rate controlled output
low voltage ——0.2×Vdde V D9.58
Ioh_msr S R pad_msr_hv Ioh 5.4 21 mA D9.59
Iol_msr SR pad_msr_hv Iol 8.1 38.6 m A D9.60
Ioh_ssr SR pad_ssr_hv Ioh 2.8 11.2 mA D9.61
Iol_ssr SR pad_ssr_hv Iol 4.2 20.6 mA D9.62
Rtgate SR Pad_tgate_hv input
resistance 325 1250 ΩD9.65
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
78 Freescale Semiconductor
Table 28. Supply leakage
Pad VDD VDDE VDD33
Typ Max Typ Max Typ Max
pad_msr_hv 0.818 nA 83.7 nA 0.81 nA 118 nA
pad ssr_hv 0.818 nA 83.7 nA 0.858 nA 88.7 nA
pad_i_hv 0.307 nA 48.4 nA 88.2 pA 30 nA
biasref_hv ——————
core_v_det_hv 0 0 0 0
core_v_det_lp_hv 0 0
corner_esdpadcell_hv——————
corner_esdpadcell_id00_hv ——————
corner_esdpadcell_id11_hv——————
corner_esdpadcell_lp_hv——————
esd_term_35_84_hv ——————
pad_9v_hv 0 0
pad_ae_hv ——————
pad_esdspacer_hv ——————
pad_tgate_hv ——————
pad_vdd33_hv ——————
pad_vdde_hv 0 0 0 0
pad_vddint3v_hv 0 0 0 0
pad_vddint_hv 0 0
pad_vss_hv 0 0 ————
pad_vsse_hv 0 0
pad_vssint3v_hv 0 0
pad_vssint_hv 0 0
spcr_17_82_hv ——————
spcr_35_84_hv ——————
spcr_71_88_hv ——————
spcr_143_38_hv ——————
spcr_vdde_lvl_hv ——————
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 79
4.8.3 DC specification for CMOS090_ddr library @ VDDE = 3.3 V
Table 29. AVG IDDE specifications
Cell Period (ns) Load (pF)1
1All loads are lumped loads.
VDDE (V) Drive/slew select IDDE (mA)
pad_msr_hv2
2Average current is for pad configured as output only. Use pad_i current for input.
24 50 5.5 11 14
62 50 5.5 01 5.3
317 50 5.5 00 1.1
425 200 5.5 00 3
pad_ssr_hv237 50 5.5 11 9
130 50 5.5 01 2.5
650 50 5.5 00 0.5
840 200 5.5 00 1.5
Table 30. DC electrical specifications at 3.3 V VDDE
Symbol Parameter Value Unit SpecID
Min Max
Vdd SR Core supply voltage 1.08 1.32 V D9.71
Vdde SR I/O supply voltage 3.0 3.6 V D9.72
Vdd33 SR I/O pre-driver supply voltage 3.0 3.6 V D9.73
V ref SR Input reference voltage 1.3 1.7 V D9.74
Vtt SR Termination voltage Vref–0.05 Vref+0.05 V D9.75
Vih SR Input high voltage Vref+0.20 V D9.76
Vil SR Input low voltage Vref–0.2 V D9.77
Voh SR Output hig h voltage Vtt+0.8 V D9.78
Vol SR Output low voltage Vtt–0.8 V D9.79
Table 31. Output drive current @ VDDE = 3.3 V (+/-10%)
Pad C Drive mode Minimum Ioh (mA) Minimum Iol (mA)
pad_st_acc D 111 –16 16
pad_st_dq D 111 –16 16
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
80 Freescale Semiconductor
4.8.4 DC specification for CMOS090_ddr library @ VDDE = 2.5 V
pad_st_clk D 111 –16 16
pad_st D 111 –16 16
pad_st_odt D 111 –16 16
pad_st_ck D 111 –16 16
Table 32. DC electrical specifications at 2.5 V VDDE
Symbol C Parameter Value Unit SpecID
Min Max
Vdd S R P Core supply voltage 1.08 1.32 V D9.80
Vdde SR P I/O supply voltage 2.3 2.7 V D9.81
Vdd33 SR P I/O pre-driver supply voltage 3.0 3.6 V D9.82
V ref SR P Input reference voltage 0.49×Vdde 0.51×Vdde V D9.83
Vtt SR P Termination voltage V ref–0.04 Vref+0.04 V D9.84
Vih SR P Input high volta ge Vref+0.15 V D9.85
Vil SR P Input low voltage Vref–0.15 V D9.86
Voh SR P Output high voltage Vtt+0.81 V D9.87
Vol SR P Output low voltage Vtt–0.81 V D9.88
Table 33. Output drive current @ VDDE = 2.5 V (+/-200mV)
Pad C Drive mode Mini mum Ioh (mA) Minimum Iol (mA) Libraries
pad_st_acc D 011 –16.2 16.2 6MDDR
pad_st_dq D 011 –16.2 16.2 6MDDR
pad_st_ck D 011 16.2 16.2 6MDDR
Table 31. Output drive current @ VDDE = 3.3 V (+/-10%) (continued)
Pad C Drive mode Minimum Ioh (mA) Minimum Iol (mA)
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 81
4.8.5 DC specification for CMOS090_ddr library @ VDDE = 1.8 V
Table 34. DC electrical specifications for 1.8 V VDDE
Symbol C Parameter Value Unit SpecID
Min Max
Vdd S R P Core supply voltage 1.08 1.32 V D9.89
Vdde SR P I/O supply voltage 1.7 1.9 V D9.90
Vdd33 SR P I/O pre-driver supply voltage 3.0 3.6 V D9.91
V ref SR P Input reference voltage 0.49×Vdde 0.51×Vdde V D9.92
Vtt SR P Termination voltage V ref–0.04 Vref+0.04 V D9.93
Vih SR P Input high voltage Vref+0.125 V D9.94
Vil SR P Input low voltage Vref–0.125 V D9.95
Voh SR P Output high voltage Vtt+0.81 V D9.96
Vol SR P Output low voltage Vtt–0.81 V D9.97
Table 35. Output drive current @ VDDE = 1.8 V (+/-100mV)
Pad Drive mode Minimum Ioh (mA) Minimum Iol (mA) Libraries
pad_st_acc D 000 –3.57 3.57 6MDDR
001 –7.84 7.84
010 –5.36 5.36
110 –13.4 13.4
pad_st_dq D 000 –3.57 3.57 6MDDR
001 –7.84 7.84
010 –5.36 5.36
110 –13.4 13.4
pad_st_clk D 000 –3.57 3.57 6MDDR
001 –7.84 7.84
010 –5.36 5.36
110 –13.4 13.4
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
82 Freescale Semiconductor
4.8.6 SMD Characteristics
Table 36. ODT DC electrical characteristics
Symbol C Parameter Condition Value Unit SpecID
Min Typ Max
Rtt SR C Effective impedance
value Rainbow supports only 150
ohm termination and that
can be enabled by enabling
any bit of the termination
control register (all of them
are OR’ed).
120 150 180 ΩD9.98
Table 37. core_v_det_odt and core_v_det 33_odt spec ifications
VDDE C VDD Vtrip max (V) Vtrip min Hysteresis min (V)
3.5 C Rising 0.79 0.44 0.07
C Falling 0.56 0
1.62 C Rising 0.65 0.3 0.16
C Falling 0.33 0
Rising C 0.0 1.40 0.3
Table 38. SMD pad electrical characteristics
Symbol C Parameter Conditions Value Unit
Min Typ Max
VIL CC P Low level input voltage –0.4 0.35×VDDM V
VIH CC P Hig h level input voltage 0.65×VDDM —V
DDM+0.4
VHYST CC C Schmitt trigger hysteresis 0.1×VDDM ——
VOL CC P Lo w level output voltage IOL = 20 mA1 0.32
IOL = 30 mA2 0.48
VOH CC P High level output voltage IOH = –20 mA1VDDM–0.32
IOH = –30 mA2VDDM–0.48
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 83
Figure 7. Pad output delay
IPU CC P Internal pull-up device current Vin=VIL –130 μA
Vin=VIH —— 0
IPD CC P Internal pull-down device
current Vin=VIL 0—
Vin=VIH 130
IIN CC P Input leakage current –1 1
RDSONH CC C SMD pad driver active high
impedance IOH –30 mA2——16Ω
RDSONL CC C SMD pad driver active low
impedance IOL 30 mA2——16Ω
VOMATCH CC C Output driver matching
VOH /V
OL
IOH /I
OL 30 mA2——90mV
1VDD = 5.0 V ±10%, Tj = –40 to +140 °C.
2VDD = 5.0 V ±10%, Tj = –40 to +120 °C.
Table 38. SMD pad electrical characteristics (continued)
Symbol C Parameter Conditions Value Unit
Min Typ Max
VDD/2
VOH
VOL
Rising
Edge
Output
Delay
Falling
Edge
Output
Delay
Pad
Data Input
Pad
Output
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
84 Freescale Semiconductor
4.9 SSD Characteristics
4.10 RESET electrical characteristics
The device implements a dedicated bidirectional RESET pi n.
Table 39. SMD pad delays
Symbol C Parameter Conditions Value Unit
Min Typ Max
CC D SMD pad delay CL=50pf
VDD=5V±10%
SRE=1
——165ns
CL=50pf
VDD=5V±10%
SRE=0
——35ns
CC D SMD pad delay CL=50pf
VDD=3.3V±10%
SRE=1
——350ns
CL=50pf
VDD=3.3V±10%
SRE=0
——50ns
Table 40. SSD electrical characteristics
Symbol C Parameter Value1
1Vdd = 5.0V ±10%, Tj = –40 to +140 °C.
Unit
Min Typ Max
VVREF CC P Reference voltage (IVREF =0) V
DDM/2–0.03 V
DDM/2 VDDM/2 + 0.03 V
IVREF CC P Reference voltage output current 1.85 mA
RIN CC D Input resistance (against VDDM/2) 0.8 1.0 1.2 MΩ
VIN CC C Input common mode range VSSM —V
DDM V
SSDCONST CC C SSD constant 0.549 0.572 0.597
SSDOFFSET CC C SSD offset (unipolar, Nsample =
256) –9 9 counts
SSD offset (bipolar, Nsample = 256) –8 8
SSD offset (bipolar with offset
cancellation, Nsample = 256) –5 5
fSSDSMP CC D SSD cmpout sample rate 0.5 2 .0 MHz
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 85
Figure 8. Startup reset requirements
Figure 9. Noise filtering on re set signal
VRESET
VIL
VIH
VDD
filtered by
hysteresis filtered by
lowpass filter
WFRST WNFRST
hw_rst
‘
‘
filtered by
lowpass filter
WFRST
unknown reset
state device under hardware rese t
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
86 Freescale Semiconductor
Table 41. Reset electrical characteristics
Symbol C Parameter Conditions1
1VDD = 3.3V ± 10% / 5.0V ± 10%, TA = -40 / +105oC, unless otherwise specified.
Value2
2All values need to be confirmed during device validation.
Unit SpecID
Min Typ Max
VIH SR P Input High Leve l CMOS
Schmitt Trigger —0.65V
DD —V
DD+0.4 V D8.1
VIL SR P Input low Level CMOS
Schmitt Trigger -0.4 0.35VDD VD8.2
VHYS CC3
3Data based on characterization results, not tested in production.
D Input hysteresis CMOS
Schmitt Trigger —0.1V
DD ——VD8.3
VOL CC4P Output low level Push Pull, IOL = 2mA,
VDD = 5.0V ± 10%, ipp_hve =
0
(recommended)
0.1VDD VD8.4
D Push Pull, IOL = 1mA,
VDD = 5.0V ± 10%, ipp_hve =
15
0.1VDD
C Push Pull, IOL = 1mA,
VDD = 3.3V ± 10%, ipp_hve =
1 (recommended)
——0.5
Ttr CC4T Output transition time out-
put pin6
MEDIUM configuration
CL = 25pF,
VDD = 5.0V ± 10%, ipp_hve =
0
10 ns D8.5
CL = 50pF,
VDD = 5.0V ± 10%, ipp_hve =
0
——20
CL = 100pF,
VDD = 5.0V ± 10%, ipp_hve =
0
——40
CL = 25pF,
VDD = 3.3V ± 10%, ipp_hve =
1
——12
CL = 50pF,
VDD = 3.3V ± 10%, ipp_hve =
1
——25
CL = 100pF,
VDD = 3.3V ± 10%, ipp_hve =
1
——40
WFRST SR T RESET Input Filtered Pulse 70 ns D8.6
WNFRST SR T RESET Input Not Filtered
Pulse 400 ns D8.7
|IWPU|CC
4T Weak pull-up current abso-
lute value —10µAD8.8
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 87
4.11 Fast external crystal oscillator (4–16 MHz) electrical
characteristics
This device implements the fast external oscillator (FXOSC) usin g a lo w power Loop Controlled Pierce Oscillator (LCP)
configuration.
4Guaranteed by design simulation.
5This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to RGM module section of the refer-
ence manual).
6CL calculation should include device and package capacitance (CPKG <5pF).
