Power Products Data Book

FAIRCHILD



## Introduction

The Fairchild Power Semiconductors described in this databook have been designed primarily for use in switching power conversion applications.

The Selection Guides provide easy access to the many types of power devices currently offered by Fairchild. In addition to the products contained herein, special selections can be made to meet specific requirements. For more information on these selections, please contact the nearest Fairchild Field Sales Office.

The continuing advances being made in power semiconductor technology mean that this book can only contain full data on those products available from Fairchild at the time of publication. Section 4 of the book has been devoted to products in advanced stages of development, which are due to be released to production within a few weeks of the publication date. Preliminary data have been included for these products.

Furthermore, following Fairchild's commitment to providing the market with leading-edge products, other devices are also being developed to satisfy an ever-present industry need for more advanced technology in power conversion systems. These products include higher cell density Power MOSFETs, insulated gate devices, better control circuits, high power integrated circuits and lower cost packages displaying improved thermal characteristics.











 toveb nemd eard food sill lo a nollsee , millasildua to amit


 detrubiq spert iof be
gribivarg of thentimmos a'blithnia? gawallat, atomentive?








| Section 1Index, Selector Guides <br> and Industry Cross Reference <br> Index |  |  |
| :--- | ---: | :---: |
| Selector Guides |  |  |
| Industry Cross Reference | $1-3$ |  |
| Section 2 Power MOSFET and Ultra-Fast |  |  |
| Recovery Rectifier Data Sheets |  |  |
| 2N6755, 2N6756 | $1-5$ |  |
| 2N6757, 2N6758 | $1-9$ |  |
| 2N6759, 2N6760 |  |  |
| 2N6761, 2N6762 | $2-3$ |  |
| 2N6763, 2N6764 | $2-8$ |  |
| 2N6765, 2N6766 | $2-13$ |  |
| 2N6767, 2N6768 | $2-18$ |  |
| 2N6769, 2N6770 | $2-23$ |  |
| FMP20N05, FMP18N05 | $2-28$ |  |
| FRP800 Series | $2-33$ |  |
| FRP1000, FRP2000CC Series | $2-38$ |  |
| FRP1600 Series | $2-43$ |  |
| FRP1600CC Series | $2-47$ |  |
| FRM3200CC Series | $2-51$ |  |
| IRF120-123, IRF520-523, MTP10N08, MTP10N10 | $2-55$ |  |
| IRF130-133, IRF530-533, MTP20N08, MTP20N10 | $2-59$ |  |
| IRF140-143, IRF540-543 | $2-63$ |  |
| IRF150-153 | $2-67$ |  |
| IRF220-223, IRF620-623, MTP7N18, MTP7N20 | $2-78$ |  |
| IRF230-233, IRF630-633, MTP12N18, MTP12N20 | $2-83$ |  |
| IRF240-243, IRF640-643 | $2-87$ |  |
| IRF250-253 | $2-92$ |  |
| IRF320-323, IRF720-723, MTP3N35, MTP3N40 | $2-98$ |  |
| IRF330-333, IRF730-733, MTM5N35, MTM5N40, | $2-103$ |  |
| MTP5N35, MTP5N40 | $2-112$ |  |
| IRF340-343, IRF740-743, MTM8N35, MTM8N40 | $2-118$ |  |


| IRF350-353 | $2-123$ |
| :--- | ---: |
| IRF420-423, IRF820-823, MTP2N45, MTP2N50 | $2-127$ |
| IRF430-433, IRF830-833, MTM4N45, MTM4N50, | $2-132$ |
| MTP4N45, MTP4N50 | $2-138$ |
| IRF440-443, IRF840-843, MTM7N45, MTM7N50 | $2-143$ |
| IRF450-453 | $2-147$ |
| IRF510-513, MTP4N08, MTP4N10 | $2-152$ |
| IRF610-613, MTP2N18, MTP2N20 | $2-157$ |
| IRF710-713, MTP2N35, MTP2N40 |  |
| Section 3 MOSFET and Rectifier Dice |  |
| FRC Series Ultra-Fast Rectifier Dice | $3-3$ |
| IRFC Series N-Channel Power MOSFET Dice | $3-6$ |
| Section 4 Advanced Products |  |
| BUZ71, BUZ71A | $4-3$ |
| FMP35N05/FMP30N05 | $4-5$ |
| FRP860 Series | $4-6$ |
| FRP3200 Series | $4-7$ |
| TO-247 Encapsulated N-Channel Power MOSFETs | $4-8$ |
| Section 5 Application Notes/ESD |  |
| ANPD-4 | $5-3$ |
| ANPD-1 | $5-9$ |
| ANPD-3 PBPD-1 | $5-15$ |
| Section 6 Quality Assurance | $5-28$ |
| and Reliability | $6-3$ |
| Section 7 Ordering Information |  |
| Section 8 Field Sales Offices | $7-3$ |
| and Package Outlines | $8-3$ |



| Index, Selector Guides, Industry Cross Reference | 1 |
| :---: | :---: |
| Power MOSFETs and Ultra-Fast Recovery Rectifier Data Sheets | 2 |
| MOSFET and Rectifier Dice | 3 |
| Advanced Products | 4 |
| Application Notes/ESD | 5 |
| Quality Assurance and Reliability | 6 |
| Ordering Information and Package Outlines | 7 |
| Field Sales Offices | 8 |



FAIRCHILD
A Schlumberger Company

## Alpha-Numeric Index Power MOSFETs and UltraFast Recovery Rectifiers

Select the appropriate electronic component for your power supply design from the list of power components below. The selection guides briefly describe Fairchild Power MOSFET and Ultra-Fast Recovery Rectifiers. The Industry Cross Reference versus Fairchild part numbers is found after the selection guides.

Power MOSFETs

| Fairchild <br> Part <br> Number | Page Number | Fairchild <br> Part <br> Number | Page Number | Fairchild <br> Part <br> Number | Page Number | Fairchild <br> Part <br> Number | Page Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BUZ71 | 4-3 | FRP3205 | 4-7 | IRF340 | 2-118 | IRF620 | 2-87 |
| BUZ71A | 4-3 | FRP3210 | 4-7 | IRF341 | 2-118 | IRF621 | 2-87 |
| FMC20N05 | 3-6 | FRP3215 | 4-7 | IRF342 | 2-118 | IRF622 | 2-87 |
| FMP18N05 | 2-43 | FRP3220 | 4-7 | IRF343 | 2-118 | IRF623 | 2-87 |
| FMP20N05 | 2-43 | IRF120 | 2-67 | IRF350 | 2-123 | IRF630 | 2-92 |
| FMP30N05 | 4-5 | IRF121 | 2-67 | IRF351 | 2-123 | IRF631 | 2-92 |
| FMP35N05 | 4-5 | IRF122 | 2-67 | IRF352 | 2-123 | IRF632 | 2-92 |
| FMP55N05 | 4-8 | IRF123 | 2-67 | IRF353 | 2-123 | IRF633 | 2-92 |
| FMP60N05 | 4-8 | IRF130 | 2-72 | IRF420 | 2-127 | IRF640 | 2-98 |
| FRC805 | 3-3 | IRF131 | 2-72 | IRF421 | 2-127 | IRF641 | 2-98 |
| FRC810 | 3-3 | IRF132 | 2-72 | IRF422 | 2-127 | IRF642 | 2-98 |
| FRC815 | 3-3 | IRF133 | 2-72 | IRF423 | 2-127 | IRF643 | 2-98 |
| FRC820 | 3-3 | IRF140 | 2-78 | IRF430 | 2-132 | IRF710 | 2-157 |
| FRC1605 | 3-3 | IRF141 | 2-78 | IRF431 | 2-132 | IRF711 | 2-157 |
| FRC1610 | 3-3 | IRF142 | 2-78 | IRF432 | 2-132 | IRF712 | 2-157 |
| FRC1615 | 3-3 | IRF143 | 2-78 | IRF433 | 2-132 | IRF713 | 2-157 |
| FRC1620 | 3-3 | IRF150 | 2-83 | IRF440 | 2-138 | IRF720 | 2-107 |
| FRM3205CC | 2-63 | IRF151 | 2-83 | IRF441 | 2-138 | IRF721 | 2-107 |
| FRM3210CC | 2-63 | IRF152 | 2-83 | IRF442 | 2-138 | IRF722 | 2-107 |
| FRM3215CC | 2-63 | IRF153 | 2-83 | IRF443 | 2-138 | IRF723 | 2-107 |
| FRM3220CC | 2-63 | IRF220 | 2-87 | IRF450 | 2-143 | IRF730 | 2-112 |
| FRP805 | 2-47 | IRF221 | 2-87 | IRF451 | 2-143 | IRF731 | 2-112 |
| FRP810 | 2-47 | IRF222 | 2-87 | IRF452 | 2-143 | IRF732 | 2-112 |
| FRP815 | 2-47 | IRF223 | 2-87 | IRF453 | 2-143 | IRF733 | 2-112 |
| FRP820 | 2-47 | IRF230 | 2-92 | IRF510 | 2-147 | IRF740 | 2-118 |
| FRP840 | 4-6 | IRF231 | 2-92 | IRF511 | 2-147 | IRF741 | 2-118 |
| FRP850 | 4-6 | IRF232 | 2-92 | IRF512 | 2-147 | IRF742 | 2-118 |
| FRP860 | 4-6 | IRF233 | 2-92 | IRF513 | 2-147 | IRF743 | 2-118 |
| FRP1005 | 2-51 | IRF240 | 2-98 | IRF520 | 2-67 | IRF820 | 2-127 |
| FRP1010 | 2-51 | IRF241 | 2-98 | IRF521 | 2-67 | IRF821 | 2-127 |
| FRP1015 | 2-51 | IRF242 | 2-98 | IFR522 | 2-67 | IFR822 | 2-127 |
| FRP1020 | 2-51 | IRF243 | 2-98 | IRF523 | 2-67 | IRF823 | 2-127 |
| FRP1605 | 2-55 | IRF250 | 2-103 | IRF530 | 2-72 | IRF830 | 2-132 |
| FRP1605CC | 2-59 | IRF251 | 2-103 | IRF531 | 2-72 | IRF831 | 2-132 |
| FRP1610 | 2-55 | IRF252 | 2-103 | IRF532 | 2-72 | IRF832 | 2-132 |
| FRP1610CC | 2-59 | IRF253 | 2-103 | IRF533 | 2-72 | IRF833 | 2-132 |
| FRP1615 | 2-55 | IRF320 | 2-107 | IRF540 | 2-78 | IRF840 | 2-138 |
| FRP1615CC | 2-59 | IRF321 | 2-107 | IRF541 | 2-78 | IRF841 | 2-138 |
| FRP1620 | 2-55 | IRF322 | 2-107 | IRF542 | 2-78 | IRF842 | 2-138 |
| FRP1620CC | 2-59 | IRF323 | 2-107 | IRF543 | 2-78 | IRF843 | 2-138 |
| FRP2005CC | 2-51 | IRF330 | 2-112 | IRF610 | 2-152 | IRFC110 | 3-6 |
| FRP2010CC | 2-51 | IRF331 | 2-112 | IRF611 | 2-152 | IRFC120 | 3-6 |
| FRP2015CC | 2-51 | IRF332 | 2-112 | IRF612 | 2-152 | IRFC130 | 3-6 |
| FRP2020CC | 2-51 | IRF333 | 2-112 | IRF613 | 2-152 | IRFC140 | 3-6 |

Power MOSFETs (Cont.)

| Fairchild <br> Part | Page <br> Number | Number |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

A Schlumberger Company

Metal TO-204AA/TO-204AE

| $V_{\text {DSS }}$ <br> (V) | RDS (on) (Ohms) | IDR <br> (A) | Part Number | Page Number |
| :---: | :---: | :---: | :---: | :---: |
| 500 | 0.400 | 13.0 | IRF450 | 2-143 |
|  | 0.400 | 12.0 | 2N6770 | 2-38 |
|  | 0.500 | 12.0 | IRF452 | 2-143 |
|  | 0.800 | 7.0 | MTM7N50 | 2-138 |
|  | 0.850 | 8.0 | IRF440 | 2-138 |
|  | 1.100 | 7.0 | IRF442 | 2-138 |
|  | 1.500 | 4.5 | IRF430 | 2-132 |
|  | 1.500 | 4.0 | MTM4N50 | 2-132 |
|  | 1.500 | 4.5 | 2N6762 | 2-18 |
|  | 2.000 | 4.0 | IRF432 | 2-132 |
|  | 3.000 | 2.5 | IRF420 | 2-127 |
|  | 4.000 | 2.0 | IRF422 | 2-127 |
| 450 | 0.400 | 13.0 | IRF451 | 2-143 |
|  | 0.500 | 12.0 | IRF453 | 2-143 |
|  | 0.500 | 11.0 | 2N6769 | 2-38 |
|  | 0.800 | 7.0 | MTM7N45 | 2-138 |
|  | 0.850 | 8.0 | IRF441 | 2-138 |
|  | 1.100 | 7.0 | IRF443 | 2-138 |
|  | 1.500 | 4.5 | IRF431 | 2-132 |
|  | 1.500 | 4.0 | MTM4N45 | 2-132 |
|  | 2.000 | 4.0 | IRF433 | 2-132 |
|  | 2.000 | 4.0 | 2N6761 | 2-18 |
|  | 3.000 | 2.5 | IRF421 | 2-127 |
|  | 4.000 | 2.0 | IRF423 | 2-127 |
| 400 | 0.300 | 15.0 | IRF350 | 2-123 |
|  | 0.400 | 13.0 | IRF352 | 2-123 |
|  | 0.300 | 14.0 | 2N6768 | 2-33 |
|  | 0.550 | 8.0 | MTM8N40 | 2-118 |
|  | 0.550 | 10.0 | IRF340 | 2-118 |
|  | 0.800 | 8.0 | IRF342 | 2-118 |
|  | 1.000 | 5.5 | IRF330 | 2-112 |
|  | 1.000 | 5.5 | 2N6760 | 2-13 |
|  | 1.000 | 5.0 | MTM5N40 | 2-112 |
|  | 1.500 | 4.5 | IRF332 | 2-112 |
|  | 1.800 | 3.0 | IRF320 | 2-107 |
|  | 2.500 | 2.5 | IRF322 | 2-107 |
| 350 | 0.300 | 15.0 | IRF351 | 2-123 |
|  | 0.400 | 13.0 | IRF353 | 2-123 |
|  | 0.400 | 12.0 | 2N6767 | 2-33 |
|  | 0.550 | 10.0 | IRF341 | 2-118 |
|  | 0.550 | 8.0 | MTM8N35 | 2-118 |
|  | 0.800 | 8.0 | IRF343 | 2-118 |
|  | 1.000 | 5.5 | IRF331 | 2-112 |
|  | 1.000 | 5.0 | MTM5N35 | 2-112 |
|  | 1.500 | 4.5 | IRF333 | 2-112 |


| VDS <br> (V) | RDS (on) (Ohms) | IDR <br> (A) | Part Number | Page Number |
| :---: | :---: | :---: | :---: | :---: |
| 350 | 1.500 | 7.0 | 2N6759 | 2-13 |
|  | 1.800 | 3.0 | IRF321 | 2-107 |
|  | 2.500 | 2.5 | IRF323 | 2-107 |
| 200 | 0.085 | 30.0 | 2N6766 | 2-28 |
|  | 0.085 | 30.0 | IRF250 | 2-103 |
|  | 0.120 | 25.0 | IRF252 | 2-103 |
|  | 0.180 | 18.0 | IRF240 | 2-98 |
|  | 0.220 | 16.0 | IRF242 | 2-98 |
|  | 0.400 | 9.0 | 2N6758 | 2-8 |
|  | 0.400 | 8.0 | IRF230 | 2-92 |
|  | 0.500 | 8.0 | IRF232 | 2-92 |
|  | 0.800 | 5.0 | IRF220 | 2-87 |
|  | 1.200 | 4.0 | IRF222 | 2-87 |
| 150 | 0.085 | 30.0 | IRF251 | 2-103 |
|  | 0.120 | 25.0 | 2N6765 | 2-28 |
|  | 0.120 | 25.0 | IRF253 | 2-103 |
|  | 0.180 | 18.0 | IRF241 | 2-98 |
|  | 0.220 | 16.0 | IRF243 | 2-98 |
|  | 0.400 | 9.0 | IRF231 | 2-92 |
|  | 0.500 | 8.0 | IRF233 | 2-92 |
|  | 0.600 | 8.0 | 2N6757 |  |
|  | 0.800 | 5.0 | IRF221 | 2-87 |
|  | 1.200 | 4.0 | IRF223 | 2-87 |
| 100 | 0.055 | 40.0 | IRF150 | 2-83 |
|  | 0.055 | 38.0 | 2N6764 | 2-23 |
|  | 0.080 | 33.0 | IRF152 | 2-83 |
|  | 0.085 | 27.0 | IRF140 | 2-78 |
|  | 0.110 | 24.0 | IRF142 | 2-78 |
|  | 0.180 | 14.0 | 2N6756 | 2-3 |
|  | 0.180 | 14.0 | IRF130 | $2-72$ |
|  | 0.250 | 12.0 | IRF132 | 2-72 |
|  | 0.300 | $8.0$ | IRF120 | 2-67 |
|  | 0.400 | 7.0 | IRF122 | 2-67 |
| 60 |  |  |  | 2-83 |
|  | 0.080 | 31.0 | 2N6763 | 2-23 |
|  | 0.080 | 33.0 | IRF153 | 2-83 |
|  | 0.085 | 27.0 | IRF141 | 2-78 |
|  | 0.110 | 24.0 | IRF143 | $2-78$ |
|  | 0.180 | 14.0 | IRF131 | 2-72 |
|  | 0.250 | 12.0 | 2N6755 | 2-3 |
|  | 0.250 | 12.0 | IRF133 | $2-72$ |
|  | 0.300 | 8.0 | IRF121 | 2-67 |
|  | 0.400 | 7.0 | IRF123 | 2-67 |

Plastic Encapsulated TO-220AB

| $V_{\text {DSS }}$ <br> (V) | $R_{\text {DS }}$ (on) (Ohms) | $I_{D R}$ <br> (A) | Part Number | Page Number |
| :---: | :---: | :---: | :---: | :---: |
| 500 | 0.850 | 8.0 | IRF840 | 2-138 |
|  | 1.100 | 7.0 | IRF842 | 2-138 |
|  | 1.500 | 4.5 | IRF830 | 2-132 |
|  | 1.500 | 4.0 | MTP4N50 | 2-132 |
| OS-S | 2.000 | 4.0 | IRF832 | 2-132 |
| $\begin{aligned} & 80 \mathrm{r} \cdot \mathrm{~s} \\ & \mathrm{ger} .9 \end{aligned}$ | 3.000 | 2.5 | IRF820 | 2-127 |
|  | 4.000 | 2.0 | IRF822 | 2-127 |
|  | 4.000 | 2.5 | MTP2N50 | 2-127 |
| 450 | 0.850 | 8.0 | IRF841 | 2-138 |
|  | 1.100 | 7.0 | IRF843 | 2-138 |
|  | 1.500 | 4.0 | MTP4N45 | 2-132 |
|  | 1.500 | 4.5 | IRF831 | 2-132 |
|  | 2.000 | 4.0 | IRF833 | 2-132 |
|  | 3.000 | 2.5 | IRF821 | 2-127 |
|  | 4.000 | 2.0 | IRF823 | 2-127 |
|  | 4.000 | 2.5 | MTP2N45 | 2-127 |
| 400 | 0.550 | 10.0 | IRF740 | 2-118 |
|  | 0.800 | 8.0 | IRF742 | 2-118 |
|  | 1.000 | 5.5 | IRF730 | 2-112 |
|  | 1.000 | 5.0 | MTP5N40 | 2-112 |
|  | 1.500 | 4.5 | IRF732 | 2-112 |
|  | 1.800 | 3.0 | IRF720 | 2-107 |
|  | 2.500 | 2.5 | IRF722 | 2-107 |
|  | 3.300 | 3.0 | MTP3N40 | 2-107 |
|  | 3.600 | 1.5 | IRF710 | 2-157 |
|  | 5.000 | 1.3 | IRF712 | 2-157 |
|  | 5.000 | 2.0 | MTP2N40 | 2-157 |
| 350 | 0.550 | 10.0 | IRF741 | 2-118 |
|  | 0.800 | 8.0 | IRF743 | 2-118 |
|  | 1.000 | 5.5 | IRF731 | 2-112 |
|  | 1.000 | 5.0 | MTP5N35 | 2-112 |
|  | 1.500 | 4.5 | IRF733 | 2-112 |
|  | 1.800 | 3.0 | IRF721 | 2-107 |
|  | 2.500 | 2.5 | IRF723 | 2-107 |
|  | 3.300 | 3.0 | MTP3N35 | 2-107 |
|  | 3.600 | 1.5 | IRF711 | 2-157 |
|  | 5.000 | 1.3 | IRF713 | 2-157 |
|  | 5.000 | 2.0 | MTP2N35 | 2-157 |
| 200 | 0.180 | 18.0 | IRF640 | 2-98 |
|  | 0.220 | 16.0 | IRF642 | 2-98 |
|  | 0.350 | 12.0 | MTP12N20 | 2-92 |
|  | 0.400 | 9.0 | IRF630 | 2-92 |
|  | 0.500 | 8.0 | IRF632 | 2-92 |


| $V_{\text {DSS }}$ <br> (V) | $\mathrm{R}_{\mathrm{DS}}$ (on) (Ohms) | $\begin{aligned} & \mathrm{I}_{\mathrm{DR}} \\ & (\mathrm{~A}) \end{aligned}$ | Part Number | Page Number |
| :---: | :---: | :---: | :---: | :---: |
| 200 | 0.700 | 7.0 | MTP7N20 | 2-87 |
|  | 0.800 | 5.0 | IRF620 | 2-87 |
|  | 1.200 | 4.0 | IRF622 | 2-87 |
|  | 1.500 | 2.5 | IRF610 | 2-152 |
|  | 1.800 | 3.5 | MTP2N20 | 2-152 |
|  | 2.400 | 2.0 | IRF612 | 2-152 |
| 180 | 0.350 | 12.0 | MTP12N18 | 2-92 |
|  | 0.700 | 7.0 | MTP7N18 | 2-87 |
|  | 1.800 | 3.25 | MTP2N18 | 2-152 |
| 150 | 0.180 | 18.0 | IRF641 | 2-98 |
|  | 0.220 | 16.0 | IRF643 | 2-98 |
| Cat-8 | 0.400 | 9.0 | IRF631 | 2-92 |
| Ents | 0.500 | 8.0 | IRF633 | 2-92 |
|  | 0.800 | 5.0 | IRF621 | 2-87 |
|  | 1.200 | 4.0 | IRF623 | 2-87 |
|  | 1.500 | 2.5 | IRF611 | 2-152 |
|  | 2.400 | 2.0 | IRF613 | 2-152 |
| 100 | 0.085 | 27.0 | IRF540 | 2-78 |
|  | 0.110 | 24.0 | IRF542 | 2-78 |
|  | 0.150 | 20.0 | MTP20N10 | 2-72 |
|  | 0.180 | 14.0 | IRF530 | 2-72 |
|  | 0.250 | 12.0 | IRF532 | 2-72 |
|  | 0.300 | 8.0 | IRF520 | 2-67 |
| 89tes | 0.330 | 10.0 | MTP10N10 | 2-67 |
|  | 0.400 | 7.0 | IRF522 | 2-67 |
| catus | 0.600 | 4.0 | IRF510 | 2-147 |
|  | 0.800 | 3.5 | IRF512 | 2-147 |
|  | 0.800 | 5.0 | MTP4N10 | 2-147 |
| 80 | 0.150 | 20.0 | MTP20N08 | 2-72 |
|  | 0.330 | 10.0 | MTP10N08 | 2-67 |
|  | 0.800 | 5.0 | MTP4N08 | 2-147 |
| 60 | 0.085 | 27.0 | IRF541 | 2-78 |
|  | 0.110 | 24.0 | IRF543 | 2-78 |
|  | 0.180 | 14.0 | IRF531 | 2-72 |
|  | 0.250 | 12.0 | IRF533 | 2-72 |
| estes | 0.300 | 8.0 | IRF521 | 2-67 |
|  | 0.400 | 7.0 | IRF523 | 2-67 |
|  | 0.600 | 4.0 | IRF511 | 2-147 |
|  | 0.800 | 3.5 | IRF513 | 2-147 |
| 50 | 0.085 | 20 | FMP20N05 | 2-43 |
|  | 0.100 | 18 | FMP18N05 | 2-43 |


| Single Rectifier Per Package |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Part Number | $\mathrm{V}_{\text {RSM }}(\mathrm{V})$ | $\mathrm{I}_{\mathrm{F}}(\mathrm{AVG})(\mathrm{A})$ | $\left.\mathrm{trr}_{\text {( }} \mathrm{ns}\right)^{\mathbf{2}}$ | $\mathrm{V}_{\mathrm{F}}(\mathrm{V})^{1}$ | Case Style | Page Number |
| FRP805 | 50 | 8 | 35 | 0.95 | TO-220AC | 2-47 |
| FRP810 | 100 | 8 | 35 | 0.95 | TO-220AC | 2-47 |
| FRP815 | 150 | 8 | 35 | 0.95 | TO-220AC | 2-47 |
| FRP820 | 200 | 8 | 35 | 0.95 | TO-220AC | 2-47 |
| FRP1005 | 50 | 10 | 35 | 0.95 | TO-220AC | 2-51 |
| FRP1010 | 100 | 10 | 35 | 0.95 | TO-220AC | 2-51 |
| FRP1015 | 150 | 10 | 35 | 0.95 | TO-220AC | 2-51 |
| FRP1020 | 200 | 10 | 35 | 0.95 | TO-220AC | 2-51 |
| FRP1605 | 50 | 16 | 35 | 0.95 | TO-220AC | 2-55 |
| FRP1610 | 100 | 16 | 35 | 0.95 | TO-220AC | 2-55 |
| FRP1615 | 150 | 16 | 35 | 0.95 | TO-220AC | 2-55 |
|  |  | 16 | 35 | 0.95 | TO-220AC | 2-55 |
| Dual Rectifiers, Common Cathode |  |  |  |  |  |  |
| Part Number | V ${ }_{\text {RSM }}(\mathrm{V})$ | $\mathrm{I}_{\mathrm{F}}(\mathrm{AVG})(\mathrm{A})$ | $\mathrm{trr}^{(\mathrm{ns})^{2}}$ | $\mathrm{V}_{\mathrm{F}}(\mathrm{V})^{1}$ | Case Style | Page Number |
| FRP1605CC | 50 | 16 | 35 | 0.95 | TO-220AB | 2-59 |
| FRP1610CC | 100 | 16 | 35 | 0.95 | TO-220AB | 2-59 |
| FRP1615CC | 150 | 16 | 35 | 0.95 | TO-220AB | 2-59 |
| FRP1620CC | 200 | 16 | 35 | 0.95 | TO-220AB | 2-59 |
| FRP2005CC | 50 | 20 | 35 | 0.95 | TO-220AB | 2-51 |
| FRP2010CC | 100 | 20 | 35 | 0.95 | TO-220AB | $2-51$ |
| FRP2015CC | 150 | 20 | 35 | 0.95 | TO-220AB | $2-51$ |
| FRP2020CC | 200 | 20 | 35 | 0.95 | TO-220AB | 2-51 |
| FRM3205CC | 50 | 32 | 35 | 0.95 | TO-204AA | 2-63 |
| FRM3210CC | 100 | 32 | 35 | 0.95 | TO-204AA | 2-63 |
| FRM3215CC | $150$ | 32 | 35 | $0.95$ | TO-204AA | 2-63 |
| FRM3220CC | 200 | 32 | 35 | 0.95 | TO-204AA | 2-63 |

Notes

1. $V_{f}$ measured at $I_{f}$ (avg).
2. $\mathrm{t}_{\mathrm{r}}$ measured at $\mathrm{I}_{\mathrm{f}}=1 \mathrm{~A} ; \mathrm{dl} / \mathrm{dt}=50 \mathrm{~A} / \mu \mathrm{s} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$

## 3bind rolasloc 




Bodtso nommoo ravertosh lisua

(a) eevn .V.t


Power MOSFETs

| Industry Type | Fairchild <br> Part No. | Page No. |
| :---: | :---: | :---: |
| 2N6755 | 2N6755 | 2-3 |
| 2N6756 | 2N6756 | 2-3 |
| 2N6757 | 2N6757 | 2-8 |
| 2N6758 | 2N6758 | 2-8 |
| 2N6759 | 2N6759 | 2-13 |
| 2N6760 | 2N6760 | 2-13 |
| 2N6761 | 2N6761 | 2-18 |
| 2N6762 | 2N6762 | 2-18 |
| 2N6763 | 2N6763 | 2-23 |
| 2N6764 | 2N6764 | 2-23 |
| 2N6765 | 2N6765 | 2-28 |
| 2N6766 | 2N6766 | 2-28 |
| 2N6767 | 2N6767 | 2-33 |
| 2N6768 | 2N6768 | 2-33 |
| 2N6769 | 2N6769 | 2-38 |
| 2N6770 | 2N6770 | 2-38 |
| 2SK133 | IRF223 | 2-87 |
| 2SK134 | IRF223 | 2-87 |
| 2SK135 | IRF222 | 2-87 |
| 2SK175 | IRF222 | 2-87 |
| 2SK176 | IRF222 | 2-87 |
| 2SK176H | IRF222 | 2-87 |
| 2SK220H | IRF222 | 2-87 |
| 2SK221H | IRF222 | 2-87 |
| 2SK259 | IRF323 | 2-107 |
| 2SK260 | IRF322 | 2-107 |
| 2SK277 | IRF333 | 2-112 |
| 2SK278 | IRF332 | 2-112 |
| 2SK294 | IRF522 | 2-67 |
| 2SK295 | IRF522 | 2-67 |
| 2SK296 | MTP3N35 | 2-107 |
| 2SK298 | IRF332 | 2-112 |
| 2SK299 | IRF431 | 2-132 |
| 2SK308 | IRF243 | 2-98 |
| 2SK310 | IRF710 | 2-157 |
| 2SK311 | IRF823 | 2-127 |
| 2SK312 | IRF342 | 2-118 |
| 2SK313 | IRF441 | 2-138 |
| 2SK319 | IRF720 | 2-107 |
| 2SK320 | IRF723 | 2-107 |
| 2SK324 | IRF352 | 2-123 |
| 2SK325 | IRF453 | 2-143 |
| 2SK338 | IRF730 | 2-112 |
| 2SK346 | IRF523 | 2-67 |


| Industry Type | Fairchild <br> Part No. | Page No. |
| :---: | :---: | :---: |
| 2SK355 | IRF241 | 2-98 |
| 2SK357 | IRF623 | 2-87 |
| 2SK382 | IRF822 | 2-127 |
| 2SK383 | IRF530 | 2-72 |
| 2SK428 | IRF543 | 2-78 |
| 2SK440 | IRF630 | 2-92 |
| 2SK512 | IRF452 | 2-143 |
| 2SK552 | IRF831 | 2-132 |
| 2SK553 | IRF830 | 2-132 |
| 2SK554 | IRF841 | 2-138 |
| 2SK555 | IRF840 | 2-138 |
| BUZ10 | FMP18N05 | 2-43 |
| BUZ10A | FMP18N05 | 2-43 |
| BUZ20 | IRF530 | 2-72 |
| BUZ21 | IRF540 | 2-78 |
| BUZ21A | IRF540 | 2-78 |
| BUZ23 | IRF130 | 2-72 |
| BUZ24 | IRF150 | 2-83 |
| BUZ25 | IRF140 | 2-78 |
| BUZ30 | IRF632 | 2-92 |
| BUZ31 | IRF640 | 2-98 |
| BUZ32 | IRF630 | 2-92 |
| BUZ32A | MTP12N20 | 2-92 |
| BUZ33 | IRF232 | 2-92 |
| BUZ34 | IRF240 | 2-98 |
| BUZ35 | IRF230 | 2-92 |
| BUZ35A | IRF230 | 2-92 |
| BUZ36 | IRF252 | 2-103 |
| BUZ40 | IRF822 | 2-127 |
| BUZ41 | IRF842 | 2-138 |
| BUZ41A | IRF830 | 2-132 |
| BUZ42 | IRF832 | 2-132 |
| BUZ42A | IRF832 | 2-132 |
| BUZ43 | IRF422 | 2-127 |
| BUZ44 | IRF442 | 2-138 |
| BUZ44A | IRF430 | 2-132 |
| BUZ44B | IRF430 | 2-132 |
| BUZ45 | IRF452 | 2-143 |
| BUZ45A | MTM7N50 | 2-138 |
| BUZ45B | IRF452 | 2-143 |
| BUZ45C | IRF453 | 2-143 |
| BUZ46 | IRF432 | 2-132 |
| BUZ46A | IRF430 | 2-132 |
| BUZ60 | IRF730 | 2-112 |


| Industry Type | Fairchild Part No. | Page No. |
| :---: | :---: | :---: |
| BUZ60A | IRF730 | 2-112 |
| BUZ60B | IRF732 | 2-112 |
| BUZ63 | IRF330 | 2-112 |
| BUZ63A | IRF330 | 2-112 |
| BUZ63B | IRF332 | 2-112 |
| BUZ64 | IRF352 | 2-123 |
| BUZ64A | IRF352 | 2-123 |
| BUZ71 | FMP18N05 | 2-43 |
| BUZ71A | FMP18N05 | 2-43 |
| BUZ72 | IRF530 | 2-72 |
| BUZ72A | IRF532 | 2-72 |
| BUZ73A | IRF632 | 2-92 |
| BUZ74 | IRF820 | 2-127 |
| BUZ74A | IRF822 | 2-127 |
| BUZ76 | IRF720 | 2-107 |
| BUZ76A | IRF722 | 2-107 |
| D84BK2 | IRF511 | 2-147 |
| D84BL2 | IRF510 | 2-147 |
| D84BM2 | IRF611 | 2-152 |
| D84BQ1 | IRF711 | 2-157 |
| D84BQ2 | IRF710 | 2-157 |
| D84CK1 | IRF521 | 2-67 |
| D84CK2 | IRF521 | 2-67 |
| D84CL1 | IRF520 | 2-67 |
| D84CL2 | IRF520 | 2-67 |
| D84CM1 | IRF621 | 2-87 |
| D84CM2 | IRF621 | 2-87 |
| D84CN1 | MTP7N18 | 2-87 |
| D84CN2 | IRF620 | 2-87 |
| D84CQ1 | IRF721 | 2-107 |
| D84CQ2 | IRF720 | 2-107 |
| D84CR1 | IRF821 | 2-127 |
| D84CR2 | IRF820 | 2-127 |
| D84DK1 | IRF531 | 2-72 |
| D84DK2 | IRF531 | 2-72 |
| D84DL1 | IRF530 | 2-72 |
| D84DL2 | IRF530 | 2-72 |
| D84DM1 | IRF631 | 2-92 |
| D84DM2 | IRF631 | 2-92 |
| D84DN1 | MTP12N18 | 2-92 |
| D84DN2 | IRF630 | 2-92 |
| D84DQ1 | IRF731 | 2-112 |
| D84DQ2 | IRF730 | 2-112 |
| D84DR1 | IRF831 | 2-132 |

Power MOSFETs

| Industry Type | Fairchild Part No. | Page No. |
| :---: | :---: | :---: |
| D84DR2 | IRF830 | 2-132 |
| D84EK1 | IRF541 | 2-78 |
| D84EK2 | IRF541 | 2-78 |
| D84EL1 | MTP4N08 | 2-147 |
| D84EL2 | IRF540 | 2-78 |
| D84EM1 | IRF641 | 2-98 |
| D84EM2 | IRF641 | 2-98 |
| D84EN1 | IRF640 | 2-98 |
| D84EN2 | IRF640 | 2-98 |
| D84EQ1 | IRF741 | 2-118 |
| D84EQ2 | IRF740 | 2-118 |
| D84ER1 | IRF841 | 2-138 |
| D84ER2 | IRF840 | 2-138 |
| D84MN2 | IRF610 | 2-152 |
| D86CK1 | IRF121 | 2-67 |
| D86CL1 | IRF120 | 2-67 |
| D86CM1 | IRF221 | 2-67 |
| D86CN1 | IRF220 | 2-67 |
| D86DK1 | IRF131 | 2-72 |
| D86DK2 | IRF131 | 2-72 |
| D86DL1 | IRF130 | 2-72 |
| D86DL2 | IRF130 | 2-72 |
| D86DM1 | IRF231 | 2-92 |
| D86DM2 | IRF231 | 2-92 |
| D86DN1 | IRF230 | 2-92 |
| D86DN2 | IRF230 | 2-92 |
| D86DQ1 | IRF331 | 2-112 |
| D86DQ2 | IRF330 | 2-112 |
| D86DR1 | IRF431 | 2-132 |
| D86DR2 | IRF430 | 2-132 |
| D86EK1 | IRF141 | 2-78 |
| D86EL1 | IRF140 | 2-78 |
| D86EM1 | IRF241 | 2-98 |
| D86EN1 | IRF240 | 2-98 |
| D86EQ1 | IRF341 | 2-118 |
| D86EQ2 | IRF340 | 2-118 |
| D86ER1 | IRF441 | 2-138 |
| D86ER2 | IRF440 | 2-138 |
| D86FQ1 | IRF351 | 2-123 |
| D86FQ2 | IRF350 | 2-123 |
| D86FR1 | IRF451 | 2-143 |
| D86FR2 | IRF450 | 2-143 |
| IRFZ20 | FMP18N05 | 2-43 |
| IRFZ22 | FMP18N05 | 2-43 |


| Industry Type | Fairchild Part No. | Page No. |
| :---: | :---: | :---: |
| PM816M | IRF152 | 2-83 |
| PM816P | MTP20N08 | 2-72 |
| PM820M | IRF140 | 2-78 |
| PM820P | IRF540 | 2-78 |
| RFK10N45 | IRF453 | 2-143 |
| RFK10N50 | IRF452 | 2-143 |
| RFK12N35 | IRF353 | 2-123 |
| RFK12N40 | IRF352 | 2-123 |
| RFK25N18 | IRF252 | 2-103 |
| RFK25N20 | IRF252 | 2-103 |
| RFK30N12 | IRF251 | 2-103 |
| RFK30N15 | IRF251 | 2-103 |
| RFK35N08 | IRF150 | 2-83 |
| RFK35N10 | IRF150 | 2-83 |
| RFM10N12 | IRF243 | 2-98 |
| RFM10N15 | IRF243 | 2-98 |
| RFM12N08 | IRF130 | 2-72 |
| RFM12N10 | IRF130 | 2-72 |
| RFM12N18 | IRF242 | 2-98 |
| RFM12N20 | IRF242 | 2-98 |
| RFM15N05 | IRF143 | 2-78 |
| RFM15N06 | IRF143 | 2-78 |
| RFM15N12 | IRF253 | 2-103 |
| RFM15N15 | IRF253 | 2-103 |
| RFM18N08 | IRF142 | 2-78 |
| RFM18N10 | IRF142 | 2-78 |
| RFM25N05 | IRF141 | 2-78 |
| RFM25N06 | IRF141 | 2-78 |
| RFM4N35 | IRF333 | 2-112 |
| RFM4N40 | IRF332 | 2-112 |
| RFM6N45 | IRF431 | 2-132 |
| RFM6N50 | IRF430 | 2-132 |
| RFM7N35 | MTM8N35 | 2-118 |
| RFM7N40 | MTM8N40 | 2-118 |
| RFM8N18 | IRF232 | 2-92 |
| RFM8N20 | IRF232 | 2-92 |
| RFP10N12 | IRF643 | 2-98 |
| RFP10N15 | IRF643 | 2-98 |
| RFP12N08 | IRF530 | 2-72 |
| RFP12N10 | IRF530 | 2-72 |
| RFP12N18 | IRF642 | 2-98 |
| RFP12N20 | IRF642 | 2-98 |
| RFP15N05 | IRF543 | 2-78 |
| RFP15N06 | IRF543 | 2-78 |