Table 42. Fast external crystal oscillator electrical characteristics
Symbol Parameter Conditions Value Unit SpecID
Min Typ Max
fOSC C Crystal oscillator range Loop controlled Pierce 4.0 16 MHz O9.1
iOSC D Startup current 100 µA O9.2
tUPOSC C Oscillator start-up time Loop controlled Pierce 41
1fOSC = 4 MHz, C = 22 pF.
502
2Maximum value is for extreme cases using high Q, low frequency crystals.
ms O9.3
tCQOUT D Clock quality check time-out 0.45 2.5 s O9.4
fCMFA D Clock monitor failure assert
frequency 200 400 800 kHz O9.5
fEXT D External square wave input
frequency2 2.0 50 MHz O9.6
tEXTL D External square wave pulse
width low 9.5 ns O9.7
tEXTH D External square wave pulse
width high 9.5 ns O9.8
tEXTR D Exter nal square wave rise time 1 ns O9.9
tEXTF D External square wave fall time 1 ns O9.10
CIN D Input capacitance EXTAL and XTAL pins 7 pF O9.11
VIH,EXTAL P EXTAL pin input high voltage2—0.75×
VDDPLL
——VO9.12
T—V
DDPLL
+0.3
VIL,EXTAL P EXTAL pin input low voltage2——0.25×
VDDPLL
VO9.13
TV
SSPLL-
0.3 ——
VHYS,EXTAL C EXTAL pin input hysteresis2——180mVO9.14
VPP,EXTAL C EXTAL pin oscillation amplitude Loop controlled Pierce 1.0 V O9.15
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
88 Freescale Semiconductor
4.12 Slow external crystal oscillator (32 KHz) electrical characteristics
The device provides a slow external oscillator/resonator driver (SXOSC).
Figure 10. Crystal oscillator and resonator connection scheme
NOTE
PC[14]/PC[1 5 ] mu st not be directly used to drive external circuits.
Figure 11. Slow external crystal oscillator electrical characteristics
C
Y
C
X
Crystal
PC[14]
PC[15]
R
F
Resonator
PC[14]
PC[15]
DEVICE DEVICE
VDD
TXOSCLPSU
VDDMIN
VXTAL
VXOSCLP
valid internal clock
90%
10%
1/fXOSCLP
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 89
4.13 FMPLL electrical characteristics
The device provides a frequency-modulated phase-locked loop (FMPLL) module to generate a fast system clock from the fast
external oscillator driver.
Table 43. Slow external crystal oscillator electrical characteristics
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = -40 to +105 °C, un less oth erwise specified.
Value2
2All values need to be confirmed during device validation.
Unit SpecID
Min Typ Max
fXOSCLP SR C Oscillator frequency 32 40 kHz O10.1
VXOSCLP CC3
3Granted by device validation.
C Oscillation am pl i tu d e VDDA=3.3V±10%,
VDDE_A=3.3V±10% 1.12 1.33 1.74 V O10.2
VDDA=5.0V±10%,
VDDE_A=5.0V±10% 1.12 1.37 1.74
IXOSCLP CC3D Oscillator consumption 5 µA O10.3
TXOSCLPS
U
CC3D Oscillator start-up time 2 s O10.4
VIH SR C Input high level CMOS
Schmitt Trigger Oscillator bypass mode 0.65VDDA
0.65VDDE_A
—V
DDA+0.4
VDDE_A+0.4 V O10.5
VIL SR C Input low level CMOS
Schmitt Trigger Oscillator bypass mode VSS–0.4 0.35VDDA
0.35VDDE_A
V O10.6
Table 44. FMPLL electrical characteristics
Symbol C Parameter Conditions1
1VDDPLL = 1.2 V ± 10%, TA = -40 to +105 °C, unless otherwise specified.
Value2
2All values need to be confirmed during device validation.
Unit SpecID
Min Typ Max
fPLLIN SR T PLL reference clock 3
3PLLIN clock retrieved directly from XOSCHS clock. Input characteristics are granted when oscillator is used in functional
mode. When bypass mode is used, oscillator input clock should verify fPLLIN and ΔPLLIN.
4 120 MHz O11.1
ΔPLLIN SR T PLL reference clock duty cycle3 47.5 52.5 % O11.2
fPLLOUT CC4T PLL output clock frequency 15 2505MHz O11.3
fCPU CC4T System clock frequency 1256MHz O11.4
TLOCK CC4T PLL lock time Stable oscillator (fPLLIN = 10 MHz) 100 µs O1 1.5
ΔTPKJIT CC4T PLL jitter fPLLOUT (PHI i.e. FMPLL O/P) =
15.625 MHz @ 10 MHz resonator –509 509 ps O11.6
ΔTLTJIT CC4T PLL long term jitter fPLLIN = 10 MHz (resonator) –2.4 2.4 ns O11.7
IPLL CC7D Current Consumption (Normal
Mode for Analog Supply) TA = 25°C 500 µA O11.8
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
90 Freescale Semiconductor
4.14 Fast internal RC oscillator (16 MHz) electrical characteristics
The device provides a fast internal RC oscillator (FIRC). This is used as the default clock at the power-up of the device.
4.15 Slow internal RC oscillator (128 kHz) electrical characteristics
The device provides a slow internal RC oscillator (SIRC). This can be used as the reference clock for the RTC module.
4Data based on device simulation.
52x sys clock required for generation of DDR timing.
6fCPU of 125 MHz can be achieved only at temperatures up to 105 °C with a maximum FM depth of 2%.
7Data based on characterization results, not tested in production
Table 45. Fast internal oscillator electrical characteristics
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = -40 to +105 °C, unless otherwise specified.
Value2
2All values need to be confirmed during device validation.
Unit SpecID
Min Typ Max
fRCM CC3
3Guaranteed by device simulation, not tested in production.
P RC oscillator high frequency TA = 25 °C, trimmed 16 MHz O12.1
IRCMRUN CC3D RC oscillator high frequency current in run-
ning mode TA = 25 °C, trimmed 200 µA O12.2
IRCMPWD CC3D RC oscillator high frequency current in power
down mode TA = 25 °C 10 µA O12.3
ΔRCMVAR CC4
4Guaranteed by device characterization, not tested in production.
C RC oscillator variation in temperature and
supply with respect to fRC at TA = 55 °C in
high-frequency configuration
–5 +5 % O12.5
Tab le 46. Slow inte rn al RC oscillator electrica l ch ara cteri st ic s
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = -40 to +105 °C, unless otherwise specified.
Value2
2All values need to be confirmed during device validation.
Unit SpecID
Min Typ Max
fRCL CC3
3Guaranteed by device simulation, not tested in production
P RC oscillator low frequency TA = 25 °C, trimmed 128 kHz O13.1
IRCL CC3D RC oscillator low frequency current TA = 25 °C, trimmed 5 µA O13.2
ΔRCLVAR
3CC3C RC oscillator variation in temperature and
supply with respect to fRC at TA = 55 °C in
high frequency configuration
High frequency config-
uration –10 +10 % O13.4
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 91
4.16 Flash memory electrical characteristics
Table 47. Program and erase specifications
Symbol C Parameter Min
Value Typical
Value1
1Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change
pending device characterization.
Initial
Max2
2Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.
Max3
3The maximum program & erase times occur after the specified number of program/erase cycles. These maximum values are
characterized but not guaranteed.
Unit SpecID
Tdwprogram C Double Word (64 bits) Program Time4
4Actual hardware programming times. This does not include software overhead.
——22500μsD14.1
T16kpperase C 16 KB Block Pre-program and Erase Time 1000 5000 ms D14.2
T64kpperase C 64 KB Block Pre-program and Erase Time 1800 5000 ms D14.3
T128kpperase C 128 KB Block Pre-prog ram and Erase Time 2600 7500 ms D14.4
T256kpperase C 256 KB Block Pre-program and Erase Time 5200 15000 ms D14.5
Table 48. Flash module life
Symbol C Parameter Conditions Value Unit SpecID
Min Typ
P/E C Number of program/erase cycles per block
for 16 KB, 48KB and 64KB blocks, across
full operating temperature range (Tj)
100,000 P/E
cycles D14.6
P/E C Number of program/erase cycles per block
for 128KB and 256KB blocks, across full
operating temperature range (Tj)
1, 000 100,000 P/E
cycles D14.7
Data
retention C Minimum data retention at 85 °C average
ambient temperature1
1Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature
range.
Blocks with 0 - 1,000 P/E
cycles 20 Years D14.8
Blocks with 1,001 -
10,000 P/E cycles 10 Years
Blocks with 10,001 -
100,000 P/E cycles 5 — Years
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
92 Freescale Semiconductor
4.17 ADC parameters
The device provides a 10-bit Successive Approximation Register (SAR) Analog to Digital Converter.
Figure 12. ADC Characteristics and Error Definitions
(2)
(1)
(3)
(4)
(5)
Offset Error OSE
Offset Error OSE
Gain Error GE
1 LSB (ideal)
Vin(A) (LSBideal)
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) Different ial non-linearity error (DNL)
(4) Integral non-linearity error (INL)
(5) Center of a step of the actual transfe r curve
code out
1023
1022
1021
1020
1019
1018
5
4
3
2
1
0
7
6
1 2 3 4 5 6 7 1017 1018 1019 1020 1021 1022 1023
1 LSB ideal = VDDA / 1024
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 93
4.17.1 Input Impedance and ADC Accuracy
In the following analysis, th e input circuit corres ponding to the precise channels is considered.
T o preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor
with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as
possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources
charge during the sampling phase, when the analog signal source is a high-impedance source.
A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC
filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to
be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal
(bandwidth) and the equivalen t input impedance of the ADC itself.
In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: CS being
substantially a switched capacitance, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path
to ground. For instance, assuming a conversion rate of 1 MHz, with CS equal to 3 pF, a resistance of 330kΩ is obtained (REQ =
1 / (fc*CS), where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage
partitioning between this resistance (sampled voltage on CS) and the sum of RS + RF + RL + RSW + RAD, the external circuit
must be designed to respect the Equation 5:
Eqn. 5
Equation 5 generates a constraint for external network design, in particular on resist iv e path. Internal switch resistances (RSW
and RAD) can be neglected with respect to external resistances.
Figure 13. Input Equivalent Circuit (Precise Channels)
VA
RSRFRLRSW RAD
+++ +
REQ
---------------------------------------------------------------------------
1
2
---LSB<
RF
CF
RSRLRSW1
CP2 CS
VDD Sampling
Source Filter Current Limiter
EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME
RS Source Impedance
RF Filter Resistance
CF Filter Capacitance
RL Current Limiter Resistance
RSW1 Channel Selection Switch Impedance
RAD Sampling Switch Impedance
CP Pin Capacitance (two contributions, CP1 and CP2)
CS Sampling Capacitance
CP1
RAD
Channel
Selection
VA
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
94 Freescale Semiconductor
Figure 14. Input Equivalent Circuit (Extended Channels)
A second aspect involving the capacitance network shall be considered. Assumi ng the three capacitances CF, CP1 and CP2 are
initially charged at the source voltage VA (refer to the equivalent circuit reported in Figure 13): A charge sharing phenomenon
is installed when the sampling phase is started (A/D switch close).
Figure 15. Transient Behavior du ring Sampling Phase
In particular two different transient periods can be distinguished:
A first and quick charge transfer from the internal capacitance CP1 and CP2 to the sampling capacitance CS occurs (CS
is supposed initially completely discharged): considering a worst case (since the time constant in reality would be
faster) in which CP2 is reported in parallel to CP1 (call CP = CP1 + CP2), the two capacitances CP and CS are in series,
and the time constant is
R
F
C
F
R
S
R
L
R
SW1
C
P3
C
S
V
DD
Sampling
Source Filter Current Limiter
EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME
RS Source Impedance
RF Filter Resistance
CF Filter Capacitance
RL Current Limiter Resistance
RSW Channel Select ion Switch Impedance (two contributions RSW1 and RSW2)
RAD Sampling Switch Impedance
CP Pin Capacitance (three contributions, CP1, CP2 and CP3)
CS Sampling Capacitance
C
P1
R
AD
Channel
Selection
V
A
C
P2
Extended
R
SW2
Switch
VA
VA1
VA2
t
TS
VCS Voltage Transient on CS
ΔV < 0.5 LSB
12
τ1 < (RSW + RAD) CS << TS
τ
2
= R
L
(C
S
+ C
P1
+ C
P2
)
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 95
Eqn. 6
Equation 6 can again be simplified considering only CS as an additional worst condition. In reality, the transient is
faster , but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time TS
is always much longer than the internal time constant:
Eqn. 7
The charge of CP1 and CP2 is redistributed also on CS, determining a new value of the voltage VA1 on the capacitance
according to Equation 8:
Eqn. 8
A second charge transfer involves also CF (that is typically bigger than the on-chip capacitance) through the resistance
RL: again considering the worst case in which CP2 and CS were in parallel to CP1 (since the time constant in reality
would be faster), the time constant is:
Eqn. 9
In this case, the time constant depends on the external circuit: in particular imposing that the transi en t is completed
well before the end of sampling time TS, a constraints on RL sizing is obtained:
Eqn. 10
Of course, RL shall be sized also according to the current limitation constraints, in combination with RS (source
impedance) and RF (filter resistance). Being CF definitively bigger than CP1, CP2 and CS, then the final voltage VA2
(at the end of the charge transfer transient) will be much higher than VA1. Equation 11 must be respected (charge
balance assuming now CS already charged at VA1):
Eqn. 11
The two transients above are not influenced by the voltage source that, due to the presence of the RFCF filter, is not able to
provide the extra charge to compensate the voltage drop on CS with respect to the ideal source VA; the time constant RFCF of
the filter is very high with respect to the sampling time (TS). The filter is typically designed to act as anti-aliasing.