Power MOSFETs

| Industry Type | Fairchild Part No. | Page No. |
| :---: | :---: | :---: |
| RFP18N08 | IRF542 | 2-78 |
| RFP18N10 | IRF542 | 2-78 |
| RFP25N05 | FMP20N05 | 2-43 |
| RFP25N06 | IRF541 | 2-78 |
| RFP2N08 | IRF512 | 2-147 |
| RFP2N10 | IRF512 | 2-147 |
| RFP2N12 | IRF611 | 2-152 |
| RFP2N15 | IRF611 | 2-152 |
| RFP2N18 | IRF612 | 2-152 |
| RFP2N20 | IRF612 | 2-152 |
| RFP4N05 | IRF513 | 2-147 |
| RFP4N06 | IRF513 | 2-147 |
| RFP4N35 | IRF733 | 2-112 |
| RFP4N40 | IRF732 | 2-112 |
| RFP6N45 | IRF841 | 2-138 |
| RFP6N50 | IRF840 | 2-138 |
| RFP7N35 | IRF741 | 2-118 |
| RFP7N40 | IRF740 | 2-118 |
| RFP8N18 | IRF630 | 2-92 |
| RFP8N20 | IRF630 | 2-92 |
| RRF120 | IRF120 | 2-67 |
| RRF121 | IRF121 | 2-67 |
| RRF122 | IRF122 | 2-67 |
| RRF123 | IRF123 | 2-67 |
| RRF220 | IRF220 | 2-87 |
| RRF221 | IRF221 | 2-87 |
| RRF222 | IRF222 | 2-87 |
| RRF223 | IRF223 | 2-87 |
| RRF320 | IRF320 | 2-107 |
| RRF321 | IRF321 | 2-107 |
| RRF322 | IRF322 | 2-107 |
| RRF323 | IRF323 | 2-107 |
| RRF330 | IRF330 | 2-112 |
| RRF331 | IRF331 | 2-112 |
| RRF332 | IRF332 | 2-112 |
| RRF333 | IRF333 | 2-112 |
| RRF420 | IRF420 | 2-127 |
| RRF421 | IRF421 | 2-127 |
| RRF422 | IRF422 | 2-127 |
| RRF423 | IRF423 | 2-127 |
| RRF430 | IRF430 | 2-132 |
| RRF431 | IRF431 | 2-132 |
| RRF432 | IRF432 | 2-132 |
| RRF433 | IRF433 | 2-132 |


| Industry Type | Fairchild Part No. | $\begin{aligned} & \text { Page } \\ & \text { No. } \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: |
| RRF510 | IRF510 | 2-147 |
| RRF511 | IRF511 | 2-147 |
| RRF512 | IRF512 | 2-147 |
| RRF513 | IRF513 | 2-147 |
| RRF520 | IRF520 | 2-67 |
| RRF521 | IRF521 | 2-67 |
| RRF522 | IRF522 | 2-67 |
| RRF523 | IRF523 | 2-67 |
| RRF610 | IRF610 | 2-152 |
| RRF611 | IRF611 | 2-152 |
| RRF612 | IRF612 | 2-152 |
| RRF613 | IRF613 | 2-152 |
| RRF620 | IRF620 | 2-87 |
| RRF621 | IRF621 | 2-87 |
| RRF622 | IRF622 | 2-87 |
| RRF623 | IRF623 | 2-87 |
| RRF710 | IRF710 | 2-157 |
| RRF711 | IRF711 | 2-157 |
| RRF712 | IRF712 | 2-157 |
| RRF713 | IRF713 | 2-157 |
| RRF720 | IRF720 | 2-107 |
| RRF721 | IRF721 | 2-107 |
| RRF722 | IRF722 | 2-107 |
| RRF723 | IRF723 | 2-107 |
| RRF730 | IRF730 | 2-112 |
| RRF731 | IRF731 | 2-112 |
| RRF732 | IRF732 | 2-112 |
| RRF733 | IRF733 | 2-112 |
| RRF820 | IRF820 | 2-127 |
| RRF821 | IRF821 | 2-127 |
| RRF822 | IRF822 | 2-127 |
| RRF823 | IRF823 | 2-127 |
| RRF830 | IRF830 | 2-132 |
| RRF831 | IRF831 | 2-132 |
| RRF832 | IRF832 | 2-132 |
| RRF833 | IRF833 | 2-132 |
| SD1002KD | IRF430 | 2-132 |
| SD1005CD | IRF631 | 2-92 |
| SD1005KD | IRF231 | 2-92 |
| SD1011KD | IRF440 | 2-138 |
| SD1012KD | IRF431 | 2-132 |
| SD1014CD | IRF622 | 2-87 |
| SD1014KD | IRF122 | 2-67 |
| SD1021KD | IRF330 | 2-112 |


| Industry Type | Fairchild Part No. | $\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$ |
| :---: | :---: | :---: |
| SD500CD | IRF833 | 2-132 |
| SD500KD | IRF433 | 2-132 |
| SD900KD | IRF442 | 2-138 |
| SD901KD | MTM7N45 | 2-138 |
| SFN106A3 | IRF120 | 2-67 |
| SFN106B3 | IRF121 | 2-67 |
| SFN204A3 | IRF220 | 2-87 |
| SFN204B3 | IRF221 | 2-87 |
| SNF402A3 | IRF320 | 2-107 |
| STM3110 | IRF341 | 2-118 |
| STM3111 | IRF340 | 2-118 |
| STM3112 | IRF453 | 2-143 |
| STM360 | IRF331 | 2-112 |
| STM361 | IRF330 | 2-112 |
| STM362 | IRF442 | 2-138 |
| UFN120 | IRF120 | 2-67 |
| UFN121 | IRF121 | 2-67 |
| UFN122 | IRF122 | 2-67 |
| UFN123 | IRF123 | 2-67 |
| UFN130 | IRF130 | 2-72 |
| UFN132 | IRF132 | 2-72 |
| UFN133 | IRF133 | 2-72 |
| UFN140 | IRF140 | 2-78 |
| UFN141 | IRF141 | 2-78 |
| UFN142 | IRF142 | 2-78 |
| UFN143 | IRF143 | 2-78 |
| UFN150 | IRF150 | 2-83 |
| UFN151 | IRF151 | 2-83 |
| UFN152 | IRF152 | 2-83 |
| UFN153 | IRF153 | 2-83 |
| UFN220 | IRF220 | 2-87 |
| UFN221 | IRF221 | 2-87 |
| UFN222 | IRF222 | 2-87 |
| UFN223 | IRF223 | 2-87 |
| UFN230 | IRF230 | 2-92 |
| UFN231 | IRF231 | 2-92 |
| UFN232 | IRF232 | 2-92 |
| UFN233 | IRF233 | 2-92 |
| UFN240 | IRF240 | 2-98 |
| UFN241 | IRF241 | 2-98 |
| UFN242 | IRF242 | 2-98 |
| UFN243 | IRF243 | 2-98 |
| UFN250 | IRF250 | 2-103 |
| UFN251 | IRF251 | 2-103 |

## Industry Cross Reference

Power MOSFETs

| Industry <br> Type | Fairchild | Part No. |
| :---: | :--- | :---: | No.


| Industry Type | Fairchild <br> Part No. | Page No. |
| :---: | :---: | :---: |
| UFN532 | IRF532 | 2-72 |
| UFN533 | IRF533 | 2-72 |
| UFN540 | IRF540 | 2-78 |
| UFN541 | IRF541 | 2-78 |
| UFN542 | IRF542 | 2-78 |
| UFN543 | IRF543 | 2-78 |
| UFN610 | IRF610 | 2-152 |
| UFN611 | IRF611 | 2-152 |
| UFN612 | IRF612 | 2-152 |
| UFN613 | IRF613 | 2-152 |
| UFN620 | IRF620 | 2-87 |
| UFN621 | IRF621 | 2-87 |
| UFN622 | IRF622 | 2-87 |
| UFN623 | IRF623 | 2-87 |
| UFN630 | IRF630 | 2-92 |
| UFN631 | IRF631 | 2-92 |
| UFN632 | IRF632 | 2-92 |
| UFN633 | IRF633 | 2-92 |
| UFN640 | IRF640 | 2-98 |
| UFN641 | IRF641 | 2-98 |
| UFN642 | IRF642 | 2-98 |
| UFN643 | IRF643 | 2-98 |
| UFN710 | IRF710 | 2-157 |
| UFN711 | IRF711 | 2-157 |
| UFN712 | IRF712 | 2-157 |
| UFN713 | IRF713 | 2-157 |
| UFN720 | IRF720 | 2-107 |
| UFN721 | IRF721 | 2-107 |
| UFN722 | IRF722 | 2-107 |
| UFN723 | IRF723 | 2-107 |
| UFN730 | IRF730 | 2-112 |
| UFN731 | IRF731 | 2-112 |
| UFN732 | IRF732 | 2-112 |
| UFN733 | IRF733 | 2-112 |
| UFN740 | IRF740 | 2-118 |
| UFN741 | IRF741 | 2-118 |
| UFN742 | IRF742 | 2-118 |
| UFN743 | IRF743 | 2-118 |
| UFN820 | IRF820 | 2-127 |
| UFN821 | IRF821 | 2-127 |
| UFN822 | IRF822 | 2-127 |
| UFN823 | IRF823 | 2-127 |
| UFN830 | IRF830 | 2-132 |
| UFN831 | IRF831 | 2-132 |


| Industry Type | Fairchild Part No. | Page No. |
| :---: | :---: | :---: |
| UFN832 | IRF832 | 2-132 |
| UFN833 | IRF833 | 2-132 |
| UFN840 | IRF840 | 2-138 |
| UFN841 | IRF841 | 2-138 |
| UFN842 | IRF842 | 2-138 |
| UFN843 | IRF843 | 2-138 |
| VN0600A | IRF543 | 2-78 |
| VN0601A | IRF543 | 2-78 |
| VN0800A | IRF130 | 2-72 |
| VN0800D | IRF530 | 2-72 |
| VN0801A | IRF132 | 2-72 |
| VN0801D | IRF532 | 2-72 |
| VN1000A | IRF130 | 2-72 |
| VN1000D | IRF530 | 2-72 |
| VN1001A | IRF132 | 2-72 |
| VN1001D | IRF532 | 2-72 |
| VN1106N5 | IRF511 | 2-147 |
| VN1110N5 | IRF510 | 2-147 |
| VN1116N5 | IRF612 | 2-152 |
| VN1120N5 | IRF612 | 2-152 |
| VN1200A | IRF641 | 2-98 |
| VN1201A | IRF643 | 2-98 |
| VN1210N1 | IRF120 | 2-67 |
| VN1210N5 | IRF520 | 2-67 |
| VN1216N1 | IRF220 | 2-87 |
| VN1216N5 | IRF620 | 2-87 |
| VN1220N5 | IRF620 | 2-87 |
| VN2306N1 | IRF143 | 2-78 |
| VN2310N1 | IRF142 | 2-78 |
| VN2310N5 | IRF542 | 2-78 |
| VN2316N1 | IRF242 | 2-98 |
| VN2316N5 | IRF642 | 2-98 |
| VN2320N1 | IRF242 | 2-98 |
| VN2320N5 | IRF642 | 2-98 |
| VN2335N1 | IRF341 | 2-118 |
| VN2335N5 | IRF741 | 2-118 |
| VN2340N1 | IRF340 | 2-118 |
| VN2340N5 | IRF740 | 2-118 |
| VN2345N1 | IRF443 | 2-138 |
| VN2345N5 | IRF843 | 2-138 |
| VN2350N1 | IRF442 | 2-138 |
| VN2350N5 | IRF842 | 2-138 |
| VN3500A | IRF331 | 2-112 |
| VN3500D | IRF731 | 2-112 |

## Industry Cross Reference

## Power MOSFETs

| Industry <br> Type | Fairchild <br> Part No. | Page <br> No. |  | Industry <br> Type | Fairchild <br> Part No. | Page <br> No. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| VN3501A | IRF333 | $2-112$ |  | VN4501D | IRF831 | $2-132$ |
| VN3501D | IRF733 | $2-112$ |  | VN4502A | IRF433 | $2-132$ |
| VN3502A | IRF430 | $2-132$ |  | VN4502D | IRF833 | $2-132$ |
| VN4000A | IRF330 | $2-112$ |  | VN5001A | IRF430 | $2-132$ |
| VN4000D | IRF730 | $2-112$ |  | VN5001D | IRF830 | $2-132$ |
| VN4001A | IRF332 | $2-112$ |  | VN5002A | IRF432 | $2-132$ |
| VN4001D | IRF732 | $2-112$ |  | VN5002D | IRF832 | $2-132$ |
| VN4501A | IRF431 | $2-132$ |  | VNL001A | IRF331 | $2-112$ |


| Industry <br> Type | Fairchild <br> Part No. | Page <br> No. |
| :---: | :---: | :---: |
| VNM001A | IRF330 | $2-112$ |
| VNN002A | IRF443 | $2-138$ |
| VNP002A | IRF430 | $2-132$ |

Ultra-Fast Reverse Recovery Rectifiers

| Industry Type | Fairchild <br> Part No. | Page No. | Industry Type | Fairchild <br> Part No. | Page No. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BYV32-100 | FRP2010CC | 2-51 | FE8C | FRP815 | 2-47 |
| BYV32-150 | FRP2015CC | 2-51 | FE8D | FRP820 | 2-47 |
| BYV32-200 | FRP2020CC | 2-51 | MUR1505 | FRP1605 | 2-55 |
| BYV32-50 | FRP2005CC | 2-51 | MUR1510 | FRP1610 | 2-55 |
| BYV79-100 | FRP1610 | 2-55 | MUR1515 | FRP1615 | 2-55 |
| BYV79-150 | FRP1615 | 2-55 | MUR1520 | FRP1620 | 2-55 |
| BYV79-200 | FRP1620 | 2-55 | MUR1605CT | FRP1605CC | 2-59 |
| BYV79-50 | FRP1605 | 2-55 | MUR1610CT | FRP1610CC | 2-59 |
| BYW28-100 | FRP810 | 2-47 | MUR1615CT | FRP1615CC | 2-59 |
| BYW29-150 | FRP815 | 2-47 | MUR1620CT | FRP1620CC | 2-59 |
| BYW29-200 | FRP820 | 2-47 | MUR805 | FRP805 | 2-47 |
| BYW29-50 | FRP805 | 2-47 | MUR810 | FRP810 | 2-47 |
| BYW51-100 | FRP1610CC | 2-59 | MUR815 | FRP815 | 2-47 |
| BYW51-150 | FRP1615CC | 2-59 | MUR820 | FRP820 | 2-47 |
| BYW51-50 | FRP1605CC | 2-59 | RUR810 | FPR810 | 2-47 |
| BYW80-100 | FRP810 | 2-47 | RUR815 | FRP815 | 2-47 |
| BYW80-150 | FRP815 | 2-47 | RUR820 | FRP820 | 2-47 |
| BYW80-200 | FRP820 | 2-47 | RURD1610 | FRM3210CC | 2-63 |
| BYW80-50 | FRP805 | 2-47 | RURD1615 | FRM3210CC | 2-63 |
| BYW99-100 | FRM3210CC | 2-63 | RURD1620 | FRM3220CC | 2-63 |
| BYW99-150 | FRM3220CC | 2-63 | RURD810 | FRP1610CC | 2-59 |
| BYW99-50 | FRM3205CC | 2-63 | RURD815 | FRP1615CC | 2-59 |
| FE16A | FRP1605 | 2-55 | RURD820 | FRP1620CC | 2-59 |
| FE16B | FRP1610 | 2-55 | UES1401 | FRP805 | 2-47 |
| FE16C | FRP1615 | 2-55 | UES1402 | FRP810 | 2-47 |
| FE16D | FRP1620 | 2-55 | UES1403 | FRP815 | 2-47 |
| FE8A | FRP805 | 2-47 | UES1404 | FRP820 | 2-47 |
| FE8B | FRP810 | 2-47 | UES1501 | FRP1605 | 2-55 |


| Industry <br> Type | Fairchild <br> Part No. | Page <br> No. |
| :--- | :--- | :--- |
| UES1502 | FRP1610 | $2-55$ |
| UES1503 | FRP1615 | $2-55$ |
| UES1504 | FRP1620 | $2-55$ |
| UES2401 | FRP1605CC | $2-59$ |
| UES2402 | FRP1610CC | $2-59$ |
| UES2403 | FRP1615CC | $2-59$ |
| UES2404 | FRP1620CC | $2-59$ |
| UES2601 | FRM3205CC | $2-63$ |
| UES2602 | FRM3210CC | $2-63$ |
| UES2603 | FRM3215CC | $2-63$ |
| UES2604 | FRM3220CC | $2-63$ |
| VHE1401 | FRP1005 | $2-51$ |
| VHE1402 | FRP1010 | $2-51$ |
| VHE1403 | FRP1015 | $2-51$ |
| VHE1404 | FRP1020 | $2-51$ |
| VHE2401 | FRP2005CC | $2-51$ |
| VHE2402 | FRP2010CC | $2-51$ |
| VHE2403 | FRP2015CC | $2-51$ |
| VHE2404 | FRP2020CC | $2-51$ |
| VHE2601 | FRM3205CC | $2-63$ |
| VHE2602 | FRM3210CC | $2-63$ |
| VHE2603 | FRM3215CC | $2-63$ |
| VHE2604 | FRM3220CC | $2-63$ |





## Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers and high energy pulse circuits.

- $\mathrm{V}_{\mathrm{GS}}$ Rated at $\pm \mathbf{2 0} \mathrm{V}$
- Silicon Gate for Fast Switching Speeds
- IDSS, RDS(on), Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling

TO-204AA


2N6755
2N6756

Maximum Ratings

| Symbol | Characteristic | Rating 2N6756 | Rating 2N6755 | Unit |
| :---: | :---: | :---: | :---: | :---: |
| $V_{\text {DSS }}$ | Drain to Source Voltage | 100 | 60 | V |
| V DGR | Drain to Gate Voltage $\mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$ | [ 100 | 60 | V |
| $\mathrm{V}_{\mathrm{GS}}$ | Gate to Source Voltage | $\pm 20$ | $\pm 20$ | V |
| $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | Operating Junction and Storage Temperatures | -55 to +150 | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $T_{L}$ | Maximum Lead Temperature for Soldering Purposes, 1/16" From Case for 10 s | 300 | 300 | ${ }^{\circ} \mathrm{C}$ |
| Maximum On-State Characteristics |  |  |  |  |
| $\mathrm{R}_{\mathrm{DS} \text { (on) }}$ | Static Drain-to-Source On Resistance | 0.18 | 0.25 | $\Omega$ |
| ID $\mathrm{I}_{\mathrm{DM}}$ | Drain Current <br> Continuous at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ <br> Continuous at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$ <br> Pulsed | $\begin{gathered} 14 \\ 9 \\ 30^{2} \end{gathered}$ | $\begin{gathered} 12 \\ 8 \\ 25^{2} \\ \hline \end{gathered}$ | A |
| Maximum Thermal Characteristics |  |  |  |  |
| $\mathrm{R}_{\text {өJC }}$ | Thermal Resistance, Junction to Case | 1.67 | 1.67 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| PD | Total Power Dissipation at $T_{C}=25^{\circ} \mathrm{C}$ | 75 | 75 | W |
|  | Linear Derating Factor | 0.6 | 0.6 | W $/{ }^{\circ} \mathrm{C}$ |

## Notes

All values are JEDEC registered except as noted. For information concerning
connection diagram and package outline, refer to Section 7.

Electrical Characteristics ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics |  |  |  |  |  |
| $V_{\text {(BR) }{ }^{\text {dss }}}$ | Drain Source Breakdown Voltage |  |  | V | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$ |
|  | 2N6756 | $100^{2}$ |  |  |  |
|  | 2N6755 | $60^{2}$ |  |  |  |
| IdSs | Zero Gate Voltage Drain Current |  | 1 | mA | $\mathrm{V}_{\mathrm{DS}}=$ Rated $\mathrm{V}_{\text {DSS }}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  |  |  | 4 |  | $\begin{aligned} & V_{D S}=\text { Rated } V_{D S S}, \\ & V_{G S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$ |
| IGSs | Gate-Body Leakage Current |  | $\pm 100$ | nA | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |

## On Characteristics



## Dynamic Characteristics

| $\mathrm{C}_{\text {iss }}$ | Input Capacitance | 350 | 800 | pF | $\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\text {oss }}$ | Output Capacitance | 150 | 500 | pF |  |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance | 50 | 150 | pF |  |

Switching Characteristics $\left(T_{C}=25^{\circ} \mathrm{C}\right.$, Figures 9, 10)

| $\mathrm{t}_{\mathrm{d}(\mathrm{on})}$ | Turn-On Delay Time |  | 30 | ns | $V_{D D}=36 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=9 \mathrm{~A}$ |
| :--- | :--- | ---: | ---: | ---: | :--- |
| $\mathrm{t}_{\mathrm{r}}$ | Rise Time |  | 75 | ns | $V_{G S}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=15 \Omega$ |
| $\mathrm{t}_{\mathrm{GS}}=15 \Omega$ |  |  |  |  |  |

Electrical Characteristics (Cont.) ( $T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Typ | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Source-Drain Diode Characteristics |  |  |  |  |  |  |
| Is | $\begin{aligned} & \text { Continuous Source Current } \\ & \text { 2N6756 } \\ & \text { 2N6755 } \end{aligned}$ |  |  | $\begin{aligned} & 14 \\ & 12 \end{aligned}$ | A |  |
| ISM | $\begin{aligned} & \text { Pulsed Source Current } \\ & \text { 2N6756 } \\ & \text { 2N6755 } \end{aligned}$ |  |  | $\begin{aligned} & 30^{2} \\ & 25^{2} \end{aligned}$ | A |  |
| $V_{S D}$ | Diode Forward Voltage 2N6756 | 0.90 |  | 1.8 | V | $\mathrm{I}_{\mathrm{S}}=14 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  | 2N6755 | 0.85 |  | 1.7 | V | $\mathrm{I}_{\mathrm{S}}=12 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
| $\mathrm{trr}_{\text {r }}$ | Reverse Recovery Time | + | $300^{2}$ |  | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{J}=150^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{SM},}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S} \end{aligned}$ |
| $Q_{\text {RR }}$ | Reverse Recovery Charge |  | $4.0^{2}$ |  | $\mu \mathrm{C}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{J}=150^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{SM}}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} \end{aligned}$ |

Notes

1. Pulse test: Pulse width $\leqslant 300 \mu \mathrm{~s}$, Duty cycle $\leqslant 1 \%$
2. Non-JEDEC registered value.

## Typical Performance Curves

Figure 1 Output Characteristics

$\mathrm{V}_{\text {DS-DRAIN SO }}$ SOURCE VOLTAGE-V

Figure 2 Static Drain to Source Resistance vs Drain Current


Typical Performance Curves (Cont.)

Figure 3 Transfer Characteristics


Figure 5 Capacitance vs Drain to Source Voltage


Figure 7 Forward Biased Safe Operating Area


Figure 4 Temperature Variation of Gate to Source Threshold Voltage


Figure 6 Gate to Source Voltage vs Total Gate Charge


Figure 8 Transient Thermal Resistance vs Time


## 2N6755/2N6756

## Typical Electrical Characteristics

Figure 9 Switching Test Circuit


Figure 10 Switching Waveforms


## Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers and high energy pulse circuits.

- $\mathrm{V}_{\mathrm{Gs}}$ Rated at $\pm 20 \mathrm{~V}$
- Silicon Gate for Fast Switching Speeds
- IDSS, R RDS(on), $^{\text {, Specified at Elevated Temperature }}$
- Rugged
- Low Drive Requirements
- Ease of Paralleling

Maximum Ratings

| Symbol | Characteristic | Rating 2N6758 | Rating 2N6757 | Unit |
| :---: | :---: | :---: | :---: | :---: |
| $V_{\text {DSS }}$ | Drain to Source Voltage | 200 | 150 | V |
| $\mathrm{V}_{\text {DGR }}$ | Drain to Gate Voltage $\mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$ | 200 | 200 | V |
| $\mathrm{V}_{\mathrm{GS}}$ | Gate to Source Voltage | $\pm 20$ | $\pm 20$ | V |
| $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | Operating Junction and Storage Temperatures | -55 to +150 | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Maximum Lead Temperature for Soldering Purposes, 1/16" From Case for 10 s | 300 | 300 | ${ }^{\circ} \mathrm{C}$ |
| Maximum On-State Characteristics |  |  |  |  |
| $\mathrm{R}_{\text {DS(on) }}$ | Static Drain-to-Source On Resistance | 0.4 | 0.6 | $\Omega$ |
| ID <br> IDM | Drain Current <br> Continuous at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ <br> Continuous at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$ <br> Pulsed | $\begin{aligned} & 9.0 \\ & 6.0^{2} \\ & 15^{2} \end{aligned}$ | $\begin{aligned} & 8.0 \\ & 5.0^{2} \\ & 12^{2} \\ & \hline \end{aligned}$ | A |
| Maximum Thermal Characteristics |  |  |  |  |
| $\mathrm{R}_{\text {өJC }}$ | Thermal Resistance, Junction to Case | 1.67 | 1.67 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{P}_{\mathrm{D}}$ | Total Power Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 75 | 75 | W |
|  | Linear Derating Factor | 0.6 | 0.6 | W $/{ }^{\circ} \mathrm{C}$ |

## Notes

All values are JEDEC registered except as noted. For information concerning
connection diagram and package outline, refer to Section 7.

Electrical Characteristics $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

| Symbol | 10 Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\text {(BR) }}$ DSs | Drain Source Breakdown Voltage 2N6758 |  |  | V | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$ |
|  |  | $200^{2}$ |  |  |  |
|  | 2N6757 | $150^{2}$ |  |  |  |
| IDSS | Zero Gate Voltage Drain Current |  | 1 | mA | $\mathrm{V}_{\text {DS }}=$ Rated $\mathrm{V}_{\text {DSS }}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  |  |  | 4 |  | $\begin{aligned} & V_{D S}=\text { Rated } V_{D S S}, \\ & V_{G S}=0 \mathrm{~V}, T_{C}=125^{\circ} \mathrm{C} \end{aligned}$ |
| IGSS | Gate-Body Leakage Current |  | $\pm 100$ | nA | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |


| $\mathrm{V}_{\text {GS(th) }}$ | Gate Threshold Voltage | 2.0 | 4.0 | V | $\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{R}_{\text {DS(on) }}$ | Static Drain-Source On-Resistance |  |  | $\Omega$ | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$ |
|  | 2N6758 |  | 0.4 |  | $\mathrm{I}_{\mathrm{D}}=6 \mathrm{~A}$ |
|  | 2N6757 |  | 0.6 |  | $\mathrm{I}_{\mathrm{D}}=5 \mathrm{~A}$ |
|  | 2N6758 |  | 0.75 |  | $\mathrm{I}_{\mathrm{D}}=6 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ |
|  | 2N6757 |  | 1.13 |  | $\mathrm{I}_{\mathrm{D}}=5 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ |
| $\mathrm{V}_{\mathrm{DS} \text { (on) }}$ | $\begin{aligned} & \text { Drain-Source On-Voltage }{ }^{1} \\ & \text { 2N6758 } \end{aligned}$ |  | 3.6 | v | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=9 \mathrm{~A}$ |
|  | 2N6757 |  | 4.8 |  | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=8 \mathrm{~A}$ |
| $\mathrm{g}_{\text {fs }}$ | Forward Transconductance ${ }^{1}$ | 3.0 | 9.0 | S (ひ) | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=6 \mathrm{~A}$ |

Dynamic Characteristics

| $\mathrm{C}_{\text {iss }}$ | Input Capacitance | 350 | 800 | pF | $\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Coss | Output Capacitance | 100 | 450 | pF |  |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance | 40 | 150 | pF |  |

Switching Characteristics ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Figures 9, 10)



1. Pulse test: Pulse width $\leqslant 300 \mu \mathrm{~s}$, Duty cycle $\leqslant 2 \%$
2. Non-JEDEC registered value.

## Typical Performance Curves

Figure 1 Output Characteristics


Figure 2 Static Drain to Source Resistance vs Drain Current


Typical Performance Curves (Cont.)

Figure 3 Transfer Characteristics


Figure 5 Capacitance vs Drain to Source Voltage


Figure 7 Forward Biased Safe Operating Area


Figure 4 Temperature Variation of Gate to Source Threshold Voltage


Figure 6 Gate to Source Voltage vs Total Gate Charge


Figure 8 Transient Thermal Resistance vs Time


## Typical Electrical Characteristics

Figure 9 Switching Test Circuit


Figure 10 Switching Waveforms


## 2N6759/2N6760 N-Channel Power MOSFETs, $5.5 \mathrm{~A}, 350 \mathrm{~V} / 400 \mathrm{~V}$

## Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high voltage, high speed applications, such as off-line switching power supplies UPS, AC and DC motor controls, relay and solenoid drivers.

- $\mathrm{V}_{\mathrm{GS}}$ Rated at $\pm 20 \mathrm{~V}$
- Silicon Gate for Fast Switching Speeds

TO-204AA


- IDSS, R ${ }_{\text {DS(on) }}$, Specified at Elevated Temperature
- Rugged

2N6759

- Low Drive Requirements

2N6760

- Ease of Paralleling

Maximum Ratings

| Symbol | Characteristic | Rating 2N6760 | Rating 2N6759 | Unit |
| :---: | :---: | :---: | :---: | :---: |
| $V_{\text {DSS }}$ | Drain to Source Voltage | 400 | 350 | V |
| $V_{\text {DGR }}$ | Drain to Gate Voltage $R_{G S}=1.0 \mathrm{M} \Omega$ | 400 | 350 | $\checkmark$ |
| $V_{G S}$ | Gate to Source Voltage | $\pm 20$ | $\pm 20$ | $\checkmark$ |
| $T_{J}, T_{\text {stg }}$ | Operating Junction and Storage Temperatures | -55 to +150 | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Maximum Lead Temperature for Soldering Purposes, 1/16" From Case for 10 s | 300 | 300 | ${ }^{\circ} \mathrm{C}$ |
| Maximum On-State Characteristics |  |  |  |  |
| $\mathrm{R}_{\mathrm{DS} \text { (on) }}$ | Static Drain-to-Source On Resistance | 1.0 | 1.5 | $\Omega$ |
| ID $\mathrm{I}_{\mathrm{DM}}$ | Drain Current <br> Continuous at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ <br> Continuous at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$ <br> Pulsed | $\begin{gathered} 5.5 \\ 3.5 \\ 8.0^{2} \end{gathered}$ | $\begin{aligned} & 4.5 \\ & 3.0 \\ & 7.0^{2} \end{aligned}$ | A |
| Maximum Thermal Characteristics |  |  |  |  |
| $\mathrm{R}_{\text {өJC }}$ | Thermal Resistance, Junction to Case | 1.67 | 1.67 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $P_{D}$ | Total Power Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$ | $\begin{aligned} & 75 \\ & 30 \end{aligned}$ | $\begin{aligned} & 75 \\ & 30 \end{aligned}$ | W |
|  | Linear Derating Factor | 0.6 | 0.6 | W/ ${ }^{\circ} \mathrm{C}$ |

## Notes

All values are JEDEC registered except as noted. For information concerning
connection diagram and package outline, refer to Section 7.

Electrical Characteristics $\left(T_{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics |  |  |  |  |  |
| $V_{\text {(BR) }{ }^{\text {dss }}}$ | Drain Source Breakdown Voltage ${ }^{1}$$\begin{aligned} & \text { 2N6760 } \\ & \text { 2N6759 } \end{aligned}$ |  |  | V | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}$ |
|  |  | $400^{2}$ |  |  |  |
|  |  | $350^{2}$ |  |  |  |
| IDSs | Zero Gate Voltage Drain Current |  | 1 | mA | $\mathrm{V}_{\mathrm{DS}}=$ Rated $\mathrm{V}_{\text {DSS }}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  |  |  | 4 |  | $\begin{aligned} & V_{D S}=\text { Rated } V_{D S S}, \\ & V_{G S}=0 \mathrm{~V}, T_{C}=125^{\circ} \mathrm{C} \end{aligned}$ |
| IGSS | Gate-Body Leakage Current |  | $\pm 100$ | nA | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |
| On Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$ | Gate Threshold Voltage | 2.0 | 4.0 | V | $\mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$ |
| $\mathrm{R}_{\text {DS(on) }}$ | Static Drain-Source On-Resistance ${ }^{1}$ |  |  | $\Omega$ | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$ |
|  | 2N6760 |  | 1.0 |  | $\mathrm{I}_{\mathrm{D}}=3.0 \mathrm{~A}$ |
|  | 2N6759 |  | 1.5 |  | $\mathrm{I}_{\mathrm{D}}=3.5 \mathrm{~A}$ |
|  | 2N6760 |  | 2.2 |  | $\mathrm{I}_{\mathrm{D}}=3.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ |
|  | 2N6759 |  | 3.3 |  | $\mathrm{I}_{\mathrm{D}}=3.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ |
| $\mathrm{V}_{\text {DS(on) }}$ | Drain-Source On-Voltage ${ }^{1}$ 2N6760 |  | 6.7 | V | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=5.5 \mathrm{~A}$ |
|  | 2N6759 |  | 7.0 |  | $\mathrm{V}_{G S}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=4.5 \mathrm{~A}$; |
| $\mathrm{gfs}^{\text {f }}$ | Forward Transconductance ${ }^{1}$ | 3.0 | 9.0 | S (v) | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.5 \mathrm{~A}$ |

## Dynamic Characteristics

| $\mathrm{C}_{\text {iss }}$ | Input Capacitance | 350 | 800 | pF | $\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ <br> $\mathrm{f}=1.0 \mathrm{MHz}$ |
| :--- | :--- | ---: | ---: | ---: | :--- |
| $\mathrm{C}_{\text {oss }}$ | Output Capacitance | 50 | 300 | pF |  |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance | 20 | 80 | pF |  |

Switching Characteristics $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$, Figures 9, 10)

| $\mathrm{t}_{\mathrm{d} \text { (on) }}$ | Turn-On Delay Time | 30 | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=175 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=15 \Omega \\ & \mathrm{R}_{\mathrm{GS}}=15 \Omega \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{r}}$ | Rise Time | 35 | ns |  |
| $t_{\text {d(off) }}$ | Turn-Off Delay Time | 55 | ns |  |
| $\mathrm{t}_{\mathrm{f}}$ | Fall Time | 55 | ns |  |
| $\mathrm{Q}_{\mathrm{g}}$ | Total Gate Charge | $30^{2}$ | nC | $\begin{aligned} & V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.0 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=180 \mathrm{~V} \end{aligned}$ |

Electrical Characteristics (Cont.) ( $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Typ | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Source-Drain Diode Characteristics |  |  |  |  |  |  |
| Is | $\begin{aligned} & \text { Continuous Source Current } \\ & \text { 2N6760 } \\ & \text { 2N6759 } \end{aligned}$ |  |  | $\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$ | A |  |
| $I_{\text {SM }}$ | Pulsed Source Current 2N6760 2N6759 |  |  | $\begin{aligned} & 8.0 \\ & 7.0 \end{aligned}$ | A |  |
| $V_{S D}$ | Diode Forward Voltage 2N6760 | 0.75 |  | 1.5 | V | $\mathrm{I}_{\mathrm{S}}=5.5 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  |  | 0.70 |  | 1.4 |  | $\mathrm{I}_{\mathrm{S}}=4.5 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
| $t_{\text {rr }}$ | Reverse Recovery Time |  | $550^{2}$ |  | ns | $\begin{aligned} & V_{G S}=0 \mathrm{~V}, \mathrm{~T}_{J}=150^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=\mathrm{I}_{S M}, \mathrm{dI}_{F} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S} \end{aligned}$ |
| $Q_{\text {RR }}$ | Reverse Recovery Charge |  | $8.0^{2}$ |  | $\mu \mathrm{C}$ | $\begin{aligned} & \mathrm{V}_{G S}=0 \mathrm{~V}, \mathrm{~T}_{J}=150^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=\mathrm{I}_{S M}, \mathrm{dI}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S} \end{aligned}$ |

Notes

1. Pulse test: Pulse width $\leqslant 300 \mu \mathrm{~s}$, Duty cycle $\leqslant 2 \%$
2. Non-JEDEC registered value.

## Typical Performance Curves

Figure 1 Output Characteristics


Figure 2 Static Drain to Source Resistance vs Drain Current


Typical Performance Curves (Cont.)

## Figure 3 Transfer Characteristics



Figure 5 Capacitance vs Drain to Source Voltage


Figure 7 Forward Biased Safe Operating Area


Figure 4 Temperature Variation of Gate to Source Threshold Voltage


Figure 6 Gate to Source Voltage vs Total Gate Charge


Figure 8 Transient Thermal Resistance vs Time


## Typical Electrical Characteristics

## Figure 9 Switching Test Circuit



## Figure 10 Switching Waveforms



## FAIRCHILD

A Schlumberger Company

## 2N6761/2N6762 N-Channel Power MOSFETs, 4.5 A, $450 \mathrm{~V} / 500 \mathrm{~V}$

Power And Discrete Division

## Description

These devices are $n$-channel, enhancement mode, power MOSFETs designed especially for high voltage, high speed applications, such as off-line switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers.

- $\mathrm{V}_{\mathrm{GS}}$ Rated at $\pm 20 \mathrm{~V}$
- Silicon Gate for Fast Switching Speeds
- IDSs, $\mathrm{R}_{\mathrm{DS}(o n),}$ SOA and $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ Specified at Elevated Temperature
- Rugged

Maximum Ratings

| Symbol | Characteristic | Rating <br> 2N6762 | Rating <br> 2N6761 | Unit |
| :---: | :---: | :---: | :---: | :---: |
| $V_{\text {DSS }}$ | Drain to Source Voltage | 500 | 450 | V |
| $V_{\text {DGR }}$ | Drain to Gate Voltage $\mathrm{R}_{\mathrm{GS}}=1.0 \mathrm{M} \Omega$ | 500 | 450 | V |
| $\mathrm{V}_{\text {GS }}$ | Gate to Source Voltage | $\pm 20$ | $\pm 20$ | V |
| $T_{J}, T_{\text {stg }}$ | Operating Junction and Storage Temperatures | -55 to +150 | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Maximum Lead Temperature for Soldering Purposes, 1/16" From Case for 10 s | 300 | 300 | ${ }^{\circ} \mathrm{C}$ |

Maximum On-State Characteristics

| $\mathrm{R}_{\text {DS(on) }}$ | Static Drain-to-Source On Resistance | 1.5 | 2.0 | $\Omega$ |
| :---: | :---: | :---: | :---: | :---: |
| ID $I_{D M}$ | Drain Current Continuous at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Continuous at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$ Pulsed | $\begin{gathered} 4.5 \\ 3.0 \\ 7.0^{2} \end{gathered}$ | $\begin{gathered} 4.0 \\ 2.5 \\ 6.0^{2} \end{gathered}$ | A |
| Maximum Thermal Characteristics |  |  |  |  |
| $\mathrm{R}_{\text {өJc }}$ | Thermal Resistance, Junction to Case | 1.67 | 1.67 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| PD | Total Power Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$ | $\begin{aligned} & 75 \\ & 30 \end{aligned}$ | $\begin{aligned} & 75 \\ & 30 \end{aligned}$ | W |
|  | Linear Derating Factor | 0.6 | 0.6 | W/ ${ }^{\circ} \mathrm{C}$ |

## Notes

All values are JEDEC registered except as noted. For information concerning connection diagram and package outline, refer to Section 7.

Electrical Characteristics ( $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics |  |  |  |  |  |
| $V_{(B R)}$ DSS | $\begin{aligned} & \text { Drain Source Breakdown Voltage }{ }^{1} \\ & \text { 2N6762 } \\ & \text { 2N6761 } \end{aligned}$ |  |  | V | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4 \mathrm{~mA}$ |
|  |  | $500^{2}$ |  |  |  |
|  |  | $450^{2}$ |  |  |  |
| IDSS | Zero Gate Voltage Drain Current |  | 1 | mA | $\mathrm{V}_{\mathrm{DS}}=$ Rated $\mathrm{V}_{\text {DSS }}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  |  |  | 4 |  | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0.8 \times \text { Rated } \mathrm{V}_{\mathrm{DSS}}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$ |
| $\mathrm{I}_{\text {GSS }}$ | Gate-Body Leakage Current |  | $\pm 100$ | nA | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |
| On Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{GS} \text { (th) }}$ | Gate Threshold Voltage | 2.0 | 4.0 | V | $\mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$ |
| $\mathrm{R}_{\mathrm{DS} \text { (on) }}$ | Static Drain-Source On-Resistance ${ }^{1}$2N67622N67612N67622N6761 |  |  | $\Omega$ | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=3.0 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{D}}=3.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$ |
|  |  |  | 1.5 |  |  |
|  |  |  | 2.0 |  |  |
|  |  |  | 3.3 |  |  |
|  |  |  | 4.4 |  |  |
| $\mathrm{V}_{\mathrm{DS} \text { (on) }}$ | Drain-Source On-Voltage ${ }^{1}$ 2N6762 |  | 7.7 | V | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=4.5 \mathrm{~A} \end{aligned}$ |
|  | 2N6761 |  | 8.0 |  | $\mathrm{I}_{\mathrm{D}}=4.0 \mathrm{~A}$ |
| $\mathrm{g}_{\text {f }}$ | Forward Transconductance ${ }^{1}$ | 2.5 | 7.5 | S (v) | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.0 \mathrm{~A}$ |
| Dynamic Characteristics |  |  |  |  |  |
| $\mathrm{C}_{\text {iss }}$ | Input Capacitance | 350 | 800 | pF | $\begin{aligned} & V_{D S}=25 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$ |
| $\mathrm{C}_{\text {dss }}$ | Output Capacitance | 25 | 200 | pF |  |
| $\mathrm{C}_{\text {res }}$ | Reverse Transfer Capacitance | 15 | 60 | pF |  |
| Switching Characteristics ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Figures 9, 10) |  |  |  |  |  |
| $\mathrm{t}_{\mathrm{d}(\mathrm{On})}$ | Turn-On Delay Time |  | 30 | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=225 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.0 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=\Omega \\ & \mathrm{R}_{\mathrm{GS}}=15 \Omega \end{aligned}$ |
| $t_{r}$ | Rise Time |  | 30 | ns |  |
| $\mathrm{t}_{\mathrm{d} \text { (off) }}$ | Turn-Off Delay Time |  | 55 | ns |  |
| $t_{f}$ | Fall Time |  | 30 | ns |  |
| $\mathrm{Q}_{\mathrm{g}}$ | Total Gate Charge |  | $30^{2}$ | $n C$ | $\begin{aligned} & V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.0 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=180 \mathrm{~V} \end{aligned}$ |


| Symbol | Characteristic | Min | Typ | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Source-Drain Diode Characteristics |  |  |  |  |  |  |
| Is | Continuous Source Current 2N6762 2N6761 |  |  | $\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$ | A |  |
| $I_{\text {SM }}$ | Pulsed Source Current 2N6762 2N6761 |  |  | $\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$ | A | $\checkmark$ and |
| $\mathrm{V}_{\text {SD }}$ | Diode Forward Voltage 2N6762 2N6761 | $\begin{array}{r} 0.7 \\ 0.65 \end{array}$ |  | $\begin{aligned} & 1.4 \\ & 1.3 \end{aligned}$ | v | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{IS}_{\mathrm{S}}=4.5 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{S}}=4.0 \mathrm{~A} \end{aligned}$ |
| $\mathrm{trr}_{\text {r }}$ | Reverse Recovery Time |  | $520^{2}$ |  | ns | $\begin{aligned} & V_{G S}=0 \quad \mathrm{~V}, T_{J}=150^{\circ} \mathrm{C} \\ & I_{F}=I_{S M}, \mathrm{~d} \mathrm{I}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S} \end{aligned}$ |
| QRR | Reverse Recovery Charge |  | $7.0^{2}$ |  | $\mu \mathrm{C}$ | $\begin{aligned} & V_{G S}=0 \quad \mathrm{~V}, T_{J}=150^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=I_{S M}, \mathrm{~d} \mathrm{I}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S} \end{aligned}$ |

Notes

1. Pulse test: Pulse width $\leqslant 300 \mu \mathrm{~s}$, Duty cycle $\leqslant 1 \%$
2. Non-JEDEC registered value.

## Typical Performance Curves

## Figure 1 Output Characteristics



Figure 2 Static Drain to Source Resistance vs Drain Current


Typical Performance Curves (Cont.)
Figure 3 Transfer Characteristics


Figure 5 Capacitance vs Drain to Source Voltage


Figure 7 Forward Biased Safe Operating Area


Figure 4 Temperature Variation of Gate to Source Threshold Voltage


Figure 6 Gate to Source Voltage vs Total Gate Charge


Figure 8 Transient Thermal Resistance vs Time


## Typical Electrical Characteristics

Figure 9 Switching Test Circuit


Figure 10 Switching Waveforms


## FAIRCHILD

A Schlumberger Company

# 2N6763/2N6764 N-Channel Power MOSFETs, 38 A, 60 V/100 V 

## Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as switching power supplies, UPS, AC and DC motor controls, relay and solenoid driver and high energy pulse circuits.