τ1RSW RAD
+()=CPCS
CPCS
+
---------------------
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
96 Freescale Semiconductor
Figure 16. Spectral Representation of Input Signal
Calling f0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, fF),
according to the Nyquist theorem the conversion rate fC must be at least 2f0; it means that the constant time of the filter is greater
than or at least equal to twice the conversion period (TC). Again the conversion period TC is longer than the sampling time TS,
which is just a portion of it, even when fixed channel continuous conversion mode is sel ected (fastest conversion rate at a
specific channel): in conclusion it is evident that the time constant of the filter RFCF is definitively much higher th an the
sampling time TS, so the charge level on CS cannot be modified by the analog signal source during the time in which the
sampling switch is closed.
The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage
drop on CS; from the two charge balance equations above, it is simple to derive Equation 12 between the ideal and real sampled
voltage on CS:
Eqn. 12
From this formula, in the worst case (when VA is maximum, that is for instance 5V), assuming to accept a maximum error of
half a count, a constraint is evident on CF value:
Eqn. 13
4.17.2 ADC electrical characteristics
f0f
Analog Source Bandwidth (VA)
f0f
Sampled Signal Spectrum (fC = conversion Rate)
fC
f
Anti-Aliasing Filter (fF = RC Filter pole)
fF
2 f0 ℜ≤ fC (Nyquist
fF = f0 (Anti-aliasing Filtering Condition)
TC ℜ≤ 2 RFCF (Conversion Rate vs. Filter Pole)
Noise
VA
VA2
------------CP1 CP2
+C
F
+
CP1 CP2
+C
FCS
++
--------------------------------------------------------=
CF2048 CS
>
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 97
Table 49. ADC electrical characteristics
Symbol C Parameter Conditions1Value2
Unit SpecID
Min Typ Max
VSSA SR D Voltage on VSSA (ADC
reference) pin with re-
spect to ground (VSS)3
-0.1 0.1 V D15.1
VDDA SR D Voltage on VDDA pin
(ADC reference) with re-
spect to ground (VSS)
—V
DDE_A–0.1 VDDE_A+0.1 V D15.2
VAINx SR D Analog input voltage4—V
SSA-0.1 VDDA+0.1 V D15.3
fADC SR DADC analog frequency 6 32 MHz D15.4
tADC_PU SR DADC power up delay 1.5 µs D15.5
tADC_S CC5T Sample time6fADC = 32 MHz,
ADC_conf_sample_input =
17
0.5 µs D15.6
fADC = 6 MHz,
ADC_conf_sample_input =
127
——21
tADC_C CC5T Conversion time7fADC = 32 MHz,
ADC_conf_comp = 2 0.625 µs D15.7
CSCC5DADC input sampling
capacitance 3 pF D15.8
CP1 CC5DADC input pin
capacitance 1 3 pF D15.9
CP2 CC5DADC input pin
capacitance 2 1 pF D15.10
CP3 CC5DADC input pin
capacitance 3 1 pF D15.11
RSW1 CC5DInternal resistance of
analog source 3 kΩD15.12
RSW2 CC5DInternal resistance of
analog source 2 kΩD15.13
RAD CC5DInternal resistance of
analog source 0.1 kΩD15.14
IINJ SR TInput current Injection Current injection on one
ADC input, different from
the converted one
-10 10 mA D15.15
INL CC5PIntegral Non Linearity No overload -1.5 1.5 LSB D15.16
DNL CC5PDifferential Non Linearity No overload -1.0 1.0 LSB D15.17
OFS CC5TOffset error After offset cancellation 0.5 LSB D15.18
GNE CC5TGain error 0.6 LSB D15.19
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
98 Freescale Semiconductor
4.18 AC specifications
4.18.1 AC specification for CMOS090LP2 library @ VDDE = 3.3 V
TUEP CC5TTotal Unadjusted Error for
precise channels, input
only pins
No overload -2 2 LSB D15.22
overload conditions on
adjacent channel LSB
TUEX CC5TTotal Unadjusted Error for
extended channel, No overload -3 3 LSB D15.23
overload conditions on
adjacent channel LSB
1VDDA = 3.3 V ± 10% / 5.0 V ± 10%, TA = -40 to +105 °C, unless otherwise specified.
2All values need to be confirmed during device validation.
3Analog and digital VSS must be common (to be tied together externally).
4VAINx may exceed VSSA and VDDA limits, remaining on absolute maximum rating s, but the results of the conversion will be
clamped respectively to 0x000 or 0x3FF.
5Guaranteed by design.
6During the sample time the input capacitance CS can be charged/discharged by the external source. The internal resistance
of the analog source must allow the capacita nce to reach its final voltage level within tADC_S. After the end of the sample time
tADC_S, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock tADC_S
depend on programming.
7This parameter does not include the sample time tADC_S, but only the time for determining the digital result and the time to
load the result’s register with the conversion result.
Table 50. Functional pad type AC specifications
Name C
Prop. delay (ns)
L>H / H>L1Rise/fall edge (ns) Drive load
(pF)
Drive/slew
rate select
MinMaxMinMax MSB, LSB
pad_ssr C 4.5 / 4.5 2.2 / 2.2 50 112
8 / 8 6 / 6 200
45 / 45 22 / 22 50 10
60 / 60 28 / 28 200
90 / 90 42 / 42 50 01
11 0 / 110 50 / 50 200
430 / 430 210 / 210 50 00
480 / 480 220 / 220 200
Table 49. ADC electrical characteristics (continued)
Symbol C Parameter Conditions1Value2
Unit SpecID
Min Typ Max
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 99
4.18.2 AC specification for CMOS090LP2fg library @ VDDE = 5.0 V
pad_fc C 2.5 / 2.5 1.2 / 1.2 10 00
2.5 / 2.5 1.2 / 1.2 20 01
2.5 / 2.5 1.2 / 1.2 30 10
2.5 / 2.5 1.2 / 1.2 50 112
pad_msr C 4.0 / 4.5 1.0 2 / 1.4 50 112
7.3 / 8.3 3.5 / 4.2 200
24 / 22 9.1 / 10.3 50 10
33 / 31 14 / 15 200
49 / 44 18 / 21 50 01
60 / 53 24 / 25 200
332 / 302 126 / 151 50 00
362 / 325 136 / 158 200
1L>H signifies low-to-high propagation delay and H>L signifies high-to-low propagation delay.
2Can be used on the tester.
Table 51. Functional pad type AC specifications
Name C
Prop. delay (ns)
L>H / H>L1Rise/fall edge (ns) Drive load
(pF)
Drive/slew
rate select
MinMaxMinMax MSB, LSB
pad_msr_hv2C 4.6 / 3.7 12 / 12 2.2 / 2.2 5 .3 / 5.9 50 113
13 / 10 32 / 32 9 / 9 22 / 22 200
N/A 104
12 / 13 28 / 34 5.6 / 6 12 / 15 50 01
23 / 23 52 / 59 11 / 14 28 / 31 200
69 / 71 152 / 165 34 / 35 70 / 74 50 00
95 / 90 205 / 220 44 / 51 96 / 96 200
Table 50. Functional pad type AC specifications (continued)
Name C
Prop. delay (ns)
L>H / H>L1Rise/fall edge (ns) Drive load
(pF)
Drive/slew
rate select
MinMaxMinMax MSB, LSB
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
100 Freescale Semiconductor
4.18.3 AC specification for CMOS090LP2fg library @ VDDE = 3.3 V
pad_ssr_hv2C 7.3 / 5.7 19 / 18 4.4 / 4.3 10 / 11 50 113
24 / 19 58 / 58 17 / 15 40 / 42 200
N/A 104
26 / 27 61 / 69 13 / 13 30 / 34 50 01
49 / 45 115 / 115 27 / 23 61 / 61 2 00
137 / 142 320 / 330 72 / 74 156 / 164 50 00
182 / 172 420 / 420 90 / 85 200 / 200 200
pad_i_hv C 0.5 / 0.5 1.9 / 1.9 0.3 / 0.3 1.5 / 1.5 0.5 N/A
1L>H signifies low-to-high propagation delay and H>L signifies high-to-low propagation delay.
2For input buffer timing, look at pad_i_hv.
3Can be used on the tester.
4This drive select value is not supported. If selected, it will be approximately equal to 11.
Table 52. Functional pad AC type specifications
Name
Prop. delay (ns)
L>H / H>L Rise/fall edge (ns) Drive load
(pF)
Drive/slew
rate select
Min Max Min Max MSB, LSB
pad_msr_hv 5.8 / 4.4 18 / 17 2.7 / 2.1 7.6 / 8.5 50 11
16 / 13 46 / 49 11.2 / 8.6 30 / 34 200
N/A 10
14 / 16 37 / 45 6.5 / 6.7 15.5 / 19 50 01
27 / 27 69 / 82 15 / 13 38 / 43 200
83 / 86 200 / 210 38 / 38 86 / 86 50 00
113 / 109 270 / 285 53 / 46 120 / 120 200
Table 51. Functional pad type AC specifications (continued)
Name C
Prop. delay (ns)
L>H / H>L1Rise/fall edge (ns) Drive load
(pF)
Drive/slew
rate select
MinMaxMinMax MSB, LSB
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 101
4.18.4 AC specification for CMOS090_ddr library @ VDDE = 3.3 V
4.18.5 AC specification for CMOS090_ddr library @ VDDE = 2.5 V
pad_ssr_hv 9.2 / 6.9 27 / 28 5.5 / 4.1 15 / 17 50 11
30 / 23 81 / 87 21 / 16 57 / 63 200
N/A 10
31 / 31 80 / 90 15.4 / 15.4 38 / 42 50 01
58 / 52 144 / 155 32 / 26 82 / 85 200
162 / 168 415 / 415 80 / 82 190 / 190 50 00
216 / 205 533 / 540 106 / 95 250 / 250 200
pad_i_hv 0.5 / 0.5 3 / 3 0.4 / 0.4 1.5 / 1.5 0.5 N/ A
Table 53. AC specifications at 3.3 V VDDE
Name C
Prop. delay (ns)
L>H / H>L Rise/fall edge (ns) Drive load
(pF)
Drive/slew
rate select Libraries
Min Max Min Max MSB, LSB
pad_st_acc C 1.4/1.4 2.4/2.4 3.1/2.5 5.6/5.4 5 111 6MDDR
1.7/1.7 2.7/2.7 0.9/1.1 1.7/2.0 20
pad_st_dq C 1.4/1.4 2.4/2.4 3.1/2.5 5.6/5.4 5 111 6MDDR
1.7/1.7 2.7/2.7 0.9/1.1 1.7/2.0 20
pad_st_clk C 1.4/1.4 2.4/2.4 3.1/2.5 5.7/5.7 5 111 6MDDR
1.6/1.6 2.6/2.6 1.1/1.3 2.3/2.3 20
Table 54. AC specifications at 2.5 V VDDE
Name C
Prop. delay (ns)
L>H / H>L Rise/fall edge (ns) Drive load
(pF)
Drive/slew
rate select Libraries
Min Max Min Max MSB, LSB
pad_st_acc C 1.4/1.5 2.5/2.4 2.1/2.1 4.3/4.1 5 011 6MDDR
1.7/1.7 2.8/2.7 0.6/0.7 1.1/1.3 20
pad_st_dq C 1.4/1.5 2.5/2.4 2.1/2.1 4.3/4.1 5 011 6MDDR
1.7/1.7 2.8/2.7 0.6/0.7 1.1/1.3 20
pad_st_clk C 1.4/1.4 2.4/2.4 2.1/2.1 4.4/4.1 5 011 6MDDR
1.1/1.6 2.7/2.7 0.6/0.7 1.6/1.8 20
Table 52. Functional pad AC type specifications (continued)
Name
Prop. delay (ns)
L>H / H>L Rise/fall edge (ns) Drive load
(pF)
Drive/slew
rate select
Min Max Min Max MSB, LSB
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
102 Freescale Semiconductor
4.18.6 AC specification for CMOS090_ddr library @ VDDE = 1.8 V
Table 55. AC electrical specificatio ns at 1.8 V VDD
Name C
Prop. delay (ns)
L>H / H>L Rise/fall edge (ns) Drive load
(pF)
Drive/slew
rate select Libraries
MinMaxMinMax MSB, LSB
pad_st_acc C 1.4/1.4 2.4/2.4 0.6/1.0 2.7/2.6 5 000 6MDDR
1.7/1.7 2.8/2.7 0.2/0.4 0.5/0.6 20
1.4/1.5 2.4/2.5 1.1/1.1 3.0/2.7 5 001
1.7/1.7 2.8/2.8 0.4/0.4 0.7/0.7 20
1.4/1.5 2.4/2.4 1.0/1.1 2.9/2.7 5 010
1.7/1.7 2.8/2.7 0.3/0.4 0.6/0.7 20
1.4/1.5 2.5/2.5 1.5/1.1 3.1/2.6 5 110
1.7/1.8 2.8/2.8 0.4/0.4 0.7/0.6 20
pad_st_dq C 1.4/1.4 2.4/2.4 0.6/1.0 2.7/2.6 5 000 6MDDR
1.7/1.7 2.8/2.7 0.2/0.4 0.5/0.6 20
1.4/1.5 2.4/2.5 1.1/1.1 3.0/2.7 5 001
1.7/1.7 2.8/2.8 0.4/0.4 0.7/0.7 20
1.4/1.5 2.4/2.4 1.0/1.1 2.9/2.7 5 010
1.7/1.7 2.8/2.7 0.3/0.4 0.6/0.7 20
1.4/1.5 2.5/2.5 1.5/1.1 3.1/2.6 5 110
1.7/1.8 2.8/2.8 0.4/0.4 0.7/0.6 20
pad_st_clk C 1.4/1.4 2.4/2.4 0.4/0.6 2.7/2.7 5 000 6MDDR
1.6/1.6 2.7/2.7 0.7/0.9 1.8/3.4 20
1.4/1.4 2.4/2.4 1.1/1.1 3.0/2.8 5 001
1.7/1.7 2.7/2.7 0.3/0.4 1.0/1.1 20
1.4/1.4 2.4/2.4 0.9/1.1 3.0/2.8 5 010
1.6/1.6 2.7/2.7 0.3/0.4 0.9/1.0 20
1.4/1.5 2.5/2.5 1.5/1.2 3.2/2.6 5 110
1.7/1.8 2.7/2.7 0.4/0.4 1.1/1.2 20
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 103
4.19 AC timing
4.19.1 IEEE 1149.1 interface timing
Figure 17. JTAG Test Clock Input Timing
Table 56. JTAG Interface Timing1
1These specifications apply to JTAG boundary scan only. JTAG timing specified at VDD = 3.0 V to 3.6 V, TA = -40 to 105 °C,
and CL = 50 pF with SRC = 0b01.
Num Symbol C Characteristic Min Max Unit SpecID
1t
JCYC CC2
2Parameter values guaranteed by design.
D TCK Cycle Time 100 ns A1.1
2t
JDC CC2D TCK Clock Pulse Width (Measured at VDD/2) 40 60 ns A1.2
3t
TCKRISE CC2D TCK Rise and Fall Times (40% – 70%) 3 ns A1.3
4t
TMSS, tTDIS CC2D TMS, TDI Data Setup Time 5 ns A1.4
5t
TMSH, tTDIH CC2D TMS, TDI Data Hold Time 25 ns A1.5
6t
TDOV CC2D TCK Low to TDO Data Valid 35 ns A1.6
7t
TDOI CC2D TCK Low to TDO Data Invalid 0 ns A1.7
8t
TDOHZ CC2D TCK Low to TDO High Impedance 30 ns A1.8
9t
BSDV CC2D TCK Falling Edge to Outpu t Valid 35 ns A1.9
10 tBSDVZ CC2D TCK Falling Edge to Output Valid out of High
Impedance 50 ns A1.10
11 tBSDHZ CC2D TCK Falling Edge to Ou tput High Impedance 50 ns A1.11
12 tBSDST CC2D Boundary Scan Input Valid to TCK Rising Edge 50 ns A1.12
13 tBSDHT CC2D TCK Rising Edge to Boundary Scan Input Invalid 50 ns A1.13
TCK
1
2
2
3
3
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
104 Freescale Semiconductor
Figure 18. JTAG Test Access Port T iming
TCK
4
5
6
78
TMS, TDI
TDO
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 105
Figure 19. JTAG Boundary Scan Timing
TCK
Output
Signals
Input
Signals
Output
Signals
9
10
11
12
13
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
106 Freescale Semiconductor
4.19.2 Nexus Debug Interface
Figure 20. Nexus Output Timing
Table 57. Nexus Debug Port Timing1
1JTAG specifications in this table apply when used for debug functionality . All Nexus timing relative to MCKO is measured from
50% of MCKO and 50% of the respective signal. Nexus timing specified at VDD = 3.0 V to 3.6 V, TA = -40 to 105 °C, and CL
= 50 pF (Cl=30 pF on MCKO), with SRC = 0b10 for MCKO and 0b11 for others.
Num Symbol C Characteristic Min Max Unit SpecID
1t
MCYC CC2
2Parameter values guaranteed by design.
D MCKO Cycle T i me 15 ns A2.1
2t
MDC CC2D MCKO Duty Cycle 40 60 % A2.2
3t
MDOV CC2D MCKO Low to MDO Data Valid3
3MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.
0.1 0.2 tMCYC A2.3
4t
MSEOV CC2D MCKO Low to MSEO Data Valid30.1 0.2 tMCYC A2.4
5t
EVTOV CC2D MCKO Low to EVTO Data Valid30.1 0.2 tMCYC A2.5
6t
EVTIPW CC2D EVTI Pulse Width 4 tTCYC A2.6
7t
EVTOPW CC2D EVTO Pulse Width 1 tMCYC A2.7
8t
TCYC CC2D TCK Cycle Time4
4The system clock frequency needs to be thre e times faster that the TCK frequency.
NOTE
Nexus Dual Data Rate is not supported. The timings are mentioned for dedicated pins on
416BGA. The max value for #2, 3 and 4 above, are 0.3 of tMCYC for shared nexus ports.
100 ns A2.8
9t
TDC CC2D TCK Duty Cycle 40 60 % A2.9
10 tNTDIS, tNTMSS CC2D T DI, TMS Data Setup Time 25 ns A2.10
11 tNTDIH,
tNTMSH
CC2D TDI, TMS Data Hold Time 5 ns A2.11
12 tJOV CC2D TCK Low to TDO Data Valid 0 35 ns A2.12
1
2
4
5
MCKO
MDO
MSEO
EVTO Output Data Valid
3
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 107
Figure 21. Nexus TCK Timing
Figure 22. Nexus TDI, TMS, TDO Timing
4.19.3 Interface to TFT LCD Panels (DCU3 and DCULite)
Figure 23 depicts the LCD interface timing for a generic active matrix color TFT panel. In this figure
signals are shown with positive polarity. The sequence of events for active matrix interface timing is:
TCK
8
9
9
TDO
10
11
TMS, TDI
12
TCK
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
108 Freescale Semiconductor
PCLK latches data into the panel on its positive edge (when positive polarity is selected). In active
mode, PCLK runs continuously. This signal frequency could be from 5 to 66 MHz depending on
the panel type.
HSYNC causes the panel to start a new line. It always encompasses at least one PCLK pulse.
VSYNC causes the panel to start a new frame. It always encompasses at least one HSYNC pulse.
DE acts like an output enable signal to the LCD panel. This output enables the data to be shifted
onto the display. When disabled, the data is invalid and the trace is off.
Figure 23. TFT LCD interface timing overview1
4.19.3.1 Interface to TFT LCD Panels—Pixel Level Timings
Figure 24 depicts the horizontal timing (timing of one line), including both the horizontal sync pulse and
data. All parameters shown in the diagram are programmable. This timing diagram corresponds to positive
polarity of the PCLK signal (meaning the data and sync signals change on the rising edge) and active-high
polarity of the HSYNC, VSYNC and DE signals. The user can select the polarity of the HSYNC and
VSYNC signals via the SYN_POL register , whether active-high or active-low. The default is active-high.
The DE signal is always active-high.
Pixel clock inversion and a flexible programmable pixel clock delay are also supported. They are
programmed via the DCU Clock Confide Register (DCCR) in the system clock module.
The DELTA_X and DELTA_Y parameters are programmed via the DISP_SIZE register. The PW_H,
BP_H and FP_H parameters are programmed via the HSYN PARA register. The PW_V, BP_V and FP_V
parameters are programmed via the VSYN_PARA register.
1. In Figure 23, the “LD[23:0]” signal is “line data,” an aggregation of the DCU’s RGB signals—R[0:7], G[0:7] and B[0:7].
LINE 1 LINE 2 LINE 3 LINE 4 LINE n-1 LINE n
VSYNC
HSYNC
HSYNC
DE
PCLK
LD[23:0]
213 m-1m
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 109
Figure 24. Horizontal sync timing
Table 58. LCD interface timing parameters—horizontal and vertical
Num Symbol C Characteristic Value Unit SpecID
1t
PCP CC1
1Parameter values guaranteed by design.
D Display pixel clock period 31.25 ns A3.1
2t
PWH CC1D HSYNC pulse width PW_H * tPCP ns A3.2
3t
BPH CC1D HSYNC back porch width BP_H * tPCP ns A3.3
4t
FPH CC1D HSYNC front porch width FP_H * tPCP ns A3.4
5t
SW CC1D Screen width DELTA_X * tPCP ns A3.5
6t
HSP CC1D HSYNC (line) period (PW_H + BP_H + FP_H + DELTA_X ) *
tPCP
ns A3.6
7t
PWV CC1D VSYNC pulse width PWV * tHSP ns A3.7
8t
BPV CC1D VSYNC back porch width BP_V * tHSP ns A3.8
tFPV CC1D VSYNC front porch width FP_V * tHSP ns A3.9
tSH CC1D Screen height DELTA_Y * tHSP ns A3.10
tVSP CC1D VSYNC (frame) period (PW_V + BP_V + FP_V + DELTA_Y ) *
tHSP
ns A3.11
Start of line
PCLK
LD[23:0]
HSYNC
DE
tPWH tBPH
tHSP
tSW
tPCP
tFPH
123DELTA_X
Invalid Data Invalid Data
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
110 Freescale Semiconductor
Figure 25. Vertical sync pulse
4.19.3.2 Interface to TFT LCD panels—access level
Table 59. LCD Interface Timing Parameters1,2,3,4—Access Level
1The characteristics in this table are based on the assumption that data is output at +ve edge and displays latch data on -ve
edge.
2Intra bit skew is less than 2 ns.
3Load CL = 50 pf for frequency up to 20 MHz.
4Load CL = 25 pf for display freq from 20 to 32 MHz.
Num Symbol C Characteristic Min.
Value Typical
Value Max.
Value Unit SpecID
1t
CKP CC5
5Parameter values guaranteed by design.
D PDI Clock Period 31.25 ns A3.12
2t
CHD CC5D Duty cycle 40 60 % A3.13
3t
DSU CC5D interface data setup time 6 ns A3.14
4t
DHD CC5D PDI interface data access hold time 1 ns A3.15
5t
CSU CC5D PDI interface control signal setup time 3 ns A3.16
6t
CHD CC5D PDI interface control signal hold time 1 ns A3.17
7CC
5D TFT interface data valid after pixel clock 6 ns A3.18
8CC
5D TFT interface HSYNC valid after pixel clock 5 ns A3.19
9CC
5D TFT interface VSYNC valid after pixel clock 5.5 ns A3.20
10 CC5D TFT interface DE valid after pixel clock 5.6 ns A3.21
11 CC5D TFT interface hold time for data and control
bits 2 ns A3.22
12 CC5D Relative skew between the data bits 3.7 ns A3.23
Start of Frame
HSYNC
LD[23:0]
HSYNC
DE
t
PWV
t
BPV
t
VSP
t
HCP
t
FPV
123
DELTA_Y
Invalid Data Invalid Data
(Line Data)
t
SH
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 111
Figure 26. LCD Interface Timing Parameters—Access Level
HSYNC
VSYNC
DDE
PCLK
LD[23:0]
tCKH tCKL
tCHD tCSU
tDHD
tDSU
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
112 Freescale Semiconductor
4.19.4 RSDS Interface to TFT LCD Panels
Table 60. RSDS Electrical Characterist ic s
Symbol C Parameter Conditions1
1VDDA = 3.3 V ± 10% TA = -40 to +105 °C, unless otherwise specified.
Value2
2All values need to be confirmed during device validation.
Unit SpecID
Min Typ Max
AVDD SR D Voltage on VSSE_A pin
with respect to ground
(VSS)
3.0 3.3 3.6 V A4.1
IDDTX SR D Current Consumption:
RSDS Transmitter - Single
Cell
——2.7mAA4.2
IDDPD SR D Power Down Current 10 µA A4.3
IDDBG SR DCurrent Consumption of
Bandgap and buffer 100 µA A4.4
Fmax SR DData Frequency 60 85 MHz A4.5
VOD SR D Differential Output Voltage RL = 100 200 400 mV A4.6
VOFF SR D Offset Voltage VCM +/-5% 0.5 1.2 1.5 V A4.7
tR / tFSR D Output Rise / Fall times 20% to 80%,
VOD=200mV, CL = 5pF 500 ps A4.8
tXdelay SR D Tx Dela y 3 ns A4.9
SR D Termination Resistance
(external) 5% variation 100 A4.10
SR D Transmitter Settling time After power down, high
to low —10—µsA4.11
SR D Transmitter Delay Data in to Tx out 8 ns A4.12
Ω
Ω
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 113
Figure 27. TCON/RSDS Timing Diagram
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
114 Freescale Semiconductor
4.19.5 DRAM Interface
DDR Interface specification from ‘MCD - 32 Bit Automotive MCU - CMOS090LP2’ I/O Pad
Specification Revision 1.5 - May14th 2008.