- $\mathrm{V}_{\mathrm{Gs}}$ Rated at $\pm \mathbf{2 0 ~ V}$
- Silicon Gate for Fast Switching Speeds
- IDSS, R ${ }_{\text {DS(on) }}$ Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling

TO-204AE


2N6763
2N6764

## Maximum Ratings

| Symbol | Characteristic | Rating <br> 2N6764 | Rating <br> 2N6763 | Unit |
| :--- | :--- | :---: | :---: | :---: |
| $V_{\text {DSS }}$ | Drain to Source Voltage | 100 | 60 | V |
| $\mathrm{~V}_{\mathrm{DGR}}$ | Drain to Gate Voltage <br> $\mathrm{R}_{\mathrm{GS}}=1.0 \mathrm{M} \Omega$ | 100 | 60 | V |
| $\mathrm{~V}_{\mathrm{GS}}$ | Gate to Source Voltage | $\pm 20$ | $\pm 20$ | V |
| $\mathrm{~T}_{J}, \mathrm{~T}_{\text {stg }}$ | Operating Junction and <br> Storage Temperatures | -55 to +150 | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Maximum Lead Temperature <br> for Soldering Purposes, <br> $1 / 16^{\prime \prime}$ From Case for 10 s | 300 | 300 | ${ }^{\circ} \mathrm{C}$ |

## Maximum On-State Characteristics

| $R_{\text {DS(on) }}$ | Static Drain-to-Source <br> On Resistance | 0.055 | 0.08 | $\Omega$ |
| :--- | :--- | :---: | :---: | :---: |
| $I_{D}$ | Drain Current |  |  | A |
|  | Continuous at $T_{C}=25^{\circ} \mathrm{C}$ | 38 | 31 |  |
|  | Continuous at $T_{C}=100^{\circ} \mathrm{C}$ | 24 | $60^{2}$ |  |
| $I_{\text {DM }}$ | Pulsed | $70^{2}$ |  |  |

## Maximum Thermal Characteristics

| $R_{\text {日JC }}$ | Thermal Resistance, <br> Junction to Case | 0.83 | 0.83 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :---: | :---: | :---: |
| $\mathrm{P}_{\mathrm{D}}$ | Total Power Dissipation |  |  |  |
|  | at $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$ |  |  |  |
| at $T_{\mathrm{C}}=100^{\circ} \mathrm{C}$ | 150 | 150 |  |  |
|  | Linear Derating Factor | 1.2 | 60 | W |

## Notes

All values are JEDEC registered except as noted. For information concerning
connection diagram and package outline, refer to Section 7 .

Electrical Characteristics ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\text {(BR) }{ }^{\text {DSS }}}$ | Drain Source Breakdown Voltage$\begin{aligned} & \text { 2N6764 } \\ & \text { 2N6763 } \end{aligned}$ |  |  | V | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~m}$ |
|  |  | $100^{2}$ |  |  |  |
|  |  | $60^{2}$ |  |  |  |
| IDSS | Zero Gate Voltage Drain Current |  | 1 | mA | $\mathrm{V}_{\mathrm{DS}}=$ Rated $\mathrm{V}_{\text {DSS }}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  |  | stavis | 4 |  | $\begin{aligned} & V_{D S}=\text { Rated } V_{D S S}, \\ & V_{G S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$ |
| IGSS | Gate-Body Leakage Current |  | $\pm 100$ | $n \mathrm{~A}$ | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |

On Characteristics

| $\mathrm{V}_{\mathrm{GS} \text { (th) }}$ | Gate Threshold Voltage | 2.0 | 4.0 | V | $\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}},=\mathrm{V}_{\mathrm{GS}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{R}_{\text {DS(on) }}$ | Static Drain-Source On-Resistance ${ }^{1}$ |  |  | $\Omega$ | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$ |
|  | 2N6764 |  | 0.055 |  | $\mathrm{I}_{\mathrm{D}}=24 \mathrm{~A}$ |
|  | 2N6763 |  | 0.080 |  | $\mathrm{I}_{\mathrm{D}}=20 \mathrm{~A}$ |
|  | 2N6764 |  | 0.094 |  | $\mathrm{I}_{\mathrm{D}}=24 \mathrm{~A} ; \mathrm{T}_{C}=125^{\circ} \mathrm{C}$ |
|  | 2N6763 |  | 0.136 |  | $\mathrm{I}_{\mathrm{D}}=20 \mathrm{~A} ; \mathrm{T}_{C}=125^{\circ} \mathrm{C}$ |
| $\mathrm{V}_{\text {DS(on) }}$ | Drain-Source On-Voltage ${ }^{1}$ 2N6764 |  | 2.09 | V | $\begin{aligned} & V_{G S}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=38 \mathrm{~A} \end{aligned}$ |
|  | 2N6763 |  | 2.48 |  | $I_{D}=31 \mathrm{~A}$ |
| $\mathrm{g}_{\mathrm{f}}$ | Forward Transconductance ${ }^{1}$ | 9.0 | 27 | S (ひ) | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=24 \mathrm{~A}$ |

Dynamic Characteristics

| $\mathrm{C}_{\text {iss }}$ | Input Capacitance | 1000 | 3000 | pF | $\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\text {dss }}$ | Output Capacitance | 500 | 1500 | pF |  |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance | 150 | 500 | pF |  |

Switching Characteristics $\left(T_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$, Figures 9,10$)$

| $t_{d(o n)}$ | Turn-On Delay Time |  | 35 | $n s$ | $V_{D D}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=24 \mathrm{~A}$ |
| :--- | :--- | ---: | ---: | ---: | :--- |
| $\mathrm{t}_{\mathrm{r}}$ | Rise Time |  | 100 | ns | $V_{G S}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=4.7 \Omega$ |
| $\mathrm{R}_{\mathrm{GS}}=4.7 \Omega$ |  |  |  |  |  |

Electrical Characteristics (Cont.) ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Typ | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Source-Drain Diode Characteristics |  |  |  |  |  |  |
| Is | $\begin{aligned} & \text { Continuous Source Current } \\ & \text { 2N6764 } \\ & \text { 2N6763 } \end{aligned}$ |  |  | $\begin{aligned} & 38 \\ & 31 \end{aligned}$ | A |  |
| $I_{\text {SM }}$ | Pulsed Source Current 2N6764 2N6763 |  |  | $\begin{aligned} & 70 \\ & 60 \end{aligned}$ | A | a |
| $\mathrm{V}_{\text {SD }}$ | Diode Forward Voltage 2N6764 2N6763 | 0.95 0.90 |  | 1.9 1.8 | V | $\begin{aligned} & V_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{S}}=38 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{S}}=31 \mathrm{~A} \end{aligned}$ |
| $t_{\text {rr }}$ | Reverse Recovery Time |  | $500^{2}$ |  | ns | $\begin{aligned} & V_{G S}=0 \quad \mathrm{~V}, T_{J}=150^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{SM}}, \mathrm{dI}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S} \end{aligned}$ |
| $Q_{\text {RR }}$ | Reverse Recovery Charge |  | $10^{2}$ |  | $\mu \mathrm{C}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{J}=150^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{SM}}, \mathrm{dI}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S} \end{aligned}$ |

Notes

1. Pulse test: Pulse width $\leqslant 20 \mu \mathrm{~s}$, Duty cycle $\leqslant 2 \%$
2. Non-JEDEC registered value.

## Typical Performance Curves

Figure 1 Output Characteristics


Figure 2 Static Drain to Source Resistance vs Drain Current


## Typical Performance Curves (Cont.)

Figure 3 Transfer Characteristics


Figure 5 Capacitance vs Drain to Source Voltage


Figure 7 Forward Biased Safe Operating Area


Figure 4 Temperature Variation of Gate to Source Threshold Voltage


Figure 6 Gate to Source Voltage vs Total Gate Charge


Figure 8 Transient Thermal Resistance vs Time


## Typical Electrical Characteristics

Figure 9 Switching Test Circuit


Figure 10 Switching Waveforms


## Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as switching power supplies, UPS, AC and DC motor controls, relay and solenoid driver and high energy pulse circuits.

- $\mathrm{V}_{\mathrm{Gs}}$ Rated at $\pm 20 \mathrm{~V}$
- Silicon Gate for Fast Switching Speeds
- IDSS, R ${ }_{\text {DS(on) }}$ Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling


## Maximum Ratings

| Symbol | Characteristic | Rating 2N6766 | Rating 2N6765 | Unit |
| :---: | :---: | :---: | :---: | :---: |
| $V_{\text {DSS }}$ | Drain to Source Voltage | 200 | 150 | V |
| $V_{\text {DGR }}$ | Drain to Gate Voltage $R_{G S}=1 \mathrm{M} \Omega$ | 200 | 150 | V |
| $\mathrm{V}_{\mathrm{GS}}$ | Gate to Source Voltage | $\pm 20$ | $\pm 20$ | V |
| $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | Operating Junction and Storage Temperatures | -55 to +150 | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Maximum Lead Temperature for Soldering Purposes, 1/16" From Case for 10 s | 300 | 300 | ${ }^{\circ} \mathrm{C}$ |

Maximum On-State Characteristics

| $R_{\text {DS(on) }}$ | Static Drain-to-Source <br> On Resistance | 0.085 | 0.12 | $\Omega$ |
| :--- | :--- | :---: | :---: | :---: |
| $I_{D}$ | Drain Current |  |  | A |
|  | Continuous at $T_{C}=25^{\circ} \mathrm{C}$ | 30 | 25 | 16 |
| $\mathrm{I}_{\mathrm{DM}}$ | Continuous at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$ | 19 | $50^{2}$ |  |

Maximum Thermal Characteristics

| $\mathrm{R}_{\text {өJC }}$ | Thermal Resistance, <br> Junction to Case | 0.83 | 0.83 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :---: | :---: | :---: |
| $\mathrm{P}_{\mathrm{D}}$ | Total Power Dissipation <br> at $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$ <br> at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$ | 150 |  |  |
|  | Linear Derating Factor | 60 | 60 | W |

Notes
All values are JEDEC registered except as noted. For information concerning
connection diagram and package outline, refer to Section 7 .

## 2N6765/2N6766

Electrical Characteristics ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\text {(BR) DSS }}$ | Drain Source Breakdown Voltage 2N6766 2N6765 |  |  | v | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}$ |
|  |  | $200{ }^{2}$ |  |  |  |
|  |  | $150^{2}$ |  |  |  |
| Ioss | Zero Gate Voltage Drain Current |  | 1 | mA | $\mathrm{V}_{\mathrm{DS}}=$ Rated $\mathrm{V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  |  |  | 4 |  | $\begin{aligned} & V_{D S}=\text { Rated } V_{D S S}, \\ & V_{G S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$ |
| IGss | Gate-Body Leakage Current |  | $\pm 100$ | nA | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |

## On Characteristics

| $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$ | Gate Threshold Voltage | 2.0 | 4.0 | $\checkmark$ | $\mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}},=\mathrm{V}_{\mathrm{GS}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{R}_{\mathrm{DS} \text { (on) }}$ | Static Drain-Source On-Resistance ${ }^{1}$ <br> 2N6766 <br> 2N6765 <br> 2N6766 <br> 2N6765 |  |  | $\Omega$ | $\begin{aligned} & V_{G S}=10 \mathrm{~V}, \\ & I_{D}=19 \mathrm{~A} \\ & I_{D}=16 \mathrm{~A} \\ & I_{D}=19 \mathrm{~A}, \mathrm{~T}_{C}=125^{\circ} \mathrm{C} \\ & I_{D}=16 \mathrm{~A}, \mathrm{~T}_{C}=125^{\circ} \mathrm{C} \end{aligned}$ |
|  |  |  | 0.085 |  |  |
|  |  |  | 0.12 |  |  |
|  |  |  | 0.153 |  |  |
|  |  |  | 0.216 |  |  |
| $\mathrm{V}_{\mathrm{DS} \text { (on) }}$ | $\begin{aligned} & \text { Drain-Source On-Voltage }{ }^{1} \\ & \text { 2N6766 } \\ & \text { 2N6765 } \end{aligned}$ |  |  | v | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$ |
|  |  |  | 2.7 |  | $\mathrm{I}_{\mathrm{D}}=30 \mathrm{~A}$ |
|  |  |  | 3.0 |  | $\mathrm{I}_{\mathrm{D}}=25 \mathrm{~A}$ |
| $\mathrm{g}_{\text {ts }}$ | Forward Transconductance ${ }^{1}$ | 9.0 | 27 | S (ひ) | $V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=19 \mathrm{~A}$ |

Dynamic Characteristics

| $\mathrm{C}_{\text {iss }}$ | Input Capacitance | 1000 | 3000 | pF | $\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\text {dss }}$ | Output Capacitance | 450 | 1200 | pF |  |
| $\mathrm{Cr}_{\text {rss }}$ | Reverse Transfer Capacitance | 150 | 500 | pF |  |

Switching Characteristics $\left(T_{C}=25^{\circ} \mathrm{C}\right.$, Figures 9, 10)

| $\mathrm{t}_{\text {d(on) }}$ | Turn-On Delay Time | 35 | ns | $\begin{aligned} & V_{\mathrm{DD}}=95 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=19 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=4.7 \Omega \\ & \mathrm{R}_{\mathrm{GS}}=4.7 \Omega \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{r}}$ | Rise Time | 100 | ns |  |
| $\mathrm{t}_{\text {d(off) }}$ | Turn-Off Delay Time | 125 | ns |  |
| $\mathrm{t}_{\mathrm{f}}$ | Fall Time | 100 | ns |  |
| $\mathrm{Q}_{\mathrm{g}}$ | Total Gate Charge | $120^{2}$ | nC | $\begin{aligned} & V_{G S}=10 \mathrm{~V}, I_{D}=38 \mathrm{~A} \\ & V_{D D}=100 \mathrm{~V} \end{aligned}$ |

Electrical Characteristics (Cont.) ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Typ | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Source-Drain Diode Characteristics |  |  |  |  |  |  |
| Is | ```Continuous Source Current 2N6766 2N6765``` |  |  | $\begin{aligned} & 30 \\ & 25 \end{aligned}$ | A |  |
| $I_{\text {SM }}$ | Pulsed Source Current 2N6766 2N6765 |  |  | $\begin{aligned} & 60^{2} \\ & 50^{2} \end{aligned}$ | A |  |
| $V_{S D}$ | $\begin{aligned} & \text { Diode Forward Voltage } \\ & \text { 2N6766 } \\ & \text { 2N6765 } \end{aligned}$ | $\begin{array}{r} 0.9 \\ 0.85 \end{array}$ |  | $\begin{aligned} & 1.8 \\ & 1.7 \end{aligned}$ | V | $\begin{aligned} & V_{G S}=0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{S}}=30 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{S}}=25 \mathrm{~A} \end{aligned}$ |
| $\mathrm{t}_{\mathrm{rr}}$ | Reverse Recovery Time |  | $500^{2}$ |  | ns | $\begin{aligned} & V_{G S}=0 \quad \mathrm{~V}, T_{J}=150^{\circ} \mathrm{C} \\ & I_{F}=I_{S M}, d \mathrm{dI}_{F} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S} \end{aligned}$ |
| $Q_{\text {RR }}$ | Reverse Recovery Charge |  | $10^{2}$ |  | $\mu \mathrm{C}$ | $\begin{aligned} & V_{G S}=0 \mathrm{~V}, \mathrm{~T}_{J}=150^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{SM}}, \quad \mathrm{dl}_{F} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S} \end{aligned}$ |

## Notes

1. Pulse test: Pulse width $\leqslant 300 \mu \mathrm{~s}$, Duty cycle $\leqslant 2 \%$
2. Non-JEDEC registered value.

## Typical Performance Curves

Figure 1 Output Characteristics


Figure 2 Static Drain to Source On-Resistance vs Drain Current


Typical Performance Curves (Cont.)

Figure 3 Transfer Characteristics


Figure 5 Capacitance vs Drain to Source Voltage


Figure 7 Forward Biased Safe Operating Area


Figure 4 Temperature Variation of Gate to Source Threshold Voltage


Figure 6 Gate to Source Voltage vs Total Gate Charge


Figure 8 Transient Thermal Resistance vs Time


## Typical Electrical Characteristics

## Figure 9 Switching Test Circuit



Figure 10 Switching Waveforms


## 2N6767/2N6768 <br> FAIRCHILD <br> N-Channel Power MOSFETs, 15 A, 350 V/400 V

## Description

These devices are $n$-channel, enhancement mode, power MOSFETs designed especially for high voltage, high speed applications, such as off-line switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers.

- $V_{G S}$ Rated at $\pm 20 \mathrm{~V}$
- Silicon Gate for Fast Switching Speeds
- IDss, $\mathrm{R}_{\mathrm{DS}(o n)}$ Specified at Elevated Temperature
- Rugged


## TO-204AA



2N6767

- Low Drive Requirements

2N6768

- Ease of Paralleling


## Maximum Ratings

\begin{tabular}{|c|c|c|c|c|}
\hline Symbol \& Characteristic \& Rating 2N6768 \& Rating 2N6767 \& Unit <br>
\hline $V_{\text {DSS }}$ \& Drain to Source Voltage \& 400 \& 350 \& V <br>
\hline $V_{\text {DGR }}$ \& Drain to Gate Voltage
$$
\mathrm{R}_{\mathrm{GS}}=1.0 \mathrm{M} \Omega
$$ \& 400 \& 350 \& V <br>
\hline $\mathrm{V}_{\mathrm{GS}}$ \& Gate to Source Voltage \& $\pm 20$ \& $\pm 20$ \& V <br>
\hline $\mathrm{T}_{\mathrm{J},}, \mathrm{T}_{\text {stg }}$ \& Operating Junction and Storage Temperatures \& -55 to +150 \& -55 to +150 \& ${ }^{\circ} \mathrm{C}$ <br>
\hline $\mathrm{T}_{\mathrm{L}}$ \& Maximum Lead Temperature for Soldering Purposes, 1/16" From Case for 10 s \& 300 \& 300 \& ${ }^{\circ} \mathrm{C}$ <br>
\hline \multicolumn{5}{|l|}{Maximum On-State Characteristics} <br>
\hline $\mathrm{R}_{\mathrm{DS} \text { (on) }}$ \& Static Drain-to-Source On Resistance \& 0.3 \& 0.4 \& $\Omega$ <br>
\hline ID

IDM \& | Drain Current |
| :--- |
| Continuous at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ |
| Continuous at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$ |
| Pulsed | \& \[

$$
\begin{gathered}
14 \\
9.0 \\
25^{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
12 \\
7.75 \\
20^{2}
\end{gathered}
$$
\] \& A <br>

\hline \multicolumn{5}{|l|}{Maximum Thermal Characteristics} <br>
\hline $\mathrm{R}_{\theta \mathrm{JC}}$ \& Thermal Resistance, Junction to Case \& 0.83 \& 0.83 \& ${ }^{\circ} \mathrm{C} / \mathrm{W}$ <br>

\hline PD \& Total Power Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ at $T_{C}=100^{\circ} \mathrm{C}$ \& \[
$$
\begin{gathered}
150 \\
60
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1.50 \\
60
\end{gathered}
$$
\] \& W <br>

\hline \& Linear Derating Factor \& 1.2 \& 1.2 \& W/ $/{ }^{\circ} \mathrm{C}$ <br>
\hline
\end{tabular}

Notes
All values are JEDEC registered except as noted. For information concerning connection diagram and package outline, refer to Section 7.

Electrical Characteristics ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\text {(BR) }{ }^{\text {dss }}}$ | ```Drain Source Breakdown Voltage1 2N6768 2N6767``` |  |  | V | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}$ |
|  |  | $400^{2}$ |  |  |  |
|  |  | $350^{2}$ |  |  |  |
| IDSs | Zero Gate Voltage Drain Current |  | 1 | mA | $\mathrm{V}_{\mathrm{DS}}=$ Rated $\mathrm{V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  |  |  | 4 |  | $\begin{aligned} & V_{D S}=\text { Rated } V_{D S S}, \\ & V_{G S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$ |
| IGSS | Gate-Body Leakage Current |  | $\pm 100$ | $n A$ | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |

On Characteristics

| $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$ | Gate Threshold Voltage | 2.0 | 4.0 | V | $\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{R}_{\text {DS(on) }}$ | Static Drain-Source On-Resistance <br> 2N6768 |  |  | $\Omega$ | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$ |
|  |  |  | 0.3 |  | $\mathrm{I}_{\mathrm{D}}=9.0 \mathrm{~A}$ |
|  | $2 N 6767$ |  | 0.4 |  | $\mathrm{I}_{\mathrm{D}}=7.75 \mathrm{~A}$ |
|  | 2N6768 |  | 0.66 |  | $\mathrm{I}_{\mathrm{D}}=9.0 \mathrm{~A}$ |
|  | 2N6767 |  | 0.88 |  | $\mathrm{I}_{\mathrm{D}}=7.75 \mathrm{~A}$ |
| $\mathrm{V}_{\text {DS }}($ on) | Drain-Source On-Voltage |  |  | V | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$ |
|  | $\begin{aligned} & \text { 2N6768 } \\ & \text { 2N6767 } \end{aligned}$ |  | $\begin{aligned} & 5.6 \\ & 5.4 \end{aligned}$ |  | $\begin{aligned} & I_{D}=14 \mathrm{~A} \\ & I_{D}=12 \mathrm{~A} \end{aligned}$ |
| $\mathrm{gfs}_{\text {f }}$ | Forward Transconductance | 8.0 | 24 | S (v) | $V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=9.0 \mathrm{~A}$ |

Dynamic Characteristics

| $\mathrm{C}_{\text {iss }}$ | Input Capacitance | 1000 | 3000 | pF | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\text {dss }}$ | Output Capacitance | 200 | 600 | pF |  |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance | 50 | 200 | pF |  |

Switching Characteristics $\left(T_{C}=25^{\circ} \mathrm{C}\right.$, Figures 9,10$)$

| $t_{d(o n)}$ | Turn-On Delay Time |  | 35 | $n s$ | $V_{D D}=180 \mathrm{~V}, I_{D}=9.0 \mathrm{~A}$ |
| :--- | :--- | ---: | ---: | ---: | :--- |
| $\mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=4.7 \Omega$ |  |  |  |  |  |
| $\mathrm{t}_{\mathrm{r}}$ | Rise Time |  | 65 | ns | $R_{G S}=4.7 \Omega$ |

Electrical Characteristics (Cont.) ( $T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Typ | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Source-Drain Diode Characteristics |  |  |  |  |  |  |
| Is | $\begin{aligned} & \hline \text { Continuous Source Current } \\ & \text { 2N6768 } \\ & \text { 2N6767 } \\ & \hline \end{aligned}$ |  |  | $\begin{aligned} & 14 \\ & 12 \end{aligned}$ | A |  |
| ${ }_{\text {ISM }}$ | $\begin{aligned} & \text { Pulsed Source Current } \\ & \text { 2N6768 } \\ & \text { 2N6767 } \end{aligned}$ |  |  | $\begin{aligned} & 25^{2} \\ & 20^{2} \end{aligned}$ | A |  |
| $\mathrm{V}_{\text {SD }}$ | Diode Forward Voltage 2N6768 2N6767 | 0.85 0.8 |  | 1.7 1.6 | V | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{S}}=14 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{S}}=12 \mathrm{~A} \end{aligned}$ |
| trr | Reverse Recovery Time |  | $1000^{2}$ |  | ns | $\begin{aligned} & V_{G S}=0 \quad \mathrm{~V}, \mathrm{~T}_{J}=150^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=\mathrm{I}_{S M}, \quad \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S} \end{aligned}$ |
| $Q_{\text {RR }}$ | Reverse Recovery Charge |  | $25^{2}$ |  | $\mu \mathrm{C}$ | $\begin{aligned} & V_{G S}=0 \quad \mathrm{~V}, \mathrm{~T}_{J}=150^{\circ} \mathrm{C} \\ & \mathrm{I}_{F}=\mathrm{I}_{S M}, \mathrm{dI}_{F} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S} \end{aligned}$ |

## otes

1. Pulse test: Pulse width $\leqslant 300 \mu \mathrm{~s}$, Duty cycle $\leqslant 2 \%$
2. Non-JEDEC registered value.

## Typical Performance Curves

Figure 1 Output Characteristics


Figure 2 Static Drain to Source On Resistance vs Drain Current


Typical Performance Curves (Cont.)

## Figure 3 Transfer Characteristics



Figure 5 Capacitance vs Drain to Source Voltage


Figure 7 Forward Biased Safe Operating Area


Figure 4 Temperature Variation of Gate to Source Threshold Voltage


PC09844F
Figure 6 Gate to Source Voltage vs Total Gate Charge


Figure 8 Transient Thermal Resistance vs Time


Typical Electrical Characteristics

Figure 9 Switching Test Circuit


Figure 10 Switching Waveforms


## FAIRCHILD

A Schlumberger Company

2N6769/2N6770
N-Channel Power MOSFETs,
12 A, 450 V/500 V

Power And Discrete Division

## Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high voltage, high speed applications, such as off-line switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers.

- $\mathrm{V}_{\mathrm{GS}}$ Rated at $\pm 20 \mathrm{~V}$
- Silicon Gate for Fast Switching Speeds
- $I_{D S S}, \mathrm{~V}_{\mathrm{DS}(\mathrm{on})}$, SOA and $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ Specified at Elevated Temperature
- Rugged

Maximum Rating

| Symbol | Characteristic | Rating 2N6770 | Rating 2N6769 | Unit |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {DSS }}$ | Drain to Source Voltage | 500 | 450 | V |
| $V_{\text {DGR }}$ | Drain to Gate Voltage $\mathrm{R}_{\mathrm{GS}}=1.0 \mathrm{M} \Omega$ | 500 | 450 | V |
| $\mathrm{V}_{\mathrm{GS}}$ | Gate to Source Voltage | $\pm 20$ | $\pm 20$ | $\checkmark$ |
| $\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$ | Operating Junction and Storage Temperatures | -55 to +150 | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Maximum Lead Temperature for Soldering Purposes, 1/16" From Case for 10 s | 300 | 300 | ${ }^{\circ} \mathrm{C}$ |
| Maximum On-State Characteristics |  |  |  |  |
| $\mathrm{R}_{\mathrm{DS} \text { (on) }}$ | Static Drain-to-Source On Resistance | 0.4 | 0.5 | $\Omega$ |
| ID $I_{D M}$ | Drain Current Continuous at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Continuous at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$ Pulsed | $\begin{gathered} 12 \\ 4.75 \\ 25^{2} \end{gathered}$ | $\begin{gathered} 11 \\ 7.0 \\ 20^{2} \end{gathered}$ | A |
| Maximum Thermal Characteristics |  |  |  |  |
| $\mathrm{R}_{\text {өJC }}$ | Thermal Resistance, Junction to Case | 0.83 | 0.83 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $P_{D}$ | Total Power Dissipation at $T_{C}=25^{\circ} \mathrm{C}$ at $T_{C}=100^{\circ} \mathrm{C}$ | $\begin{gathered} 150 \\ 60 \\ \hline \end{gathered}$ | $\begin{gathered} 150 \\ 60 \end{gathered}$ | W |
|  | Linear Derating Factor | 1.2 | 1.2 | W $/{ }^{\circ} \mathrm{C}$ |

Notes
All values are JEDEC registered except as noted. For information concerning connection diagram and package outline, refer to Section 7 .

Electrical Characteristics ( $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\left(\text {BR) }{ }^{\text {DSS }}\right.}$ | Drain Source Breakdown Voltage ${ }^{1}$2N67702N6769 |  |  | V | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4 \mathrm{~mA}$ |
|  |  | $500^{2}$ |  |  |  |
|  |  | $450{ }^{2}$ |  |  |  |
| IDSS | Zero Gate Voltage Drain Current |  | 1 | mA | $\mathrm{V}_{\mathrm{DS}}=$ Rated $\mathrm{V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  |  |  | 4 |  | $\begin{aligned} & V_{D S}=\text { Rated } V_{D S S}, \\ & V_{G S}=0 \quad V, T_{C}=125^{\circ} \mathrm{C} \end{aligned}$ |
| IGss | Gate-Body Leakage Current |  | $\pm 100$ | nA | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |
| On Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ | Gate Threshold Voltage | 2.0 | 4.0 | V | $\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$ |
| $\mathrm{R}_{\mathrm{DS} \text { (on) }}$ | Static Drain-Source On-Resistance ${ }^{1}$ 2N6770 |  |  | $\Omega$ | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=7.75 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{D}}=7.0 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{D}}=7.75 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{D}}=7.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$ |
|  |  |  | 0.4 |  |  |
|  | 2N6769 |  | 0.5 |  |  |
|  | 2N6770 |  | 0.88 |  |  |
|  | 2N6769 |  | 1.10 |  |  |
| $\mathrm{V}_{\text {DS(on) }}$ | $\begin{aligned} & \text { Drain-Source On-Voltage }{ }^{1} \\ & \text { 2N6770 } \\ & \text { 2N6769 } \end{aligned}$ |  |  | V | $\begin{aligned} & V_{G S}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=12 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{D}}=11 \mathrm{~A} \end{aligned}$ |
|  |  |  | $\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$ |  |  |
| $\mathrm{g}_{\text {fs }}$ | Forward Transconductance | 8.0 | 24 | S (v) | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.75 \mathrm{~A}$ |
| Dynamic Characteristics |  |  |  |  |  |
| $\mathrm{C}_{\text {iss }}$ | Input Capacitance | 1000 | 3000 | pF | $\begin{aligned} & V_{D S}=25 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1.0 \mathrm{MHz} \end{aligned}$ |
| $\mathrm{C}_{\text {dss }}$ | Output Capacitance | 200 | 600 | pF |  |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance | 50 | 200 | pF |  |
| Switching Characteristics ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Figures 9, 10) |  |  |  |  |  |
| $\mathrm{t}_{\mathrm{d} \text { (on) }}$ | Turn-On Delay Time |  | 35 | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=210 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.75 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=4.7 \Omega \\ & \mathrm{R}_{\mathrm{GS}}=4.7 \Omega \end{aligned}$ |
| $\mathrm{t}_{\mathrm{r}}$ | Rise Time |  | 50 | ns |  |
| $\mathrm{t}_{\mathrm{d} \text { (off) }}$ | Turn-Off Delay Time |  | 150 | ns |  |
| $t_{f}$ | Fall Time |  | 70 | ns |  |
| $Q_{g}$ | Total Gate Charge |  | $120^{2}$ | nC | $\begin{aligned} & V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=16 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=400 \mathrm{~V} \end{aligned}$ |

Electrical Characteristics (Cont.) ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Typ | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Source-Drain Diode Characteristics |  |  |  |  |  |  |
| Is | ```Continuous Source Current 2N6770 2N6769``` |  |  | $\begin{aligned} & 12^{2} \\ & 11^{2} \end{aligned}$ | A |  |
| ISM | Pulsed Source Current $\begin{aligned} & \text { 2N6770 } \\ & \text { 2N6769 } \end{aligned}$ |  |  | $25^{2}$ 20 | A |  |
| $\mathrm{V}_{\text {SD }}$ | Diode Forward Voltage 2N6770 | 0.80 |  | 1.6 | V | $\begin{aligned} & V_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{S}}=12 \mathrm{~A} \end{aligned}$ |
|  | 2N6769 | 0.75 |  | 1.5 |  | $\mathrm{I}_{\mathrm{S}}=11 \mathrm{~A}$ |
| $t_{\text {rr }}$ | Reverse Recovery Time |  | $1300^{2}$ |  | ns | $\begin{aligned} & V_{G S}=0 \quad \mathrm{~V}, \mathrm{~T}_{J}=150^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=\mathrm{I}_{S M}, \quad \mathrm{dI}_{F} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S} \end{aligned}$ |
| $Q_{\text {RR }}$ | Reverse Recovery Charge |  | $7.4^{2}$ |  | $\mu \mathrm{C}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{SM}}, \mathrm{dI}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S} \end{aligned}$ |

Notes

1. Pulse test: Pulse width $\leqslant 300 \mu \mathrm{~s}$, Duty cycle $\leqslant 1 \%$
2. Non-JEDEC registered value.

## Typical Performance Curves

Figure 1 Output Characteristics


Figure 2 Static Drain to Source Resistance vs Drain Current


Typical Performance Curves (Cont.)

Figure 3 Transfer Characteristics


Figure 5 Capacitance vs Drain to Source Voltage


Figure 7 Forward Biased Safe Operating Area


Figure 4 Temperature Variation of Gate to Source Threshold Voltage


Figure 6 Gate to Source Voltage vs Total Gate Charge


Figure 8 Transient Thermal Resistance vs Time


Typical Electrical Characteristics
Figure 9 Switching Test Circuit


Figure 10 Switching Waveforms


## FAIRCHILD

A Schlumberger Company
FMP20N05/FMP18N05 N-Channel Power MOSFETs, 18-20 A, 50 V

## Description

These devices are very low $R_{\mathrm{DS}(o n),} 50 \mathrm{~V}$, n-channel, enhancement mode, power MOSFETs especially designed to serve the low voltage, high speed, switching markets. Typical applications are SMPS for telecommunication and instrumentation, DC motor controls, emitter switching, synchronous rectification, and systems that are operated from low voltage batteries, such as automotive and portable equipment, etc.

- Extremely low R $\mathbf{R S}_{\text {(on) }}$
- $\mathrm{V}_{\mathrm{GS}}$ Rated at $\pm 30 \mathrm{~V}$
- Silicon Gate for Fast Switching Speeds
- Rugged
- Low Drive Requirements
- Ease of Paralleling

Maximum Ratings

| Symbol | Characteristic | Rating FMP20N05 | Rating FMP18N05 | Unit |
| :---: | :---: | :---: | :---: | :---: |
| $V_{\text {DSS }}$ | Drain to Source Voltage ${ }^{1}$ | ${ }^{*} 50$ | 50 | V |
| $V_{\text {DGR }}$ | Drain to Gate Voltage ${ }^{1}$ $\mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega$ | 50 | 50 | V |
| $\mathrm{V}_{\mathrm{GS}}$ | Gate to Source Voltage | $\pm 30$ | $\pm 30$ | V |
| $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | Operating Junction and Storage Temperatures | -55 to +150 | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s | 300 | 300 | ${ }^{\circ} \mathrm{C}$ |

Maximum On-State Characteristics

|  |  | FMP20N05 | FMP18N05 |  |
| :--- | :--- | :---: | :---: | :---: |
| $R_{\text {DS(on) }}$ | Static Drain-to-Source | 0.085 | 0.10 | $\Omega$ |
|  | On Resistance |  |  | A |
| $\mathrm{I}_{\mathrm{D}}$ | Drain Current |  | 18 |  |
|  | Continuous at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 20 | 13 |  |
|  | Continuous at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$ | 14 | 50 |  |
|  | Pulsed | 60 |  |  |

Maximum Thermal Characteristics

| $\mathrm{R}_{\text {өJC }}$ | Thermal Resistance, <br> Junction to Case | 1.67 | 1.67 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :---: | :---: | :---: |
| $\mathrm{R}_{\text {өJA }}$ | Thermal Resistance, <br> Junction to Ambient | 80 | 80 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{P}_{\mathrm{D}}$ | Total Power Dissipation <br> at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 75 | 75 | W |

Notes
For information concerning connection diagram and package outline, refer to
Section 7.

Electrical Characteristics ( $T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics |  |  |  |  |  |
| $V_{\text {(BR) }}$ DSS | Drain Source Breakdown Voltage ${ }^{1}$ | 50 |  | V | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$ |
| IDSS | Zero Gate Voltage Drain Current |  | 250 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{DS}}=$ Rated $\mathrm{V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  |  |  | 1000 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0.8 \times \text { Rated } \mathrm{V}_{\mathrm{DSS}}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$ |
| IGSS | Gate-Body Leakage Current |  | $\pm 500$ | nA | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |
| On Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{GS} \text { (th) }}$ | Gate Threshold Voltage | 2.0 | 4.0 | V | $\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$ |
| $\mathrm{R}_{\text {DS(on) }}$ | Static Drain-Source On-Resistance ${ }^{2}$ <br> FMP20N05 <br> FMP18N05 |  |  | $\Omega$ | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}$ |
|  |  |  | 0.085 |  |  |
|  |  |  | 0.10 |  |  |
| $\mathrm{V}_{\mathrm{DS} \text { (on) }}$ | Drain-Source On-Voltage ${ }^{2}$ FMP20N05 |  | 2.0 | V | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=20 \mathrm{~A}$; |
|  | FMP18N05 |  | 2.25 |  |  |
|  | FMP20N05 FMP18N05 |  | 1.40 | V | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A} ; \\ & \mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$ |
| $\mathrm{g}_{\text {fs }}$ | Forward Transconductance | 5 |  | S (ひ) | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}$ |
| Dynamic Characteristics |  |  |  |  |  |
| $\mathrm{C}_{\text {iss }}$ | Input Capacitance |  | 850 | pF | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$ |
| Coss | Output Capacitance |  | 400 | pF |  |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance |  | 150 | pF |  |

Switching Characteristics $\left(T_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$, Figures 9, 10)

| $\mathrm{t}_{\mathrm{d} \text { (on) }}$ | Turn-On Delay Time |  | 50 | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=40 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=50 \Omega \\ & \mathrm{R}_{\mathrm{GS}}=50 \Omega \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{r}}$ | Rise Time |  | 90 | ns |  |
| $\mathrm{t}_{\mathrm{d} \text { (off) }}$ | Turn-Off Delay Time |  | 60 | ns |  |
| $\mathrm{t}_{\mathrm{f}}$ | Fall Time |  | 75 | ns |  |
| $Q_{g}$ | Total Gate Charge |  | 20 | $n \mathrm{C}$ | $\begin{aligned} & V_{G S}=10 \mathrm{~V}, I_{D}=25 \mathrm{~A} \\ & V_{D D}=40 \mathrm{~V} \end{aligned}$ |
| Symbol | Characteristic | Typ | Max | Unit | Test Conditions |
| Source-Drain Diode Characteristics |  |  |  |  |  |
| $V_{S D}$ | Diode Forward Voltage |  | 1.5 | V | $\mathrm{I}_{\mathrm{S}}=20 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
| $t_{\text {rr }}$ | Reverse Recovery Time | 60 |  | ns | $\mathrm{I}_{\mathrm{S}}=20 \mathrm{~A} ; \mathrm{dl}_{\mathrm{S}} / \mathrm{dt}=50 \mathrm{~A} / \mu \mathrm{S}$ |

Notes

1. $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
2. Pulse test: Pulse width $\leqslant 80 \mu \mathrm{~s}$, Duty cycle $\leqslant 1 \%$

## Typical Performance Curves

## Figure 1 Output Characteristics



Figure 3 Transfer Characteristics


Figure 5 Capacitance vs Drain to Source Voltage


Figure 2 Static Drain to Source Resistance vs Drain Current


Figure 4 Temperature Variation of Gate to Source Threshold Voltage


Figure 6 Gate to Source Voltage vs Total Gate Charge


Typical Performance Curves (Cont.)

Figure 7 Forward Biased Safe Operating Area


## Typical Electrical Characteristics

Figure 9 Switching Test Circuit


Figure 8 Transient Thermal Resistance vs Time


Figure 10 Switching Waveforms


FAIRCHILD
A Schlumberger Company

## Description

Designed for use in switching power supplies, inverters and as free-wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 35 ns Recovery Time
- Soft Recovery ( $\mathrm{S}>0.5$ )
- Low IR(REC)
- $150^{\circ} \mathrm{C}$ Operating Junction Temperature
- Popular TO-220AC Package
- Low VFM

TO-220AC


FRP805
FRP810
FRP815
FRP820

## Maximum Ratings

| Symbol | Rating | FRP805 | FRP810 | FRP815 | FRP820 | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{\text {RRM }}$ <br> $V_{\text {RSM }}$ <br> $V_{R}$ | Peak Repetitive Reverse Voltage Non-repetitive Peak Reverse Voltage DC Blocking Voltage | $\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & \hline \end{aligned}$ | $\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$ | $\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$ | $\begin{aligned} & 180 \\ & 200 \\ & 180 \end{aligned}$ | V |
| $\mathrm{I}_{\text {F(AV) }}$ | Average Rectified Forward Current, $T_{C}=130^{\circ} \mathrm{C}$, Rated $\mathrm{V}_{\mathrm{R}}$ | 8 | 8 | 8 | 8 | A |
| $I_{\text {FRM }}$ | Peak Repetitive Forward Current Rated $\mathrm{V}_{\mathrm{R}}, 50 \%$ Duty Cycle, Square Wave, $20 \mathrm{kHz}, \mathrm{T}_{\mathrm{C}}=130^{\circ} \mathrm{C}$ | 16 | 16 | 16 | 16 | A |
| $I_{\text {FSM }}$ | Non-repetitive Peak Surge Current per Diode, Surge Applied at Rate Load Conditions Halfwave, Single Phase, 60 Hz | 100 | 100 | 100 | 100 | A |
| $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | Operating Junction Temperature and Storage Temperature | $\begin{aligned} & -55 \text { to } \\ & +150 \end{aligned}$ | $\begin{gathered} -55 \text { to } \\ +150 \end{gathered}$ | $\begin{gathered} -55 \text { to } \\ +150 \end{gathered}$ | $\begin{aligned} & -55 \text { to } \\ & +150 \end{aligned}$ | ${ }^{\circ} \mathrm{C}$ |
| Maximum Thermal Characteristics |  |  |  |  |  |  |
| $\mathrm{R}_{\text {өJC }}$ | Maximum Thermal Resistance, Junction to Case | 2.5 | 2.5 | 2.5 | 2.5 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{R}_{\theta \mathrm{JA}}$ | Maximum Thermal Resistance, Junction to Ambient | 60 | 60 | 60 | 60 |  |

## Notes

For information concerning connection diagram and package outine, refer to
Section 7.

| Symbol | Rating | FRP805 | FRP810 | FRP815 | FRP820 | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Electrical Characteristics |  |  |  |  |  |  |
| $\mathrm{VFM}^{1}$ | Maximum Instantaneous Forward Voltage $\begin{aligned} & \mathrm{I}_{F}=8.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C} \\ & \mathrm{I}_{F}=8.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & 0.80 \\ & 0.95 \end{aligned}$ | V |
| $\mathrm{IRRM}^{1}$ | Maximum Instantaneous Repetitive Reverse Current <br> Rated DC Voltage, $T_{C}=125^{\circ} \mathrm{C}$ <br> Rated DC Voltage, $T_{C}=25^{\circ} \mathrm{C}$ | $\begin{gathered} 5.0 \\ 10 \end{gathered}$ | $\begin{aligned} & 5.0 \\ & 10 \end{aligned}$ | $\begin{aligned} & 5.0 \\ & 10 \end{aligned}$ | $\begin{aligned} & 5.0 \\ & 10 \end{aligned}$ | mA <br> $\mu \mathrm{A}$ |
| $t_{\text {rr }}$ | Maximum Reverse Recovery Time $\begin{aligned} & \mathrm{I}_{F}=1.0 \mathrm{~A}, \mathrm{dI}_{F} / \mathrm{dt}=50 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{I}_{F}=8 \mathrm{~A}, \mathrm{dI}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$ | $\begin{aligned} & 35 \\ & 50 \end{aligned}$ | ns |
| $\mathrm{I}_{\mathrm{R}(\mathrm{REC})}{ }^{2}$ | Maximum Reverse Recovery Current $\mathrm{I}_{\mathrm{F}}=8 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RRM}}$ | 2.5 | 2.5 | 2.5 | 2.5 | A |

Notes

1. Pulse Test: Pulse Width $=300 \mu$ s. Duty Cycle $\leqslant 2.0 \%$
2. See Figure 10 for test conditions.

## Performance Curves

Figure 1 Maximum Forward Voltage Drop


Figure 2 Maximum Power Dissipation


Performance Curves (Cont.)

Figure 3 Transient Thermal Resistance


Figure 5 Power Derating


Figure 7 Reverse Recovery Time


Figure 4 Typical Reverse Leakage Current


PC1210F
Figure 6 Reverse Recovery Charge


## FRP800 Series

Performance Curves (Cont.)
Figure 8 Reverse Recovery Current


Figure 9 Reverse Recovery Softness


Figure 10 Reverse Recovery Test Waveform



## Maximum Ratings

| Symbol | Rating | $\begin{gathered} \text { FRP1005 } \\ \text { FRP2005CC } \end{gathered}$ | $\begin{aligned} & \text { FRP1010 } \\ & \text { FRP2010CC } \end{aligned}$ | $\begin{gathered} \text { FRP1015 } \\ \text { FRP2015CC } \end{gathered}$ | $\begin{aligned} & \text { FRP1020 } \\ & \text { FRP2020CC } \end{aligned}$ | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{\text {RRM }}$ <br> $V_{\text {RSM }}$ $V_{\text {R }}$ | Peak Repetitive Reverse Voltage Non-repetitive Peak Reverse Voltage DC Blocking Voltage | $\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$ | $\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$ | $\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$ | $\begin{aligned} & 180 \\ & 200 \\ & 180 \end{aligned}$ | V |
| $I_{F(A V)}$ | Average Rectified Forward Current, $\mathrm{T}_{\mathrm{C}}=117^{\circ} \mathrm{C}$, Rated $\mathrm{V}_{\mathrm{R}}$; <br> FRP1000 Series <br> FRP2000CC Series | $\begin{aligned} & 10 \\ & 20 \end{aligned}$ | A |
| $I_{\text {FSM }}$ | Non-repetitive Peak Surge Current per Diode, Halfwave, 60 Hz | 150 | 150 | 150 | 150 | A |
| $\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$ | Operating Junction Temperature and Storage Temperature | $\begin{gathered} -55 \text { to } \\ +150 \end{gathered}$ | $\begin{gathered} -55 \text { to } \\ +150 \end{gathered}$ | $\begin{aligned} & -55 \text { to } \\ & +150 \end{aligned}$ | $\begin{gathered} -55 \text { to } \\ +150 \end{gathered}$ | ${ }^{\circ} \mathrm{C}$ |

## Maximum Thermal Characteristics

| $R_{\text {өJC }}$ | Maximum Thermal Resistance, <br> Junction to Case |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | FRP1000 Series | 2.5 | 2.5 | 2.5 | 2.5 |
|  | FRP2000CC Series | 1.5 | 1.5 | 1.5 | 1.5 |
| $\mathrm{R}_{\text {OJA }}$ | Maximum Thermal Resistance, <br> Junction to Ambient | 60 | 60 | 60 | 60 |

Notes
For information concerning connection diagram and package outline, refer to
Section 7.

| Symbol | Rating | $\begin{aligned} & \text { FRP1005 } \\ & \text { FRP2005CC } \end{aligned}$ | $\begin{aligned} & \text { FRP1010 } \\ & \text { FRP2010CC } \end{aligned}$ | $\begin{aligned} & \text { FRP1015 } \\ & \text { FRP2015CC } \end{aligned}$ | $\begin{aligned} & \text { FRP1020 } \\ & \text { FRP2020CC } \end{aligned}$ | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Electrical Characteristics per Diode |  |  |  |  |  |  |
| $V_{F M}{ }^{1}$ | Maximum Instantaneous Forward Voltage $\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} 0.91 \\ 1.0 \end{gathered}$ | V |
| IRRM $^{1}$ | Maximum Instantaneous Repetitive <br> Reverse Current <br> Rated DC Voltage, $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ <br> Rated DC Voltage, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | $\begin{gathered} 5.0 \\ 5 \end{gathered}$ | $\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$ |
| $\mathrm{trrr}^{\text {r }}$ | Maximum Reverse Recovery Time $\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=50 \mathrm{~A} / \mu \mathrm{s}$ $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S}$ | $\begin{aligned} & 35 \\ & 50 \end{aligned}$ | ns |
| $\mathrm{I}_{\mathrm{R}(\mathrm{REC}){ }^{2}}$ | Maximum Reverse Recovery Current $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\text {RRM }}$ | 2.5 | 2.5 | 2.5 | 2.5 | A |

## Notes

1. Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$. Duty Cycle $\leqslant 2.0 \%$
2. See Figure 11 for test conditions.

## Performance Curves per Diode

Figure 1 Maximum Forward Voltage Drop


Figure 2 Maximum Power Dissipation


Performance Curves per Diode (Cont.)

Figure 3 Transient Thermal Resistance


Figure 5 Typical Reverse Leakage Current


Figure 7 Reverse Recovery Charge


Figure 4 Typical Reverse Leakage Current


Figure 6 Power Derating


Figure 8 Reverse Recovery Time


Performance Curves per Diode (Cont.)
Figure 9 Reverse Recovery Current


Figure 10 Reverse Recovery Softness


Figure 11 Reverse Recovery Test Waveform


## FAIRCHILD

A Schlumberger Company
FRP1600 Series
Ultra-fast POWERplanar ${ }^{\text {TM }}$
Rectifiers 16 A, 50-200 V

Power And Discrete Division

## Description

Designed for use in switching power supplies, inverters and as free-wheeling diodes, these state-of-the-art devices have the following features:

Ultrafast 35 ns Reverse Recovery Time

- Soft Recovery (S >0.5)
- Low IR(REC)
- $150^{\circ} \mathrm{C}$ Operating Junction Temperature
- Popular TO-220AC Package
- Low VFM

TO-220AC


FRP1605
FRP1610
FRP1615
FRP1620

Maximum Ratings

| Symbol | Rating | FRP1605 | FRP1610 | FRP1615 | FRP1620 | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{\text {RRM }}$ <br> $V_{\text {RSM }}$ <br> $V_{R}$ | Peak Repetitive Reverse Voltage Non-repetitive Peak Reverse Voltage DC Blocking Voltage | $\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & \hline \end{aligned}$ | $\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$ | $\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & \hline \end{aligned}$ | $\begin{aligned} & 180 \\ & 200 \\ & 180 \end{aligned}$ | V |
| $I_{\text {F }}(\mathrm{AV})$ | Average Rectified Forward Current, Rated $\mathrm{V}_{\mathrm{R}}$, Square Wave, 20 kHz FRP1605/FRP1620: $T_{C}=118^{\circ} \mathrm{C}$ | 16 | 16 | 16 | 16 | A |
| $\mathrm{I}_{\text {FSM }}$ | Non-repetitive Peak Surge Current per Diode, Surge Applied at Rate Load Conditions Halfwave, Single Phase, 60 Hz | 200 | 200 | 200 | 200 | A |
| $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | Operating Junction Temperature and Storage Temperature | $\begin{gathered} -55 \text { to } \\ +150 \end{gathered}$ | $\begin{gathered} -55 \text { to } \\ +150 \end{gathered}$ | $\begin{gathered} -55 \text { to } \\ +150 \end{gathered}$ | $\begin{gathered} -55 \text { to } \\ +150 \end{gathered}$ | ${ }^{\circ} \mathrm{C}$ |

## Maximum Thermal Characteristics

| $R_{\theta J C}$ | Maximum Thermal Resistance, <br> Junction to Case <br> FRP1605/FRP1620 | 1.5 | 1.5 | 1.5 |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $R_{\theta J A}$ | Maximum Thermal Resistance, <br> Junction to Ambient | 60 | 60 | 60 | 60 |  |

## Notes

For information concerning connection diagram and package outline, refer to Section 7.

## FRP1600 Series

| Symbol | Rating | FRP1605 | FRP1610 | FRP1615 | FRP1620 | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Electrical Characteristics |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{FM}}{ }^{1}$ | Maximum Instantaneous Forward Voltage $\begin{aligned} & \mathrm{I}_{F}=16 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & 0.80 \\ & 0.95 \end{aligned}$ | V |
| $\mathrm{IRRM}^{1}$ | Maximum Instantaneous Repetitive Reverse Current Rated DC Voltage, $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ <br> Rated DC Voltage, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | $\begin{aligned} & 10 \\ & 25 \end{aligned}$ | mA $\mu \mathrm{A}$ |
| $\mathrm{t}_{\mathrm{rr}}$ | Maximum Reverse Recovery Time $\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=50 \mathrm{~A} / \mu \mathrm{s}$ $\mathrm{I}_{\mathrm{F}}=16 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$ | $\begin{aligned} & 35 \\ & 50 \end{aligned}$ | ns |
| $I_{\text {R(REC })}{ }^{2}$ | Maximum Reverse Recovery Current $\mathrm{I}_{\mathrm{F}}=8 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S}, \mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RRM}}$ | 2.5 | 2.5 | 2.5 | 2.5 | A |

## Notes

1. Pulse Test: Pulse Width $=300 \mu$ s. Duty Cycle $\leqslant 2.0 \%$
2. See Figure 10 for test conditions.

## Performance Curves

Figure 1 Maximum Forward Voltage Drop


Figure 2 Maximum Power Dissipation


## Performance Curves (Cont.)

Figure 3 Transient Thermal Resistance


PC11310F
Figure 5 Power Derating


Figure 7 Reverse Recovery Time


Figure 4 Typical Reverse Leakage Current


PC11320F
Figure 6 Reverse Recovery Charge


## FRP1600 Series

## Performance Curves (Cont.)

## Figure 8 Reverse Recovery Current



PC 11360 F

Figure 10 Reverse Recovery Test Waveform


Figure 9 Reverse Recovery Softness


PC1261F

## Description

Designed for use in switching power supplies, inverters and as free-wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 35 ns Reverse Recovery Time
- Soft Recovery ( $\mathrm{S}>0.5$ )
- Low IR(REC)
- $150^{\circ} \mathrm{C}$ Operating Junction Temperature
- Popular TO-220 Package
- Low VFM

TO-220AB


FRP1605CC
FRP1610CC
FRP1615CC
FRP1620CC

## Maximum Ratings

| Symbol | Rating | FRP1605CC | FRP1610CC | FRP1615CC | FRP1620CC | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{\text {RRM }}$ <br> $\mathrm{V}_{\text {RSM }}$ <br> $V_{R}$ | Peak Repetitive Reverse Voltage Non-repetitive Peak Reverse Voltage DC Blocking Voltage | $\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$ | $\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$ | $\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$ | $\begin{aligned} & 180 \\ & 200 \\ & 180 \end{aligned}$ | V |
| $I_{\text {F (AV) }}$ | Average Rectified Forward Current, $T_{C}=130^{\circ} \mathrm{C}$, Rated $V_{R}$ | 16 | 16 | 16 | 16 | A |
| IFRM | Peak Repetitive Forward Current Rated $V_{R}, 50 \%$ Duty Cycle, Square Wave, $20 \mathrm{kHz}, \mathrm{T}_{\mathrm{C}}=130^{\circ} \mathrm{C}$ | 32 | 32 | 32 | 32 | A |
| $\mathrm{I}_{\text {FSM }}$ | Non-repetitive Peak Surge Current per Diode, Surge Applied at Rate Load Conditions Halfwave, Single Phase, 60 Hz | 100 | 100 | 100 | 100 | A |
| $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | Operating Junction Temperature and Storage Temperature | $\begin{gathered} -55 \text { to } \\ +150 \end{gathered}$ | $\begin{gathered} -55 \text { to } \\ +150 \end{gathered}$ | $\begin{aligned} & -55 \text { to } \\ & +150 \end{aligned}$ | $\begin{gathered} -55 \text { to } \\ +150 \end{gathered}$ | ${ }^{\circ} \mathrm{C}$ |

Maximum Thermal Characteristics

| $\mathrm{R}_{\text {өJc }}$ | Maximum Thermal Resistance, <br> Junction to Case | 2.5 | 2.5 | 2.5 | 2.5 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{R}_{\text {өJA }}$ | Maximum Thermal Resistance, <br> Junction to Ambient | 60 | 60 | 60 | 60 |  |

## Notes

For information concerning connection diagram and package outline, refer to
Section 7.

| Symbol | Rating | FRP1605CC | FRP1610CC | FRP1615CC | FRP1620CC | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Electrical Characteristics per Diode |  |  |  |  |  |  |
| $V_{F M}{ }^{1}$ | Maximum Instantaneous Forward Voltage $\begin{aligned} & I_{F}=8.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C} \\ & \mathrm{I}_{F}=8.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & 0.80 \\ & 0.95 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.80 \\ & 0.95 \end{aligned}$ | $\begin{aligned} & 0.80 \\ & 0.95 \end{aligned}$ | $\begin{aligned} & 0.80 \\ & 0.95 \end{aligned}$ | V |
| $I_{\text {RRM }}{ }^{1}$ | Maximum Instantaneous Repetitive Reverse Current <br> Rated DC Voltage, $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ <br> Rated DC Voltage, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | $\begin{gathered} 5.0 \\ 10 \end{gathered}$ | $\begin{aligned} & 5.0 \\ & 10 \end{aligned}$ | $\begin{gathered} 5.0 \\ 10 \end{gathered}$ | $\begin{gathered} 5.0 \\ 10 \end{gathered}$ | $\begin{gathered} \mathrm{mA} \\ \mu \mathrm{~A} \end{gathered}$ |
| $t_{\text {rr }}$ | Maximum Reverse Recovery Time $\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=50 \mathrm{~A} / \mu \mathrm{s}$ $\mathrm{I}_{\mathrm{F}}=8 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$ | $\begin{aligned} & 35 \\ & 50 \end{aligned}$ | ns |
| $I_{R(R E C)}{ }^{2}$ | Maximum Reverse Recovery Current $\mathrm{I}_{\mathrm{F}}=8 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RRM}}$ | 2.5 | 2.5 | 2.5 | 2.5 | A |

Notes

1. Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$. Duty Cycle $\leqslant 2.0 \%$
2. See Figure 10 for test conditions.

## Performance Curves per Diode

## Figure 1 Maximum Forward Voltage Drop



Figure 2 Maximum Power Dissipation


## Performance Curves per Diode (Cont.)

Figure 3 Transient Thermal Resistance


Figure 5 Power Derating


Figure 4 Typical Reverse Leakage Current


Figure 6 Reverse Recovery Charge


Figure 7 Reverse Recovery Time


## Performance Curves per Diode (Cont.)

Figure 8 Reverse Recovery Current


Figure 9 Reverse Recovery Softness


Figure 10 Reverse Recovery Test Waveform


## FAIRCHILD

FRM3200CC Series

A Schlumberger Company Ultra-fast POWERplanar ${ }^{\text {TM }}$ Rectifiers 32 A, 50-200 V

Power And Discrete Division

## Description

Designed for use in switching power supplies, inverters and as free-wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 35 ns Reverse Recovery Time
- Soft Recovery ( $\mathrm{S}>0.5$ )
- Low IR(REC)
- $150^{\circ} \mathrm{C}$ Operating Junction Temperature
- Popular TO-204AA Package (Formerly TO-3)
- Low VFM


## TO-204AA



FRM3205CC
FRM3210CC
FRM3215CC
FRM3220CC

## Maximum Ratings

| Symbol | Rating | FRM3205CC | FRM3210CC | FRM3215CC | FRM3220CC | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{\text {RRM }}$ <br> $V_{\text {RSM }}$ <br> $V_{R}$ | Peak Repetitive Reverse Voltage Non-repetitive Peak Reverse Voltage DC Blocking Voltage | $\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$ | $\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$ | $\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$ | $\begin{aligned} & 180 \\ & 200 \\ & 180 \end{aligned}$ | V |
| $\mathrm{I}_{\text {F (AV) }}$ | Average Rectified Forward Current, $T_{C}=107^{\circ} \mathrm{C}$, Rated $\mathrm{V}_{\mathrm{R}}$ | 32 | 32 | 32 | 32 | A |
| $\mathrm{I}_{\text {FRM }}$ | Peak Repetitive Forward Current Rated $\mathrm{V}_{\mathrm{R}}$, Square Wave, 50 kHz , $\mathrm{T}_{\mathrm{C}}=107^{\circ} \mathrm{C}$ | 64 | 64 | 64 | 64 | A |
| $\mathrm{I}_{\text {FSM }}$ | Non-repetitive Peak Surge Current per Diode, Surge Applied at Rate Load Conditions Halfwave, Single Phase, 60 Hz | 200 | 200 | 200 | 200 | A |
| $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | Operating Junction Temperature and Storage Temperature | $\begin{gathered} -55 \text { to } \\ +150 \end{gathered}$ | $\begin{gathered} -55 \text { to } \\ +150 \end{gathered}$ | $\begin{gathered} -55 \text { to } \\ +150 \end{gathered}$ | $\begin{gathered} -55 \text { to } \\ +150 \end{gathered}$ | ${ }^{\circ} \mathrm{C}$ |

Maximum Thermal Characteristics

| $\mathrm{R}_{\theta \mathrm{JC}}$ | Maximum Thermal Resistance, <br> Junction to Case | 1.0 | 1.0 | 1.0 | 1.0 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{R}_{\theta \mathrm{JA}}$ | Maximum Thermal Resistance, <br> Junction to Ambient | 60 | 60 | 60 | 60 |  |

## Notes

For information concerning connection diagram and package outline, refer to
Section 7.

## FRM3200CC Series

| Symbol | Rating | FRM3205CC | FRM3210CC | FRM3215CC | FRM3220CC | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Electrical Characteristics per Diode |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{FM}}{ }^{1}$ | Maximum Instantaneous Forward Voltage per Diode $\begin{aligned} & \mathrm{I}_{F}=16 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C} \\ & \mathrm{I}_{F}=16 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & 0.80 \\ & 0.95 \end{aligned}$ | V |
| $I_{\text {RRM }}{ }^{1}$ | Maximum Instantaneous Reverse Current per Diode <br> Rated DC Voltage, $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ <br> Rated DC Voltage, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | $\begin{aligned} & 10 \\ & 25 \end{aligned}$ | mA $\mu \mathrm{A}$ |
| $t_{\text {rr }}$ | Maximum Reverse Recovery Time $\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=50 \mathrm{~A} / \mu \mathrm{s}$ $\mathrm{I}_{\mathrm{F}}=16 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$ | $\begin{aligned} & 35 \\ & 50 \end{aligned}$ | ns |
| $\mathrm{I}_{\mathrm{R}(\mathrm{REC})}{ }^{2}$ | Maximum Reverse Recovery Current $\mathrm{I}_{\mathrm{F}}=16 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$, $V_{R}=V_{\text {RRM }}$ | 2.5 | 2.5 | 2.5 | 2.5 | A |

## Notes

1. Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$. Duty Cycle $\leqslant 2.0 \%$
2. See Figure 10 for test conditions.

## Performance Curves per Diode

Figure 1 Maximum Forward Voltage Drop


Figure 2 Maximum Power Dissipation


Performance Curves per Diode (Cont.)
Figure 3 Transient Thermal Resistance


Figure 5 Average Power Derating


Figure 4 Typical Reverse Leakage Current


Figure 6 Reverse Recovery Charge


Figure 7 Reverse Recovery Time


## FRM3200CC Series

Performance Curves per Diode (Cont.)

## Figure 8 Reverse Recovery Current



Figure 9 Reverse Recovery Softness


Figure 10 Reverse Recovery Test Waveform



## Notes

For information concerning connection diagram and package outline, refer to Section 7.

| Maximum |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ratings |

Electrical Characteristics (Cont.) ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| On Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ | Gate Threshold Voltage <br> IRF120-123/IRF520-523 <br> MTP10N08/10N10 | 2.0 2.0 | 4.0 4.5 | V | $\begin{aligned} & \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}} \\ & \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}} \end{aligned}$ |
| $\mathrm{R}_{\mathrm{DS} \text { (on) }}$ | Static Drain-Source On-Resistance ${ }^{2}$ <br> IRF120/121/520/521 <br> MTP10N08/10N10 <br> IRF122/123/522/523 |  | 0.30 0.33 0.40 | $\Omega$ | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=4.0 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{D}}=4.0 \mathrm{~A} \end{aligned}$ |
| $\mathrm{V}_{\text {DS(on) }}$ | Drain-Source On-Voltage ${ }^{2}$ MTP 10N08/10N10 |  | 4.0 3.3 | V | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=10.0 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$ |
| $\mathrm{g}_{\text {f }}$ | Forward Transconductance | 1.5 |  | S (v) | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4.0 \mathrm{~A}$ |
| Dynamic Characteristics |  |  |  |  |  |
| $\mathrm{C}_{\text {iss }}$ | Input Capacitance |  | 600 | pF | $\begin{aligned} & V_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$ |
| $\mathrm{C}_{\text {oss }}$ | Output Capacitance |  | 400 | pF |  |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance |  | 100 | pF |  |

Switching Characteristics $\left(T_{C}=25^{\circ} \mathrm{C}\right.$, Figures 1, 2) ${ }^{3}$

| $\mathrm{t}_{\mathrm{d} \text { (on) }}$ | Turn-On Delay Time |  | 40 | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4.0 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=50 \Omega \\ & \mathrm{R}_{\mathrm{GS}}=50 \Omega \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{r}$ | Rise Time |  | 70 | ns |  |
| $\mathrm{t}_{\mathrm{d} \text { (off) }}$ | Turn-Off Delay Time |  | 100 | ns |  |
| $\mathrm{t}_{\mathrm{f}}$ | Fall Time |  | 70 | ns |  |
| $\mathrm{Q}_{\mathrm{g}}$ | Total Gate Charge |  | 15 | $n \mathrm{C}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=50 \mathrm{~V} \end{aligned}$ |
| Symbol | Characteristic | Typ | Max | Unit | Test Conditions |

## Source-Drain Diode Characteristics

| $V_{S D}$ | Diode Forward Voltage IRF120/121/520/521 IRF122/123/522/523 |  | 2.5 | V | $\mathrm{I}_{\mathrm{S}}=8.0 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 2.3 | V | $\mathrm{I}_{\mathrm{S}}=7.0 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
| $t_{\text {rr }}$ | Reverse Recovery Time | 280 |  | ns | $\mathrm{I}_{\mathrm{S}}=4.0 \mathrm{~A} ; \mathrm{dl}_{\mathrm{S}} / \mathrm{dt}=25 \mathrm{~A} / \mu \mathrm{S}$ |

## Notes

1. $T_{\jmath}=+25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
2. Pulse width limited by $T_{J}$
3. Switching time measurements performed on LEM TR-58 test equipment.

Typical Electrical Characteristics
Figure 1 Switching Test Circuit


Typical Performance Curves
Figure 3 Output Characteristics


Figure 5 Transfer Characteristics


Figure 2 Switching Waveforms


Figure 4 Static Drain to Source Resistance vs Drain Current


Figure 6 Temperature Variation of Gate to Source Threshold Voltage


Typical Performance Curves (Cont.)
Figure 7 Capacitance vs Drain to Source Voltage


Figure 9 Forward Biased Safe Operating Area for IRF120-123 And IRF520-523


Figure 11 Forward Biased Safe Operating Area for MTP10N08/10N10


Figure 8 Gate to Source Voltage vs
Total Gate Charge


PCos9 10F
Figure 10 Transient Thermal Resistance vs Time for IRF120-123 And IRF520-523


Figure 12 Transient Thermal Resistance vs Time for MTP10N08/10N10


## FAIRCHILD

IRF130-133/IRF530-533
MTP20N08/20N10
A Schlumberger Company
N-Channel Power MOSFETs,
20 A, 60-100 V
Power And Discrete Division

## Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers and high energy pulse circuits.

- Low RDS(on)
- $\mathrm{V}_{\mathrm{GS}}$ Rated at $\pm 20 \mathrm{~V}$
- Silicon Gate for Fast Switching Speeds
- IDSS, V ${ }_{\text {DS(on) }}$, Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling


## TO-204AA

IRF130
IRF131
IRF132
IRF133


TO-220AB


IRF530
IRF531
IRF532
IRF533
MTP20N08
MTP20N10

## Product Summary

| Part Number | $\mathrm{V}_{\text {DSS }}$ | $\mathrm{R}_{\mathrm{DS} \text { (on) }}$ | $\begin{gathered} \mathrm{I}_{\mathrm{D}} \text { at } \\ \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} \mathrm{I}_{\mathrm{D}} \text { at } \\ \mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{gathered}$ | Case Style |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IRF130 | 100 V | 0.18 ת | 14 A | 9.0 A | TO-204AA |
| IRF131 | 60 V | $0.18 \Omega$ | 14 A | 9.0 A |  |
| IRF132 | 100 V | $0.25 \Omega$ | 12 A | 8.0 A |  |
| IRF133 | 60 V | $0.25 \Omega$ | 12 A | 8.0 A |  |
| IRF530 | 100 V | $0.18 \Omega$ | 14 A | 9.0 A | TO-220AB |
| IRF531 | 60 V | $0.18 \Omega$ | 14 A | 9.0 A |  |
| IRF532 | 100 V | $0.25 \Omega$ | 12 A | 8.0 A |  |
| IRF533 | 60 V | $0.25 \Omega$ | 12 A | 8.0 A |  |
| MTP20N08 | 80 V | $0.15 \Omega$ | 20 A | 11.5 A |  |
| MTP20N10 | 100 V | $0.15 \Omega$ | 20 A | 11.5 A |  |

## Notes

For information concerning connection diagram and package outline, refer to
Section 7.

IRF130-133/IRF530-533
MTP20N08/20N10

## Maximum Ratings

| Symbol | Characteristic | Rating IRF130/132 IRF530/532 MTP20N10 | Rating MTP20N08 | Rating IRF131/133 IRF531/533 | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{\text {DSS }}$ | Drain to Source Voltage ${ }^{1}$ | 100 | 80 | 60 | V |
| $\mathrm{V}_{\text {DGR }}$ | Drain to Gate Voltage ${ }^{1}$ $\mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega$ | 100 | 80 | 60 | V |
| $V_{G S}$ | Gate to Source Voltage | $\pm 20$ | $\pm 20$ | $\pm 20$ | V |
| $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | Operating Junction and Storage Temperatures | -55 to +150 | -55 to +150 | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s | 275 | 275 | 275 | ${ }^{\circ} \mathrm{C}$ |
| Maximum Thermal Characteristics |  |  |  |  |  |
|  |  | IRF130-1 IRF530-5 |  | 20N08/10 |  |
| $\mathrm{R}_{\text {өJc }}$ | Thermal Resistance, Junction to Case | 1.67 |  | 1.25 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{P}_{\mathrm{D}}$ | Total Power Dissipation at $T_{C}=25^{\circ} \mathrm{C}$ | 75 |  | 100 | W |
| IDM | Pulsed Drain Current ${ }^{2}$ | 60 |  | 60 | A |

Electrical Characteristics ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\text {(BR) }{ }^{\text {dss }}}$ | Drain Source Breakdown Voltage ${ }^{1}$ IRF130/132/530/532/ MTP20N10 MTP20N08 IRF131/133/531/533 | 100 80 60 |  | V | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$ |
| IDSS | Zero Gate Voltage Drain Current |  | 250 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{DS}}=$ Rated $\mathrm{V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  |  |  | 1000 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{D S}=0.8 \times \text { Rated } V_{D S S}, \\ & V_{G S}=0 \mathrm{~V}, T_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$ |
| IGSS | Gate-Body Leakage Current IRF130-133 <br> IRF530-533/ MTP20N08/MTP20N10 |  | $\pm 100$ $\pm 500$ | nA | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |

Electrical Characteristics (Cont.) ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| On Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{GS} \text { (th) }}$ | Gate Threshold Voltage |  |  | V |  |
|  | IRF130/133/530/533 <br> MTP20N08/20N10 | 2.0 | 4.0 |  | $\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$ |
|  |  | 2.0 | 4.5 |  | $\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$ |
| $\mathrm{R}_{\text {DS(on) }}$ | Static Drain-Source On-Resistance ${ }^{2}$ <br> IRF130/131/530/531 <br> IRF132/133/532/533 <br> MTP20N08/20N10 |  |  | $\Omega$ | $\begin{aligned} & V_{G S}=10 \mathrm{~V}, I_{D}=8.0 \mathrm{~A} \\ & I_{D}=10 \mathrm{~A} \end{aligned}$ |
|  |  |  | 0.18 |  |  |
|  |  |  | 0.25 |  |  |
|  |  |  | 0.15 |  |  |
| $V_{\text {DS(on) }}$ | Drain-Source On-Voltage ${ }^{2}$ MTP 20N08/20N10 |  | 1.5 | V | $V_{G S}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}$ |
|  |  |  | 3.6 | V | $V_{G S}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=20 \mathrm{~A}$ |
|  |  |  | 3.0 | V | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A} \\ & T_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$ |
| $\mathrm{g}_{\text {f }}$ | Forward Transconductance | 4.0 |  | S (J) | $\mathrm{V}_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=8.0 \mathrm{~A}$ |

## Dynamic Characteristics

| $\mathrm{C}_{\text {iss }}$ | Input Capacitance |  | 800 | pF | $\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ <br> $\mathrm{f}=1.0 \mathrm{MHz}$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\text {oss }}$ | Output Capacitance |  | 500 | pF | pF |  |  |  |  |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance |  | 150 |  |  |  |  |  |  |

Switching Characteristics $\left(T_{C}=25^{\circ} \mathrm{C} \text {, Figures } 1,2\right)^{3}$


Electrical Characteristics (Cont.) ( $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Typ | Max | Unit | Test Conditions |
| :--- | :--- | :--- | :--- | :--- | :--- |

Source-Drain Diode Characteristics

| $\mathrm{V}_{\text {SD }}$ | Diode Forward Voltage IRF130/131/530/531 | 1.5 | 2.5 | V | $\mathrm{I}_{\mathrm{S}}=14 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | IRF132/133/532/533 | 1.5 | 2.3 | V | $\mathrm{I}_{\mathrm{S}}=12 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
| $\mathrm{t}_{\mathrm{rr}}$ | Reverse Recovery Time | 300 |  | ns | $\mathrm{I}_{\mathrm{S}}=4 \mathrm{~A} ; \mathrm{dl}_{\mathrm{S}} / \mathrm{dt}=25 \mathrm{~A} / \mu \mathrm{S}$ |

Notes

1. $T_{J}=+25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
2. Pulse width limited by $T_{J}$.
3. Switching time measurements performed on LEM TR-58 test equipment.

## Typical Electrical Characteristics

## Figure 1 Switching Test Circuit



Figure 2 Switching Waveforms


## Typical Performance Curves

Figure 3 Output Characteristics


Figure 4 Static Drain to Source Resistance vs Drain Current


IRF130-133/IRF530-533
MTP20N08/20N10

## Typical Performance Curves (Cont.)

## Figure 5 Transfer Characteristics



Figure 7 Capacitance vs Drain to Source Voltage


Figure 9 Forward Biased Safe Operating Area for IRF130-133 and IRF530-533


Figure 6 Temperature Variation of Gate to Source Threshold Voltage


Figure 8 Gate to Source Voltage vs Total Gate Charge


Figure 10 Transient Thermal Resistance vs Time for IRF130-133 and IRF530-533


Typical Performance Curves (Cont.)

Figure 11 Forward Biased Safe Operating Area for MTP20N08/20N10


Figure 12 Transient Thermal Resistance vs Time for MTP20N08/20N10


## FAIRCHILD

A Schlumberger Company

## Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers and high energy pulse circuits.

- Low R RS(on)
- $\mathrm{V}_{\mathrm{GS}}$ Rated at $\pm 20 \mathrm{~V}$
- Silicon Gate for Fast Switching Speeds
- IDSS, $V_{\text {DS(on) }}$, Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling

TO-204AE


IRF140
IRF141
IRF142
IRF143

TO-220AB


## IRF540

IRF541
IRF542
IRF543

## Product Summary

| Part Number | $\mathrm{V}_{\text {DSS }}$ | $\mathbf{R}_{\mathrm{DS}}$ (on) | $\begin{gathered} \mathrm{I}_{\mathrm{D}} \text { at } \\ \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} \mathrm{I}_{\mathrm{D}} \text { at } \\ \mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{gathered}$ | Case Style |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IRF140 | 100 V | $0.085 \Omega$ | 27 A | 17 A | TO-204AE |
| IRF141 | 60 V | $0.085 \Omega$ | 27 A | 17 A |  |
| IRF142 | 100 V | $0.11 \Omega$ | 24 A | 15 A |  |
| IRF143 | 60 V | $0.11 \Omega$ | 24 A | 15 A |  |
| IRF540 | 100 V | $0.085 \Omega$ | 27 A | 17 A | TO-220AB |
| IRF541 | 60 V | $0.085 \Omega$ | 27 A | 17 A |  |
| IRF542 | 100 V | $0.11 \Omega$ | 24 A | 15 A |  |
| IRF543 | 60 V | $0.11 \Omega$ | 24 A | 15 A |  |

Notes
For information concerning connection diagram and package outline, refer to
Section 7.

Maximum Ratings

| Symbol | Characteristic | Rating IRF140/142 IRF540/542 | Rating IRF141/143 IRF541/543 | Unit |
| :---: | :---: | :---: | :---: | :---: |
| $V_{\text {DSS }}$ | Drain to Source Voltage ${ }^{1}$ | 100 | 60 | V |
| $V_{\text {DGR }}$ | Drain to Gate Voltage ${ }^{1}$ $\mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega$ | 100 | 60 | V |
| $\mathrm{V}_{\mathrm{GS}}$ | Gate to Source Voltage | $\pm 20$ | $\pm 20$ | V |
| $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | Operating Junction and Storage Temperatures | -55 to +150 | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $T_{L}$ | Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s | 275 | 275 | ${ }^{\circ} \mathrm{C}$ |

Maximum Thermal Characteristics

|  |  | IRF140-143 | IRF540-543 |  |
| :--- | :--- | :---: | :---: | :---: |
| R $_{\text {өJC }}$ | Thermal Resistance, <br> Junction to Case | 1.0 | 1.0 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{P}_{\mathrm{D}}$ | Total Power Dissipation <br> at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 125 | 125 | W |
| IDM | Pulsed Drain Current ${ }^{2}$ | 108 | 108 | A |

Electrical Characteristics ( $T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\text {(BR) }{ }^{\text {DSs }}}$ | Drain Source Breakdown Voltage ${ }^{1}$ IRF140/142/540/542 IRF141/143/541/543 |  |  | V | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$ |
|  |  | 100 |  |  |  |
|  |  | 60 |  |  |  |
| Ioss | Zero Gate Voltage Drain Current |  | 250 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{DS}}=$ Rated $\mathrm{V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  |  |  | 1000 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{D S}=0.8 \times \text { Rated } V_{D S S}, \\ & V_{G S}=0 \vee, T_{C}=125^{\circ} \mathrm{C} \end{aligned}$ |
| IGSS | Gate-Body Leakage Current IRF140-143 <br> IRF540-543 |  | $\pm 100$ | nA | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |
|  |  |  | $\pm 500$ |  |  |

On Characteristics

| $\mathrm{V}_{\text {GS(th) }}$ | Gate Threshold Voltage | 2.0 | 4.0 | V | $\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{R}_{\mathrm{DS}(\mathrm{on)}}$ | Static Drain-Source On-Resistance ${ }^{2}$ <br> IRF140/141/540/541 <br> IRF142/143/542/543 |  |  | $\Omega$ | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=15 \mathrm{~A}$ |
|  |  |  | 0.085 |  |  |
|  |  |  | 0.11 |  |  |
| $\mathrm{g}_{\text {fs }}$ | Forward Transconductance | 6.0 |  | S (ひ) | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=15 \mathrm{~A}$ |

Electrical Characteristics (Cont.) ( $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | $\operatorname{Min}$ | $\operatorname{Max}$ | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |

## Dynamic Characteristics

| $\mathrm{C}_{\text {iss }}$ | Input Capacitance | 1600 | pF | $\begin{aligned} & V_{D S}=25 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\text {oss }}$ | Output Capacitance | 800 | pF |  |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance | 300 | pF |  |

Switching Characteristics $\left(T_{C}=25^{\circ} \mathrm{C} \text {, Figures } 1,2,\right)^{3}$

| $\mathrm{t}_{\mathrm{d}(0 \mathrm{O})}$ | Turn-On Delay Time | 30 | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=45 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=15 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=4.7 \Omega \\ & \mathrm{R}_{\mathrm{GS}}=4.7 \Omega \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{r}}$ | Rise Time | 60 | ns |  |
| $\mathrm{t}_{\text {d(off) }}$ | Turn-Off Delay Time | 80 | ns |  |
| $t_{f}$ | Fall Time | 30 | ns |  |
| $\mathrm{t}_{\text {d}(0 n) ~}$ | Turn-On Delay Time | 60 | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=15 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=50 \Omega \\ & \mathrm{R}_{\mathrm{GS}}=50 \Omega \end{aligned}$ |
| $\mathrm{t}_{\mathrm{r}}$ | Rise Time | 450 | ns |  |
| $\mathrm{t}_{\text {d(off) }}$ | Turn-Off Delay Time | 150 | ns |  |
| $t_{f}$ | Fall Time | 200 | ns |  |
| $Q_{9}$ | Total Gate Charge | 60 | nC | $\begin{aligned} & V_{G S}=10 \mathrm{~V}, I_{D}=34 \mathrm{~A} \\ & V_{D D}=35 \mathrm{~V} \end{aligned}$ |


| Symbol | Characteristic |  | Typ | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Source-Drain Diode Characteristics |  |  |  |  |  |  |
| $\mathrm{V}_{\text {SD }}$ | Diode Forward Voltage | \$10 | , |  |  | , |
|  | IRF140/141/540/541 |  | 2.0 | 2.5 | $v$ | $\mathrm{I}_{\mathrm{S}}=27 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  | IRF142/143/542/543 |  | 2.0 | 2.3 | v | $\mathrm{I}_{\mathrm{S}}=24 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
| $\mathrm{t}_{\mathrm{rr}}$ | Reverse Recovery Time |  | 300 |  | ns | $\mathrm{I}_{\mathrm{S}}=4.0 \mathrm{~A} ; \mathrm{dl}_{\mathrm{S}} / \mathrm{dt}=25 \mathrm{~A} / \mu \mathrm{S}$ |

## Note

1. $T_{j}=+25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
2. Pulse width limited by $T_{J}$
3. Switching time measurements performed on LEM TR-58 test equipment.

Typical Electrical Characteristics
Figure 1 Switching Test Circuit


## Typical Performance Curves

## Figure 3 Output Characteristics



Figure 5 Transfer Characteristics


Pcipoes

Figure 2 Switching Waveforms


Figure 4 Static Drain to Source Resistance vs Drain Current


PCICosof
Figure 6 Temperature Variation of Gate to Source Threshold Voltage


## Typical Performance Curves (Cont.)

Figure 7 Capacitance vs Drain to Source Voltage


Figure 9 Forward Biased Safe Operating Area


Figure 8 Gate to Source Voltage vs Total Gate Charge


PC10080F
Figure 10 Transient Thermal Resistance vs Time


| FAIRCHILD | IRF150-153 |
| :--- | :--- |
| A Schlumberger Company | N-Channel Power MOSFETs, |
|  | $40 \mathrm{~A}, 60 \mathrm{~V} / 100 \mathrm{~V}$ |

## Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers and high energy pulse circuits.