This device supports SDR, DDR1, DDR2 half and full strengths, as well as LPDDR half and full speeds.
Table 61 shows the SRE settings for the different modes.
Table 61. Pad mode configurations
ipp_sre[2:0] Mode
000 1.8 V LPDDR Half Speed
001 1.8V LPDDR Full Speed
010 1.8V DDR2 Half Strength
011 2.5V DDR1
100 Not supported
101 Not supported
110 1.8V DDR2 Ful l Strength
111 SDR
Table 62. LPDDR, DDR and DDR2 (DDR2-250) SDRAM timing specifications1 2 3 4 5 6
At recommended operating conditions with VDD_DR of ±5%
No. Symbol Parameter Min Max Unit
1F CC Frequency of Operation (Clock Period)7 125 MHz
2VIX-AC CC MCK AC differential crosspoint voltage
VDD_DR
×0.5
–0.1
VDD_DR
×0.5
+0.1 V
3 DD1 tSDCK CC Clock period 8 ns
4 DD2 tSDCKH CC HIGH pulse width 80.45 0.55 tSDCK
5 DD3 tSDCKL CC LOW pulse width90.45 0.55 tSDCK
6 DD4 tCMV CC Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,
SD_CS[1:0] - Output Valid9 (0.5 x tSDCK)
+ 1.5 ns
7DD4.1 t
CMS CC Address, SD_CKE, SD_CAS, SD_RAD, SD_WE,
SD_CS output setu p ((tSDCK - tCMV )10 2.5 ns
8 DD5 tCMH CC Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,
SD_CS[1:0] - Output Hold 2.0 ns
9 DD6 tDQSS CC Write Command to first DQS Latching Transition WL +
0.20 x tSDCK
ns
10 DD7 tOS CC Data and Data Mask Output Setup (DQ-->DQS)
relative to DQS (DDR Write Mode)11 12 1.0 ns
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 115
11 DD8 tOH CC Data and Data Mask Output Hold (DQS-->DQ)
relative to DQS (DDR Write Mode)13 1.0 ns
12 DD9,
DD10 tIS CC Input Data Skew relative to DQS14 -(0.25*tSDCK -
0.8) 0.25*tSDCK -
0.8 ns
1VDD_DR value is 1.8 V for DDR2 mode, 2.5 V for DDR1 mode, and 1.8 V for LPDDR mode.
2CZ at -40, 140, 25 oC.
3Measured with clock pin loaded with differential 100 ohm terminatio n resistor.
4All transitions measured at mid-supply (
VDD_DR
/2).
5Measured with all outputs except the clock loaded with 50 ohm termination resistor to
VDD_DR
/2.
6Data input hold is derived from each DDR_DQS clock edge. It begins with a DDR_DQS transition and ends when the first
data line becomes invalid.
7The DRAM interface operates at the same frequency as the internal system bus.
8Pulse width high plus pulse width low cannot exceed min and max clock period.
9Command output valid should be half the memory bus clock (tSDCK) plus some minor adjustments for process, temperature,
and voltage variations.
10 This is alternate representation of tCMV parameter for clarity.
11 This specification relates to the required input setup time of DDR memories. The mcu's output setup should be larger than
the input setup of the DDR memories. If it is not larger, then the input setup on the memory is in violation. DDR_DQ[31:24]
is relative to DDR_DQS[3]; DDR_DQ[23:16] is relative to DDR_DQS[2], DDR_DQ[15:8] is relative to DDR_DQS[1] and
DDR_DQ[7:0] is relative to DDR_DQS[0].
12 The first data beat is valid before the first rising edge of DQS and after the DQS write preamble. The remaining data beats
are valid for each subsequent DQS edge.
13 This specification relates to the required hold time of DDR memories. DDR_DQ[31:24] is relative to DDR_DQS[3];
DDR_DQ[23:16] is relative to DDR_DQS[2], DDR_DQ[15:8] is relative to DDR_DQS[1] and DDR_DQ[7:0] is relative to
DDR_DQS[0].
14 Data input skew is derived from each DDR_DQS clock edge. It begins with a DDR_DQS transition and ends when the last
data line becomes valid. This input skew must include DDR memory output skew and system level board skew (due to
routing or other factors).
Table 62. LPDDR, DDR and DDR2 (DDR2-250) SDRAM timing specifications1 2 3 4 5 6
At recommended opera t ing conditions w ith VDD_DR of ±5% (continued)
No. Symbol Parameter Min Max Unit
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
116 Freescale Semiconductor
Figure 28 shows the DDR SDRAM write timing.
Figure 28. DDR write timing
SD_CLK
SD_CSn,SD_WE,
SD_DM
SD_D[7:0]
SD_A[13:0]
SD_RAS, SD_CAS CMD
ROW
DD1
DD5
DD4
COL
WD1 WD2 WD3 WD4
DD7
SD_DQS
DD8
DD8
DD7
SD_CLK
DD3
DD2
DD6
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 117
Figure 29 and Figure 31 show the DDR SDRAM read timing.
Figure 29. DDR read timing
Figure 30 provides the AC test load for the DDR bus.
Figure 30. DDR AC test load
4.19.5.1 SDR Timings
Command and address follow the same timings as other modes. For SDRAM reads/Write, the timings
mentioned in the following table apply.
SD_CLK
SD_CSn,SD_WE,
SD_DQS
SD_D[7:0]
SD_A[13:0]
SD_RAS, SD_C A S CMD
ROW
DD1
DD5
DD4
RD1 RD2 RD3 RD4
SD_DQS
DD9
SD_CLK
DD3
DD2
SD_D[7:0]
RD1 RD2 RD3 RD4
DD10
CL=2
CL=2.5
COL
DQS Read
Preamble DQS Read
Postamble
DQS Read
Preamble DQS Read
Postamble
CL = 2.5 CL = 2
Output Z0=50 ΩRL= 50 Ω
VDD_MEM_IO
/2
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
118 Freescale Semiconductor
Figure 31. SDR Read and Write Timings
4.19.5.2 2.5 V DDR1
Table 63. SDR Timings
Symbol C Parameter Min Max Units
DD1 tQVS C Data outp ut Valid
(Write transaction) (0.5 x tSDCK)
+ 1.5 ns
DD1.1 tQS C Data output setup
(tDSK - DD1)1
1This is alternate representation for DD1 for better clarity.
2.5 ns
DD2 tQH C Data outp ut Hold
(Write transaction) 2.0 ns
DD3 tIS C Data Input Setup
(Read transaction) —2.0ns
DD4 tIH C Data input Hold (Read
transaction) —2.0ns
Table 64. SSTL_2 Class II 2.5 V DDR DC Specifications
Symbol C Parameter Condition Min Nom Max Units Notes SpecID
vddet P I/O Supply Voltage 2.30 2.50 2.70 V JESD8-9B A5.1
vdd P Core Supply Voltage 1.08 1.20 1.32 V A5.2
Vref(dc) P Input Reference Volt-
age 1.13 1.25 1.38 V JESD8-9B A5.3
Vtt P Termination Voltage Vref-0.04 vref Vref+0.04 V JESD8-9B A5.4
Vih(dc) C DC Input Logic High Vref+0.15 vddet+0.3 V JESD8-9B A5.5
Vil(dc) C DC Input Logic Low -0.3 Vref-0.15 V JESD8-9B A5.6
Vih(ac) C AC Input Logic High Vref+0.31 V JESD8-9B A5.7
Vil(ac) C AC Input Logic Low Vref-0.31 V JESD8-9B A5.8
Iin P Pad input Leakage
Current —— +/-10 µAA5.9
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 119
The SSTL_2 differential input switch point is at vref = 0.50*vddet.
NOTE
The JEDEC SSTL_2 specifications (JESD8-9B) for a SSTL interface for class II operation
supersedes any specification in this document.
The SSTL_2 Class II output with ipp_sre[2:0] set to enabling SSTL_2 2.5V DDR1 mode,
at the destination, have a rise/fall time (10%-90%) between 1 ns and 2 ns over process,
voltage, and temperature driving a 70 ohm transmission line with 0.167 ns td terminated at
the destination with 70 ohms to Vtt (0.5*vddet) with 4.0 pf, representing the DDR inp ut
capacitance.
Figure 32. SSTL_2 CLass II Test Load
Voh C Output High Voltage
Level vddet-0.35 V A5.10
Vol C Output Low Voltage
Level 0.35 V A5.11
Ioh(dc) C Output min source dc
current Vout=Voh -16.2 mA vddet = 2.3V
Voh = 1.95V A5.12
Iol(dc) C Output min sink dc
current Vout=Vol 16.2 mA vddet = 2.3V
Vol = 0.35V A5.13
Table 64. SSTL_2 Class II 2.5 V DDR DC Specifications (continued)
Symbol C Parameter Condition Min Nom Max Units Notes SpecID
PAD
ipp_do Z0=70 td= 0.167ns
4pF
Vtt
70 ohms
pad_st/pad_st_odt
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
120 Freescale Semiconductor
4.19.5.3 1.8 V DDR2
The SSTL_18 differential input switch point is at vref = 0.50*vddet.
Note that the Jedec SSTL_18 specifications (JESD8-15a) for a SSTL interface for class II operation supersedes any
specification in this document.
The SSTL_18 Class II output with ipp_sre[2:0] set to enabling sstl_2 1.8V DDR2 mode, at the destination, have a rise/fall time
(10%-90%) between 0.4 ns and 1.0 ns over process, voltage, and temperature driving a 70 ohm transmission line with 0.167 ns
Table 65. SSTL_18 Class II 1.8 V DDR2 DC Specifications
Symbol C Parameter Condi-
tion Min Nom Max Units Notes SpecID
vddet P I /O Supply Voltage 1.7 1.8 1.9 V J ESD8-15A A5.14
vdd P Core Supply Voltage 1.08 1.2 1.32 V A5.15
Vref(dc) P Input Reference Volt-
age 0.833 0.9 1.0869 V JESD8-15A A5.16
Vtt P Termination Voltage Vref-0.04 Vref Vref+0.04 V JESD8-15A A 5.17
Vih(dc) C DC Input Logic High Vref+0.125 vddet+0.3 V JESD8-15A A5.18
Vil(dc) C DC Input Logic Low -0.3 Vref-0.125 V JESD8-15A A5.19
Vih(ac) C AC Input Logic High Vref+0.25 V JESD8-15A A5.20
Vil(ac) C AC Input Logic Low Vref-0.25 V JESD8-15A A5.21
Iin T Pad input Leakage
Current +/-10 µA A5.22
Voh C Output High Voltage
Level vddet-0.28 V A5.23
Vol C Output Low Voltage
Level 0.28 V A5.24
Ioh(dc) C Output min source dc
current Vout=Voh -13.4 mA JESD8-15A
vddet = 1.7V
Voh = 1.42V
A5.25
Iol(dc) C Output min sink dc
current Vout=Vol 13.4 mA JESD8-15A
vddet = 1.7V
Vol = 0.28V
A5.26
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 121
td terminated at the destination with 70 ohms to Vtt (0.5*vddet) with 4.0 pf, representin g the DDR2 input capacitance. See
Figure 33. "SSTL_18 CLass II Test Load" .
Figure 33. SSTL_18 CLass II Test Load
4.19.5.4 1.8V LPDDR
Table 66. 1.8V LPDDR DC Specifications
Note that the final JEDEC LPDDR SDRAM specifications (JESD79-4) for LPDDR operation supersedes any specification in
this document.
The SSTL_18 output with ipp_sre[2:0] set to enabling 1.8V LPDDR mode, at the destination, have a rise/fall time (10%-90%)
between 0.4 ns and 1.0 ns over process, voltage, and temperature driving a 70 ohm transmission line with 0.167 ns td terminated
at the destination with 70 ohms to Vtt (0.5*vddet) with 4.0 pf, representing the DDR input capacit a nce. See ““Figure 28.