- Low RDS(on)
- $V_{\text {GS }}$ Rated at $\pm 20 \mathrm{~V}$
- Silicon Gate for Fast Switching Speeds
- IDSS, SOA Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling


## TO-204AE



IRF150
IRF151
IRF152
IRF153

## Maximum Ratings

| Symbol | Characteristic | $\begin{gathered} \text { Rating } \\ \text { IRF150/152 } \end{gathered}$ | Rating IRF151/153 | Unit |
| :---: | :---: | :---: | :---: | :---: |
| $V_{\text {DSS }}$ | Drain to Source Voltage ${ }^{1}$ | 100 | 60 | V |
| $V_{\text {DGR }}$ | Drain to Gate Voltage ${ }^{1}$ $\mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega$ | 100 | 60 | V |
| $\mathrm{V}_{\mathrm{GS}}$ | Gate to Source Voltage | $\pm 20$ | $\pm 20$ | V |
| $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | Operating Junction and Storage Temperatures | -55 to +150 | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s | 275 | 275 | ${ }^{\circ} \mathrm{C}$ |
| Maximum On-State Characteristics |  |  |  |  |
|  |  | IRF150/151 | IRF152/153 |  |
| $\mathrm{R}_{\mathrm{DS} \text { ( (on) }}$ | Static Drain-to-Source On Resistance ${ }^{2}$ | 0.055 | 0.08 | $\Omega$ |
| ${ }^{\text {d }}$ | Drain Current Continuous Pulsed | $\begin{aligned} & 40 \\ & 60 \end{aligned}$ | $\begin{gathered} 33 \\ 132 \end{gathered}$ | A |
| Maximum Thermal Characteristics |  |  |  |  |
| $\mathrm{R}_{\theta \mathrm{JC}}$ | Thermal Resistance, Junction to Case | 0.83 | 0.83 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $P_{D}$ | Total Power Dissipation at $T_{C}=25^{\circ} \mathrm{C}$ | 150 | 150 | W |

## Notes

For information concerning connection diagram and package outline, refer to
Section 7.

Electrical Characteristics ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics |  |  |  |  |  |
| $V_{\text {(BR) }{ }^{\text {dSS }}}$ | Drain Source Breakdown Voltage ${ }^{1}$ <br> IRF150/152 <br> IRF151/153 |  |  | V | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$ |
|  |  | 100 |  |  |  |
|  |  | 60 |  |  |  |
| IDSS | Zero Gate Voltage Drain Current |  | 250 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{DS}}=$ Rated $\mathrm{V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  |  |  | 1000 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{D S}=0.8 \times \text { Rated } V_{D S S}, \\ & V_{G S}=0 \mathrm{~V}, T_{C}=125^{\circ} \mathrm{C} \end{aligned}$ |
| IGSS | Gate-Body Leakage Current |  | $\pm 100$ | nA | $V_{G S}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |

## On Characteristics

| $\mathrm{V}_{\mathrm{GS} \text { (th) }}$ | Gate Threshold Voltage | 2.0 | 4.0 | $\checkmark$ | $\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{G S}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{R}_{\text {DS(on) }}$ | Static Drain-Source On-Resistance ${ }^{2}$ |  |  | $\Omega$ | $V_{G S}=10 \mathrm{~V}, I_{D}=20 \mathrm{~A}$ |  |
|  | IRF150/151 |  | 0.055 |  |  |  |
|  | IRF152/153 |  | 0.08 |  | - |  |
| $\mathrm{g}_{\mathrm{fs}}$ | Forward Transconductance | 9.0 |  | S (J) | $V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=20 \mathrm{~A}$ |  |

Dynamic Characteristics

| $\mathrm{C}_{\text {iss }}$ | Input Capacitance | 3000 | pF | $\begin{aligned} & V_{D S}=25 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1.0 \mathrm{MHz} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\text {oss }}$ | Output Capacitance | 1500 | pF |  |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance | 500 | pF |  |

Switching Characteristics $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$, Figures 9, 10) ${ }^{3}$

| $\mathrm{t}_{\mathrm{d} \text { (on) }}$ | Turn-On Delay Time | 35 | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=20 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=4.7 \Omega \\ & \mathrm{R}_{\mathrm{GS}}=4.7 \Omega \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{r}}$ | Rise Time | 100 | ns |  |
| $\mathrm{t}_{\mathrm{d} \text { (off) }}$ | Turn-Off Delay Time | 125 | ns |  |
| $\mathrm{t}_{\mathrm{f}}$ | Fall Time | 100 | ns |  |
| $t_{d(0 n)}$ | Turn-On Delay Time | 75 | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=75 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=20 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=50 \Omega \\ & \mathrm{R}_{\mathrm{GS}}=50 \Omega \end{aligned}$ |
| $t_{r}$ | Rise Time | 450 | ns |  |
| $\mathrm{t}_{\mathrm{d} \text { (off) }}$ | Turn-Off Delay Time | 300 | ns |  |
| $\mathrm{t}_{\mathrm{f}}$ | Fall Time | 200 | ns |  |
| $\mathrm{Q}_{\mathrm{g}}$ | Total Gate Charge | 120 | nC | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=55 \mathrm{~V} \end{aligned}$ |

Electrical Characteristics (Cont.) ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Typ | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Source-Drain Diode Characteristics |  |  |  |  |  |
| $V_{S D}$ | Diode Forward Voltage IRF150/151 | 2.0 | 2.5 | V | $\mathrm{I}_{\mathrm{S}}=40 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  | IRF152/153 | 2.0 | 2.3 | V | $\mathrm{I}_{\mathrm{S}}=33 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
| $\mathrm{t}_{\mathrm{rr}}$ | Reverse Recovery Time | 300 |  | ns | $\mathrm{I}_{\mathrm{S}}=4 \mathrm{~A} ; \mathrm{dl}_{\mathrm{S}} / \mathrm{dt}=25 \mathrm{~A} / \mu \mathrm{S}$ |

Notes

1. $T_{J}=+25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
2. Pulse test: Pulse width $\leqslant 80 \mu \mathrm{~s}$, Duty cycle $\leqslant 1 \%$
3. Switching time measurements performed on LEM TR-58 test equipment.

## Typical Performance Curves

Figure 1 Output Characteristics


Figure 3 Transfer Characteristics


Figure 2 Static Drain to Source Resistance vs Drain Current


Figure 4 Temperature Variation of Gate to Source Threshold Voltage


Typical Performance Curves (Cont.)
Figure 5 Capacitance vs Drain to Source Voltage


Figure 7 Forward Biased Safe Operating Area


## Typical Electrical Characteristics

Figure 9 Switching Test Circuit


Figure 6 Gate to Source Voltage vs Total Gate Charge


Figure 8 Transient Thermal Resistance vs Time


Figure 10 Switching Waveforms



## Notes

For information concerning connection diagram and package outline, refer to Section 7.

| Maximum Ratings |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Characteristic | Rating IRF220/222 IRF620/622 MTP7N20 | Rating MTP7N18 | Rating IRF222/223 IRF622/623 | Unit |
| $V_{\text {DSS }}$ | Drain to Source Voltage ${ }^{1}$ | 200 | 180 | 150 | V |
| $V_{\text {DGR }}$ | Drain to Gate Voltage ${ }^{1}$ $\mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega$ | 200 | 180 | 150 | V |
| $V_{G S}$ | Gate to Source Voltage | $\pm 20$ | $\pm 20$ | $\pm 20$ | V |
| $\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$ | Operating Junction and Storage Temperatures | -55 to +150 | -55 to +150 | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s | 275 | 275 | 275 | ${ }^{\circ} \mathrm{C}$ |
| Maximum Thermal Characteristics |  |  |  |  |  |
|  |  | IRF220-223/IRF | -623 | MTP7N18/20 |  |
| $\mathrm{R}_{\text {өJC }}$ | Thermal Resistance, Junction to Case | 3.12 | 30 | 1.67 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{R}_{\text {OJA }}$ | Thermal Resistance, Junction to Ambient | 30/80 |  | 80 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| PD | Total Power Dissipation at $T_{C}=25^{\circ} \mathrm{C}$ | 40 |  | 75 | W |
| IDM | Pulsed Drain Current ${ }^{2}$ | 20 | 8.9 | 20 | A |

Electrical Characteristics $\left(T_{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics |  |  |  |  |  |
| $\mathrm{V}_{(\text {(BR) DSS }}$ | Drain Source Breakdown Voltage ${ }^{1}$ <br> IRF220/222/620/622/ <br> MTP7N20 <br> MTP7N18 <br> IRF221/223/621/623 |  |  | V | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$ |
|  |  | 200 |  |  |  |
|  |  | 180 |  |  |  |
|  |  | 150 |  |  |  |
| IdSs | Zero Gate Voltage Drain Current |  | 250 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{DS}}=$ Rated $\mathrm{V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  |  |  | 1000 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{D S}=0.8 \times \text { Rated } V_{D S S}, \\ & V_{G S}=0 \mathrm{~V}, T_{C}=125^{\circ} \mathrm{C} \end{aligned}$ |
| IGSS | Gate-Body Leakage Current IRF220-223 <br> IRF620-623/MTP7N18/20 |  | $\begin{aligned} & \pm 100 \\ & \pm 500 \end{aligned}$ | nA | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |

## Electrical Characteristics (Cont.) ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | $\operatorname{Min}$ | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |

On Characteristics

| $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ | Gate Threshold Voltage IRF220-223/IRF620-623 MTP7N18/20 |  |  | V | $\begin{aligned} & \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{G S} \\ & \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{G S} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 2.0 | 4.0 |  |  |
|  |  | 2.0 | 4.5 |  |  |
| $\mathrm{R}_{\text {DS(on) }}$ | Static Drain-Source On-Resistance ${ }^{2}$ <br> IRF220/221/620/621 <br> IRF222/223/622/623 <br> MTP7N18/7N20 |  |  | $\Omega$ | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}$$\mathrm{I}_{\mathrm{D}}=3.5 \mathrm{~A}$ |
|  |  |  | 0.8 |  |  |
|  |  |  | 1.2 |  |  |
|  |  |  | 0.7 |  |  |
| $\mathrm{V}_{\text {DS(on) }}$ | Drain-Source On-Voltage ${ }^{2}$ MTP7N18/7N20 |  | $\begin{array}{r} 2.45 \\ 5.9 \end{array}$ | $\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=3.5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=7.0 \mathrm{~A} \end{aligned}$ |
|  |  |  | 5.0 | V | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.5 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$ |
| $\mathrm{gfs}_{\text {f }}$ | Forward Transconductance | 1.3 |  | S (J) | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}$ |

## Dynamic Characteristics

| $\mathrm{C}_{\text {iss }}$ | Input Capacitance | 600 | pF | $\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\text {oss }}$ | Output Capacitance | 300 | pF |  |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance | 80 | pF |  |

Switching Characteristics $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$, Figures 1, 2) ${ }^{3}$

| $t_{\text {d(on) }}$ | Turn-On Delay Time |  | 40 | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=100 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=50 \Omega \\ & \mathrm{R}_{\mathrm{GS}}=50 \Omega \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{tr}_{\mathrm{r}}$ | Rise Time |  | 60 | ns |  |
| $t_{\text {d(off) }}$ | Turn-Off Delay Time |  | 100 | ns |  |
| $t_{f}$ | Fall Time |  | 60 | ns |  |
| $\mathrm{Q}_{\mathrm{g}}$ | Total Gate Charge |  | 15 | nC | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=6.0 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=45 \mathrm{~V} \end{aligned}$ |
| Symbol | Characteristic | Typ | Max | Unit | Test Conditions |

Source-Drain Diode Characteristics

| $V_{\mathrm{SD}}$ | Diode Forward Voltage |  | 1.8 | V | $\mathrm{I}_{\mathrm{S}}=5.0 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
| :--- | :--- | :---: | :---: | :---: | :--- |
|  |  |  | 1.4 | V | $\mathrm{I}_{\mathrm{S}}=4.0 \quad \mathrm{~A} ; \quad \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
| $\mathrm{t}_{\mathrm{rr}}$ | Reverse Recovery Time | 350 |  | ns | $\mathrm{I}_{\mathrm{S}}=5.0 \quad \mathrm{~A} ; \mathrm{dl} / \mathrm{dt}=25 \mathrm{~A} / \mu \mathrm{S}$ |

## Notes

1. $T_{J}=+25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
2. Pulse width limited by $T \mathrm{~J}$
3. Switching time measurements performed on LEM TR-58 test equipment.

Typical Electrical Characteristics
Figure 1 Switching Test Circuit


## Typical Performance Curves

Figure 3 Output Characteristics


Figure 5 Transfer Characteristics


Figure 2 Switching Waveforms


Figure 4 Static Drain to Source Resistance vs Drain Current


Figure 6 Temperature Variation of Gate to Source Threshold Voltage


Typical Performance Curves (Cont)
Figure 7 Capacitance vs Drain to Source Voltage


Figure 9 Forward Biased Safe Operating Area for IRF220-223 and IRF620-623


Figure 11 Forward Biased Safe Operating Area for MTP7N18/7N20


Figure 8 Gate to Source Voltage vs Total Gate Charge


Figure 10 Transient Thermal Resistance vs Time for IRF220-223 and IRF620-623


Figure 12 Transient Thermal Resistance vs Time for MTP7N18/7N20

cosestif

## Description

These devices are $n$-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers and high energy pulse circuits.

- Low R $\mathrm{RS}_{\text {(on) }}$
- $\mathrm{V}_{\text {Gs }}$ Rated at $\pm 20 \mathrm{~V}$
- Silicon Gate for Fast Switching Speeds
- IDSS, $V_{\text {DS(on) }}$, Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling

TO-204AA


IRF230
IRF231
IRF232
IRF233

TO-220AB


IRF630
IRF631
IRF632
IRF633
MTP12N18 MTP12N2O

## Product Summary

| Part Number | $\mathrm{V}_{\text {DSS }}$ | $\mathrm{R}_{\mathrm{DS}}$ (on) | $\begin{gathered} \mathrm{I}_{\mathrm{D}} \text { at } \\ \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} \mathrm{ID}_{\mathrm{D}} \text { at } \\ \mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{gathered}$ | Case Style |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IRF230 | 200 V | $0.40 \Omega$ | 9.0 A | 6.0 A | TO-204AA |
| IRF231 | 150 V | $0.40 \Omega$ | 9.0 A | 6.0 A |  |
| IRF232 | 200 V | $0.50 \Omega$ | 8.0 A | 5.0 A |  |
| IRF233 | 150 V | $0.50 \Omega$ | 8.0 A | 5.0 A |  |
| IRF630 | 200 V | $0.40 \Omega$ | 9.0 A | 6.0 A | TO-220AB |
| IRF631 | 150 V | $0.40 \Omega$ | 9.0 A | 6.0 A |  |
| IRF632 | 200 V | $0.50 \Omega$ | 8.0 A | 5.0 A |  |
| IRF633 | 150 V | $0.50 \Omega$ | 8.0 A | 5.0 A |  |
| MTP12N18 | 180 V | $0.35 \Omega$ | 12 A | 8.5 A |  |
| MTP12N20 | 200 V | $0.35 \Omega$ | 12 A | 8.5 A |  |

## Notes

For information concerning connection diagram and package outline, refer to Section 7.

## Maximum Ratings

| Symbol | Characteristic | Rating IRF220/222 IRF620/622 MTP7N20 | Rating MTP7N18 | Rating IRF222/223 IRF622/623 | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{\text {DSS }}$ | Drain to Source Voltage ${ }^{1}$ | 200 | 180 | 150 | V |
| VDGR | Drain to Gate Voltage ${ }^{1}$ $\mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega$ | 200 | 180 | 150 | V |
| $V_{G S}$ | Gate to Source Voltage | $\pm 20$ | $\pm 20$ | $\pm 20$ | V |
| $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | Operating Junction and Storage Temperatures | -55 to +150 | -55 to +150 | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s | 275 | 275 | 275 | ${ }^{\circ} \mathrm{C}$ |
| Maximum Thermal Characteristics |  |  |  |  |  |
|  |  | $\begin{aligned} & \text { IRF220 - } \\ & \text { IRF630 - } \end{aligned}$ |  | 12N18/20 |  |
| $\mathrm{R}_{\theta \mathrm{JC}}$ | Thermal Resistance, Junction to Case | 1.67 |  | 1.25 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{P}_{\mathrm{D}}$ | Total Power Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 75 |  | 100 | W |
| IDM | Pulsed Drain Current ${ }^{2}$ | 40 |  | 40 | A |

Electrical Characteristics ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics |  |  |  |  |  |
| $\mathrm{V}_{(\mathrm{BR}) \text { DSS }}$ | Drain Source Breakdown Voltage <br> IRF230/232/630/632/ <br> MTP12N20 <br> MTP12N18 <br> IRF231/233/631/633 |  |  | V | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$ |
|  |  | 200 |  |  |  |
|  |  | 180 |  |  |  |
|  |  | 150 |  |  |  |
| IDSS | Zero Gate Voltage Drain Current |  | 250 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{DS}}=$ Rated $\mathrm{V}_{\text {DSS }}, \mathrm{V}_{G S}=0 \mathrm{~V}$ |
|  |  |  | 1000 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{D S}=0.8 \times \text { Rated } V_{D S S}, \\ & V_{G S}=0 \mathrm{~V}, T_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$ |
| IGSS | Gate-Body Leakage Current <br> IRF230-233 <br> IRF630-633/ <br> MTP12N18/12N20 |  |  | nA | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |
|  |  |  | $\pm 100$ |  |  |
|  |  |  | $\pm 500$ |  |  |

Electrical Characteristics (Cont.) ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| On Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\text {GS(th) }}$ | Gate Threshold Voltage |  | 9月 | V |  |
|  | IRF230/233/630/633 | 2.0 | 4.0 |  | $\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$ |
|  | MTP12N18/12N20 | 2.0 | 4.5 |  | $\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$ |
| $\mathrm{R}_{\text {DS(on) }}$ | Static Drain-Source On-Resistance ${ }^{2}$ |  |  | $\Omega$ | $V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{~A}$ |
|  | IRF230/231/630/631 |  | 0.40 |  |  |
|  | IRF232/233/632/633 |  | 0.50 |  |  |
|  | MTP12N18/12N20 |  | 0.35 |  | $\mathrm{I}_{\mathrm{D}}=6.0 \mathrm{~A}$ |
| $V_{\text {DS(on) }}$ | Drain-Source On-Voltage ${ }^{2}$ |  | 2.1 | V | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=6.0 \mathrm{~A}$ |
|  | MTP12N18/12N2O |  | 5.0 | V | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=12.0 \mathrm{~A}$; |
|  |  |  | 4.2 | V | $\begin{aligned} & V_{G S}=10 \mathrm{~V} ; I_{D}=6.0 \mathrm{~A} \\ & T_{C}=100^{\circ} \mathrm{C} \end{aligned}$ |
| $\mathrm{g}_{\text {f }}$ | Forward Transconductance | 3.0 |  | S (V) | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{~A}$ |
| Dynamic Characteristics |  |  |  |  |  |
| $\mathrm{C}_{\text {iss }}$ | Input Capacitance |  | 800 | pF | $\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$ |
| Coss | Output Capacitance |  | 450 | pF |  |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance |  | 150 | pF |  |

Switching Characteristics $\left(T_{C}=25^{\circ} \mathrm{C} \text {, Figures 1, 2) }\right)^{1}$


Electrical Characteristics (Cont.) ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Typ | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Source-Drain Diode Characteristics |  |  |  |  |  |
| $V_{S D}$ | Diode Forward Voltage IRF230/231/630/631 | 1.25 | 2.0 | V | $\mathrm{I}_{\mathrm{S}}=9.0 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  | IRF232/233/632/633 | 1.25 | 1.8 | V | $\mathrm{I}_{\mathrm{S}}=8.0 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
| $\mathrm{t}_{\mathrm{rr}}$ | Reverse Recovery Time | 450 |  | ns | $\mathrm{I}_{\mathrm{S}}=4.0 \mathrm{~A} ; \mathrm{I}_{\mathrm{S}} / \mathrm{dt}=25 \mathrm{~A} / \mu \mathrm{S}$ |

## Notes

1. $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
2. Pulse width limited by $T_{J}$
3. Switching time measurements performed on LEM TR-58 test equipment.

## Typical Electrical Characteristics

Figure 1 Switching Test Circuit


Figure 2 Switching Waveforms


## Typical Performance Curves

Figure 3 Output Characteristics


Figure 4 Static Drain to Source Resistance vs Drain Current


Typical Performance Curves (Cont.)

Figure 5 Transfer Characteristics


Figure 7 Capacitance vs Drain to Source Voltage


Figure 9 Forward Biased Safe Operating Area for IRF230-233 and IRF630-633


Figure 6 Temperature Variation of Gate to Source Threshold Voltage


Figure 8 Gate to Source Voltage vs Total Gate Charge


Figure 10 Transient Thermal Resistance vs Time for IRF230-233 and IRF630-633


## Typical Performance Curves (Cont.)

Figure 11 Forward Biased Safe Operating Area for MTP12N18/12N20


Figure 12 Transient Thermal Resistance vs Time for MTP12N18/12N20


# FAIRCHILD 

A Schlumberger Company

## IRF240-243/IRF640-643 N-Channel Power MOSFETs, 18 A, 150-200 V

Power And Discrete Division

## Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers and high energy pulse circuits.

- Low RDS(on)
- $V_{\text {Gs }}$ Rated at $\pm 20 \mathrm{~V}$
- Silicon Gate for Fast Switching Speeds
- IDSS, $V_{D S(o n)}$, Specified at Elevated Temperature
- Rugged

TO-204AE


IRF240
IRF241
IRF242
IRF243

TO-220AB


IRF640
IRF641
IRF642
IRF643

## Product Summary

| Part Number | $V_{\text {DSS }}$ | $\mathrm{R}_{\mathrm{DS}}$ (on) | $\begin{gathered} \mathrm{I}_{\mathrm{D}} \text { at } \\ \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} I_{D} \text { at } \\ \mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{gathered}$ | Case Style |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IRF240 | 200 V | 0.18 ת | 18 A | 11 A | TO-204AE |
| IRF241 | 150 V | $0.18 \Omega$ | 18 A | 11 A |  |
| IRF242 | 200 V | $0.22 \Omega$ | 16 A | 10 A |  |
| IRF243 | 150 V | $0.22 \Omega$ | 16 A | 10 A |  |
| IRF640 | 200 V | $0.18 \Omega$ | 18 A | 11 A | TO-220AB |
| IRF641 | 150 V | $0.18 \Omega$ | 18 A | 11 A |  |
| IRF642 | 200 V | $0.22 \Omega$ | 16 A | 10 A |  |
| IRF643 | 150 V | $0.22 \Omega$ | 16 A | 10 A |  |

## Notes

For information concerning connection diagram and package outline, refer to
Section 7.

| Symbol | Characteristic | Rating IRF240/242 IRF640/642 | Rating IRF241/243 IRF641/643 | Unit |
| :---: | :---: | :---: | :---: | :---: |
| $V_{\text {DSS }}$ | Drain to Source Voltage ${ }^{1}$ | 200 | 150 | V |
| $V_{\text {DGR }}$ | Drain to Gate Voltage ${ }^{1}$ $\mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega$ | 200 | 150 | V |
| $\mathrm{V}_{\mathrm{GS}}$ | Gate to Source Voltage | $\pm 20$ | $\pm 20$ | V |
| $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | Operating Junction and Storage Temperatures | -55 to +150 | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s | 275 | 275 | ${ }^{\circ} \mathrm{C}$ |
| Maximum Thermal Characteristics |  |  |  |  |
|  |  | IRF240-243 | IRF640-643 |  |
| $\mathrm{R}_{\text {өJC }}$ | Thermal Resistance, Junction to Case | 1.0 | 1.0 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $P_{\text {D }}$ | Total Power Dissipation at $T_{C}=25^{\circ} \mathrm{C}$ | 125 | 125 | W |
| $\mathrm{I}_{\text {DM }}$ | Pulsed Drain Current ${ }^{2}$ | 72 | 72 | A |

Electrical Characteristics ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\text {(BR) }}$ DSS | Drain Source Breakdown Voltage ${ }^{1}$ <br> IRF240/242/640/642 <br> IRF241/243/641/643 |  |  | V | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$ |
|  |  | 200 |  |  |  |
|  |  | 150 |  |  |  |
| IDSS | Zero Gate Voltage Drain Current |  | 250 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{DS}}=$ Rated $\mathrm{V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  |  |  | 1000 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{D S}=0.8 \times \text { Rated } V_{D S S}, \\ & V_{G S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$ |
| IGSS | Gate-Body Leakage Current IRF240-243 <br> IRF640-643 |  |  | nA | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |
|  |  |  | $\pm 100$ |  |  |
|  |  |  | $\pm 500$ |  |  |

## On Characteristics

| $\mathrm{V}_{\mathrm{GS} \text { (th) }}$ | Gate Threshold Voltage | 2.0 | 4.0 | V | $\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{R}_{\text {DS(on) }}$ | Static Drain-Source On-Resistance ${ }^{2}$ <br> IRF240/241/640/641 <br> IRF242/243/642/643 |  |  | $\Omega$ | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}$ |
|  |  |  | 0.18 |  |  |
|  |  |  | 0.22 |  |  |
| $\mathrm{g}_{\mathrm{ts}}$ | Forward Transconductance | 6.0 |  | S (J) | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}$ |

Electrical Characteristics (Cont.) ( $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Dynamic Characteristics |  |  |  |  |  |
| $\mathrm{C}_{\text {iss }}$ | Input Capacitance |  | 1600 | pF | $\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$ |
| $\mathrm{C}_{\text {oss }}$ | Output Capacitance |  | 750 | pF |  |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance |  | 300 | pF |  |
| Switching Characteristics ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Figures 1, 2) ${ }^{3}$ |  |  |  |  |  |
| $\mathrm{t}_{\mathrm{d} \text { (on) }}$ | Turn-On Delay Time |  | 30 | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=75 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=4.7 \Omega \\ & \mathrm{R}_{\mathrm{GS}}=4.7 \Omega \end{aligned}$ |
| $\mathrm{t}_{\mathrm{r}}$ | Rise Time |  | 60 | ns |  |
| $t_{\text {d(off) }}$ | Turn-Off Delay Time |  | 80 | ns |  |
| $t_{f}$ | Fall Time |  | 60 | ns |  |
| $\mathrm{t}_{\mathrm{d} \text { (on) }}$ | Turn-On Delay Time |  | 60 | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, R_{\mathrm{GEN}}=50 \Omega \\ & \mathrm{R}_{\mathrm{GS}}=50 \Omega \end{aligned}$ |
| $\mathrm{tr}_{r}$ | Rise Time |  | 300 | ns |  |
| $t_{\text {d(off) }}$ | Turn-Off Delay Time |  | 200 | ns |  |
| $t_{f}$ | Fall Time |  | 150 | ns |  |
| $Q_{g}$ | Total Gate Charge |  | 60 | nc | $\begin{aligned} & V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=22 \mathrm{~A} \\ & V_{D D}=120 \mathrm{~V} \end{aligned}$ |
|  |  |  |  |  |  |
| Symbol | Characteristic | Typ | Max | Unit | Test Conditions |
| Source-Drain Diode Characteristics |  |  |  |  |  |
| $V_{S D}$ | Diode Forward Voltage IRF240/241/640/641 | $1.7$ | 2.0 | V | $\mathrm{I}_{\mathrm{S}}=18 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  | IRF242/243/642/643 | 1.7 | 1.9 | V | $\mathrm{I}_{\mathrm{S}}=16 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
| $t_{\text {rr }}$ | Reverse Recovery Time | 400 |  | ns | $\mathrm{I}_{\mathrm{S}}=4 \mathrm{~A} ; \mathrm{dl}_{\mathrm{S}} / \mathrm{dt}=25 \mathrm{~A} / \mu \mathrm{S}$ |

## Notes

1. $T_{J}=+25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
2. Pulse width limited by maximum $T_{J}$.
3. Switching time measurements performed on LEM TR-58 test equipment.

Typical Electrical Characteristics
Figure 1 Switching Test Circuit


## Typical Performance Curves

Figure 3 Output Characteristics


Figure 5 Transfer Characteristics


Figure 2 Switching Waveforms


Figure 4 Static Drain to Source Resistance vs Drain Current


Figure 6 Temperature Variation of Gate to Source Threshold Voltage


Typical Performance Curves (Cont.)
Figure 7 Capacitance vs Drain to Source Voltage


Figure 9 Forward Biased Safe Operating Area


Figure 8 Gate to Source Voltage vs Total Gate Charge


Figure 10 Transient Thermal Resistance vs Time


## FAIRCHILD

A Schlumberger Company

N-Channel Power MOSFETs, 30 A, 150 V/200 V

## Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers and high energy pulse circuits.

- Low R $\mathrm{RSS}_{\text {(on) }}$
- $\mathrm{V}_{\text {GS }}$ Rated at $\pm 20 \mathrm{~V}$
- Silicon Gate for Fast Switching Speeds

TO-204AE


IRF250

- IDSS, SOA Specified at Elevated Temperature
- Rugged
- Low Drive Requirements

IRF251
IRF252
IRF253
Ease of Paralleling

Maximum Ratings

| Symbol | Characteristic | $\begin{gathered} \text { Rating } \\ \text { IRF250/252 } \end{gathered}$ | $\begin{gathered} \text { Rating } \\ \text { IRF251/253 } \end{gathered}$ | Unit |
| :---: | :---: | :---: | :---: | :---: |
| $V_{\text {DSS }}$ | Drain to Source Voltage ${ }^{1}$ | 200 | 150 | V |
| $V_{\text {DGR }}$ | Drain to Gate Voltage ${ }^{1}$ $\mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega$ | 200 | 150 | V |
| $\mathrm{V}_{\mathrm{GS}}$ | Gate to Source Voltage | $\pm 20$ | $\pm 20$ | V |
| $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | Operating Junction and Storage Temperatures | -55 to +150 | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s | 275 | 275 | ${ }^{\circ} \mathrm{C}$ |
| Maximum On-State Characteristics |  |  |  |  |
|  |  | IRF250/251 | IRF252/253 |  |
| $\mathrm{R}_{\mathrm{DS} \text { (on) }}$ | Static Drain-to-Source On Resistance | 0.085 | 0.12 | $\Omega$ |
| ID | Drain Current Continuous Pulsed | $\begin{gathered} 30 \\ 120 \end{gathered}$ | $\begin{gathered} 25 \\ 100 \end{gathered}$ | A |
| Maximum Thermal Characteristics |  |  |  |  |
| $\mathrm{R}_{\theta \mathrm{JC}}$ | Thermal Resistance, Junction to Case | 0.83 | 0.83 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| PD | Total Power Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 150 | 150 | W |

## Notes

For information concerning connection diagram and package outline, refer to
Section 7.

Electrical Characteristics ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\left(\text {BR) }{ }^{\text {DSS }}\right.}$ | Drain Source Breakdown Voltage ${ }^{1}$ <br> IRF250/252 <br> IRF251/253 |  |  | V | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$ |
|  |  | 200 |  |  |  |
|  |  | 150 |  |  |  |
| IDSS | Zero Gate Voltage Drain Current |  | 250 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{DS}}=$ Rated $\mathrm{V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  |  |  | 1000 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0.8 \times \text { Rated } \mathrm{V}_{\mathrm{DSS}}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$ |
| IGSS | Gate-Body Leakage Current |  | $\pm 100$ | nA | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |

## On Characteristics

| $\mathrm{V}_{\mathrm{GS} \text { (th) }}$ | Gate Threshold Voltage | 2.0 | 4.0 | V | $\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{R}_{\text {DS }(\text { on) }}$ | Static Drain-Source On-Resistance ${ }^{2}$ <br> IRF250/251 <br> IRF252/253 |  |  | $\Omega$ | $V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=16 \mathrm{~A}$ |
|  |  |  | 0.085 |  |  |
|  |  |  | 0.12 |  |  |
| Gfs | Forward Transconductance | 8.0 |  | S (ひ) | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=16 \mathrm{~A}$ |

## Dynamic Characteristics

| $\mathrm{C}_{\text {iss }}$ | Input Capacitance | 3000 | pF | $\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{G S}=0 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\text {oss }}$ | Output Capacitance | 1200 | pF |  |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance | 500 | pF |  |

Switching Characteristics $\left(T_{\mathrm{C}}=25^{\circ} \mathrm{C} \text {, Figures } 9,10\right)^{1}$

| $\mathrm{t}_{\mathrm{d}(\mathrm{on})}$ | Turn-On Delay Time | 35 | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=95 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=16 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=4.7 \Omega \\ & \mathrm{R}_{\mathrm{GS}}=4.7 \Omega \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{r}}$ | Rise Time | 100 | ns |  |
| $\mathrm{t}_{\mathrm{d} \text { (off) }}$ | Turn-Off Delay Time | 125 | ns |  |
| $\mathrm{t}_{\mathrm{f}}$ | Fall Time | 100 | ns |  |
| $\mathrm{t}_{\mathrm{d}(0 n)}$ | Turn-On Delay Time | 75 | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=125 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=16 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=50 \Omega \\ & \mathrm{R}_{\mathrm{GS}}=50 \Omega \end{aligned}$ |
| $\mathrm{t}_{\mathrm{r}}$ | Rise Time | 300 | ns |  |
| $t_{\text {d(off) }}$ | Turn-Off Delay Time | 275 | ns |  |
| $\mathrm{t}_{\mathrm{f}}$ | Fall Time | 150 | ns |  |
| $\mathrm{Q}_{\mathrm{g}}$ | Total Gate Charge | 120 | $n \mathrm{C}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=38 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=100 \mathrm{~V} \end{aligned}$ |

Electrical Characteristics (Cont.) ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Typ | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Source-Drain Diode Characteristics |  |  |  |  |  |
| $V_{S D}$ | Diode Forward Voltage IRF250/251 <br> IRF252/253 | $\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 2.0 \\ & 1.8 \end{aligned}$ | $\begin{aligned} & v \\ & v \end{aligned}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{S}}=30 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{S}}=25 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$ |
| $\mathrm{t}_{\text {r }}$ | Reverse Recovery Time | 400 |  | ns | $\mathrm{I}_{\mathrm{S}}=4 \mathrm{~A} ; \mathrm{dl}_{\mathrm{S}} / \mathrm{dt}=25 \mathrm{~A} / \mu \mathrm{S}$ |

## Notes

1. $T_{J}=+25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
2. Pulse test: Pulse width $\leqslant 80 \mu \mathrm{~s}$, Duty cycle $\leqslant 1 \%$
3. Switching time measurements performed on LEM TR-58 test equipment.

## Typical Performance Curves

Figure 1 Output Characteristics


Figure 3 Transfer Characteristics


Figure 2 Static Drain to Source Resistance vs Drain Current


Figure 4 Temperature Variation of Gate to Source Threshold Voltage


## IRF250-253

Typical Performance Curves (Cont.)

Figure 5 Capacitance vs Drain to Source Voltage


Figure 7 Forward Biased Safe Operating Area


Typical Electrical Characteristics
Figure 9 Switching Test Circuit


Figure 6 Gate to Source Voltage vs Total Gate Charge


Figure 8 Transient Thermal Resistance vs Time


Figure 10 Switching Waveforms


## FAIRCHILD

A Schlumberger Company

IRF320-323/IRF720-723
MTP3N35/3N40
N-Channel Power MOSFETs, 3.0 A, 350-400 V

Power And Discrete Division

## Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high speed applications, such as switching power supplies, converters, AC and DC motor controls, relay and solenoid drivers and other pulse circuits.

## - Low R RS(on)

- $\mathrm{V}_{\text {GS }}$ Rated at $\pm 20 \mathrm{~V}$
- Silicon Gate for Fast Switching Speeds
- IDSS, $V_{\text {DS(on) }}$, Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling

TO-204AA


IRF320 IRF720
IRF321 IRF721
IRF322
IRF323

TO-220AB


15000 10 F

## Product Summary

| Part Number | V ${ }_{\text {DSS }}$ | $\mathrm{R}_{\mathrm{DS}}$ (on) | $\begin{gathered} \mathrm{I}_{\mathrm{D}} \text { at } \\ \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} \mathrm{I}_{\mathrm{D}} \mathrm{at} \\ \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{gathered}$ | Case Style |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IRF320 | 400 V | $1.8 \Omega$ | 3.0 A | 2.0 A | TO-204AA |
| IRF321 | 350 V | $1.8 \Omega$ | 3.0 A | 2.0 A |  |
| IRF322 | 400 V | $2.5 \Omega$ | 2.5 A | 1.5 A |  |
| IRF323 | 350 V | $2.5 \Omega$ | 2.5 A | 1.5 A |  |
| IRF720 | 400 V | $1.8 \Omega$ | 3.0 A | 2.0 A | TO-220AB |
| IRF721 | 350 V | $1.8 \Omega$ | 3.0 A | 2.0 A |  |
| IRF722 | 400 V | $2.5 \Omega$ | 2.5 A | 1.5 A |  |
| IRF723 | 350 V | $2.5 \Omega$ | 2.5 A | 1.5 A |  |
| MTP3N35 | 350 V | $3.3 \Omega$ | 3.0 A | 2.0 A |  |
| MTP3N40 | 400 V | $3.3 \Omega$ | 3.0 A | 2.0 A |  |

## Notes

For information concerning connection diagram and package outline, refer to Section 7.

## Maximum Ratings

| Symbol | Characteristic | Rating <br> IRF320/322 <br> IRF720/722 <br> MTP3N40 | Rating <br> IRF321/323 <br> IRF721/723 <br> MTP3N35 |  |
| :--- | :--- | :---: | :---: | :---: |
| $V_{\text {DSS }}$ | Drain to Source Voltage ${ }^{2}$ | 400 | 350 | Unit |

Maximum Thermal Characteristics
$\left.\begin{array}{l|l|c|c|c}\hline & & \begin{array}{c}\text { IRF320-323/ } \\ \text { IRF720-723 }\end{array} & \text { MTP3N35/3N40 }\end{array}\right]$

Electrical Characteristics ( $T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :--- | :---: | :---: | :---: | :---: | :---: |

Off Characteristics

| $\mathrm{V}_{\text {(BR) }{ }^{\text {dss }}}$ | Drain Source Breakdown Voltage ${ }^{1}$ <br> IRF320/322/720/722/ <br> MTP3N40 <br> IRF321/323/721/723/ <br> MTP3N35 |  |  | V | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 400 |  |  |  |
|  |  | 350 |  |  |  |
| loss | Zero Gate Voltage Drain Current |  | 250 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{DS}}=$ Rated $\mathrm{V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  |  |  | 1000 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{\mathrm{DS}}=0.8 \times \text { Rated } \mathrm{V}_{\mathrm{DSS}}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$ |
| IGSS | Gate-Body Leakage Current IRF320-323 <br> IRF720-723/MTP3N35/3N40 |  | $\begin{aligned} & \pm 100 \\ & \pm 500 \end{aligned}$ | nA | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |

Electrical Characteristics (Cont.) ( $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| On Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ | Gate Threshold Voltage IRF320-323/IRF720-723 MTP3N35/40 | 2.0 2.0 | 4.0 4.5 | V | $\begin{aligned} & I_{D}=250 \mu A, V_{D S}=V_{G S} \\ & I_{D}=1 \mathrm{~mA}, V_{D S}=V_{G S} \end{aligned}$ |
| $\mathrm{R}_{\text {DS(0n) }}$ | Static Drain-Source On-Resistance ${ }^{2}$ <br> IRF320/321/720/721 <br> IRF322/323/722/723 <br> MTP3N35/40 |  | 1.8 2.5 3.3 | $\Omega$ | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.5 \mathrm{~A}$ |
| $\mathrm{V}_{\mathrm{DS} \text { (on) }}$ | Drain-Source On-Voltage ${ }^{2}$ MTP3N35/40 |  | 12 10 | V | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=3.0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=1.5 \mathrm{~A} ; \\ & \mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$ |
| $\mathrm{g}_{\text {fs }}$ | Forward Transconductance | 1.0 |  | S (V) | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.5 \mathrm{~A}$ |

## Dynamic Characteristics

| $\mathrm{C}_{\text {iss }}$ | Input Capacitance | 500 | pF | $\begin{aligned} & V_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\text {oss }}$ | Output Capacitance | 100 | pF |  |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance | 40 | pF |  |

Switching Characteristics $\left(T_{C}=200^{\circ} \mathrm{C} \text {, Figures } 1,2\right)^{3}$

| $\mathrm{t}_{\mathrm{d} \text { (on) }}$ | Turn-On Delay Time | 40 | ns | $\begin{aligned} & V_{D D}=200 \mathrm{~V}, I_{D}=1.5 \mathrm{~A} \\ & V_{G S}=10 \mathrm{~V}, R_{G E N}=50 \Omega \\ & R_{G S}=50 \Omega \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{r}}$ | Rise Time | 50 | ns |  |
| $\mathrm{t}_{\mathrm{d} \text { (off) }}$ | Turn-Off Delay Time | 100 | ns |  |
| $t_{f}$ | Fall Time | 50 | ns |  |
| $Q_{g}$ | Total Gate Charge | 15 | nC | $\begin{aligned} & V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4.0 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=200 \mathrm{~V} \end{aligned}$ |


| Symbol | Characteristic | Typ | Max | Unit | Test Conditi |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Source-Drain Diode Characteristics |  |  |  |  |  |
| $V_{\text {SD }}$ | Diode Forward Voltage IRF320/321/720/721 |  | 1.6 | V | $\mathrm{I}_{\mathrm{S}}=3.0 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  | IRF322/323/722/723 |  | 1.5 | V | $\mathrm{I}_{\mathrm{S}}=2.5 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
| $\mathrm{trr}_{\text {r }}$ | Reverse Recovery Time | 450 |  | ns | $\begin{aligned} & \mathrm{I}_{\mathrm{F}}=3.0 \mathrm{~A} ; \\ & \mathrm{dI}_{\mathrm{S}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S} \end{aligned}$ |

## Notes

$T_{J}=+25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
2. Pulse test: Pulse width $\leqslant 80 \mu \mathrm{~s}$, Duty cycle $\leqslant 1 \%$
3. Switching time measurements performed on LEM TR-58 test equipment.

Typical Electrical Characteristics
Figure 1 Switching Test Circuit


Typical Performance Curves
Figure 3 Output Characteristics


Figure 5 Transfer Characteristics


Figure 2 Switching Waveforms


Figure 4 Static Drain to Source Resistance vs Drain Current


Figure 6 Temperature Variation of Gate to Source Threshold Voltage


Typical Performance Curves (Cont.)
Figure 7 Capacitance vs Drain to Source Voltage


Figure 9 Forward Biased Safe Operating Area for IRF320-323 and IRF720-723


Figure 11 Forward Biased Safe Operating Area for MTP3N35/3N40


Figure 8 Gate to Source Voltage vs Total Gate Charge


Figure 10 Transient Thermal Resistance vs Time for IRF320-323 and IRF720-723


Figure 12 Transient Thermal Resistance vs Time for MTP3N35/3N40


## Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high voltage, high speed applications, such as off-line switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers.

- $\mathrm{V}_{\mathrm{Gs}}$ Rated at $\pm 20 \mathrm{~V}$
- Silicon Gate for Fast Switching Speeds
- IDSS, $\mathrm{V}_{\mathrm{DS}(\mathrm{on})}$, SOA and $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ Specified at Elevated Temperature
- Rugged


## Maximum Ratings

TO-204AA


IRF330
IRF331
IRF332
IRF333
MTM5N35
MTM5N40

TO-220AB

is000010F
IRF730 IRF731
IRF732
IRF733
MTP5N35
MTP5N40

$\begin{array}{l|l|l|l|l}\hline \text { Symbol }\end{array} \quad$|  | $\begin{array}{c}\text { Rating } \\ \text { IRF330/332 } \\ \text { IRF730/732 } \\ \text { MTM/MTP5N40 }\end{array}$ | $\begin{array}{c}\text { Rating } \\ \text { IRF331/333 } \\ \text { IRF731/733 }\end{array}$ |
| :--- | :--- | :--- |
| MTM/MTP5N35 |  |  |$)$

## Maximum On-State Characteristics

|  |  | IRF330/331 <br> IRF730/731 | IRF332/333 <br> IRF732/733 | MTM5N35/40 <br> MTP5N35/40 |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $R_{\text {DS (on) }}$ | Static Drain-to-Source <br>  <br>  <br> On Resistance | 1.0 | 1.5 | 1.0 | $\Omega$ |
| ID | Drain Current |  |  |  |  |
|  | Continuous | 5.5 | 4.5 | 5.0 | A |
|  | Pulsed | 22 | 22 | 22 |  |

Maximum Thermal Characteristics

| $\mathrm{R}_{\text {өJC }}$ | Thermal Resistance, <br> Junction to Case | 1.67 | 1.67 | 1.67 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{PD}_{\mathrm{D}}$ | Total Power Dissipation <br> at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 75 | 75 | 75 | W |

[^0]
## IRF330-333/IRF730-733

Electrical Characteristics ( $T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\text {(BR) } \mathrm{DSS}}$ | Drain Source Breakdown Voltage ${ }^{1}$ <br> IRF330/332/730/732 <br> IRF331/333/731/733 |  |  | V | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$ |
|  |  | 400 |  |  |  |
|  |  | 350 |  |  |  |
| IDSS | Zero Gate Voltage Drain Current |  | 250 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{DS}}=$ Rated $\mathrm{V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  |  |  | 1000 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0.8 \times \text { Rated } \mathrm{V}_{\mathrm{DSS}}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$ |
| IGSS | Gate-Body Leakage Current IRF330-333 <br> IRF730-733 |  | $\begin{aligned} & \pm 100 \\ & \pm 500 \end{aligned}$ | nA | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |
| On Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\text {GS(th) }}$ | Gate Threshold Voltage | 2.0 | 4.0 | V | $\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$ |
| $\mathrm{R}_{\text {DS(0n) }}$ | Static Drain-Source On-Resistance ${ }^{2}$ |  |  | $\Omega$ | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.0 \mathrm{~A}$ |
|  | IRF330/331/730/731 |  | 1.0 |  |  |
|  | IRF332/333/732/733 |  | 1.5 |  |  |
| $\mathrm{g}_{\mathrm{fs}}$ | Forward Transconductance | 3.0 |  | S (V) | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.0 \mathrm{~A}$ |

## Dynamic Characteristics

| $\mathrm{C}_{\text {iss }}$ | Input Capacitance | 900 | pF | $\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\text {oss }}$ | Output Capacitance | 300 | pF |  |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance | 80 | pF |  |

Switching Characteristics $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$, Figures 12, 13)

| $\mathrm{t}_{\mathrm{d} \text { (on) }}$ | Turn-On Delay Time | \%9 | 30 | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=175 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.0 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=15 \Omega \\ & \mathrm{R}_{\mathrm{GS}}=15 \Omega \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{r}}$ | Rise Time |  | 35 | ns |  |
| $\mathrm{t}_{\mathrm{d} \text { (off) }}$ | Turn-Off Delay Time |  | 55 | ns |  |
| $\mathrm{t}_{\mathrm{f}}$ | Fall Time |  | 35 | ns |  |
| $Q_{g}$ | Total Gate Charge |  | 30 | nC | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.0 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=180 \mathrm{~V} \end{aligned}$ |
| Symbol | Characteristic | Typ | Max | Unit | Test Conditions |
| Source-Drain Diode Characteristics |  |  |  |  |  |
| $V_{\text {SD }}$ | Diode Forward Voltage IRF330/331/730/731 |  | 1.6 | V | $\mathrm{I}_{\mathrm{S}}=5.5 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  | IRF332/333/732/733 |  | 1.5 | V | $\mathrm{I}_{\mathrm{S}}=4.5 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
| $\mathrm{t}_{\mathrm{rr}}$ | Reverse Recovery Time | 400 |  | ns | $\mathrm{I}_{\mathrm{S}}=5.5 \mathrm{~A} ; \mathrm{dl}_{\mathrm{S}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S}$ |

## MTM/MTP5N35/5N40

Electrical Characteristics ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\text {(BR) }{ }^{\text {dSs }}}$ | Drain Source Breakdown Voltage ${ }^{1}$ <br> MTM/MTP5N40 <br> MTM/MTP5N35 |  |  | V | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{~mA}$ |
|  |  | 400 |  |  |  |
|  |  | 350 |  |  |  |
| IDSs | Zero Gate Voltage Drain Current |  | 0.25 | mA | $\begin{aligned} & V_{D S}=0.85 \times \text { Rated } V_{D S S}, \\ & V_{G S}=0 \mathrm{~V} \end{aligned}$ |
|  |  |  | 2.5 | mA | $\begin{aligned} & V_{D S}=0.85 \times \text { Rated } V_{D S S}, \\ & V_{G S}=0 \mathrm{~V}, T_{C}=100^{\circ} \mathrm{C} \end{aligned}$ |
| IGSS | Gate-Body Leakage Current |  | $\pm 500$ | nA | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |

On Characteristics

| $V_{G S}(\mathrm{th})$ | Gate Threshold Voltage | 2.0 | 4.5 | V | $\mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1.5 | 4.0 | V | $\begin{aligned} & I_{D}=1.0 \mathrm{~mA}, V_{D S}=V_{G S} \\ & T_{C}=100^{\circ} \mathrm{C} \end{aligned}$ |
| $\mathrm{R}_{\text {DS(on) }}$ | Static Drain-Source On-Resistance ${ }^{2}$ |  | 1.0 | $\Omega$ | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}$ |
| $\mathrm{V}_{\text {DS(on) }}$ | Drain-Source On-Voltage ${ }^{2}$ |  | $\begin{aligned} & 2.5 \\ & 6.2 \end{aligned}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{~A} \end{aligned}$ |
|  |  |  | 5.0 | V | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$ |
| $\mathrm{g}_{\text {fs }}$ | Forward Transconductance | 2.0 |  | S (V) | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}$ |
| Dynamic Characteristics |  |  |  |  |  |
| $\mathrm{C}_{\text {iss }}$ | Input Capacitance |  | 1200 | pF | $\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$ |
| $\mathrm{C}_{\text {oss }}$ | Output Capacitance |  | 300 | pF |  |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance |  | 80 | pF |  |
| Switching Characteristics ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Figures 12, 13) ${ }^{3}$ |  |  |  |  |  |
| $\mathrm{t}_{\mathrm{d} \text { (on) }}$ | Turn-On Delay Time |  | 50 | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=50 \Omega \\ & \mathrm{R}_{\mathrm{GS}}=50 \Omega \end{aligned}$ |
| $t_{r}$ | Rise Time |  | 100 | ns |  |
| $\mathrm{t}_{\mathrm{d} \text { (off) }}$ | Turn-Off Delay Time |  | 200 | ns |  |
| $\mathrm{t}_{4}$ | Fall Time |  | 100 | ns |  |
| $Q_{g}$ | Total Gate Charge |  | 30 | nC | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.0 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=180 \mathrm{~V} \end{aligned}$ |

## Notes

1. $T_{J}=+25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
2. Pulse test: Pulse width $\leqslant 80 \mu \mathrm{~s}$, Duty cycle $\leqslant 1 \%$
3. Switching time measurements performed on LEM TR-58 test equipment.

## Typical Performance Curves

## Figure 1 Output Characteristics



Figure 3 Transfer Characteristics


Figure 5 Static Drain to Source On-Resistance vs Drain Current


Figures 4-6 for IRF332/333/732/733 only.
Figure 2 Static Drain to Source Resistance vs Drain Current


Figure 4 Output Characteristics


Figure 6 Transfer Characteristics


Typical Performance Curves (Cont.)
Figure 7 Temperature Variation of Gate to Source Threshold Voltage


Figure 9 Gate to Source Voltage vs Total Gate Charge



Ciossof
Figure 11 Transient Thermal Resistance


Figure 8 Capacitance vs Drain to Source Voltage


Figure 10 Forward Biased Safe Operating Area


$$
\text { PC } 11580 \%
$$

## Typical Electrical Characteristics

Figure 12 Switching Test Circuit


Figure 13 Switching Waveforms


## FAIRCHILD

IRF340-343/IRF740-743
MTM8N35/8N40
N-Channel Power MOSFETs,
10 A, 350 V/400 V

Power And Discrete Division

## Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high voltage, high speed applications, such as off-line switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers.

- $\mathrm{V}_{\text {Gs }}$ Rated at $\pm 20 \mathrm{~V}$
- Silicon Gate for Fast Switching Speeds
- IDSS, $\mathrm{V}_{\mathrm{DS}(\mathrm{on})}$, SOA and $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ Specified at Elevated Temperature
- Rugged

TO-204AA


IRF340
IRF341
IRF342
IRF343
MTM8N35
MTM8N40

TO-220AB


IRF740
IRF741
IRF742
IRF743

## Maximum Ratings

| Symbol | Characteristic | Rating IRF340/342 IRF740/742 MTM8N40 |  | Rating IRF341/343 IRF741/743 MTM8N35 | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{\text {DSS }}$ | Drain to Source Voltage | 400 |  | 350 | V |
| $V_{\text {DGR }}$ | Drain to Gate Voltage $\mathrm{R}_{\mathrm{GS}}=1.0 \mathrm{M} \Omega$ | 400 |  | 350 | V |
| $\mathrm{V}_{\mathrm{GS}}$ | Gate to Source Voltage | $\pm 20$ |  | $\pm 20$ | V |
| $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | Operating Junction Temperature Storage Temperature | -55 to +150 |  | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s | 275 |  | 275 | ${ }^{\circ} \mathrm{C}$ |
| Maximum On-State Characteristics |  |  |  |  |  |
|  |  | IRF340/341 <br> IRF740/741 | $\begin{aligned} & \text { IRF342/343 } \\ & \text { IRF742/743 } \end{aligned}$ | MTM8N35 MTM8N40 |  |
| $\mathrm{R}_{\text {DS(on) }}$ | Static Drain-to-Source On Resistance | 0.55 | 0.80 | 0.55 | $\Omega$ |
| $I_{D}$ | Drain Current Continuous Pulsed | $\begin{aligned} & 10 \\ & 40 \end{aligned}$ | $\begin{gathered} 8 \\ 32 \end{gathered}$ | $\begin{gathered} 8 \\ 48 \end{gathered}$ | A |
| Maximum Thermal Characteristics |  |  |  |  |  |
| $\mathrm{R}_{\text {өJC }}$ | Thermal Resistance, Junction to Case | 1.0 | 1.0 | 0.83 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{P}_{\mathrm{D}}$ | Total Power Dissipation at $T_{C}=25^{\circ} \mathrm{C}$ | 125 | 125 | 150 | W |

Notes
For information concerning connection diagram and package outline, refer to
Section 7.

Electrical Characteristics ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics |  |  |  |  |  |


| $\mathrm{V}_{\text {(BR) }{ }^{\text {dSS }}}$ | Drain-Source Breakdown Voltage ${ }^{1}$ <br> IRF340/342/740/742 <br> IRF341/343/741/743 |  |  | V | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mathrm{~m}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 400 |  |  |  |
|  |  | 350 |  |  |  |
| Ioss | Zero Gate Voltage Drain Current |  | 250 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{DS}}=$ Rated $\mathrm{V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  |  |  | 1000 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{D S}=0.8 \times \text { Rated } V_{D S S}, \\ & V_{G S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$ |
| $\mathrm{I}_{\text {GSS }}$ | Gate-Body Leakage Current IRF340-343 IRF740-743 |  | $\begin{aligned} & \pm 100 \\ & \pm 500 \end{aligned}$ | $n A$ | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |

## On Characteristics

| $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ | Gate Threshold Voltage | 2.0 | 4.0 | V | $\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$ |
| :--- | :--- | :---: | :---: | :---: | :--- |
| $\mathrm{R}_{\mathrm{DS} \text { (on) }}$ | Static Drain-Source On-Resistance ${ }^{2}$ <br>  <br>  <br>  <br>  <br>  <br> IRF340/341/740/741 <br> IRF342/343/742/743 |  | 0.55 | $\Omega$ | $\mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{~A}$ |
| $\mathrm{~g}_{\text {f }}$ | Forward Transconductance | 4.0 |  | $\mathrm{~S}(\mathrm{~S})$ | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{~A}$ |

## Dynamic Characteristics

| $\mathrm{C}_{\text {iss }}$ | Input Capacitance | 1600 | pF | $\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\text {oss }}$ | Output Capacitance | 450 | pF |  |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance | 150 | pF |  |

Switching Characteristics $\left(T_{C}=25^{\circ} \mathrm{C}\right.$, Figures 9, 10)

| $t_{\text {d(on) }}$ | Turn-On Delay Time | $7{ }^{\text {a }}$ |  | 35 | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=175 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=4.7 \Omega \\ & \mathrm{R}_{\mathrm{GS}}=4.7 \Omega \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{r}$ | Rise Time |  |  | 15 | ns |  |
| $t_{\text {d(off) }}$ | Turn-Off Delay Time |  |  | 90 | ns |  |
| $t_{f}$ | Fall Time |  |  | 35 | ns |  |
| $\mathrm{Q}_{\mathrm{g}}$ | Total Gate Charge | 80 |  | 60 | nC | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=12 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=400 \mathrm{~V} \end{aligned}$ |


| Symbol | Characteristic | Typ | Max | Unit | Test Conditions |
| :--- | :--- | :--- | :--- | :--- | :--- |

Source-Drain Diode Characteristics

| $V_{\mathrm{SD}}$ | Diode Forward Voltage <br> IRF340/341/740/741 <br>  <br>  <br>  <br>  <br> IRF342/343/742/743 |  | 2.0 | V | $\mathrm{I}_{\mathrm{S}}=10 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
| :--- | :--- | :---: | :---: | :---: | :--- |
| $\mathrm{t}_{\mathrm{rr}}$ | Reverse Recovery Time |  | 1.9 | V | $\mathrm{I}_{\mathrm{S}}=8 \mathrm{~A} ; \quad \mathrm{V}_{\mathrm{GS}}=0 \quad \mathrm{~V}$ |

## MTM8N35/8N40

Electrical Characteristics ( $T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Off Characteristics |  |  |  |  |  |


| $V_{\text {(BR) }{ }^{\text {DSS }}}$ | Drain-Source Breakdown Voltage ${ }^{1}$ <br> MTM8N4O <br> MTM8N35 |  |  | V | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{~mA}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 400 |  |  |  |
|  |  | 350 |  |  |  |
| IDSS | Zero Gate Voltage Drain Current |  | 0.25 | mA | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0.85 \times \text { Rated } \mathrm{V}_{\mathrm{DSS}}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$ |
|  |  |  | 2.5 | mA | $\begin{aligned} & V_{D S}=0.85 \times \text { Rated } V_{D S S}, \\ & V_{G S}=0 \mathrm{~V}, T_{C}=100^{\circ} \mathrm{C} \end{aligned}$ |
| IGSS | Gate-Body Leakage Current |  | $\pm 500$ | nA | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |
| On Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{GS} \text { (th) }}$ | Gate Threshold Voltage | 2.0 | 4.5 | V | $\mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$ |
|  |  | 1.5 | 4.0 | V | $\begin{aligned} & \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}} \\ & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$ |
| $\mathrm{V}_{\text {DS(on) }}$ | Drain-Source On-Voltage ${ }^{2}$ |  | $\begin{aligned} & 2.2 \\ & 5.3 \end{aligned}$ | $\begin{aligned} & V \\ & V \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=4.0 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=8.0 \mathrm{~A} \end{aligned}$ |
|  |  |  | 4.4 | V | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4.0 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$ |
| $\mathrm{R}_{\mathrm{DS} \text { (on) }}$ | Static Drain-Source On-Resistance ${ }^{2}$ |  | 0.55 | $\Omega$ | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4.0 \mathrm{~A}$ |
| $\mathrm{g}_{\mathrm{fs}}$ | Forward Transconductance | 3.0 |  | S (V) | $V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4.0 \mathrm{~A}$ |
| Dynamic Characteristics |  |  |  |  | рзtiverf |
| $\mathrm{C}_{\text {iss }}$ | Input Capacitance |  | 1800 | pF | $\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$ |
| $\mathrm{C}_{\text {oss }}$ | Output Capacitance |  | 350 | pF |  |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance |  | 150 | pF |  |

Switching Characteristics $\left(T_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$, Figures 9, 10) ${ }^{3}$

| $t_{d(o n)}$ | Turn-On Delay Time |  | 60 | $n s$ | $V_{D D}=25 \mathrm{~V}, I_{D}=4.0 \mathrm{~A}$ |
| :--- | :--- | ---: | ---: | ---: | :--- |
| $\mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, R_{G E N}=50 \Omega$ |  |  |  |  |  |
| $\mathrm{t}_{\mathrm{r}}$ | Rise Time |  | 150 | ns | $R_{G S}=50 \Omega$ |

## Notes

1. $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
2. Pulse test: Pulse width $\leqslant 80 \mu \mathrm{~s}$, Duty cycle $\leqslant 1 \%$
3. Switching time measurements performed on LEM TR-58 test equipment

## Typical Performance Curves

Figure 1 Output Characteristics


Figure 3 Transfer Characteristics


Figure 5 Capacitance vs Drain to Source Voltage


Figure 2 Static Drain to Source Resistance vs Drain Current


Figure 4 Temperature Variation of Gate to Source Threshold Voltage


Figure 6 Gate to Source Voltage vs Total Gate Charge


Typical Performance Curves (Cont.)
Figure 7 Forward Biased Safe Operating Area


## Typical Electrical Characteristics

Figure 9 Switching Test Circuit


Figure 8 Transient Thermal Resistance vs Time


Figure 10 Switching Waveforms


## FAIRCHILD

A Schlumberger Company

IRF350-353
N-channel Power MOSFETs, 15 A, 350 V/400 V

## Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high voltage, high speed applications, such as off-line switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers.

- $\mathrm{V}_{\mathrm{Gs}}$ Rated at $\pm 20 \mathrm{~V}$
- Silicon Gate for Fast Switching Speeds
- IDSS, $\mathrm{V}_{\mathrm{DS}(\mathrm{on}), S}$ SOA and $\mathrm{V}_{\text {GS(th) }}$ Specified at Elevated Temperature
- Rugged

Maximum Ratings

Power And Discrete Division

## TO-204AA



IRF350
IRF351
IRF352
IRF353

| Symbol | Characteristic | Rating IRF350/352 | $\begin{gathered} \text { Rating } \\ \text { IRF351/353 } \end{gathered}$ | Unit |
| :---: | :---: | :---: | :---: | :---: |
| $V_{\text {DSS }}$ | Drain to Source Voltage | 400 | 350 | V |
| $V_{\text {DGR }}$ | Drain to Gate Voltage $\mathrm{R}_{\mathrm{GS}}=1.0 \mathrm{M} \Omega$ | 400 | 350 | V |
| $V_{\text {GS }}$ | Gate to Source Voltage | $\pm 20$ | $\pm 20$ | V |
| $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | Operating Junction and Storage Temperatures | -55 to +150 | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s | 275 | 275 | ${ }^{\circ} \mathrm{C}$ |
| Maximum On-State Characteristics |  |  |  |  |
|  |  | IRF350/351 | IRF352/353 |  |
| $\mathrm{R}_{\mathrm{DS} \text { (on) }}$ | Static Drain-to-Source On Resistance | 0.3 | 0.4 | $\Omega$ |
| ID | Drain Current Continuous Pulsed | $\begin{aligned} & 15 \\ & 60 \end{aligned}$ | $\begin{aligned} & 13 \\ & 52 \end{aligned}$ | A |
| Maximum Thermal Characteristics |  |  |  |  |
| $\mathrm{R}_{\text {өJC }}$ | Thermal Resistance, Junction to Case | 0.83 | 0.83 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{P}_{\mathrm{D}}$ | Total Power Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 150 | 150 | W |

Notes
For information concerning connection diagram and package outline, refer to
Section 7.

Electrical Characteristics $\left(T_{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics |  |  |  |  |  |
| $V_{(B R) D S S}$ | Drain Source Breakdown Voltage ${ }^{1}$ <br> IRF350/352 <br> IRF351/353 |  |  | V | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$ |
|  |  | 400 |  |  |  |
|  |  | 350 |  |  |  |
| IDSS | Zero Gate Voltage Drain Current |  | 250 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{DS}}=$ Rated $\mathrm{V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  |  |  | 1000 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0.8 \times \text { Rated } \mathrm{V}_{\mathrm{DSS}}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$ |
| $\mathrm{I}_{\text {GSS }}$ | Gate-Body Leakage Current |  | $\pm 100$ | nA | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |

## On Characteristics

| $\mathrm{V}_{\text {GS(th) }}$ | Gate Threshold Voltage | 2.0 | 4.0 | V | $\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=\mathrm{V}_{G S}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{R}_{\text {DS }}(\mathrm{on})$ | Static Drain-Source On-Resistance ${ }^{2}$ IRF350/351 |  |  | $\Omega$ | $V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=8.0 \mathrm{~A}$ |
|  |  |  | 0.3 |  |  |
|  | IRF352/353 |  | 0.4 |  |  |
| Gfs | Forward Transconductance | 8.0 |  | S (ひ) | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=8.0 \mathrm{~A}$ |

Dynamic Characteristics

| $\mathrm{C}_{\text {iss }}$ | Input Capacitance | 3000 | pF | $\begin{aligned} & V_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\text {oss }}$ | Output Capacitance | 600 | pF |  |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance | 200 | pF |  |

Switching Characteristics $\left(T_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$, Figures 9,10$)$

| $\mathrm{t}_{\mathrm{d} \text { (on) }}$ | Turn-On Delay Time |  | 35 | ns | $\begin{aligned} & V_{D D}=180 \mathrm{~V}, I_{D}=8.0 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=4.7 \Omega \\ & \mathrm{R}_{\mathrm{GS}}=4.7 \Omega \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{r}}$ | Rise Time |  | 65 | ns |  |
| $t_{\text {d(off) }}$ | Turn-Off Delay Time |  | 150 | ns |  |
| $\mathrm{t}_{\mathrm{f}}$ | Fall Time |  | 75 | ns |  |
| $Q_{g}$ | Total Gate Charge |  | 120 | $n \mathrm{C}$ | $\begin{aligned} & V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=16 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=400 \mathrm{~V} \end{aligned}$ |
| Symbol | Characteristic | Typ | Max | Unit | Test Conditions |
| Source-Drain Diode Characteristics |  |  |  |  |  |
| $V_{\text {SD }}$ | Diode Forward Voltage IRF350/351 <br> IRF352/353 |  | $\begin{aligned} & 1.6 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & V \\ & V \end{aligned}$ | $\begin{aligned} & I_{S}=15 \mathrm{~A} ; V_{G S}=0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{S}}=13 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$ |
| $\mathrm{t}_{\mathrm{rr}}$ | Reverse Recovery Time | 600 |  | ns | $\mathrm{I}_{\mathrm{S}}=15 \mathrm{~A} ; \mathrm{dl}_{\mathrm{S}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S}$ |

## Notes

1. $T_{J}=+25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
2. Pulse test: Pulse width $\leqslant 80 \mu \mathrm{~s}$, Duty cycle $\leqslant 1 \%$

## Typical Performance Curves

Figure 1 Output Characteristics


Figure 3 Transfer Characteristics


Figure 5 Capacitance vs Drain to Source Voltage


Figure 2 Static Drain to Source On Resistance vs Drain Current


Figure 4 Temperature Variation of Gate to Source Threshold Voltage


Figure 6 Gate to Source Voltage vs Total Gate Charge


Typical Performance Curves (Cont.)
Figure 7 Forward Biased Safe Operating Area


## Typical Electrical Characteristics

Figure 9 Switching Test Circuit


Figure 8 Transient Thermal Resistance vs Time


Figure 10 Switching Waveforms



## Product Summary

| Part Number | V ${ }_{\text {DSS }}$ | $\mathrm{R}_{\mathrm{DS} \text { (on) }}$ | $\begin{gathered} \mathrm{I}_{\mathrm{D}} \text { at } \\ \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} \mathrm{I}_{\mathrm{D}} \text { at } \\ \mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{gathered}$ | Case Style |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IRF420 | 500 V | $3.0 \Omega$ | 2.5 A | 1.5 A | TO-204AA |
| IRF421 | 450 V | $3.0 \Omega$ | 2.5 A | 1.5 A |  |
| IRF422 | 500 V | $4.0 \Omega$ | 2.0 A | 1.0 A |  |
| IRF423 | 450 V | $4.0 \Omega$ | 2.0 A | 1.0 A |  |
| IRF820 | 500 V | $3.0 \Omega$ | 2.5 A | 1.5 A | TO-220AB |
| IRF821 | 450 V | $3.0 \Omega$ | 2.5 A | 1.5 A |  |
| IRF822 | 500 V | $4.0 \Omega$ | 2.0 A | 1.0 A |  |
| IRF823 | 450 V | $4.0 \Omega$ | 2.0 A | 1.0 A |  |
| MTP2N45 | 450 V | $4.0 \Omega$ | 3.0 A | 2.0 A |  |
| MTP2N50 | 500 V | $4.0 \Omega$ | 3.0 A | 2.0 A |  |

## Notes

For information concerning connection diagram and package outline, refer to Section 7.

## Maximum Ratings

| Symbol | Characteristic | $\begin{gathered} \text { Rating } \\ \text { IRF420/422 } \\ \text { IRF820/822 } \\ \text { MTP2N50 } \end{gathered}$ | Rating IRF421/423 IRF821/823 MTP2N45 | Unit |
| :---: | :---: | :---: | :---: | :---: |
| $V_{\text {DSS }}$ | Drain to Source Voltage ${ }^{1}$ | 500 | 450 | V |
| $V_{\text {DGR }}$ | Drain to Gate Voltage ${ }^{1}$ $\mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega$ | 500 | 450 | V |
| $V_{G S}$ | Gate to Source Voltage | $\pm 20$ | $\pm 20$ | V |
| $\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$ | Operating Junction and Storage Temperatures | -55 to +150 | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s | 275 | 275 | ${ }^{\circ} \mathrm{C}$ |
| Maximum Thermal Characteristics |  |  |  |  |
|  |  | $\begin{aligned} & \text { IRF420-423/ } \\ & \text { IRF820-823 } \end{aligned}$ | MTP2N45/2N50 |  |
| $\mathrm{R}_{\text {өJC }}$ | Thermal Resistance, Junction to Case | 3.12 | 1.67 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{R}_{\theta \mathrm{JA}}$ | Thermal Resistance, Junction to Ambient | 30/80 | 80 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $P_{D}$ | Total Power Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 40 | 75 | W |
| IDM | Pulsed Drain Current ${ }^{2}$ | 10 | 10 | A |

Electrical Characteristics ( $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :--- | :---: | :---: | :---: | :---: | :---: |

## Off Characteristics

| $V_{(B R)}$ DSS | Drain Source Breakdown Voltage ${ }^{1}$ <br> IRF420/422/820/822/ <br> MTP2N50 <br> IRF421/423/821/823/ <br> MTP2N45 |  |  | V | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 500 |  |  |  |
|  |  | 450 |  |  |  |
| IDSs | Zero Gate Voltage Drain Current |  | 250 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{DS}}=$ Rated $\mathrm{V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  |  |  | 1000 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0.8 \times \text { Rated } \mathrm{V}_{\mathrm{DSS}}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$ |
| IGSS | Gate-Body Leakage Current IRF420-423 <br> IRF820-823/MTP2N45/50 |  |  | $n \mathrm{~A}$ | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |
|  |  |  | $\pm 100$ |  |  |
|  |  |  | $\pm 500$ |  |  |

## IRF420-423/IRF820-823 MTP2N45/2N50

Electrical Characteristics (Cont.) ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :--- | :--- | :--- | :--- | :--- | :--- |
| On Characteristics |  |  |  |  |  |


| $\mathrm{V}_{\mathrm{GS} \text { (th) }}$ | Gate Threshold Voltage <br> IRF420-423/IRF820-823 <br> MTP2N45/MTP2N50 |  |  | V | $\begin{aligned} & \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}} \\ & \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 2.0 | 4.0 |  |  |
|  |  | 2.0 | 4.5 |  |  |
| $\mathrm{R}_{\text {DS(on) }}$ | Static Drain-Source On-Resistance ${ }^{2}$ <br> IRF420/421/820/821 <br> IRF422/423/822/823 <br> MTP2N45/50 |  |  | $\Omega$ | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~A}$ |
|  |  |  | 3.0 |  |  |
|  |  |  | 4.0 |  |  |
|  |  |  | 4.0 |  |  |
| $V_{\text {DS(on) }}$ | Drain-Source On-Voltage ${ }^{2}$ <br> MTP2N45/50 |  |  | Vv |  |
|  |  |  | 10 |  | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=2.0 \mathrm{~A}$ |
|  |  |  | 8 |  | $\begin{aligned} & \mathrm{V}_{G S}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~A} \\ & T_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$ |
| $\mathrm{g}_{\text {f }}$ | Forward Transconductance | 1.0 |  | S (ひ) | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~A}$ |

## Dynamic Characteristics



Switching Characteristics $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \text {, Figures } 1,2\right)^{3}$


| Symbol | Characteristic | Typ | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Source-Drain Diode Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\text {SD }}$ | Diode Forward Voltage |  | 1.4 | v | $\mathrm{I}_{\mathrm{S}}=2.5 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  |  |  | 1.3 | V | $\mathrm{I}_{\mathrm{S}}=2.0 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
| $\mathrm{t}_{\text {r }}$ | Reverse Recovery Time | 600 |  | ns | $\mathrm{I}_{\mathrm{S}}=2.5 \mathrm{~A} ; \mathrm{dl}_{\mathrm{S}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S}$ |

## Notes

1. $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
2. Pulse width limited by $T_{J}$
3. Switching time measurements performed on LEM TR-58 test equipment.

Typical Electrical Characteristics
Figure 1 Switching Test Circuit


## Typical Performance Curves

Figure 3 Output Characteristics


Figure 5 Transfer Characteristics


Figure 2 Switching Waveforms


Figure 4 Static Drain to Source Resistance vs Drain Current


Figure 6 Temperature Variation of Gate to Source Threshold Voltage


Typical Performance Curves (Cont.)

## Figure 7 Capacitance vs Drain to Source Voltage



Figure 9 Forward Biased Safe Operating Area for IRF420-423 and IRF820-823


Figure 11 Forward Biased Safe Operating Area for MTP2N45/2N50


Figure 8 Gate to Source Voltage vs Total Gate Charge


PC10764F
Figure 10 Transient Thermal Resistance vs Time for IRF420-423 and IRF820-823

Figure 12 Transient Thermal Resistance vs Time for MTP2N45/2N50


Power And Discrete Division

## Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high voltage, high speed applications, such as off-line switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers.

- $\mathrm{V}_{\mathrm{GS}}$ Rated at $\pm 20 \mathrm{~V}$
- Silicon Gate for Fast Switching Speeds
- IDSS, $\mathrm{V}_{\mathrm{DS}(\mathrm{on})}$, SOA and $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ Specified at Elevated Temperature
- Rugged

TO-204AA


IRF430
IRF431
IRF432
IRF433
MTM4N45
MTM4N50

TO-220AB

IRF830
IRF831
IRF832
IRF833
MTP4N45
MTP4N50

Maximum Ratings

| Symbol | Characteristic | Rating <br> IRF430/432 <br> IRF830/832 <br> MTM/MTP4N50 | Rating <br> IRF431/433 <br> IRF831/833 <br> MTM/MTP4N45 |  |
| :--- | :--- | :--- | :--- | :--- |
| $V_{\text {DSS }}$ | Drain to Source Voltage | 500 | 450 | Unit |

Maximum On-State Characteristics

|  |  | IRF430/431 <br> IRF830/831 | IRF432/433 <br> IRF832/833 | MTM/MTP4N45 <br> MTM/MTP4N45 |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $R_{\text {DS(on) }}$ | Static Drain-to-Source <br> On Resistance | 1.5 | 2.0 | 1.5 | $\Omega$ |
| $\mathrm{I}_{\mathrm{D}}$ | Drain Current |  |  |  |  |
|  | Continuous | 4.5 | 4.0 | 4.0 | A |
|  | Pulsed | 18 | 16 | 10 |  |

Maximum Thermal Characteristics

| $\mathrm{R}_{\text {өJC }}$ | Thermal Resistance, <br> Junction to Case | 1.67 | 1.67 | 1.67 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{R}_{\text {өJA }}$ | Thermal Resistance, <br> Junction to Ambient | 60 | 60 | 60 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{P}_{\mathrm{D}}$ | Total Power Dissipation <br> at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 75 | 75 | 75 | W |

## Notes

For information concerning connection diagram and package outline, refer to Section 7.

Electrical Characteristics ( $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Off Characteristics |  |  |  |  |  |



| IDSs | Zero Gate Voltage Drain Current |  | 250 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{DS}}=$ Rated $\mathrm{V}_{\text {DSS }}, \mathrm{V}_{G S}=0 \mathrm{~V}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1000 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{D S}=0.8 \times \text { Rated } V_{D S S}, \\ & V_{G S}=0 \mathrm{~V}, T_{C}=125^{\circ} \mathrm{C} \end{aligned}$ |
| IGSS | Gate-Body Leakage Current <br> IRF430-433 <br> IRF830-833 |  |  | nA | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |
|  |  |  | $\pm 100$ |  |  |
|  |  |  | $\pm 500$ |  |  |
| On Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\text {GS }}$ (th) | Gate Threshold Voltage | 2.0 | 4.0 | V | $\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$ |
| $\mathrm{R}_{\text {DS(on) }}$ | Static Drain-Source On-Resistance ${ }^{2}$ <br> IRF430/431/830/831 <br> IRF432/433/832/833 |  |  | $\Omega$ | $V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}$ |
|  |  |  | 1.5 |  |  |
|  |  |  | 2.0 |  |  |
| $\mathrm{g}_{\text {ts }}$ | Forward Transconductance | 2.5 |  | S (V) | $V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}$ |
| Dynamic Characteristics |  |  |  |  |  |
| $\mathrm{C}_{\text {iss }}$ | Input Capacitance |  | 800 | pF | $\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$ |
| Cosss | Output Capacitance |  | 200 | pF |  |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance |  | 60 | pF |  |
| Switching Characteristics ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Figures 12, 13) |  |  |  |  |  |
| $t_{d(0 n)}$ | Turn-On Delay Time |  | 30 | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=225 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=15 \Omega \\ & \mathrm{R}_{\mathrm{GS}}=15 \Omega \end{aligned}$ |
| $t_{r}$ | Rise Time |  | 30 | ns |  |
| $t_{\text {d(off) }}$ | Turn-Off Delay Time |  | 55 | ns |  |
| $\mathrm{t}_{\mathrm{f}}$ | Fall Time |  | 30 | ns |  |
| $\mathrm{Q}_{\mathrm{g}}$ | Total Gate Charge |  | 30 | nC | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.0 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DS}}=180 \mathrm{~V} \end{aligned}$ |
|   <br> Symbol Characteristic |  |  |  |  |  |
|  |  | Typ | Max | Unit | Test Conditions |

## Source-Drain Diode Characteristics

| $V_{S D}$ | Diode Forward Voltage IRF430/431/830/831 |  | 1.4 | V | $\mathrm{I}_{\mathrm{S}}=4.5 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | IRF432/433/832/833 |  | 1.3 | V | $\mathrm{I}_{\mathrm{S}}=4.0 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
| $t_{\text {rr }}$ | Reverse Recovery Time | 600 |  | ns | $\mathrm{I}_{\mathrm{S}}=4.5 \mathrm{~A} ; \mathrm{dl}_{\mathrm{S}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S}$ |

## Notes

1. $T_{J}=+25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
2. Pulse test: Pulse width $\leqslant 80 \mu \mathrm{~s}$, Duty cycle $\leqslant 1 \%$

## MTM/MTP4N45/4N50

Electrical Characteristics ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | 20. Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics |  |  |  |  |  |
| $\mathrm{V}_{(\mathrm{BR}) \text { DSS }}$ | Drain Source Breakdown Voltage ${ }^{1}$ |  |  | V | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{~mA}$ |
|  | MTM/MTP4N50 | 500 |  |  |  |
|  | MTM/MTP4N45 | 450 |  |  |  |
| IDSS | Zero Gate Voltage Drain Current |  | 0.25 | mA | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0.85 \times \text { Rated } \mathrm{V}_{\mathrm{DSS}}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$ |
|  |  |  | 2.5 | mA | $\begin{aligned} & V_{D S}=0.85 \times \text { Rated } V_{D S S}, \\ & V_{G S}=0 \mathrm{~V}, T_{C}=100^{\circ} \mathrm{C} \end{aligned}$ |
| IGSS | Gate-Body Leakage Current |  | $\pm 500$ | $n A$ | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |

On Characteristics

| $V_{G S(t h)}$ | Gate Threshold Voltage | 2.0 | 4.5 | V | $\mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1.5 | 4.0 | V | $\begin{aligned} & I_{D}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \\ & T_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$ |
| $\mathrm{R}_{\text {DS(on) }}$ | Static Drain-Source On-Resistance ${ }^{2}$ |  | 1.5 | $\Omega$ | $V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.0 \mathrm{~A}$ |
| $\mathrm{V}_{\text {DS(on) }}$ | Drain-Source On-Voltage ${ }^{2}$ |  | 3.0 | V | $V_{G S}=10 \mathrm{~V}, I_{D}=2.0 \mathrm{~V}$ |
|  |  |  | 7.0 | V | $V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4.0 \mathrm{~A}$ |
|  |  |  | 6.0 | V | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4.0 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$ |
| $\mathrm{g}_{\text {fs }}$ | Forward Transconductance | 2.0 |  | S (J) | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.0 \mathrm{~A}$ |

## Dynamic Characteristics

| $C_{\text {iss }}$ | Input Capacitance |  | 1200 | pF | $\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ <br> $\mathrm{f}=1.0 \mathrm{MHz}$ |
| :--- | :--- | ---: | ---: | ---: | ---: |
| $\mathrm{C}_{\text {oss }}$ | Output Capacitance |  | 300 | pF | pF |

Switching Characteristics $\left(T_{\mathrm{C}}=25^{\circ} \mathrm{C} \text {, Figures } 12,13\right)^{3}$


## Notes

1. $T_{J}=+25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
2. Pulse test: Pulse width $\leqslant 80 \mu \mathrm{~s}$, Duty cycle $\leqslant 1 \%$
3. Switching time measurements performed on LEM TR-58 test equipment.

Typical Performance Curves Figures 4-6 for IRF 432/433/832/833 only.
Figure 2 Static Drain to Source Resistance

Figure 1 Output Characteristics


Figure 3 Transfer Characteristics


Figure 5 Static Drain to Source On Resistance vs Drain Current

vs Drain Current


Figure 4 Output Characteristics


Figure 6 Transfer Characteristics


Typical Performance Curves (Cont.)
Figure 7 Temperature Variation of Gate to Source Threshold Voltage


Figure 9 Gate to Source Voltage vs Total Gate Charge


Figure 8 Capacitance vs Drain to Source Voltage


Figure 10 Forward Biased Safe Operating Area


Figure 11 Transient Thermal Resistance vs Time


## IRF430-433/IRF830-833

 MTM/MTP4N45/4N50
## Typical Electrical Characteristics

Figure 12 Switching Test Circuit


Figure 13 Switching Waveforms


FAIRCHILD
A Schlumberger Company

IRF440-443/IRF840-843
MTM7N45/7N50
N-Channel Power MOSFETs, 8 A, 450 V/500 V
Power And Discrete Division

## Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high voltage, high speed applications, such as off-line switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers.