Symbol C Parameter Condition Min Nom Max Unit
sNotes SpecID
vddet P I/O Supply Voltage 1.7 1.8 1.9 V JESD79-4 A5.27
vdd P Core Supply Voltage 1 .08 1.2 1.32 V A5.28
Data Inputs (DQ, DM, DQS) A5.29
Vih(dc) C DC Input Logic High vddet*0.7 vddet+0.3 V JESD79-4 A5.30
Vil(dc) C DC Input Logic Low -0.3 vddet*0.3 V JESD79-4 A5.31
Vih(ac) C AC Input Logic High vddet*0.8 vddet+0.3 V JESD79-4 A5.32
Vil(ac) C AC Input Logic low -0.3 vddet*0.2 V JESD79-4 A5.33
Data Outputs (DQ, DQS) A5.34
Voh C Output High Voltage
Level Ioh=-0.1mA vddet*0.9 V JESD79-4 A5.35
Vol C Output Low Voltage
Level Iol=0.1mA vddet*0.1 V JESD79-4 A5.36
PAD
ipp_do Z0=70 td= 0.167ns
4pF
Vtt
70
pad_st/pad_st_odt
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
122 Freescale Semiconductor
4.19.6 Video Input Unit timing
Figure 34. VIU2 timing diagram
Table 67. VIU2 timing parameters
Parameter C Description Min Typ Max Unit SpecID
fPIX_CK D VIU2 pixel clock frequency 1
1PIX_CLK_PERIOD(min) = C1 X IPG_CLK_PERIOD + C2 + J
where
C1 = Device parameter = 2 (if Frequency Modulation is disabled), = 2.04 (if Frequency Modulation is enabled)
C2 = Device Constant = 1.98 ns
J = Max Jitter on PIX_CLK
For example: If IPG_CLK = 125 MHz, FM on PLL is disabled and Max Jitter on PIX_CLK is (+-2ns), then the maximum
frequency of VIU pixel clock will be: PIX_CLK_F = 1/(2x8 + 1.98 + 2)ns = 50.05 MHz
MHz A6.1
tDSU D VIU2 data setup time 4 ns A6.2
tDHD D VIU2 data hold time 1 ns A6.3
fPIX_CLK tDHD tDSU
Clock
Data
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 123
4.19.7 External Interrupt (IRQ) and Non-Maskable Interrupt (NMI) Timing
Figure 35. IRQ and NMI Timing
4.19.8 eMIOS timing
Table 68. IRQ and NMI Timing
Num Symbol C Characteristic Min.
Value Max.
Value Unit SpecID
1t
IPWL CC1
1Parameter values guaranteed by design.
D IRQ/NMI Pulse Width Low 200 ns A7.1
2t
IPWH CC1D IRQ/NMI Pulse Width High 200 ns A7.2
3t
ICYC CC1D IRQ/NMI Edge to Edge Time2
2Applies when IRQ/NMI pins are configured for rising edge or falling edge events, but not both.
400 ns A7.3
Table 69. eMIOS timing1
1eMIOS timing specified at fSYS = 64 MHz, VDD12 = 1.14 V to 1.32 V, VDDE_x = 3.0 V to 5.5 V, TA = -40 to 105 °C, and CL =
50 pF with SRC = 0b00.
Num Symbol C Characteristic Min.
value2
2There is no limitation on the peripheral for setting the minimum pulse width, the actual width is restricted by the pad delays.
Refer to the pad specification section for the details.
Max.
value Unit SpecID
1t
MIPW CC3
3Parameter values guaranteed by design.
D eMIOS Input Pulse Width 4 tCYC A8.1
2t
MOPW CC3D eMIOS Output Pulse Width 1 tCYC A8.2
1,2
3
1,2
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
124 Freescale Semiconductor
4.19.9 FlexCAN timing
The CAN functions are available as TX pins at normal IO pads and as RX pins at the always on domain.
There is no filter for the wakeup dominant pulse. Any high-to-low edge can cause wakeup if configured.
Table 70. FlexCAN timing1
1FlexCAN timing specified at fSYS = 64 MHz, VDD12 = 1.14 V to 1.32 V, VDDE_x = 3. 0 V to 5.5 V, TA = -40 to 105 °C, and CL
= 50 pF with SRC = 0b00.
Num Symbol C Characteristic Min. value Max.
value Unit SpecID
1t
CANOV CC2
2Parameter values guaranteed by design.
D CTNX Output V alid after CLKOUT Rising Edge (Output
Delay) 22.48 ns A10.1
2t
CANSU CC2D CNRX Input Valid to CLKOUT Rising Edge (Setup
Time) 12.46 ns A10.2
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 125
4.19.10 Deserial Serial Peripheral Interface (DSPI)
Table 71. DSPI Timing1
1DSPI timing specified at VDDE_x = 3.0 V to 3.6 V, TA = -40 to 105 °C, and CL = 50 pF with SRC = 0b10.
Num Symbol C Characteristic Min Max Unit SpecID
1t
SCK CC2
2Parameter values guaranteed by design.
D SCK Cycle TIme3,4
3The minimum SCK Cycle Time restricts the baud rate selection for given system clock rate.
4The actual minimum SCK Cycle Time is limited by pad performance.
605
5Maximum clock possible is System clock/2.
—nsA11.1
2t
CSC CC2D PCS to SCK Delay6
6The maximum value is programmable in DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK], program PSSCK=2 & CSSCK =
2.
-—nsA11.2
3t
ASC CC2D After SCK Delay7
7The maximum value is programmable in DSPI_CTARx[PASC] and DSPI_CTARx[ASC].
20 ns A11.3
4t
SDC CC2D SCK Duty Cycle tSCK/2
–2ns tSCK/2
+ 2ns ns A11.4
5t
ACC2D Slave Access Time
(PCSx active to SOUT driven) 25 ns A11.5
6t
DIS CC2D Slave SOUT Disable Time
(PCSx inactive to SOUT High-Z or invalid) 25 ns A11.6
7t
SUI CC2D Dat a Se tu p Time fo r Inputs
Master (MTFE = 0)
Slave
Master (MTFE = 1, CPHA = 0)8
Master (MTFE = 1, CPHA = 1)
8This delay value is corresponding to SMPL_PT=00b which is bit field 9 and 8 of DSPI_MCR register.
20
10
5
35
ns
ns
ns
ns
A11.7
8t
HI CC2D Data Hold Time for Inputs
Master (MTFE = 0)
Slave
Master (MTFE = 1, CPHA = 0)8
Master (MTFE = 1, CPHA = 1)
–4
10
26
–4
ns
ns
ns
ns
A11.8
9t
SUO CC2D Data Valid (after SCK edge)
Master (MTFE = 0)
Slave
Master (MTFE = 1, CPHA=0)
Master (MTFE = 1, CPHA=1)
15
20
30
15
ns
ns
ns
ns
A11.9
10 tHO CC2D Data Hold Time for Outputs
Master (MTFE = 0)
Slave
Master (MTFE = 1, CPHA = 0)
Master (MTFE = 1, CPHA = 1)
–15
5.5
0
–15
ns
ns
ns
ns
A11.10
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
126 Freescale Semiconductor
Figure 36. DSPI Classic SPI Timing — Master, CPHA = 0
Figure 37. DSPI Classic SPI Timing — Master, CPHA = 1
Data Last Data
First Data
First Data Data Last Data
SIN
SOUT
PCSx
SCK Output 4
7
10
1
9
8
4
SCK Output
(CPOL=0)
(CPOL=1)
3
2
Data Last Data
First Data
SIN
SOUT
10 9
8
Last Data
Data
First Data
SCK Output
SCK Output
PCSx
7
(CPOL=0)
(CPOL=1)
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 127
Figure 38. DSPI Classic SPI Timing — Slave, CPHA = 0
Figure 39. DSPI Classic SPI Timing — Slave, CPHA = 1
Last Data
First Data
3
4
1
Data
Data
SIN
SOUT
PCSx
4
5 6
7
9
8
10
SCK Input
First Data Last Data
SCK Input
2
(CPOL=0)
(CPOL=1)
5 6
7
10
9
8
Last Data
Last Data
SIN
SOUT
PCSx
First Data
First Data
Data
Data
SCK Input
SCK Input
(CPOL=0)
(CPOL=1)
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
128 Freescale Semiconductor
Figure 40. DSPI Modified Transfer Format Timing — Master, CPHA = 0
Figure 41. DSPI Modified Transfer Format Timing — Master, CPHA = 1
PCSx 3
1
4
8
4
7
10 9
SCK Output
SCK Output
SIN
SOUT
First Data Data Last Data
First Data Data Last Data
2
(CPOL=0)
(CPOL=1)
PCSx
8
7
10 9
SCK Output
SCK Output
SIN
SOUT
First Data Data Last Data
First Data Data Last Data
(CPOL=0)
(CPOL=1)
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 129
Figure 42. DSPI Modified Transfer Format Timing — Slave, CPHA = 0
Figure 43. DSPI Modified Transfer Format Timing — Slave, CPHA = 1
Last Data
First Data
3
4
1
Data
Data
SIN
SOUT
PCSx
4
5 6
7
9
8
SCK Input
First Data Last Data
SCK Input
2
(CPOL=0)
(CPOL=1)
10
5 6
7
10
9
8
Last Data
Last Data
SIN
SOUT
PCSx
First Data
First Data
Data
Data
SCK Input
SCK Input
(CPOL=0)
(CPOL=1)
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
130 Freescale Semiconductor
4.19.11 I2C timing
Table 72. I2C Input Timing Specifications—SCL and SDA
Num S ymbol C Characteristic Min. Value Max. Value Unit SpecID
1—CC
1
1Parameter values guaranteed by design.
D Start condition hold time 2 IP-Bus Cycle2
2Inter Peripheral Clock is the clock at which the I2C peripheral is working in the device.
A12.1
2—CC
1D Clock low time 8 IP-Bus Cycle2A12.2
4—CC
1D Data hold time 0.0 ns A12.3
6—CC
1D Clock high time 4 IP-Bus Cycle2A12.4
7—CC
1D Data setup time 0.0 ns A12.5
8—CC
1D Start condition setup time (for repeated
start condition only) 2 IP-Bus Cycle2A12.6
9—CC
1D Stop condition setup time 2 IP-Bus Cycle2A12.7
Table 73. I2C Output Timing Specifications—SCL and SDA
Num Symbol C Characteristic Min. Value Max. Value Unit SpecID
11
1Programming IBFD (I2C bus Frequency Divider) with the maximum frequency resul ts in the minimum output timings listed.
The I2C interface is designed to scale the data transition time, moving it to the middle of the SCL low period. The actual position
is affected by the prescale and division values programmed in IFDR.
—CC
2
2Parameter values guaranteed by design.
D Start condition hold time 6 IP-Bus Cycl e3
3Inter Peripheral Clock is the clock at which the I2C peripheral is working in the device.
A12.8
21—CC
2D Clock low time 10 IP-Bus Cycle2A12.9
34
4Because SCL and SDA are open-drain-type outputs, which the proces sor can only actively drive low, the time SCL or SDA
takes to reach a high level depends on external signal capacitance and pull-up resistor values.
—CC
2D SCL/SDA rise time 99.6 ns A12.10
41—CC
2D Data hold time 7 IP-Bus Cycle2A12.11
51—CC
2D SCL/SDA fall time 99.5 ns A12.12
61—CC
2D Clock high time 10 I P-Bus Cycle2A12.13
71—CC
2D Data setup time 2 IP-Bus Cycle2A12.14
81—CC
2D Start condition setup time (for repeated
start condition only) 20 IP-Bus Cycle2A12.15
91—CC
2D Stop condition setup time 10 IP-Bus Cycle2A12.16
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 131
Figure 44. I2C Input/Output Timing
4.19.12 QuadSPI timing
The following notes apply to Table 74 and Table 75:
All data is based on a negative edge data launch from MPC5 645S and a positive edge data capture, as shown in the
timing diagrams in this section.
The supply conditions, over a temperature range of -45 °C to 125 °C/140 °C , are as follows:
IO voltage: 3.0 V, Core supp ly: 1.2 V
IO voltage: 3.3 V, Core supp ly: 1.2 V
IO voltage: 3.6 V, Core supp ly: 1.2 V
The actual frequency at which the device can work will be a combination of this data and the clock pad profile.
All measurements are considering 70% of VDDE levels for clock pin and 50% of VDDE level for data pins.
Timings assume a setting of 0x0000_000x for QSPI_SMPR register (see the reference manual for details).
A negative value of hold is an indication of pad delay on the clock pad (delay b/w actual edg e capturing dat a in the
device vs. edge appearing at the pin).
Measurements are with a load of 50 pF on output pins
The clock profile is measured at 30% to 70% levels of VDDE.
The numbers in Figure 45 and Figure 46 correspond to events as described in Table 75.
Table 74. QuadSPI timing specifications, maximum temperature 125 °C
Symbol C Parameter Value Unit SpecID
Min Typ Max
Tcq CC T Clock to Q delay 3.8 5.3 12.1 ns A13.1
Ts CC T Setup time for incoming data 7.6 9 13.2 ns A13.2
Th CC T Hold time requirement for incoming data –13 –8.5 –7.5 ns A13.3
tr CC T Clock pad rise time 0.5 0.7 1.0 ns A13.4
tf CC T Clock pad fall time 0.8 0.8 1.2 ns A13.5
SCL
SDA
1
2
4
6
789
5
3
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
132 Freescale Semiconductor
Figure 45. QuadSPI output timing
Figure 46. QuadSPI input timing
Table 75. QuadSPI timing events
Number Event
1 Last address out
2 Address captured at flash memory
3 Data out from flash memory
4 Ideal dat a capture edge
5 Delayed data capture edge with QSPI_SMPR=0x0000_000X
6 Delayed data capture edge with QSPI_SMPR=0x0000_002X
7 Delayed data capture edge with QSPI_SMPR=0x0000_004X
8 Delayed data capture edge with QSPI_SMPR=0x0000_006X
SCK
DO
Tc
q
1
DO
Tc
q
DI
Ts
Th
1
45
32 6 7 8
SCK
Note: Ts and Th correspond to QSPI_SMPR = 0x0000_000X.