- $\mathrm{V}_{\mathrm{Gs}}$ Rated at $\pm \mathbf{2 0 ~ V}$
- Silicon Gate for Fast Switching Speeds
- IDSS, $\mathrm{V}_{\text {DS(on) }}$, SOA and $\mathrm{V}_{\text {GS(th) }}$ Specified at Elevated Temperature
- Rugged

TO-204AA


IRF440
IRF441
IRF442
IRF443
MTM7N45
MTM7N50

TO-220AB


IRF840
IRF841
IRF842
IRF843

## Maximum Ratings

| Symbol | Characteristic | Rating IRF440/442 IRF840/842 MTM7N50 | Rating IRF441/443 IRF841/843 MTM7N45 | Unit |
| :---: | :---: | :---: | :---: | :---: |
| $V_{\text {DSS }}$ | Drain to Source Voltage | 500 | 450 | V |
| $V_{\text {DGR }}$ | Drain to Gate Voltage $\mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega$ | 500 | 450 | V |
| $\mathrm{V}_{\mathrm{GS}}$ | Gate to Source Voltage | $\pm 20$ | $\pm 20$ | V |
| $\mathrm{T}_{\mathrm{J},}, \mathrm{T}_{\text {stg }}$ | Operating Junction and Storage Temperature | -55 to +150 | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s | 275 | 275 | ${ }^{\circ} \mathrm{C}$ |

Maximum On-State Characteristics

|  |  | IRF440/441 IRF840/841 | $\begin{aligned} & \text { IRF442/443 } \\ & \text { IRF842/843 } \end{aligned}$ | MTM7N45 MTM7N50 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{R}_{\text {DS(on) }}$ | Static Drain-to-Source On Resistance | 0.85 | 1.1 | 0.8 | $\Omega$ |
| ID | Drain Current Continuous Pulsed | $\begin{gathered} 8 \\ 32 \end{gathered}$ | $\begin{gathered} 7 \\ 28 \end{gathered}$ | $\begin{gathered} 7 \\ 40 \end{gathered}$ | A |
| Maximum Thermal Characteristics |  |  |  |  |  |
| $\mathrm{R}_{\text {өJc }}$ | Thermal Resistance, Junction to Case | 1.0 | 1.0 | 0.83 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{R}_{\theta \mathrm{JA}}$ | Thermal Resistance, Junction to Ambient | 60 | 60 | 60 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $P_{D}$ | Total Power Dissipation at $T_{C}=25^{\circ} \mathrm{C}$ | 125 | 125 | 150 | W |

## Notes

For information concerning connection diagram and package outline, refer to
Section 7.

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics |  |  |  |  |  |
| $V_{\text {(BR) }{ }^{\text {DSS }}}$ | Drain Source Breakdown Voltage ${ }^{1}$ IRF440/442/840/842 IRF441/443/842/843 |  |  | V | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$ |
|  |  | 500 |  |  |  |
|  |  | 450 |  |  |  |
| IDSs | Zero Gate Voltage Drain Current |  | 250 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{DS}}=$ Rated $\mathrm{V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  |  |  | 1000 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0.8 \times \text { Rated } \mathrm{V}_{\mathrm{DSS}}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$ |
| IGSS | Gate-Body Leakage Current IRF440-443 <br> IRF840-843 |  |  | nA | $V_{G S}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |
|  |  |  | $\pm 100$ |  |  |
|  |  |  | $\pm 500$ |  |  |
| On Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{GS} \text { (th) }}$ | Gate Threshold Voltage | 2.0 | 4.0 | V | $\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$ |
| $\mathrm{R}_{\text {DS(on) }}$ | Static Drain-Source On-Resistance ${ }^{2}$$\begin{aligned} & \text { IRF440/441/840/841 } \\ & \text { IRF442/443/842/843 } \end{aligned}$ |  |  | $\Omega$ | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4.0 \mathrm{~A}$ |
|  |  |  | 0.85 |  |  |
|  |  |  | 1.10 |  |  |
| $\mathrm{g}_{\mathrm{fs}}$ | Forward Transconductance | 4.0 |  | S (ひ) | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4.0 \mathrm{~A}$ |
| Dynamic Characteristics |  |  |  |  |  |
| $\mathrm{C}_{\text {iss }}$ | Input Capacitance |  | 1600 | pF | $\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathbf{f}=1.0 \mathrm{MHz} \end{aligned}$ |
| Cosss | Output Capacitance |  | 350 | pF |  |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance |  | 150 | pF |  |
| Switching Characteristics ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Figures 9, 10) |  |  |  |  |  |
| $t_{\text {d(on) }}$ | Turn-On Delay Time |  | 35 | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=220 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4.0 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=4.7 \Omega \\ & \mathrm{R}_{\mathrm{GS}}=4.7 \Omega \end{aligned}$ |
| $\mathrm{t}_{\mathrm{r}}$ | Rise Time |  | 15 | ns |  |
| $t_{\text {d(off) }}$ | Turn-Off Delay Time |  | 90 | ns |  |
| $\mathrm{t}_{\mathrm{f}}$ | Fall Time |  | 30 | ns |  |
| $Q_{g}$ | Total Gate Charge |  | 60 | $n \mathrm{C}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=12 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=400 \mathrm{~V} \end{aligned}$ |
|  |  |  |  |  |  |
| Symbol | Characteristic | Typ | Max | Unit | Test Conditions |
| Source-Drain Diode Characteristics |  |  |  |  |  |
| $V_{S D}$ | Diode Forward Voltage IRF440/441/840/841 |  | 2.0 | V | $\mathrm{I}_{\mathrm{S}}=8.0 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  | IRF442/443/842/843 |  | 1.9 | V | $\mathrm{I}_{\mathrm{S}}=7.0 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
| $t_{\text {rr }}$ | Reverse Recovery Time | 700 |  | ns | $\mathrm{I}_{\mathrm{S}}=8.0 \mathrm{~A} ; \mathrm{dl}_{\mathrm{S}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S}$ |

Notes

1. $\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
2. Pulse test: Pulse width $\leqslant 80 \mu \mathrm{~s}$, Duty cycle $\leqslant 1 \%$

## MTM7N45/7N50

Electrical Characteristics ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\text {(BR) }}$ DSS | Drain Source Breakdown Voltage ${ }^{1}$ <br> MTM7N50 <br> MTM7N45 |  |  | V | $V_{G S}=0 \mathrm{~V}, I_{D}=5.0 \mathrm{~mA}$ |
|  |  | 500 |  |  |  |
|  |  | 450 |  |  |  |
| IDSS | Zero Gate Voltage Drain Current |  | 0.25 | mA | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0.85 \times \text { Rated } \mathrm{V}_{\mathrm{DSS}}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$ |
|  |  |  | 2.5 | mA | $\begin{aligned} & V_{D S}=0.85 \times \text { Rated } V_{D S S}, \\ & V_{G S}=0 V, T_{C}=100^{\circ} \mathrm{C} \end{aligned}$ |
| IGSS | Gate-Body Leakage Current |  | $\pm 500$ | $n A$ | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |

On Characteristics

| $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$ | Gate Threshold Voltage | 2.0 | 4.5 | V | $\mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1.5 | 4.0 | $\checkmark$ | $\begin{aligned} & I_{D}=1.0 \mathrm{~mA}, \quad V_{D S}=V_{G S} \\ & T_{C}=100^{\circ} \mathrm{C} \end{aligned}$ |
| $\mathrm{R}_{\text {DS(on) }}$ | Static Drain-Source On-Resistance ${ }^{2}$ |  | 0.8 | $\Omega$ | $V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.5 \mathrm{~A}$ |
| $\mathrm{V}_{\text {DS(on) }}$ | Drain-Source On-Voltage ${ }^{2}$ |  | 2.8 | $\checkmark$ | $\mathrm{V}_{G S}=10 \mathrm{~V}, \mathrm{l}_{\mathrm{D}}=3.5 \mathrm{~A}$ |
|  |  |  | 7.0 | V | $\mathrm{V}_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.0 \mathrm{~A}$ |
|  |  |  | 5.6 | V | $\begin{aligned} & V_{G S}=10 \mathrm{~V}, I_{D}=3.5 \mathrm{~A} \\ & T_{C}=100^{\circ} \mathrm{C} \end{aligned}$ |
| $\mathrm{g}_{\mathrm{fs}}$ | Forward Transconductance | 4.0 |  | S (V) | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4.0 \mathrm{~A}$ |

Dynamic Characteristics

| $\mathrm{C}_{\text {iss }}$ | Input Capacitance | 1800 | pF | $\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\text {oss }}$ | Output Capacitance | 350 | pF |  |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance | 150 | pF |  |

Switching Characteristics $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \text {, Figures } 9,10\right)^{3}$

| $t_{\text {d }}(\mathrm{on})$ | Turn-On Delay Time | 60 | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=50 \\ & \mathrm{R}_{\mathrm{GS}}=50 \Omega \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{tr}_{\mathrm{r}}$ | Rise Time | 150 | ns |  |
| $\mathrm{t}_{\mathrm{d} \text { (off) }}$ | Turn-Off Delay Time | 200 | ns |  |
| $\mathrm{t}_{\mathrm{f}}$ | Fall Time | 120 | ns |  |
| $Q_{g}$ | Total Gate Charge | 60 | nC | $\begin{aligned} & V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=12 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=400 \mathrm{~V} \end{aligned}$ |

## Notes

1. $T_{J}=+25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
2. Pulse test: Pulse width $\leqslant 80 \mu \mathrm{~s}$, Duty cycle $\leqslant 1 \%$
3. Switching time measurements performed on LEM TR-58 test equipment.

## Typical Performance Curves

Figure 1 Output Characteristics


Figure 3 Transfer Characteristics


Figure 5 Capacitance vs Drain to Source Voltage


Figure 2 Static Drain to Source Resistance vs Drain Current


Figure 4 Temperature Variation of Gate to Source Threshold Voltage


Figure 6 Gate to Source Voltage vs Total Gate Charge


## Typical Performance Curves (Cont.)

Figure 7 Forward Biased Safe Operating Area Curves


PC10930F
Typical Electrical Characteristics
Figure 9 Switching Test Circuit


Figure 8 Transient Thermal Resistance vs Time


Figure 10 Switching Waveforms


IRF450-453
N-Channel Power MOSFETs, $15 \mathrm{~A}, 450 \mathrm{~V} / 500 \mathrm{~V}$

Power And Discrete Division

## Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high voltage, high speed applications, such as off-line switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers.

- $\mathrm{V}_{\mathrm{Gs}}$ Rated at $\pm \mathbf{2 0 ~ V}$
- Silicon Gate for Fast Switching Speeds
- IDSS, $\mathrm{V}_{\mathrm{DS}(o n),}$ SOA and $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ Specified at Elevated Temperature

IRF450

- Rugged

IRF451
IRF452
IRF453

## Maximum Ratings

| Symbol | Characteristic | $\begin{gathered} \text { Rating } \\ \text { IRF450/452 } \end{gathered}$ | $\begin{aligned} & \text { Rating } \\ & \text { IRF451/453 } \end{aligned}$ | Unit |
| :---: | :---: | :---: | :---: | :---: |
| $V_{\text {DSS }}$ | Drain to Source Voltage | 500 | 450 | V |
| $V_{\text {DGR }}$ | Drain to Gate Voltage $\mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega$ | 500 | 450 | V |
| $\mathrm{V}_{\mathrm{GS}}$ | Gate to Source Voltage | $\pm 20$ | $\pm 20$ | V |
| $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | Operating Junction and Storage Temperatures | -55 to +150 | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s | 275 | 275 | ${ }^{\circ} \mathrm{C}$ |

Maximum On-State Characteristics

|  |  | IRF450/451 | IRF452/453 |  |
| :--- | :--- | :---: | :---: | :---: |
| RDS(on) | Static Drain-to-Source | 0.4 | 0.5 | $\Omega$ |
|  | On Resistance |  |  |  |
| ID | Drain Current | 13 | 12 | A |
|  | Continuous | 52 | 48 |  |
|  | Pulsed |  |  |  |

Maximum Thermal Characteristics

| $R_{\text {日JC }}$ | Thermal Resistance, <br> Junction to Case | 0.83 | 0.83 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :---: | :---: | :---: |
| $\mathrm{PD}_{\mathrm{D}}$ | Total Power Dissipation <br> at $T_{C}=25^{\circ} \mathrm{C}$ | 150 | 150 | W |

Notes
For information concerning connection diagram and package outline, refer to Section 7.

Electrical Characteristics ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics |  |  |  |  |  |
| $\mathrm{V}_{(\text {(BR) DSS }}$ | Drain Source Breakdown Voltage ${ }^{1}$ <br> IRF450/452 <br> IRF451/453 |  |  | V | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$ |
|  |  | 500 |  |  |  |
|  |  | 450 |  |  |  |
| IDSS | Zero Gate Voltage Drain Current |  | 250 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{DS}}=$ Rated $\mathrm{V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  |  |  | 1000 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{\mathrm{DS}}=0.8 \times \text { Rated } \mathrm{V}_{\mathrm{DSS}}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$ |
| IGSS | Gate-Body Leakage Current |  | $\pm 100$ | nA | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |
| On Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{GS} \text { (th) }}$ | Gate Threshold Voltage | 2.0 | 4.0 | V | $\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$ |
| $\mathrm{R}_{\text {DS(on) }}$ | Static Drain-Source On-Resistance ${ }^{2}$$\begin{aligned} & \text { IRF450/451 } \\ & \text { IRF452/453 } \end{aligned}$ |  |  | $\Omega$ | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.0 \mathrm{~A}$ |
|  |  |  | 0.4 |  |  |
|  |  |  | 0.5 |  |  |
| $\mathrm{g}_{\mathrm{fs}}$ | Forward Transconductance | 6.0 |  | S (ひ) | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.0 \mathrm{~A}$ |
| Dynamic Characteristics |  |  |  |  |  |
| $\mathrm{C}_{\text {iss }}$ | Input Capacitance |  | 3000 | pF | $\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$ |
| Coss | Output Capacitance |  | 600 | pF |  |
| $\mathrm{Cr}_{\text {rss }}$ | Reverse Transfer Capacitance |  | 200 | pF |  |

Switching Characteristics ( $T_{C}=25^{\circ} \mathrm{C}$, Figures 9, 10)

| $\mathrm{t}_{\mathrm{d} \text { (on) }}$ | Turn-On Delay Time |  | 35 | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=210 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.0 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=4.7 \Omega \\ & \mathrm{R}_{\mathrm{GS}}=4.7 \Omega \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{r}}$ | Rise Time |  | 50 | ns |  |
| $\mathrm{t}_{\mathrm{d} \text { (off) }}$ | Turn-Off Delay Time |  | 150 | ns |  |
| $\mathrm{t}_{\mathrm{f}}$ | Fall Time |  | 70 | ns |  |
| $Q_{g}$ | Total Gate Charge |  | 120 | $n \mathrm{C}$ | $\begin{aligned} & V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=16 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=400 \mathrm{~V} \end{aligned}$ |
| Symbol | Characteristic | Typ | Max | Unit | Test Conditions |
| Source-Drain Diode Characteristics |  |  |  |  |  |
| $V_{S D}$ | Diode Forward Voltage IRF450/451 |  | 1.4 | V | $\begin{aligned} & \mathrm{I}_{\mathrm{S}}=13 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{S}}=12 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$ |
|  | IRF452/453 |  | 1.3 | V |  |
| $t_{\text {rr }}$ | Reverse Recovery Time | 800 |  | ns | $\mathrm{I}_{\mathrm{F}}=13 \mathrm{~A} ; \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S}$ |

## Notes

1. $T_{J}=+25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
2. Pulse test: Pulse width $\leqslant 20 \mu \mathrm{~s}$, Duty cycle $\leqslant 1 \%$

## Typical Performance Curves

## Figure 1 Output Characteristics



Figure 3 Transfer Characteristics


Figure 5 Capacitance vs Drain to Source Voltage


Figure 2 Static Drain to Source Resistance vs Drain Current


Figure 4 Temperature Variation of Gate to Source Threshold Voltage


Figure 6 Gate to Source Voltage vs Total Gate Charge


Typical Performance Curves (Cont.)
Figure 7 Forward Biased Safe Operating Area


## Typical Electrical Characteristics

Figure 9 Switching Test Circuit


Figure 8 Transient Thermal Resistance vs Time


Figure 10 Switching Waveforms



Electrical Characteristics ( $T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics |  |  |  |  |  |
| $V_{(B R) D S S}$ | Drain Source Breakdown Voltage ${ }^{1}$ <br> IRF510/512/MTP4N10 <br> MTP4N08 <br> IRF511/513 |  |  | V | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$ |
|  |  | 100 |  |  |  |
|  |  | 80 |  |  |  |
|  |  | 60 |  |  |  |
| IdSs | Zero Gate Voltage Drain Current |  | 250 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{DS}}=$ Rated $\mathrm{V}_{\text {DSS }}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  |  |  | 1000 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{D S}=0.8 \times \text { Rated } V_{D S S}, \\ & V_{G S}=0 \mathrm{~V}, T_{C}=125^{\circ} \mathrm{C} \end{aligned}$ |
| IGSS | Gate-Body Leakage Current |  | $\pm 500$ | nA | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |

On Characteristics

| $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ | Gate Threshold Voltage IRF510-513 <br> MTP4N08/10 |  |  | V | $\begin{aligned} & I_{D}=250 \mu A, V_{D S}=V_{G S} \\ & I_{D}=1 \mathrm{~mA}, V_{D S}=V_{G S} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 2.0 | 4.0 |  |  |
|  |  | 2.0 | 4.5 |  |  |
| $\mathrm{R}_{\mathrm{DS} \text { (on) }}$ | Static Drain-Source On-Resistance ${ }^{2}$ |  |  | $\Omega$ | $V_{G S}=10 \mathrm{~V}, I_{D}=2.0 \mathrm{~A}$ |
|  | IRF510/511 |  | 0.60 |  |  |
|  | IRF512/513/MTP4N08/4N10 |  | 0.80 |  |  |
| $\mathrm{V}_{\text {DS(on) }}$ | Drain-Source On-Voltage ${ }^{2}$ MTP4N08/4N10 |  | 4.8 | V | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=4.0 \mathrm{~A}$ |
|  |  |  | 3.2 | V | $\begin{aligned} & V_{G S}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=2.0 \mathrm{~A} ; \\ & T_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$ |
| $\mathrm{g}_{\text {fs }}$ | Forward Transconductance | 1.0 |  | S (ひ) | $V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.0 \mathrm{~A}$ |

## Dynamic Characteristics

| $\mathrm{C}_{\text {iss }}$ | Input Capacitance |  | 200 | pF | $\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ <br> $\mathrm{f}=1.0 \mathrm{MHz}$ |
| :--- | :--- | ---: | ---: | ---: | :--- |
| $\mathrm{C}_{\text {oss }}$ | Output Capacitance |  | 100 | pF |  |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance |  | 30 | pF |  |

Switching Characteristics $\left(T_{C}=25^{\circ} \mathrm{C} \text {, Figures } 11,12\right)^{3}$


Electrical Characteristics (Cont.) ( $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Typ | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Source-Drain Diode Characteristics |  |  |  |  |  |
| $V_{S D}$ | Diode Forward Voltage |  |  | V |  |
|  | IRF510/511 |  | 2.5 |  | $\mathrm{I}_{\mathrm{S}}=4.0 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  | IRF512/513 |  | 2.0 |  | $\mathrm{I}_{\mathrm{S}}=3.5 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
| $\mathrm{t}_{\mathrm{rr}}$ | Reverse Recovery Time | 230 |  | ns | $\mathrm{I}_{\mathrm{S}}=4.0 \mathrm{~A} ; \mathrm{dl}_{\mathrm{S}} / \mathrm{dt}=25 \mathrm{~A} / \mu \mathrm{S}$ |

## Notes

1. $T_{j}=+25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
2. Pulse test: Pulse width $\leqslant 80 \mu$ s, Duty cycle $\leqslant 1 \%$
3. Switching time measurements performed on LEM TR-58 test equipment.

Typical Performance Curves
Figure 2 Static Drain to Source Resistance vs Drain Current



Figure 4 Temperature Variation of Gate to Source Threshold Voltage


PCDOSA 1 F

Typical Performance Curves (Cont.)

Figure 5 Capacitance vs Drain to Source Voltage


Figure 7 Forward Biased Safe Operating Area for MTP4N08/4N10


Figure 9 Forward Biased Safe Operating Area for IRF510-513


Figure 6 Gate to Source Voltage vs Total Gate Charge


Figure 8 Transient Thermal Resistance vs Time for MTP4N08/4N10


Figure 10 Transient Thermal Resistance vs Time for IRF510-513


## IRF510-513 MTP4N08/4N10

## Typical Electrical Characteristics

Figure 11 Switching Test Circuit


Figure 12 Switching Waveforms


## FAIRCHILD

A Schlumberger Company

# IRF610-613 <br> MTP2N18/2N20 <br> N-Channel Power MOSFETs, <br> 3.5 A, 150-200 V 

Power And Discrete Division

- $\mathrm{V}_{\mathrm{GS}}$ Rated at $\pm 20 \mathrm{~V}$
- Silicon Gate for Fast Switching Speeds
- IDSS, V ${ }_{\text {DS(on) }}$, Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling


## TO-220AB



IRF610
IRF611
IRF612
IRF613
MTP2N18
MTP2N20

## Maximum Ratings

| Symbol | Characteristic | Rating <br> IRF610/612 <br> MTP2N20 | Rating <br> MTP2N18 | Rating <br> IRF611/613 | Unit |
| :--- | :--- | :---: | :---: | :---: | :---: |

Maximum Thermal Characteristics

| $R_{\text {日JC }}$ | Thermal Resistance, <br> Junction to Case | 6.4 | 2.5 | 6.4 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{R}_{\text {QJA }}$ | Thermal Resistance, <br> Junction to Ambient | 80 | 80 | 80 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{P}_{\mathrm{D}}$ | Total Power Dissipation <br> at $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 20 | 50 | 20 | W |

## Notes

For information concerning connection diagram and package outline, refer to
Section 7.

## IRF610-613 <br> MTP2N18/2N20

Electrical Characteristics ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\text {(BR) }{ }^{\text {DSS }}}$ | Drain Source Breakdown Voltage ${ }^{1}$ IRF610/612/MTP2N20 <br> MTP2N18 <br> IRF611/613 |  |  | V | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$ |
|  |  | 200 |  |  |  |
|  |  | 180 |  |  |  |
|  |  | 150 |  |  |  |
| IDSs | Zero Gate Voltage Drain Current |  | 250 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{DS}}=$ Rated $\mathrm{V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  |  |  | 1000 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{D S}=0.8 \times \text { Rated } V_{D S S}, \\ & V_{G S}=0 \mathrm{~V}, T_{C}=125^{\circ} \mathrm{C} \end{aligned}$ |
| IGSS | Gate-Body Leakage Current |  | $\pm 500$ | nA | $\mathrm{V}_{G S}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |

## On Characteristics

| $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ | Gate Threshold Voltage |  |  | V | $\begin{aligned} & I_{D}=250 \mu \mathrm{~A}, \mathrm{~V}_{D S}=V_{G S} \\ & I_{D}=1 \mathrm{~mA}, V_{D S}=V_{G S} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | IRF610-613 | 2.0 | 4.0 |  |  |
|  | MTP2N18/20 | 2.0 | 4.5 |  |  |
| $\mathrm{R}_{\text {DS(on) }}$ | Static Drain-Source On-Resistance ${ }^{2}$ <br> IRF610/611 <br> IRF612/613 <br> MTP2N18/20 |  |  | $\Omega$ | $V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.25 \mathrm{~A}$ |
|  |  |  | 1.5 |  |  |
|  |  |  | 2.4 |  | $\mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~A}$ |
|  |  |  | 1.8 |  |  |
| $V_{\text {DS (on) }}$ | Drain-Source On-Voltage ${ }^{2}$ |  | 4.4 | V | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=2.0 \mathrm{~A}$ |
|  | MTP2N18/2N20 |  | 3.6 | V | $\begin{aligned} & V_{G S}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~A} ; \\ & T_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$ |
| $\mathrm{g}_{\mathrm{fs}}$ | Forward Transconductance | 0.8 |  | $S$ (ひ) | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.25 \mathrm{~A}$ |

Dynamic Characteristics


Switching Characteristics $\left(T_{C}=25^{\circ} \mathrm{C} \text {, Figures } 11,12\right)^{3}$


## IRF610-613 MTP2N18/2N20

Electrical Characteristics (Cont.) ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Typ | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Source-Drain Diode Characteristics |  |  |  |  |  |
| $V_{S D}$ | Diode Forward Voltage IRF610/611 |  | 2.0 | V | $\mathrm{I}_{\mathrm{S}}=2.5 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  | IRF612/613 |  | 1.8 | V | $\mathrm{I}_{\mathrm{S}}=2.0 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
| $\mathrm{trrr}^{\text {r }}$ | Reverse Recovery Time | 290 |  | ns | $\mathrm{I}_{\mathrm{S}}=2.5 \mathrm{~A} ; \mathrm{dl}_{\mathrm{S}} / \mathrm{dt}=25 \mathrm{~A} / \mu \mathrm{S}$ |

Notes

1. $T_{J}=+25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
2. Pulse test: Pulse width $\leqslant 80 \mu \mathrm{~s}$, Duty cycle $\leqslant 1 \%$
3. Switching time measurements performed on LEM TR-58 test equipment

## Typical Performance Curves

Figure 1 Output Characteristics


Figure 3 Transfer Characteristics


Figure 2 Static Drain to Source Resistance vs Drain Current


Figure 4 Temperature Variation of Gate to Source Threshold Voltage


## IRF610-613 <br> MTP2N18/2N20

Typical Performance Curves (Cont.)

Figure 5 Capacitance vs Drain to Source Voltage


Figure 7 Forward Biased Safe Operating Area for MTP2N18/2N20


Figure 9 Forward Biased Safe Operating Area for IRF610-613


Figure 6 Gate to Source Voltage vs Total Gate Charge


C11100F
Figure 8 Transient Thermal Resistance vs Time for MTP2N18/2N20



Figure 10 Transient Thermal Resistance for IRF610-613


## Typical Electrical Characteristics

Figure 11 Switching Test Circuit


Figure 12 Switching Waveforms


## FAIRCHILD

A Schlumberger Company

IRF710-713
MTP2N35/2N40
N-Channel Power MOSFETs, 2.25 A, 350-400 V

Power And Discrete Division

## Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high speed applications, such as switching power supplies, converters, AC and DC motor controls, relay and solenoid driver and high energy pulse circuits.

- Low R $\mathrm{RDS}_{\text {(on) }}$
- $\mathrm{V}_{\mathrm{GS}}$ Rated at $\pm 20 \mathrm{~V}$
- Silicon Gate for Fast Switching Speeds
- IDSS, VDS(on), Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling


## Maximum Ratings

TO-220AB


IRF710
IRF711
IRF712
IRF713
MTP2N35
MTP2N40

| Symbol | Characteristic | $\begin{gathered} \text { Rating } \\ \text { IRF710/712 } \\ \text { MTP2N40 } \end{gathered}$ |  | $\begin{aligned} & \text { Rating } \\ & \text { IRF711/713 } \\ & \text { MTP2N35 } \end{aligned}$ | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {DSS }}$ | Drain to Source Voltage ${ }^{1}$ | 400 |  | 350 | V |
| V DGR | Drain to Gate Voltage ${ }^{1}$ $\mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega$ | 400 |  | 350 | V |
| $\mathrm{V}_{\mathrm{GS}}$ | Gate to Source Voltage | $\pm 20$ |  | $\pm 20$ | V |
| $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | Operating Junction and Storage Temperatures | -55 to +150 |  | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s | 275 |  | 275 | ${ }^{\circ} \mathrm{C}$ |
| Maximum On-State Characteristics |  |  |  |  |  |
|  |  | IRF710-711 | IRF712-713 | MTP2N35/40 | Unit |
| $\mathrm{R}_{\text {DS(on) }}$ | Static Drain-to-Source <br> On Resistance | 3.6 | 5.0 | 5.0 | $\Omega$ |
| ID | Drain Current <br> Continuous at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ <br> Continuous at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$ <br> Pulsed | $\begin{aligned} & 1.5 \\ & 1.0 \\ & 6.0 \end{aligned}$ | $\begin{aligned} & 1.4 \\ & 0.9 \\ & 5.0 \end{aligned}$ | $\begin{aligned} & 1.3 \\ & 0.8 \\ & 5.0 \end{aligned}$ | A |
| Maximum Thermal Characteristics |  |  |  |  |  |
| $\mathrm{R}_{\theta \text { J }}$ | Thermal Resistance, Junction to Case | 6.4 | 6.4 | 2.5 | - ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{R}_{\text {өJA }}$ | Thermal Resistance, Junction to Ambient | 80 | 80 | 80 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{P}_{\mathrm{D}}$ | Total Power Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 20 | 20 | 50 | W |

Notes
For information concerning connection diagram and package outline, refer to Section 7.

Electrical Characteristics ( $T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics |  |  |  |  |  |
| $\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$ | Drain Source Breakdown Voltage ${ }^{1}$ <br> IRF710/712/MTP2N40 <br> IRF711/713/MTP2N35 |  |  | V | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$ |
|  |  | 400 |  |  |  |
|  |  | 350 |  |  |  |
| ldss | Zero Gate Voltage Drain Current |  | 250 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{DS}}=$ Rated $\mathrm{V}_{\text {DSS }}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  |  |  | 1000 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0.8 \times \text { Rated } \mathrm{V}_{\mathrm{DSS}}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$ |
| IGSS | Gate-Body Leakage Current |  | $\pm 500$ | nA | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |
| On Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{GS} \text { (th) }}$ | Gate Threshold Voltage IRF710-713 MTP2N35/2N40 |  |  | V | $\begin{aligned} & \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}} \\ & \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}} \end{aligned}$ |
|  |  | 2.0 | 4.0 |  |  |
|  |  | 2.0 | 4.5 |  |  |
| $\mathrm{R}_{\mathrm{DS}(0 n)}$ | Static Drain-Source On-Resistance ${ }^{2}$ <br> IRF710/711 <br> IRF712/713/MTP2N35/40 |  |  | $\Omega$ | $V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.8 \mathrm{~A}$ |
|  |  |  | 3.6 |  |  |
|  |  |  | 5.0 |  |  |
| $\mathrm{V}_{\mathrm{DS} \text { (on) }}$ | Drain-Source On-Voltage ${ }^{2}$ MTP2N35/2N40 |  | 13 | V | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.0 \mathrm{~A}$ |
|  |  |  | 10 | V | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~A}, \\ & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$ |
| $\mathrm{g}_{\mathrm{s}}$ | Forward Transconductance | 0.5 |  | S (2) | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.8 \mathrm{~A}$ |

## Dynamic Characteristics

| $C_{\text {iss }}$ | Input Capacitance |  | 200 | pF | $\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ <br> $\mathrm{f}=1.0 \mathrm{MHz}$ |
| :--- | :--- | ---: | ---: | ---: | :--- |
| $\mathrm{C}_{\text {oss }}$ | Output Capacitance |  | 50 | pF |  |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance |  | 15 | pF |  |

Switching Characteristics ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Figures 11,12$)^{3}$

| $t_{d(o n)}$ | Turn-On Delay Time |  | 10 | $n s$ | $V_{D D}=200 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.8 \mathrm{~A}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, R_{G E N}=50 \Omega$ |  |  |  |  |  |
| $\mathrm{t}_{\mathrm{r}}$ | Rise Time |  | 20 | ns | $R_{G S}=50 \Omega$ |

Electrical Characteristics (Cont.) ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Characteristic | Typ | Max | Unit | Test Conditions |
| :--- | :---: | :---: | :---: | :---: | :---: |

Source-Drain Diode Characteristics

| $V_{S D}$ | Diode Forward Voltage <br> IRF710/711 <br> IRF712/713 |  |  |  |  | $\begin{aligned} & \mathrm{I}_{\mathrm{S}}=1.5 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{S}}=1.3 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 1.6 | V |  |
|  |  |  |  | 1.5 | V |  |
| $\mathrm{t}_{\text {rr }}$ | Reverse Recovery Time |  | 380 |  | ns | $\mathrm{I}_{\mathrm{S}}=1.5 \mathrm{~A} ; \mathrm{dl}_{\mathrm{S}} / \mathrm{dt}=25 \mathrm{~A} / \mu \mathrm{S}$ |

Notes

1. $T_{J}=+25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
2. Pulse test: Pulse width $\leqslant 80 \mu \mathrm{~s}$, Duty cycle $\leqslant 1 \%$
3. Switching time measurements performed on LEM TR-58 test equipment.

## Typical Performance Curves

Figure 1 Output Characteristics


Figure 3 Transfer Characteristics


Figure 2 Static Drain to Source Resistance vs Drain Current


Figure 4 Temperature Variation of Gate to Source Threshold Voltage


## IRF710-713 <br> MTP2N35/2N40

## Typical Performance Curves (Cont.)

Figure 5 Capacitance vs Drain to Source Voltage

$V_{\text {DS }}$-DRAIN TO SOURCE VOLTAGE- $v$

Figure 7 Forward Biased Safe Operating Area for MTP2N35/2N40


Figure 9 Forward Biased Safe Operating Area for IRF710-713


Figure 6 Gate to Source Voltage vs Total Gate Charge


Figure 8 Transient Thermal Resistance vs Time for MTP2N35/2N40


PC1 1051 F
Figure 10 Transient Thermal Resistance for IRF710-713


Typical Electrical Characteristics
Figure 11 Switching Test Circuit


Figure 12 Switching Waveforms





FAIRCHILD
A Schlumberger Company


## Eectrical Characteristics

Ultra-Fast Rectifier Dice

Power And Discrete Division

## escription

These devices are ultrafast, reverse recovery, epitaxial recThe lice dice are manufactured to the same high quality stan dards used in Fairchild's standard series of TO-204 and --220 offerings

V-200 VRRM
Ultrafast 35ns Recovery Times

- Soft Recovery ( $\mathrm{S}>0.5$ )

Low Recovery Currents
Low Forward Voltage Drops

## FRC Series

FRC Series
Ultrafast Rectifier Dice

Die Dimensions


## Probe Testing

Each die is probed and electrically tested to the limits specified in the Electrical Characteristics Table. However, high current parameters and thermal characteristics specified in the packaged device data sheets cannot be tested or guaranteed in die form because of the power dissipation limits of unmounted die and current handling limits of probe tips. These parameters are:

## Thermal Resistance

Forward Voltage Drop at Rated Current<br>Reverse Recovery Characteristics at Rated Current<br>\section*{Surge Current}

## Metallization

The cathode metallization on all rectifier dice is chromiumsilver, deposited to an approximate thickness of 9,000 Angstroms. This metallization is suitable for die mounting using a variety of solders, such as $95 / 5 \mathrm{~Pb} / \mathrm{Sn}, 92.5 / 5.0 / 2.5$ $\mathrm{Pb} / \mathrm{In} / \mathrm{Ag}, 92.5 / 5.0 / 2.5 \mathrm{~Pb} / \mathrm{Sn} / \mathrm{Ag}$ and $65 / 25 / 10 \mathrm{Sn} / \mathrm{Ag} / \mathrm{Sb}$.

The wire bonding metallization for the anode connection is aluminum with a $1 \%$ silicon content. This metallization is deposited to a minimum thickness of 6 microns.

## R072



Notes:

1. Dimension Tolerances $\pm 0.0005$ in. $(0.013 \mathrm{~mm})$
2. Thickness of all die types is 0.010 in . $(250 \mu)$

## Packaging and Handling

All rectifier dice are supplied in plastic trays (also known as waffle pack) with cavities to contain the dice. The trays and their covers are made from STAT-PRO ${ }^{\text {TM }} 150$, which is a black, conductive, glass-filled polypropylene. The trays are 4 inches square and contain 100 of either type dice.

Dice should be handled with Teflon ${ }^{\text {TM }}$ tipped vacuum pencils to prevent mechanical damage.

## Storage

Upon receipt of the dice, they should be stored as soon as practical in an inert atmosphere, such as dry nitrogen, to prevent oxidation of the bond pad and solder mountdown areas.

## Wire Bonding

Ultra-sonic bonding using aluminum wire with an elongation of $10 \%$ is recommended for making electrical connections to the anode bonding pad of the dice. Optimum wire sizes for this bonding have been chosen based on surge current ratings of encapsulated dice and are shown in the following table:

| Die Type | Anode Wire Diameter (in.) |
| :--- | :---: |
| FRC8_- | 0.015 in. |
| FRC16_ | $2 \times 0.015$ |
|  | or 0.020 |

Die Mounting and Encapsulation
Refer to IFRC Series (Power MOSFET Dice) for a discussion of mounting and encapsulation considerations.

## Special Requirements

The factory should be consulted regarding requirements for alternate cathode metallization, more stringent visual in-
spections and lot qualification by quality conformance inspection of encapsulated dice.

Fairchild would be pleased to consider any other special requirements.

## IRFC Series N -Channel Power MOSFET Dice

## Description

These devices are n-channel, enhancement mode, power MOSFETs supplied in die form for use in hybrid assemblies. The dice described herein are manufactured with the same reliable silicon-gate technology used in Fairchild's standard series of TO-204 and TO-220 packaged power MOSFETs.

- 50 V to $500 \mathrm{~V}, \mathrm{~V}_{\mathrm{DSS}}$ Ratings
- Up to 40 A $\mathrm{I}_{\mathrm{D}(\max )}$
- Down to $55 \mathrm{~m} \Omega \mathrm{R}_{\mathrm{DS}(o n)}$ maximum
- High Density Cell Design
- Silicon Nitride Passivated
- Chromium-Silver Back Metal


Table 1 Electrical Characteristics (at $25^{\circ} \mathrm{C}$ Ambient Temperature)

| Part Number | $V_{\text {DSS }}$ <br> (V) | $\mathrm{I}_{\mathrm{DSS}}$ at $\mathrm{V}_{\mathrm{DSS}}$ ( $\mu \mathrm{A}$ ) | Die Size Ref. | $\mathrm{R}_{\mathrm{DS}(\text { (on) }}$ at $I_{D}=2.0 \mathrm{~A}$ \& $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$ $(\Omega)$ | $\begin{gathered} \text { l}_{\text {GSS }} \text { at } \\ \mathrm{V}_{\text {GS }}=20 \mathrm{~V} \\ (\mathrm{nA}) \end{gathered}$ | $\begin{gathered} V_{G S(\text { th })} \text { at } \\ I_{D}=250 \mu A \\ \& V_{D S}=V_{G S} \\ (V) \end{gathered}$ |  | Data Sheet For <br> Electrical <br> Characteristics |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min | Max |  | Max | Max | Min | Max |  |
| FMC20N05 | 50 | 250 | DB2 | 0.085 | 100 | 2.0 | 4.0 | FMP20N05 |
| IRFC110 | 100 | 250 | D01 | 0.60 | 100 | 2.0 | 4.0 | IRF510 |
| IRFC120 | 100 | 250 | D02 | 0.30 | 100 | 2.0 | 4.0 | IRF120 |
| IRFC130 | 100 | 250 | D03 | 0.18 | 100 | 2.0 | 4.0 | IRF130 |
| IRFC140 | 100 | 250 | D04 | 0.085 | 100 | 2.0 | 4.0 | IRF140 |
| IRFC150 | 100 | 250 | D05 | 0.055 | 100 | 2.0 | 4.0 | IRF150 |
| IRFC210 | 200 | 250 | D01 | 1.50 | 100 | 2.0 | 4.0 | IRF610 |
| IRFC220 | 200 | 250 | D02 | 0.80 | 100 | 2.0 | 4.0 | IRF220 |
| IRFC230 | 200 | 250 | D03 | 0.40 | 100 | 2.0 | 4.0 | IRF230 |
| IRFC240 | 200 | 250 | D04 | 0.18 | 100 | 2.0 | 4.0 | IRF240 |
| IRFC250 | 200 | 250 | D05 | 0.085 | 100 | 2.0 | 4.0 | IRF250 |
| IRFC310 | 400 | 250 | D01 | 3.60 | 100 | 2.0 | 4.0 | IRF710 |
| IRFC320 | 400 | 250 | D02 | 1.80 | 100 | 2.0 | 4.0 | IRF320 |
| IRFC330 | 400 | 250 | D03 | 1.00 | 100 | 2.0 | 4.0 | IRF330 |
| IRFC340 | 400 | 250 | D04 | 0.55 | 100 | 2.0 | 4.0 | IRF340 |
| IRFC350 | 400 | 250 | D05 | 0.30 | 100 | 2.0 | 4.0 | IRF350 |
| IRFC420 | 500 | 250 | D02 | 3.00 | 100 | 2.0 | 4.0 | IRF420 |
| IRFC430 | 500 | 250 | D03 | 1.50 | 100 | 2.0 | 4.0 | IRF430 |
| IRFC440 | 500 | 250 | D04 | 0.85 | 100 | 2.0 | 4.0 | IRF440 |
| IRFC450 | 500 | 250 | D05 | 0.40 | 100 | 2.0 | 4.0 | IRF450 |

## Probe Testing

Each die is probed and electrically tested to the limits specified in the preceding table. However, because of power dissipation limitations imposed by testing the dice unmounted, certain DC and thermal parameters specified in the packaged device data sheets cannot be tested and guaranteed in die form.

These parameters, which also depend on the user's die mounting methods and materials, are:

| Power Dissipation | $\mathrm{P}_{\mathrm{D}}$ |
| :--- | :--- |
| Thermal Resistance | $\mathrm{R}_{\text {өJC }}$ |
| Safe Operating Area | SOA |
| On Resistance at Rated Current | $\mathrm{R}_{\mathrm{DS}(\text { on) }}$ |

On resistance is, however, tested and guaranteed at a drain current of 1.0 A as shown in the Table 1.

The following parameters can be guaranteed by design to meet the limits specified in the appropriate packaged device data sheets:

| Forward Transconductance | $\mathrm{g}_{\mathrm{fs}}$ |
| :--- | :--- |
| Input Capacitance | $\mathrm{C}_{\mathrm{iss}}$ |
| Output Capacitance | $\mathrm{C}_{\mathrm{oss}}$ |
| Reverse Transfer Capacitance | $\mathrm{C}_{\mathrm{rss}}$ |
| Turn-on Delay Time | $\mathrm{t}_{\mathrm{d}(\mathrm{on})}$ |
| Rise Time | $\mathrm{t}_{\mathrm{r}}$ |
| Turn-off Delay Time | $\mathrm{t}_{\mathrm{d}(\mathrm{off})}$ |
| Fall Time | $\mathrm{t}_{\mathrm{f}}$ |
| Total Gate Charge | $\mathrm{Q}_{\mathrm{g}}$ |

## Visual Inspection

All MOSFET dice are visually screened to a $1.0 \%$ A.Q.L. in accordance with MIL-STD-750, Method 2072 to the extent that this method is applicable to MOSFET dice. Fairchild's die visual inspection specification (NRP-127575) is available upon request.
$100 \%$ die visual inspection is available as an option. See special requirements.