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 133
Figure 47. QuadSPI clock profile
4.19.13 TCON/RSDS timing
The following notes apply to Table 76:
Measurement condition: vdde/vdd33 = 3.3 V ± 10%, vdd = 1.2 V ± 10%, vss/vsse = 0 V, T = –40–140 °C
Termination: 100 Ω ± 5%
VREFH_RSDS terminations of 47 μF
Table 76. TCON/RSDS timing
Symbol C Parameter Condition Value Unit SpecID
Min Typ Max
VOD CC C Differential output voltage RSDS mode 391 471 mV A14.1
VOS CC C Common mode volt a g e 100 Ω termination between
Pad_p and Pad_n 1.17 1.4 V A14.2
tr CC C Rise time Transition from 20% to 80% 606 844 ps A14.3
tf CC C Fall time Transition from 20% to 80% 607 842 ps A14.4
tplh CC D Propagation delay, low to
high 2.65 ns A14.5
tphl CC D Propagation delay , high to
low 2.47 ns A14.6
tdz CC D S tart-up time 200 μsA14.7
tskew1 2 3
1There are eight programmable bits to provide 256 different skew numbers with various combinations of these bits.
2Default value of all the eight skew options are all “1”.
3All “0” combination of eight bits is not valid.
CC C Skew be tween different
RSDS lines Max and min skew between
clock and data pads ———psA14.8
SCK
VDDE
tr tf
30%
70%
Note: tr and tf measured at 30% and 70% of VDDE
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
134 Freescale Semiconductor
Figure 48. Rise/fall transition, part 1
Figure 49. Rise/fall transition, part 2
Figure 50. Illustration of tr, tf, and VOD
5 Package mechanical data
pad_p - pad_n
80%
+VOD
–V
20%
TRTF
0V Differential
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 135
5.1 176 LQFP
Figure 51. LQFP176 Mechanical Drawing (Part 1 of 3)
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
136 Freescale Semiconductor
Figure 52. LQFP176 Mechanical Drawing (Part 2 of 3)
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 137
Figure 53. LQFP176 Mechanical Drawing (Part 3 of 3)
5.2 208 LQFP
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
138 Freescale Semiconductor
Figure 54. LQFP208 Mechanical Drawing (Part 1 of 3)
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 139
Figure 55. LQFP208 Mechanical Drawing (Part 2 of 3)
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
140 Freescale Semiconductor
Figure 56. LQFP208 Mechanical Drawing (Part 3 of 3)
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 141
5.3 416 TEPBGA
Figure 57. 416 TEPBGA Mechanical Drawing (Part 1 of 2)
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
142 Freescale Semiconductor
Figure 58. 416 TEPBGA Mechanical Drawing (Part 2 of 2)
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 143
6 Ordering information
Figure 59. Commercial product code structure
Table 77. Orderable part number summary
Part number Flash/SRAM Package Speed
(MHz)
SPC5645SF1VLU 2 MB/64 KB 176 LQFP (Pb free) 125
SPC5645SF1VLT 2 MB/64 KB 208 LQFP (Pb free) 125
SPC5645SF1VVU 2 MB/64 KB 416 TEPBGA (Pb free) 125
MPC V
Note: Not all options are available on all devices. Refer to Table 77.
5645S VN
Qualification status
Core code
Device number
Temperature range
Package identifier
Tape and reel status
Temperature range
C = -40 C to 85 C
Package identifier
LU = 176 LQFP Pb-free
Tape and reel status
R = Tape and reel
(blank) = Trays
Qualification status
P = Pre-qualification
M = Fully spec. qualified, general market flow
S = Fully spec. qualified, automotive flow
V = -40 C to 105 C LT = 208 LQFP Pb-free
VU = 416 TEPBGA Pb-free
F0
Fab and mask indicator
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
144 Freescale Semiconductor
7 Revision history
Table 78. Revision history
Revision
(Date) Description
1
(06 Oct 2009) Initial release.
2
(7 Dec 2009) Editorial changes.
Extensive modifications throughout the “Pinout and signal descriptions” section.
Revised the “Absolute maximum ratings” table.
Revised the “Recommended operating conditions (3.3 V)” table.
Revised the “Recommended operating conditions (5 V)” table.
In the “Voltage regulator electrical characteristics” section, changed “NJD2783” to NJD2873”.
Revised the “Interface to TFT LCD panels” section.
3
(3 Mar 2010) Edito r ial changes.
Added the RoHS logo (indicating RoHS complian ce).
Added a "SpecID" column to specification tables throughout the document.
In the device-comparison table:
Rev ised the “Timed I/O” entry.
Ch anged “Nexus 3” to “Nexus Class 3”.
In the feature list:
Re vised the information for the TCON and RSDS interface.
I n the ADC entry, changed “20 internal channel s” to “Up to 20 internal channels”.
I n the QuadSPI entry, changed “quad modes of operation” to “quad IO serial flash memory”.
In the DCU3 and DCULite entry, changed “WVGA” to “XGA”.
In the “Feature details” section:
Revised some module abbreviations and names to be consistent with the rest of the documentation.
I n the GFX2D section, deleted “and Adobe Flash 7”.
In the QuadSPI section, changed “Maximum frequency 80 MH z” to “Maximum serial clock
frequency 80 MHz”
I n the FlexCAN section, changed “The FlexCan modules offer” to “Each FlexCAN module offers”.
In the DCULite section, changed “WVGA” to “XGA”.
In the 176-pin pinout, changed “MDD” to “MDO”.
In the 208-pin pinout:
For pin 105, changed “VDDE” to “VDDE_B”.
Renamed pin 145 (was VRSDS, is VREF_RSDS”)
F or pin 148, changed “RSRS3+P” to “RSDS3P”.
F or pin 160, changed “SCL_D” to “SCL_3”.
For pin 161, changed “SDA_D” to “SDA_3”.
For pin 178, changed “DCULITE_G8” to “DCULITE_G6”.
In the 324-pin pinout:
Renamed pin A1 (was VSS_DR, is VSS).
Re named pin B2 (was VDDE_DDR, is VDD_DR).
Renamed pins D11 and J9 (were VDD33_DR, are VDDE_B).
Added the “Pad configuration during reset phases” section.
In the “Voltage supply pin descriptions” table:
Re named VRSDS to VREF_RSDS and added a footnote about the pin’s required termination.
Added pin B2 to VDD_DR in the 324-pin package.
Move d pins D11 and J9 to VDDE_B.
Revised the “System pin descriptions” table.
Replaced the entire “DRAM interface pin summary” table.
I n the “Nexus pins” table, added a PCR column.
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 145
3 (continued)
(3 Mar 2010) Added the “VIU muxin g” sectio n.
Added the “System design information” section and a “Power-up sequencing” subsection.
In the “Recommended operating conditions (3.3 V)” table, revised footnotes 2 and 4.
In the “Recommended operating conditions (5.0 V)” table, revised footnotes 3 and 5.
Revised the text in the “Voltage regulator electrical characteristics” section.
Added meaningful content to the “DC electrical characteristics” section.
In the “Reset electrical characteristics” table, changed the specificati ons for WFRST (was max 40 ns,
is max 70 ns) and WNFRST (was min 1000 ns, is min 400 ns).
Replaced the entire “Pad AC specifications” section.
Added meaningful content to the “Video Input Unit timing” section.
Added orderable part numbers.
Revised the “Commercial product code structure ” figure.
4
(24 Jun 2010) Editorial changes and improvements.
In the device-comparison table, changed the GPIO count for the 176-pin package (was 127, is 128).
In the feature list:
Changed “4 KB, 2-way instruction cache” to “4 KB, 2/4-way instruction cache”.
Changed “32 kHz crystal oscillator” to “32 KHz crystal oscillator”.
Ch anged “188 peripheral interrupt sources” to “181 peripheral interrupt sources”.
Ch anged “Primary FMPLL” to “Primary FMPLL (FMPLL0)”.
Ch anged “Auxiliary FMPLL” to “Auxiliary FMPLL (FMPLL1)”.
In the crossbar switch description, deleted the reference to AMBA.
In the SGM description, changed “WAV file” to “PCM wave”.
Re vised the RLE decoder description.
In the SIUL description, deleted “resets”.
In the CMU section, changed “PLL” to “primary FMPLL (FMPLL0)”.
In the feature details:
Ch anged “32 kHz oscillator” to “32 KHz oscillator”.
Changed “128 KHz oscillator” to “128 kHz oscillator”.
Revised the “Low-power operation” section.
In the ADC section, changed “0 to 5V common mode conversion range” to “0–5 V or 0–3.3 V
common mode conversion range”.
Re v ised the DCU3 section.
In the “On-chip graphics SRAM” section, added an entry for indepe ndent data buffers.
In the MPU section, changed “Protection offered for 3 concurrent read ports” to “Protection offered
for 4 concurrent read ports”.
In the 176-pin pinout:
Added content to indicate which functions are available only in this package.
F or pin 116, changed PD113 to PDI13.
F or pin 117, changed PD114 to PDI14.
F or pin 1, changed DCU_VSYNC_TCON2 to DCU_VSYNC.
F or pin 2, changed DCU_HSYNC_TCON1 to DCU_HSYNC.
For pin 3, changed DCU_DE_TCON3 to DCU_DE.
F or pin 16, changed DCU_TAG_TCON3 to DCU_TAG.
For pin 56, changed PDI0(VIU0) to PDI0_VIU0.
F or pin 57, changed PD11(VIU1) to PDI1_VIU1.
F or pin 58, changed PDI12(VIU2) to PDI2_VIU2.
For pin 59, changed PDI3(VIU3) to PDI3_VIU3.
For pin 148, deleted TCON0.
For pin 155, deleted DCULITE_G7.
Table 78. Revision history (continued)
Revision
(Date) Description
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
146 Freescale Semiconductor
4 (continued)
(24 Jun 2010) In the 208 -pin pinout:
F or pin 68, changed eMIOSA23 to eMIOS0[23].
F or pin 69, changed eMIOSA16 to eMIOS0[16].
F or pin 70, changed eMIOSA15 to eMIOS0[15].
F or pin 71, changed eMIOSA14 to eMIOS0[14].
In the 324-pin pinout:
Added content to indicate which functions are available only in this package.
Renamed pin J10 (was VSS_DR, is VSS).
In the “Voltage supply pin descriptions” table:
Deleted the entry for VSS_DR.
Added pin J10 to the VSS group in the 324-pin package.
Revised the “Nexus pins” table.
In the “Recommended operating conditions (3.3 V)” table, changed the specification for TVDD (was
0.25 V/μs, is 12 V/ms).
In the “Recommended operating conditions (5.0 V)” table, changed the specification for TVDD (was
0.25 V/μs, is 12 V/ms).
In the “FMPLL electrical characteristics” table, changed footnote 6 (was “fCPU 64 MHz can be achieved
only at up to 105 °C”, is “fCPU of 125 MHz can be achieved only at temperatures up to 105 °C with
a maximum FM depth of 2%.”.)
In the “DC specification for CMOS090LP2 library @ VDDE = 3.3 V” > “DC electrical specifications”
table, deleted the specifications for Vih_pci and Vil_pci.
Revised the “Low power oscillator electrical characteristics” table.
In the “ADC electrical characteristics” table, changed “VDD-0.1” to “VDDE_A–0.1” and “VDD+0.1” to
“VDDE_A+0.1”.
Renamed “QuadSPI2 Timing” to “QuadSPI timing” and added meaningful content.
Added the “TCON/RSDS timing” section.
5
(25 Feb 2011) In the “Feature List” section:
Ch anged RTC optional clocking from “main“ to “fast“ 4-16 MHz external oscillator.
Ch anged CMU monitor feature from “main crystal oscillator“ to “fast (4–16 MHz) external crystal
oscillator”.
In the “Feature details“ section, changed “main oscillator“ to “external oscillator“ in the “System clocks
and clock generation modules“ section.
In the “Pad configuration during reset phase s “ section, changed “Main oscillator pads” to “Fast (4-16
MHz oscillator pads“.
In the ““V oltage supply pin descriptions” table, changed VDD_DR function from “DDR SDRAM interface
supply“ to “1.8V, 2.5V, and 3.3V SDRAM supply“
In the “System pin descriptions” table, specified an external capacitor value of 47pF in the footnote.
In the “Functional ports” section, added list of pad types.
In the “Power-up sequencing” section:
Ad ded list item that specifies VDDE_B and VDD33_DR are to be powered up first.
Added VDD33_DR to the list of generic I/O or noise-free supplies.
Ad ded details to VREG HV list item.
Changed post-list text regarding DDR to be a separate NOTE, and identified the 3.3V supply as
VDD33_DR.
Added power-up information to the LV supply (VDD12) list item.
Ad ded “Parameter classification” section and accompanying table.
Added “C” classification column and values to tables throughout the “Electrical characteristics“ section.
Table 78. Revision history (continued)
Revision
(Date) Description
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 147
5 (continued)
(25 Feb 2011) In the “Absolute maximum ratings” table:
Changed max value for VDDE_B from 5.5V to 3.6 V.
Changed max value for VDD_DR from TBD to 3.6 V.
Changed max value for VRSDS from TBD to 3.6 V.
Changed max value for VIN from 5.5V to “VDDmax (VDDE max of that segment)“.
Re m oved “Relative to VDD“ condition for VIN.
In the “Recommended operating conditions (3.3 V)” table:
Ch anged min value for “VDD“ from 3.0 V to “VDDmin“.
Ch anged max value for “VDD“ from 3.6 V to “VDDmax“.
Ch anged VDD entry to include only VDDE_A, VDDE_B, VDD_DR, and VDDM.
Corrected error in VDDE_A entry, changed reference in “parameter” column from VDDE_C to VDDE_A.
Added VDD_DR to the VDD footnote.
In the “Recommended operating conditions (5.0 V)” table:
Ad ded footnote for VDDE_B max values.
Ad ded footnote for VDD_DR typ values.
Ch anged min and max values for VDD_DR from 4.5V and 5.5V to 3.0V and 3.6V, respectively.
Changed max value for VDD_DR (under “voltage drop” conditions) from 5.5V to 3.6V.
Changed min and max values for VDD from 4.5V and 5.5V to VDDmin and VDDmax, also referenced
footnote 6.
Re moved VDDE_C and VDDE_E from the VDD “parameter” description and footnote, and added
VDD_DR.
Ch anged min and max values for VDDE_B from 4.5V and 5.5V to 3.0V and 3.6V, respectivel y.
Removed the “Libraries” column from the DC specifications “library“ tables.
Removed the 75Ω and 50Ω cases and added details on the 150Ω case in the “ODT DC electrical
characteristics” table.
Changed the “Main oscillator electrical characteristics“ section name to “Fast external crystal oscillator
(4-16 MHz) electrical characteristics“ and modified text and table name within the section
appropriately.
Removed the “Full swing Pierce” condition and the relevant footnotes from the “Fast external crystal
oscillator (4-16 MHz) electrical characteristics“ t able.
Changed the “Low power oscilla tor electrical characteristics“ section name to “Slow external crystal
oscillator (32 KHz) electrical characteristics“ and modified the text, figure, and table names within
the section appropriately.
Changed “main oscillator” to “fast external oscillator” in the “FMPLL electrical characteristics” table.
Updated parameters, conditions, and values in the “FMPLL electrical characteristics“ table.
Changed the “Main RC oscillator electrical characteristics“ section name to “Fast Internal RC oscillator
(16 MHz) electrical characteristics“ and modified the text and table name within the section
appropriately.
Changed the “Low power RC oscilla tor electrical characteristics“ sectio n name to “Slow Internal RC
oscillator (128 KHz) electrical characteristics“ and modified the text and table name within the
section appropriately.
Removed duplicate entry of TUEP in the “ADC electrical characteristics” table.
Removed pad_pci and pad_osc48 from the “Functional pad type AC specifications“ table because they
are not used.
Added new “Pad mode configurations” table to the “DRAM Interface” section.
Changed the 324-p in TEPBGA pinout to 416-pin TEPBGA.
Changed the 324-pin TEPBGA mechanical drawing to 416-pin TEPBGA.
Table 78. Revision history (continued)
Revision
(Date) Description
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
148 Freescale Semiconductor
5 (continued)
(25 Feb 2011) In the “Operating mode summary“ table:
Ch anged the “RAM” column to “SRAM”.
Changed “STOP” for “16MHz IRC” from “OP” to “On”.
Changed “STOP” for “Graphics RAM” from “On” to “CG”.
Changed “STANDBY” for “128KHz IRC” from “OP” to “ON” (both cases).
Changed “324BGA” to “416BGA” in the “Nexus Development Interface (NDI)“ section.
Updated all data in the “Thermal characteristics for 176-pin LQFP“ table.
Updated all data in the “Thermal characteristics for 208-pin LQFP“ table.
Changed “324” in the “Thermal characteristics for 324-pin TEPBGA“ table title to “416”.
Added Spec ID numbers to the “DC electrical specifications“ tables throughout the “DC electrica l
specifications“ section.
Updated the NOTE reference details in the “DC specification for CMOS090LP2 library @ VDDE = 3.3
V“ and “DC specification for CMOS090LP2fg library @ VDDE = 5.0 V” sections.
Added Spec ID numbers to the “QuadSPI timing specifications“ tables.
Added Spec ID numbers to the “TCON/RSDS timing“ table.
Added values into the empty cells in the “TCON/RSDS timing“ table.
In the “Orderable part number summary“ table:
Ch anged “324” to “416”.
Up dated the part numbers.
Corrected presentation problem with the 176 LQFP figure.
6
(09 Aug 2011) Changed “324” to “416“ in the “SC667108 device comparison“ table.
Changed I/O direction for EXTAL from “O” to “I” in the “System pin descriptions“ table.
Changed I/O direction for XTAL from “I” to “O” in the “System pin descriptions“ table.
In the “VDDE_A“ entry of the “Recommended operating conditions (3.3 V)“ table, changed “VSSE_C“ to
“VSSE_A“.
In the “VDDE_A“ entry of the “Recommended operati ng conditions (5.0 V)“ table, changed “VDDE_C“
to “VDDE_A”.
In the “VDDE_A“ entry of the “Recommended operating conditions (3.3 V)“ table, changed “VSSE_C“ to
“VSSE_A“.
In the “VSS“ footnote of the “Recommended operating conditions (5.0 V)“ table, changed “VSSE_C“ to
“VSSE_A”.
Removed “QuadSPI timing specifications, maximum temperature 150 C” table.
Removed “DC electrical characteristics” table in “Low voltage domain power consumption” section and
inserted a new table.
In the “Supply leakage” table, changed “spor” to “spcr”.
Removed “pad_multv_hv” and “pull_hv” entries from “Functional pad type AC specifications” table.
Removed “pad_multv_hv”, “pad_io_hv” and “lvds_ref_hv” entries from “Supply leakage” table.
Updated values in “VIU2 timing parameters” table.
Removed “pad_fsr” and “pad_pci” parameters from “Supply leakage” table.
Added Figure 28 - RSDS/TCON Timing Diagram
Added four tables in “DRAM interface” section.
Table 78. Revision history (continued)
Revision
(Date) Description
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
Freescale Semiconductor 149
7
(7 Feb 2012) IDDRUN values updated in “DC electrical characte ristics” table.
Min and max values of VDD12 in “Voltage regulator electrical characteristics” table changed to 1.26 V
and 1.29 V, respectively.
TB changed to TA for IDDHALT value in “DC electrical characteristics” table.
Removed ΔRCMTRIM values from “Fast internal RC oscillator (16 MHz) electric al characteristics”
table.
Removed ΔRCMTRIM values from “Slow internal RC oscillator (128 KHz) electrical characteristics”
table.
Changed max Tj to 140 C in “Recommended operating conditions (3.3V)” table.
Changed max Tj to 140 C in “Recommended operating conditions (3.3V)” table.
Changed max Tj to 140 C in “Voltage regulator electrical characteristics” table.
Changed spec limits on VDD12 Post-Trimming, from min=1.270, max = 1.28 to min = 1.145, max =
1.32, in “Voltage regulator electrical characteristics” table.
Added “Low-power voltage regulator electrical chara cteristics” table.
Added “Ultra low-power voltage regulator electrical characteristics” table.
Offset and gain error values changed to 0.5 and 0.6 Typ, respectively, in “AD C electrical
characteristics” table.
Added “Power-up sequencing” and “Power-down sequencing” diagrams in “Power-up Sequencing”
section.
Added “LPDDR, DDR and DDR2 (DDR2-250) SDRAM timing specifications” table in “DRAM Interface”
section and removed specifications’ tables for DDR1 mode, DDR2 mode and LPDDR mode.
Updated VLVDHV3H, VLVDHV3L, VLVDHV5H and VLVDHV5L values in “Low voltage monitor
electrical characteristics” table.
Updated IDDHALT Typ and Max values in “DC electrical characteristics” table.
Changed P25 pin to VSS pin in “416 TEPBGA pinout” figure.
8
(09 Aug 2012) In “Absolute maximum Ratings” table, changed max value of VDDPLL from 1.32 V to 1.4 V.
In “DC Electrical Characteristics” table, updated max values of IDDMAX, IDDHALT, IDDSTOP and
IDDSTDBY1.
Removed 1.32 V value for VDD, from “DC electrical specifications at 3.3 V VDDE”, “DC electrical
specifications at 2.5 V VDDE” and “DC electrical specifications at 1.8 V VDDE”.
9
(12 Sep 2012) Added “Location of TCON Pins” table.
10
(30 Jan 2013) Updated Table 62.
Added “Section 4.19.5.1, "SDR Timings"” section.
Added a table note for “STOP mode current” entry in Table 22 in Section 4.7.3, "Low voltage domain
power consumption"”.
11
(16 May 2013) Added Figure 7. "Pad output delay".
Added Table 38. "SMD pad electrical characteristics", Table 39. "SMD pad delays", and Table 40.
"SSD electrical characteristics".
Changed Vdd max specification from 1.47 V to 1.32 V in Table 23. "DC electrical specifications",
Table 30. "DC electrical specifications at 3.3 V VDDE", Table 32. "DC electrical specifications at
2.5 V VDDE", and Table 34. "DC electrical specifications for 1.8 V VDDE"
Table 78. Revision history (continued)
Revision
(Date) Description
Qorivva MPC5645S Microcontroller Data Sheet, Rev. 13
150 Freescale Semiconductor
12
(30 Oct 2014) In Figure 3. "208-pin LQFP pinout":
“DCU_LITE_TAG” added and “DCU_TAG” removed for PK10.
“DCU_TAG” added and “DCULITE_TAG” removed for PK11.
“SDA_1” added for PL0.
“SCL_1” added for PL1.
In Section 1.4.13, "Display Control Unit (DCU3)", added a feature “Support displays up to 800 x 480
pixel resolutions”.
In Figure 4. "416 TEPBGA package pinout", added MSEO2 pin in added in column 17, 3rd last row.
In Table 7. "Port pin summary":
Updated “Function” and “Peripheral” entries for PL[0] and PL[1].
For PB[7], PM[0], PM[8], and PM[1 2], changed PWMOA to PWMO.
For PB[8], PB[10], and PM[7], changed PWMO to PWMOA.
In Section 3.1, "Power-up sequencing", added a note “Vreg bypass mode is for factory testing only”.
Removed “Pad AC specifications (3.3 V, PAD3V5V = 1)” table and “Pad AC specifications (3.3 V,
PAD3V5V = 1)” section.
Updated values of VDDR in Table 13. "Recommended operating conditions (5.0 V)" to 4.5-5.5 V.
Updated temperature in table note 7 of Table 22. "DC electrical characteristics", from 110 0C to 105 0C.
Updated Table 47. "Program and erase specifications" with followi ng modifications:
Ad ded rows for 64KB and 256KB programming timings
Updated timings for 16KB and 128KB programming timings
Rem oved row for 32KB programming timings
Updated Figure 57. “416 TEPBGA Mechanical Drawing (Part 1 of 2)“ and Figure 58. “416 TEPBGA
Mechanical Drawing (Part 2 of 2)“.
13
(13 Apr 2015) Added a note in Section 2.4.1, "Pad configuration during reset phases".
In Table 67. "VIU2 timing parameters", updated the max value of VIU2 pixel clock frequency . Added a
table note for this entry.
In Section 1.3, "Feature list", updated from "Interrupt Controller (INTC) with 181 peripheral interrupt
sources and eight software interrupts" to "Interrupt Controller (INTC) with 163 peripheral interrupt
sources and eight software interrupts".
In Figure 59. “Commercial product code structure“, updated the temperature range for “C” as -40 C to
85 C and for “V” as -40 C to 85/105 C.
Updated Table 77. "Orderable part number summary".
Following chang es were made in Rev 12 of DS but were not captured in Rev 12’s revision history:
•In Figure 2. "176-pin LQFP pinout", changed “MCK0” to “MCKO” for pin 174 and added “MSEO2”
to pin 159
•In Table 7. "Port pin summary", added SDA_1 functi on and I2C1 peripheral for PL[0] port pin and
added SCL_1 function and I2C1 peripheral for PL[1] port pin.
Table 78. Revision history (continued)
Revision
(Date) Description
Document Number: MPC5645S
Rev. 13
04/2015
Information in this document is provide d solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted h ereunder t o desi gn or f abricate any inte grated circuits based on the
information in this document .
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitabil i ty of its products for any particular purpose, nor do es Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liabil i ty, including without limitation conse quential or incidental
damages. “Typical” parameters that may be pro vided i n Free scale data sheets and/or
specifications can and do vary in dif ferent applications, and actual performance may
vary over time. All operating pa rameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to st andard terms an d conditions of sale, which can be found at the following
address:freescale.com/SalesTermsandConditions.
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Of f. The Power Architect ure and Power.org word marks and the
Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org. All other product or service names are the property of their
respective owners .
© 2009 - 2015 Freescale Semiconductor, Inc.