## Metallization

The drain metallization on all MOSFET dice is chromiumsilver, deposited to a thickness of approximately 9,000 Angstroms. This metallization is suitable for die mounting using a variety of solders, such as $95 / 5 \mathrm{~Pb} / \mathrm{Sn}$, $92.5 / 5.0 / 2.5 \mathrm{~Pb} / \mathrm{In} / \mathrm{Ag}, 92.5 / 5.0 / 2.5 \mathrm{~Pb} / \mathrm{Sn} / \mathrm{Ag}$ and 65/25/10 Sn/Ag/Sb.

The exposed bonding pads for source and gate connections of the dice are aluminum with a $1 \%$ silicon content This metallization is deposited to a minimum thickness of 20,000 Angstroms.

## Packaging and Handling

All MOSFET dice are supplied in plastic trays with cavities which contain the dice (sometimes known as waffle pack). The trays are two inches by two inches and full trays contain the following number of dice:

| Die Size Reference | Quantity |
| :---: | :---: |
| D01 | 100 |
| D02 | 100 |
| DB2 | 100 |
| D03 | 49 |
| D04 | 36 |
| D05 | 36 |

The trays and their covers are made from STAT-PRO ${ }^{\text {TM }}$ 150 which is a black, conductive, glass-filled polypropylene.

The tray/cover combination is held together with natural polypropylene retaining clips and shipped in an electrostatic shielding bag. Extreme care should be taken when removing the clips to ensure that the tray and cover are not separated. Only after the clips have been remove should the cover be carefully lifted from the tray in order to access the dice.

Dice should be handled with Teflon ${ }^{\text {TM }}$ tipped vacuum pencils at ESD work station to prevent mechanical and ESD damage.

## Storage

Upon removal of the retaining clips and cover from the tray, the dice must be stored in an inert atmosphere as soon as possible, such as dry nitrogen, to prevent oxidation of the bond pad areas.

## Die Mounting

All of the commonly used header and substrate materials, such as copper, nickel-plated copper and gold-plated molybdenum, beryllia and alumina, are acceptable for die mounting. The substrate should be freed of oxides prior to assembly either by chemical cleaning or pre-firing in a reducing atmosphere.

Before die attach, it is recommended that the dice be cleaned by using a one minute de-ionized water wash followed by two one minute rinses in an iso-propyl alcohol agitated bath. Drying should be accomplished in a $70^{\circ} \mathrm{C}$ nitrogen chamber.

Die mounting, using a suitable preform, is generally achieved using a profiled belt furnace in a hydrogen, forming gas or nitrogen atmosphere. Although the zone temperature settings will depend on the mass of the assembly and fixturing and the belt speed, the die temperature must not exceed $400^{\circ} \mathrm{C}$.

IRFC Series
N-Channel Power MOSFET Dice

Other die mounting methods, including the use of conductive epoxies, may be used but their limitations and effects on the device performance should be clearly understood.

## Wire Bonding

Ultra-sonic bonding using aluminum wire with an elongation of $10 \%$ is recommended for making electrical connections to the source and gate bonding pads of the dice.

Optimum wire sizes for wire bonding are shown in the following table:

| Die Type | Source Wire Dia. <br> (Inches) | Gate Wire Dia. <br> (Inches) |
| :--- | :---: | :---: |
| FMC20N05 | 0.015 | 0.006 |
| IRFC110 | 0.006 | 0.006 |
| IRFC120 | 0.006 | 0.006 |
| IRFC130 | 0.010 | 0.008 |
| IRFC140 | 0.015 | 0.008 |
| IRFC150 | 0.020 | 0.008 |
| IRFC210 | 0.006 | 0.006 |
| IRFC220 | 0.006 | 0.006 |
| IRFC230 | 0.008 | 0.008 |
| IRFC240 | 0.015 | 0.008 |
| IRFC250 | 0.020 | 0.008 |
| IRFC310 | 0.006 | 0.006 |
| IRFC320 | 0.006 | 0.006 |
| IRFC330 | 0.008 | 0.008 |
| IRFC340 | 0.015 | 0.008 |
| IRFC350 | 0.015 | 0.008 |
| IRFC420 | 0.006 | 0.006 |
| IRFC430 | 0.008 | 0.008 |
| IRFC440 | 0.015 | 0.008 |
| IRFC450 | 0.015 | 0.008 |

Wire size may be varied but account must be taken of bond pad size (maximum limit) and current handling requirements (minimum limit).

## Encapsulation

Prior to encapsulation, the die and assembly should be maintained in a moisture free environment since leakage currents are particularly sensitive to the presence of moisture on the die surface.

For high voltage devices (IRFC420, IRFC430, IRFC440 and IRFC450), it is recommended that a high grade silicone conformal coating, such as Dow Corning R-6101, be used to cover the die and die bond wire structures. This coating will eliminate any possibility of die surface discharge through ionization in the high voltage dice.

For all other die types, if the final package is to be nonhermetic, a coating such as Dow Corning RTV3140 or
equivalent is recommended to be similarly applied. For hermetic packages, this coating is optional.

Cleaning of the die/assembly in a Freon vapor degreaser is also recommended prior to the application of any coatings.

Immediately prior to encapsulation, a two hour, $150^{\circ} \mathrm{C}$ bake should be performed to remove any accumulated surface moisture from assemblies containing both coated and uncoated dice.

## Special Requirements

The factory should be consulted regarding requirements for alternate back metallization, more stringent visual inspections and lot qualification by quality conformance inspection of encapsulated dice.

Fairchild would also be pleased to consider any other spe cial requirements.

Power MOSFET Die Industry Cross-Reference

| Industry Type | Fairchild Equivalent |
| :---: | :---: |
| IRFC113 | IRFC110 |
| IRFC123 | IRFC120 |
| IRFC133 | IRFC130 |
| IRFC143 | IRFC140 |
| IRFC153 | IRFC150 |
| IRFC213 | IRFC210 |
| IRFC223 | IRFC220 |
| IRFC233 | IRFC230 |
| IRFC243 | IRFC240 |
| IRFC253 | IRFC250 |
| IRFC313 | IRFC310 |
| IRFC323 | IRFC320 |
| IRFC333 | IRFC330 |
| IRFC343 | IRFC340 |
| IRFC353 | IRFC350 |
| IRFC423 | IRFC420 |
| IRFC433 | IRFC430 |
| IRFC443 | IRFC440 |
| IRFC453 | IRFC450 |
| MTC2N18 | IRFC210 |
| MTC2N20 | IRFC210 |
| MTC2N35 | IRFC310 |
| MTC2N40 | IRFC310 |
| MTC2N45 | IRFC420 |
|  |  |
|  |  |

## IRFC Series <br> N-Channel Power MOSFET Dice

Power MOSFET Die Industry Cross-Reference (Cont.)

| Industry Type | Fairchild Equivalent | Industry Type | Fairchild Equivalent |
| :---: | :---: | :---: | :---: |
| MTC2N50 | IRFC420 | MTC15N05 | FMD20N05 |
| MTC4N08 | IRFC110 | MTC15N20 | IRFC240 |
| MTC4N10 | IRFC110 | MTC15N35 | IRFC350 |
| MTC4N45 | IRFC430 | MTC15N40 | IRFC350 |
| MTC4N50 | IRFC430 | MTC15N45 | IRFC450 |
| MTC5N18 | IRFC220 | MTC15N50 | IRFC450 |
| MTC5N20 | IRFC220 | MTC30N18 | IRFC250 |
| MTC5N35 | IRFC330 | MTC30N20 | IRFC250 |
| MTC5N40 | IRFC330 | MTC40N08 | IRFC150 |
| MTC7N45 | IRFC440 | MTC40N10 | IRFC150 |
| MTC7N50 | IRFC440 | PCF3N45 | PRFC420 |
| MTC8N08 | IRFC120 | PCF8N18 | PCF10N45 |
| MTC8N10 | IRFC120 | PCF12N08 | IRFC230 |
| MTC8N18 | IRFC230 | PCF18N08 | IRFC450 |
| MTC8N20 | IRFC230 | PCF25N18 | IRFC130 |
| MTC8N35 | IRFC340 | PCF35N08 | IRFC140 |
| MTC8N40 | IRFC340 | SIRF450 | IRFC250 |
| MTC12N08 | IRFC130 | SIRF451 | IRFC150 |
| MTC12N10 | IRFC130 | SIRF452 | IRFC450 |
| MTC15N18 | IRFC240 | SIRF453 | IRFC450 |
|  |  | IRFC450 |  |



DO2


DO4



DO3


D05


## Notes

1. Dimension Tolerances: $\pm 0.0005$ in
. Overall length and width are reduced by approximately 0.002 inches after sawing.
2. Thickness of all die types is 0.020 inches $\pm 0.002$.

| Index, Selector Guides, <br> Industry Cross Reference | 1 |
| :--- | :---: |
| Power MOSFETs and Ultra-Fast <br> Recovery Rectifier Data Sheets | 2 |
| MOSFET and Rectifier Dice 3 <br> Advanced Products 4 <br> Application Notes/ESD <br> Quality Assurance <br> and Reliability 5 | 6 |


| Ordering Information <br> and Package Outlines | 7 |
| :--- | :--- |



## FAIRCHILD

A Schlumberger Company

## Description

These devices are very low Ros(on), 50 V , n-channel, enhancement mode, power MOSFETs especially designed to serve the low voltage, high speed, switching markets. Typical applications are SMPS for telecommunication and instrumentation, DC motor controls, emitter switching, synchronous rectification, and systems that are operated from low voltage batteries, such as automotive and portable equipment, etc.

- Extremely Low RDS(on)
- $V_{\text {Gs }}$ Rated at $\pm 30 \mathrm{~V}$
- Silicon Gate for Fast Switching Speeds
- Rugged
- Low Drive Requirements
- Ease of Paralleling


## TO-220AB



BUZ71
BUZ71A

## Maximum Ratings



## Maximum On-State Characteristics

| $R_{\text {DS(on) }}$ | Static Drain-to-Source | 0.10 | 0.12 | $\Omega$ |
| :--- | :--- | :---: | :---: | :---: |
| On Resistance |  |  |  |  |
|  | Drain Current | 14 | 13 | A |
|  | Continuous | 48 | 48 |  |

Maximum Thermal Characteristics

| $R_{\text {日JC }}$ | Thermal Resistance, <br> Junction to Case | 3.1 | 3.1 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :---: | :---: | :---: |
| $\mathrm{PD}_{\mathrm{D}}$ | Total Power Dissipation <br> at $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 40 | 40 | W |

Electrical Characteristics $\left(T_{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

| Symbol | Characteristic | Min | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\text {(BR) }{ }^{\text {dss }}}$ | Drain Source Breakdown Voltage ${ }^{1}$ | 50 |  | V | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$ |
| IdSs | Zero Gate Voltage Drain Current |  | 250 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{DS}}=$ Rated $\mathrm{V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
|  |  |  | 1000 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{D S}=\text { Rated } V_{D S S}, \\ & V_{G S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$ |
| IGSS | Gate-Body Leakage Current |  | $\pm 100$ | nA | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |
| On Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{GS} \text { (th) }}$ | Gate Threshold Voltage | 2.1 | 4.0 | V | $\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$ |
| $\mathrm{R}_{\mathrm{DS} \text { (on) }}$ | Static Drain-Source On-Resistance ${ }^{2}$ <br> BUZ71 <br> BUZ71A |  |  | $\Omega$ | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=6.0 \mathrm{~A}$ |
|  |  |  | 0.10 |  |  |
|  |  |  | 0.12 |  |  |
| $\mathrm{g}_{\text {fs }}$ | Forward Transconductance | 3 |  | S | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=6 \mathrm{~A}$ |
| Dynamic Characteristics |  |  |  |  |  |
| $\mathrm{C}_{\text {iss }}$ | Input Capacitance |  | 650 | pF | $\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$ |
| $\mathrm{C}_{\text {oss }}$ | Output Capacitance |  | 450 | pF |  |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance |  | 280 | pF |  |
| Switching Characteristics ( $\left.\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)^{3}$ |  |  |  |  |  |
| $\mathrm{t}_{\mathrm{d} \text { (on) }}$ | Turn-On Delay Time |  | 30 | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=50 \Omega \\ & \mathrm{R}_{\mathrm{GS}}=50 \Omega \end{aligned}$ |
| $\mathrm{tr}_{\mathrm{r}}$ | Rise Time |  | 85 | ns |  |
| $\mathrm{t}_{\mathrm{d} \text { (off) }}$ | Turn-Off Delay Time |  | 90 | ns |  |
| $t_{f}$ | Fall Time |  | 110 | ns |  |
| $Q_{g}$ | Total Gate Charge |  | 20 | $n \mathrm{C}$ | $\begin{aligned} & V_{G S}=10 \mathrm{~V}, I_{D}=12 \mathrm{~A} \\ & V_{D D}=40 \mathrm{~V} \end{aligned}$ |
|  |  |  |  |  |  |
| Symbol | Characteristic | Typ | Max | Unit | Test Conditions |
| Source-Drain Diode Characteristics |  |  |  |  |  |
| $\mathrm{V}_{\text {SD }}$ | Diode Forward Voltage |  | 2.2 | V | $\mathrm{I}_{\mathrm{S}}=12 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
| $\mathrm{t}_{\mathrm{rr}}$ | Reverse Recovery Time | 120 |  | ns | $\mathrm{I}_{\mathrm{S}}=12 \mathrm{~A} ; \mathrm{dl}_{\mathrm{S}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S}$ |

Notes

1. $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
2. Pulse test: Pulse width $\leqslant 80 \mu \mathrm{~s}$, Duty cycle $\leqslant 1 \%$
3. Switching time measurements performed on LEM TR-58 test equipment.

## FAIRCHILD

A Schlumberger Company

Description
These devices are very low $R_{\mathrm{DS}(o n)}, 50 \mathrm{~V}$, n-channel, enhancement mode, power MOSFETs especially designed to serve the low voltage, high speed, switching markets. Typical applications are SMPS for telecommunication and instrumentation, DC motor controls, emitter switching, synchronous rectification, and systems that are operated from low voltage batteries, such as automotive and portable equipment, etc.

- Extremely Low $\mathrm{R}_{\mathrm{DS}(o n)}$
- $\mathrm{V}_{\mathrm{Gs}}$ Rated at $\pm 30 \mathrm{~V}$
- Silicon Gate for Fast Switching Speeds
- Rugged
- Low Drive Requirements
- Ease of Paralleling


## TO-220AB



## FMP35N05

FMP30N05

## Maximum Ratings

| Symbol | Characteristic | Rating FMP35N05 | Rating FMP30N05 | Unit |
| :---: | :---: | :---: | :---: | :---: |
| V DSS | Drain to Source Voltage | 50 | 50 | V |
| $V_{\text {DGR }}$ | Drain to Gate Voltage $\mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega$ | 50 | 50 | V |
| $\mathrm{V}_{\mathrm{GS}}$ | Gate to Source Voltage | $\pm 30$ | $\pm 30$ | V |
| $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | Operating Junction and Storage Temperatures | -55 to +150 | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s | 300 | 300 | ${ }^{\circ} \mathrm{C}$ |
| Maximum On-State Characteristics |  |  |  |  |
|  |  | FMP35N05 | FMP30N05 |  |
| $\mathrm{R}_{\text {DS(on) }}$ | Static Drain-to-Source On Resistance | 0.04 | 0.05 | $\Omega$ |
| ID | Drain Current <br> Continuous at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ <br> Continuous at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$ | $\begin{aligned} & 35 \\ & 22 \end{aligned}$ | $\begin{aligned} & 30 \\ & 20 \end{aligned}$ | A |
| Maximum Thermal Characteristics |  |  |  |  |
| $\mathrm{R}_{\text {өJC }}$ | Thermal Resistance, Junction to Case | 1.25 | 1.25 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{R}_{\theta \mathrm{JA}}$ | Thermal Resistance, Junction to Ambient | 60 | 60 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $P_{D}$ | Total Power Dissipation at $T_{C}=25^{\circ} \mathrm{C}$ | 100 | 100 | W |

## Description

Designed for use in switching power supplies, inverters and as free-wheeling diodes, these state-of-the-art devices have the following features:

Soft Recovery ( $\mathbf{~}>0.5$ )

- Low $I_{\text {R(REC) }}$
- $150^{\circ} \mathrm{C}$ Operating Junction Temperature
- Popular TO-220AC Package

TO-220AC


FRP860 FRP850
FRP840

Maximum Ratings

| Symbol | Rating | FRP860 | FRP850 | FRP840 | Unit |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $V_{\text {RRM }}$ | Peak Repetitive Reverse Voltage | 600 | 500 | 400 |  |
| $V_{\text {RSM }}$ | Non-repetitive Peak Reverse Voltage | 600 | 500 | 400 |  |
| $V_{R}$ | DC Blocking Voltage |  |  |  |  |

## Thermal Characteristics

| $\mathrm{R}_{\text {өJc }}$ | Maximum Thermal Resistance, <br> Junction to Case | 2.0 | 2.0 | 2.0 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

## Electrical Characteristics

| $\mathrm{V}_{\mathrm{FM}}{ }^{(1)}$ | Maximum Instantaneous Forward Voltage $\mathrm{I}_{\mathrm{F}}=8.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 1.5 | 1.5 | 1.5 | V |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{IRRM}^{(1)}$ | Maximum Instantaneous Repetitive Reverse Current <br> Rated DC Voltage, $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ <br> Rated DC Voltage, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | $\begin{aligned} & 2.0 \\ & 25 \end{aligned}$ | $\begin{aligned} & 2.0 \\ & 25 \end{aligned}$ | $\begin{aligned} & 2.0 \\ & 25 \end{aligned}$ | ${ }_{\mu \mathrm{A}}^{\mathrm{m}}$ |
| $t_{\text {rr }}$ | Maximum Reverse Recovery Time $\mathrm{I}_{\mathrm{F}}=8 \mathrm{~A} ; \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S}$ | 75 | 75 | 75 | ns |
| $\mathrm{I}_{\text {R(REC })}$ | Maximum Reverse Recovery Current $\begin{aligned} & \mathrm{I}_{\mathrm{F}}=8 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}, \\ & \mathrm{~V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RRM}} \end{aligned}$ | 5.0 | 5.0 | 5.0 | A |

1. Pulse Test: Pulse Width $=300 \mu$ S. Duty Cycle $\leqslant 2.0 \%$.

## FAIRCHILD

A Schlumberger Company

## Advance Information

## Description

Designed for use in switching power supplies, inverters and as free-wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 35 ns Reverse Recovery Time
- Soft Recovery ( $\mathrm{S}>0.5$ )
- Low IR(REC)
- $150^{\circ} \mathrm{C}$ Operating Junction Temperature

FR3200CC Series Ultra-Fast POWERplanar ${ }^{\text {TM }}$ Rectifiers

Power And Discrete Division

TO-247


## Maximum Ratings

| Symbol | Rating | FRP3205CC | FRP3210CC | FRP3215CC | FRP3220CC | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{\text {RRM }}$ <br> $\mathrm{V}_{\text {RSM }}$ $V_{R}$ | Peak Repetitive Reverse Voltage Non-repetitive Peak Reverse Voltage DC Blocking Voltage | $\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & \hline \end{aligned}$ | $\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$ | $\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$ | $\begin{aligned} & 180 \\ & 200 \\ & 180 \end{aligned}$ | V |
| $I_{\text {F (AV) }}$ | Average Rectified Forward Current, $\mathrm{T}_{\mathrm{C}}=130^{\circ} \mathrm{C}$, Rated $\mathrm{V}_{\mathrm{R}}$ | 32 | 32 | 32 | 32 | A |
| $I_{\text {FRM }}$ | Peak Repetitive Forward Current Rated $\mathrm{V}_{\mathrm{R}}, 50 \%$ Duty Cycle, Square Wave, $20 \mathrm{kHz}, \mathrm{T}_{\mathrm{C}}=107^{\circ} \mathrm{C}$ | 64 | 64 | 64 | ca 64 | A |
| $\mathrm{I}_{\text {FSM }}$ | Non-repetitive Peak Surge Current per Diode, Surge Applied at Rate Load Conditions Halfwave, Single Phase, 60 Hz | 200 | 200 | 200 | $200$ | A |
| $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | Operating Junction Temperature and Storage Temperature | $\begin{aligned} & -55 \text { to } \\ & +150 \end{aligned}$ | $\begin{aligned} & -55 \text { to } \\ & +150 \end{aligned}$ | $\begin{aligned} & -55 \text { to } \\ & +150 \end{aligned}$ | $\begin{aligned} & -55 \text { to } \\ & +150 \end{aligned}$ | ${ }^{\circ} \mathrm{C}$ |

Thermal Characteristics

| $R_{\text {日JC }}$ | Maximum Thermal Resistance, <br> Junction to Case | 1.0 | 1.0 | 1.0 | 1.0 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{R}_{\text {өJA }}$ | Maximum Thermal Resistance, <br> Junction to Ambient | 60 | 60 | 60 | 60 |  |

## Electrical Characteristics per Diode

| $\mathrm{V}_{\mathrm{FM}}{ }^{(1)}$ | Maximum Instantaneous Forward Voltage $\begin{aligned} & I_{F}=16 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C} \\ & I_{F}=16 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & 0.80 \\ & 0.95 \end{aligned}$ | V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{IRRM}^{(1)}$ | Maximum Instantaneous Repetitive Reverse Current <br> Rated DC Voltage, $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ <br> Rated DC Voltage, $T_{C}=25^{\circ} \mathrm{C}$ | $\begin{aligned} & 10 \\ & 25 \end{aligned}$ | $\begin{gathered} \mathrm{mA} \\ \mu \mathrm{~A} \end{gathered}$ |
| $\mathrm{t}_{\text {rr }}$ | Maximum Reverse Recovery Time $\begin{aligned} & \mathrm{I}_{F}=1.0 \mathrm{~A} ; \mathrm{dl}_{F} / \mathrm{dt}=50 \mathrm{~A} / \mu \mathrm{S} \\ & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~A} ; \mathrm{dl}_{F} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S} \end{aligned}$ | $\begin{aligned} & 35 \\ & 50 \end{aligned}$ | ns |
| $I_{\text {R(REC })}$ | Maximum Reverse Recovery Current $\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}, \\ & \mathrm{~V}_{\mathrm{R}}=\mathrm{V}_{\text {RRM }} \end{aligned}$ | 2.5 | 2.5 | 2.5 | 2.5 | A |

1. Pulse Test: Pulse Width $=300 \mu$ S. Duty Cycle $\leqslant 2.0 \%$.

## FAIRCHILD

A Schlumberger Company

## TO-247 Encapsulated N-Channel Power MOSFETs, 8-60 A, 50-500 V

## Power And Discrete Division

## Description

These high power n-channel MOSFETs are encapsulated in a TO-247 housing to attain superior thermal and current handling performance in comparison to their TO-204 counterparts. The TO-247 case facilitates their mounting on a PC board, attaching them to heat sinks and meeting UL and VDE safety requirements. The electrical performance of the die can be found in the specification sheets bearing the part number listed below minus the middle letter " P ", eg. consult the IRF440 specification for the electrical characteristics of the IRFP440 part.

- Isolated mounting hole
- Vertical mounting
- $0.10^{\prime \prime}$ creep and strike distances
- All copper header


## Product Summary

| Part Number | $V_{\text {DSS }}$ <br> (V) | $\mathrm{R}_{\mathrm{DS}(\text { (on) }}$ (Ohms) | $\begin{gathered} \mathrm{I}_{\mathrm{D}} \text { at } \\ \mathbf{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{gathered}$ <br> (A) | $\begin{gathered} P_{D} \text { at } \\ \mathrm{T}_{\mathrm{C}}^{=}=25^{\circ} \mathrm{C} \\ (\mathrm{~W}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| FMP60N05 | 50 V | $0.025 \Omega$ | 60 A | 150 W |
| FMP55N05 | 50 V | $0.030 \Omega$ | 55 A | 150 W |
| IRFP151 | 60 V | $0.055 \Omega$ | 45 A | 250 W |
| IRFP153 | 60 V | $0.080 \Omega$ | 38 A | 250 W |
| IRFP141 | 60 V | $0.085 \Omega$ | 28 A | 150 W |
| IRFP143 | 60 V | $0.110 \Omega$ | 26 A | 150 W |
| IRFP150 | 100 V | $0.055 \Omega$ | 45 A | 250 W |
| IRFP152 | 100 V | $0.080 \Omega$ | 38 A | 250 W |
| IRFP140 | 100 V | $0.085 \Omega$ | 28 A | 150 W |
| IRFP142 | 100 V | $0.110 \Omega$ | 26 A | 150 W |
| IRFP251 | 150 V | $0.085 \Omega$ | 38 A | 250 W |
| IRFP253 | 150 V | $0.120 \Omega$ | 32 A | 250 W |
| IRFP241 | 150 V | $0.180 \Omega$ | 20 A | 150 W |
| IRFP243 | 150 V | $0.220 \Omega$ | 18 A | 150 W |
| IRFP250 | 200 V | $0.085 \Omega$ | 38 A | 250 W |
| IRFP252 | 200 V | $0.120 \Omega$ | 38 A | 250 W |
| IRFP240 | 200 V | $0.180 \Omega$ | 20 A | 150 W |

TO-247


1500050F

| Part Number | VDSS <br> (V) | $\mathrm{R}_{\mathrm{DS}(\text { on })}$ (Ohms) | $\begin{gathered} \mathrm{I}_{\mathrm{D}} \text { at } \\ \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{gathered}$ <br> (A) | $\begin{gathered} \mathrm{P}_{\mathrm{D}} \text { at } \\ \mathrm{T}_{\mathrm{C}}^{=}=25^{\circ} \mathrm{C} \\ (\mathrm{~W}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| IRFP242 | 200 V | $0.220 \Omega$ | 18 A | 150 W |
| IRFP351 | 350 V | $0.300 \Omega$ | 20 A | 250 W |
| IRFP353 | 350 V | $0.400 \Omega$ | 17 A | 250 W |
| IRFP341 | 350 V | $0.550 \Omega$ | 11 A | 150 W |
| IRFP343 | 350 V | $0.800 \Omega$ | 9 A | 150 W |
| IRFP350 | 400 V | $0.300 \Omega$ | 20 A | 250 W |
| IRFP352 | 400 V | $0.400 \Omega$ | 17 A | 250 W |
| IRFP340 | 400 V | $0.550 \Omega$ | 11 A | 150 W |
| IRFP342 | 400 V | $0.800 \Omega$ | 9 A | 150 W |
| IRFP451 | 450 V | $0.400 \Omega$ | 17 A | 250 W |
| IRFP453 | 450 V | $0.500 \Omega$ | 15 A | 250 W |
| IRFP441 | 450 V | $0.850 \Omega$ | 9 A | 150 W |
| IRFP443 | 450 V | $1.100 \Omega$ | 8 A | 150 W |
| IRFP450 | 500 V | $0.400 \Omega$ | 17 A | 250 W |
| IRFP452 | 500 V | $0.500 \Omega$ | 15 A | 250 W |
| IRFP440 | 500 V | $0.850 \Omega$ | 9 A | 150 W |
| IRFP442 | 500 V | $1.100 \Omega$ | 8 A | 150 W |


| Index, Selector Guides, <br> Industry Cross Reference | 1 |
| :--- | :--- |
| Power MOSFETs and Ultra-Fast <br> Recovery Rectifier Data Sheets 2 <br> MOSFET and Rectifier Dice 3 <br> Advanced Products 4 <br> Application Notes/ESD <br> Quality Assurance <br> and Reliability <br> Ordering Information <br> and Package Outlines <br> Field Sales Offices 5 7 |  |



## FAIRCHILD

A Schlumberger Company

## Application Note PD-4

## Introduction

Virtually every piece of electronic equipment, eg. computers and their peripherals, calculators, TV and hi-fi equipment, and instruments, is powered from a DC power source, be it a battery or a DC power supply. Most of this equipment requires not only DC voltage but voltage that is also well filtered and regulated. Since power supplies are so widely used in electronic equipment, these devices now comprise a worldwide segment of the electronics market in excess of $\$ 5$ billion annually.

There are three types of electronic power conversion devices in use today which are classified as follows according to their input and output voltages: 1) the AC/DC power supply; 2) DC/DC converter; 3) the DC/AC inverter. Each has its own area of use but this paper will only deal with the first two, which are the most commonly used.

A power supply converting $A C$ line voltage to $D C$ power must perform the following functions at high efficiency and at low cost:

1) Rectification: Convert the incoming $A C$ line voltage to DC voltage.
2) Voltage transformation: Supply the correct DC voltage level(s).
3) Filtering: Smooth the ripple of the rectified voltage.
4) Regulation: Control the output voltage level to a constant value irrespective of line, load and temperature changes.
5) Isolation: Separate electrically the output from the input voltage source.
6) Protection: Prevent damaging voltage surges from reaching the output; provide back-up power or shut down during a brown-out.

An ideal power supply would be characterized by supplying a smooth and constant output voltage regardless of variations in line voltage, load current or ambient temperature at $100 \%$ conversion efficiency. Figure 1 compares a real power supply to this ideal one and further illustrates some power supply terms.

## Linear Power Supplies

Figure 2 illustrates two common linear power supply circuits in current use. Both circuits employ full-wave rectification to reduce ripple voltage to capacitor C 1 . The bridge rectifier circuit has a simple transformer but current must flow through two diodes. The center-tapped configuration is preferred for low output voltages since there is just one diode voltage drop. For 5 V and 12 V outputs, Schottky barrier diodes are commonly used since they have lower

Power And Discrete Division
Figure 1 Idealized Power Supply

voltage drops than equivalently rated ultra-fast types, which further increases power conversion efficiency. However, each diode must withstand twice the reverse voltage that a diode sees in a full-wave bridge for the same input voltage.

The linear voltage regulator behaves as a variable resistance between the input and the output as it provides the precise output voltage. One of the limitations to the efficiency of this circuit is due to the fact that the linear device must drop the difference in voltage between the input and output. Consequently the power dissipated by the linear device is $\left(V_{i}-V_{0}\right) \times I_{0}$. While these supplies have many desirable characteristics, such as simplicity, low output ripple, excellent line and load regulation, fast response time to load or line changes and low EMI, they suffer from low efficiency and occupy large volumes. Switching power supplies are becoming popular because they offer better solutions to these problems.

## Switching Power Supplies

## Pulse Width Modulation

In the early 60 's, switching regulators started to be designed for the military, who would pay a premium for light weight and efficiency. One way to control average power to a load is to control average voltage applied to it. This can be done by opening and closing a switch in rapid fashion as is being done in Figure 3.

The average voltage seen by the load resistor $R$ is equal to:

$$
\begin{equation*}
V_{o(\text { avg })}=\left(t_{(o n)} / T\right) \times V_{i} \tag{A}
\end{equation*}
$$

Reducing $t_{(o n)}$ reduces $V_{0(a v g)}$. This method of control is referred to as pulse width modulation (PWM).

Figure 2 Linear Voltage Regulator a. Center tap transformer input


Figure 3 Example of Pulse Width Modulation


Figure 4 Buck Regulator Circuit with Voltage and Current Waveforms


## Buck Regulator

As we shall see, there are many different switching voltage regulator designs. The first one to be considered because of its simplicity is the buck regulator (Figure 4), also known as a step-down regulator since the output voltage as given by equation (A) is less than the input voltage. $A$ typical application is to reduce the standard military bus voltage of 28 V to 5 V to power TTL logic.

At time $t_{0}$ in Figure 4, the controller, having sensed that the output voltage $\mathrm{V}_{0}$ is too low, turns on the pass transistor to build up current in L, which also starts to recharge capacitor $C$. At a predetermined level of $\mathrm{V}_{0}$, the controller switches off the pass transistor $Q$, which forces the current to free wheel around the path consisting of L ,
b. Full-wave bridge input


C, and the ultra-fast rectifier D. This effectively transfers the energy stored in the inductor $L$ to the capacitor. Inductor and capacitor sizes are inversely proportional to switching frequency, which accounts for the increasing power density of switching power supplies. Power MOSFETs are rapidly replacing bi-polar transistors as the pass transistor because of their high frequency capability. Since the pass transistor must not only carry load current but reverse recovery current of diode D, an ultra-fast recovery diode is mandatory.

## Boost Regulator

A second type of regulator shown in Figure 5 is capable of boosting the input voltage. Applications for this circuit would be to increase 5 V battery sources to 15 V for CMOS circuits or even to 150 V for electro-luminescent displays.

The concept of this circuit is still the same as the previous, namely to transfer the energy stored in the inductor into the capacitor. The inductor current can ramp up quickly when the transistor switch is closed at time $t_{(0)}$ since the full input voltage is applied to it. The transistor is turned off at time $\mathrm{t}_{(1)}$ which forces the inductor current to charge up the capacitor through the ultra-fast diode D . Since the energy stored in the inductor is equal to $L \times|x| / 2$, the PWM IC can increase $V_{0}$ by increasing its own on-time to increase the peak inductor current before switching. The transfer function is:

$$
V_{0}=V_{\text {in }}\left(T /\left(T-t_{\text {(on })}\right)\right)
$$

Figure 5 Boost Regulator and Associated I/V waveforms


Figure 6 Inverting Regulator and I/V Waveforms


Figure 7 Flyback Converter


## Inverting Regulator

Figure 6 shows a switching circuit which produces an output voltage with the opposite polarity of the input voltage. This circuit works in the same fashion as the boost converter but has achieved the voltage inversion by exchanging positions of the transistor and inductor. The circuit is also known as a buck-boost regulator since the absolute magnitude of the output voltage can be higher or lower than the input voltage, depending upon the ratio of ontime to off-time of the pass transistor.

## Flyback Converter

The three previous regulators are suitable for low voltage control when no electrical isolation is required. However in off-line switchers operating from 110/220 V mains, electri-
cal isolation is an absolute must. This is achieved by using a transformer in place of the inductor. The flyback converter shown in Figure 7 is commonly used in power supplies up through 150 W , which is sufficient for most personal computers, many test instruments, video terminals and the like.

Since the transformer operates at high frequency, its size is much smaller than a $50 / 60 \mathrm{~Hz}$ transformer shown in Figure 2. Within certain frequency limits, transformer size is inversely proportional to frequency.

Inspection of the switching waveforms in Figure 7 shows that the circuit behaves very similarly to the boost regulator. The transformer should be regarded as an inductor with two windings, one for storing energy in the transformer core and the other for dumping the core energy into the output capacitor. Current increases in the primary of the transformer during the on-time of the transistor
$\left.{ }^{(t}(0)-t_{(1)}\right)$ but note that no secondary current flows because the secondary voltage reverse biases diode D . When the transistor turns off, the transformer voltage polarities reverse because its magnetic field wants to maintain current flow. Secondary current can now flow through the diode to charge up the output capacitor. The output voltage is given by the basic PWM equation times the transformer turns ration ( $\mathrm{N} 2 / \mathrm{N} 1$ ):

$$
V_{0}=V_{\text {in }} \times\left(t_{(o n)} /\left(T-t_{(o n)}\right) \times(N 2 / N 1)\right.
$$

Voltage control is achieved by controlling the transistor ontime to control the peak primary current.

The flyback converter is well suited for multiple output and high voltage power supplies since the transformer inductance replaces the filter inductor(s). The major disadvantages which limit its use to lower wattage supplies are:

1. The output ripple voltage is high because of halfwave charging of the output capacitor.
2. The transistor must block $2 \times \mathrm{V}_{\text {in }}$ during turn-off.
3. The transformer is driven in only one direction, which necessitates a larger core, ie more expensive, in a flyback design than for an equivalent design using a forward or push-pull design.

## Off-line Switching Supply

Based on the flyback regulator circuit, a complete off-line switching supply is shown in Figure 8. The supply is called 'off-line" because the DC voltage to the switch is developed right from the AC line.

The circuit also shows the feedback loop completed from the output back to the switching transistor. This feedback loop must have isolation in order for the DC output to be

## Introduction to Power Supplies

Figure 8 Complete flyback switching supply

isolated from the AC line. This is normally accomplished by a small transformer or opto-coupler.

Switching power supplies designed for international usage must have selectable AC input voltage ranges of 115 V and 230 V . Figure 9 shows how this is accomplished for many switching power supplies.

## Forward Converter

Although the forward converter is not as well-known as the flyback converter, it is becoming increasingly popular for power supplies in the 100-500 W range. Figure 10 shows the basic circuit of the forward converter. When the transistor is switched on, current rises linearly in the primary and secondary current also flows through diode D1 into the inductor and capacitor. When the transistor switch is opened, inductor current continues to free-wheel through the capacitor and diode D2. This converter will have less ripple since the capacitor is being continuously charged, an advantage of particular interest in high current supplies.

The relationship between input and output for this circuit configuration is:

$$
\begin{equation*}
V_{0}=V_{\text {in }} \times(N 2 / N 1) \times\left(t_{(O n)} / T\right) \tag{D}
\end{equation*}
$$

Note that the transformer shown in the above figure has been wound with a third winding and series diode D3. The purpose of this winding is to transfer the magnetizing energy in the core back to the DC supply so it does not have to be dissipated in the transistor switch or some other voltage suppressor. The turns ratio N3/N1 limits the peak voltage seen by the transistor and is normally chosen equal to 1 so that the forward converter can run at $50 \%$ duty cycle. Under this condition, the transistor must block $2 \times \mathrm{V}_{\text {in }}$ during turn-off.

Figure 9 Selector switch for 115/230 V inputs


Figure 10 Forward Converter


## Symmetrical Converters

## Push-Pull Converter

The circuit for this best-known and widely used converter is shown in Figure 11.

Transistors Q1 and Q2 are alternately switched on for time period $\mathrm{t}_{(0 n)}$. This subjects the transformer core to an alternating voltage polarity to maximize its usefulness. The transfer function still follows the basic PWM formula but there is the added factor 2 because both transistors alternately conduct for a portion of the switching cycle.

$$
\mathrm{V}_{\mathrm{o}}=2 \times \mathrm{V}_{\text {in }} \times(\mathrm{N} 2 / \mathrm{N} 1) \times(\mathrm{t}(\mathrm{on}) / \mathrm{T})
$$

The presence of a dead time period $t_{(d)}$ is required to avoid having both transistors conduct at the same time, which would be the same as turning the transistors on into a short circuit. The output ripple frequency is twice the operating frequency which reduces the size of the LC filter components. Note the anti-parallel diodes connected across each transistor switch. They perform the same function as diode D3 in the forward converter, namely to return the magnetization energy to the input voltage whenever a transistor turns off.

Compared to the following symmetrical converters, this circuit has the advantage that the transistor switches share a common signal return line. Its chief disadvantages are that the transformer center-tap connection complicates the transformer design and the primary windings must be tightly coupled in order to avoid voltage spikes when each transistor is turning off.

## Half-Bridge Converter

This converter (Figure 12) operates in much the same fashion as the previous push-pull circuit.

The input capacitors C1 and C2 split the input voltage equally so that when either transistor turns on, the transformer primary sees $V_{\text {in }} / 2$. Consequently note no factor of " 2 " in the following transfer equation:

$$
V_{0}=V_{\text {in }} \times(N 2 / N 1) \times\left(t_{(o n)} / T\right)
$$

Since the two transistors are connected in series, they never see more than the input voltage $\mathrm{V}_{\text {in }}$ plus the inevitable switching transient voltages. The necessity of a dead time is even more obvious here since the simultaneous conduction of both transistors results in a dead short across the input supply. Anti-parallel ultra-fast diodes return the magnetization energy as in the push-pull circuit but alternately to capacitors C1 and C2. This circuit has the slight inconvenience of requiring an isolated base drive to Q1, but since most practical base drive circuits use a transformer for isolation, this shortcoming is hardly worth noting.

Figure 11 Push-pull Converter


Figure 12 Half-bridge converter circuit


Figure 13 Full-bridge converter circuit


## Introduction to Power Supplies

## Full-Bridge Converter

Because of its complexity and expense, the full-bridge converter circuit of Figure 13 is reserved for high power converters. Ideally, all voltages are shared equally between two transistors so that the maximum voltage rating of the device can approach $\mathrm{V}_{\mathrm{in}}$.

## Switching vs. Linear Power Supplies

Switching power supplies are becoming popular due to high efficiency and high power density. Table 1 compares some of the salient features of both linear and switching power supplies. Line and load regulation are usually better
with linear supplies, sometimes by as much as an order of magnitude, but switching power supplies frequently use linear post-regulators to improve output regulation.

## DC-DC CONVERTERS

DC-DC converters are widely used to transform and distribute DC power in systems and instruments. DC power is usually available to a system in the form of a system power supply or battery. This power may be in the form of $5 \mathrm{~V}, 28 \mathrm{~V}, 48 \mathrm{~V}$ or other DC voltages. All of the previously discussed circuits are applicable to this type of duty. Since voltages are low, isolation is not usually required.

Table 1: Linear vs. Switching Power Supplies

| Specification | Linear | Switcher |
| :--- | :---: | :---: |
| Line Regulation | $0.02-0.05 \%$ | $0.05-0.1 \%$ |
| Load Regulation | $0.02-0.1 \%$ | $0.1-1.0 \%$ |
| Output Ripple | $0.5-2 \mathrm{mV} \mathrm{RMS}$ | $25-100 \mathrm{mV} \mathrm{P}-\mathrm{P}$ |
| Input Voltage Range | $\pm 10 \%$ | $\pm 20 \%$ |
| Efficiency | $40-55 \%$ | $60-80 \%$ |
| Power Density | $0.5 \mathrm{~W} / \mathrm{cu} . \mathrm{in}$. | $2-5 \mathrm{~W} / \mathrm{cu} . \mathrm{in}$. |
| Transient Recovery | $50 \mu \mathrm{~s}$ | $300 \mu \mathrm{~s}$ |
| Hold-up Time | 2 ms | 30 ms |



## FAIRCHILD

A Schlumberger Company

## Optimizing the Ultra-fast POWERplanar ${ }^{\text {TM }}$ Rectifier Diode for Switching Power Supplies

Ralph E. Locher, Power And Discrete Division

## Application Note PD-1

## Introduction

A key device in all high voltage AC-DC power supplies is the ultrafast, reverse recovery rectifier diode. These diodes (D1 and D2 in Figure 1) not only play a major role in power supply efficiency but also can be major contributors to circuit electromagnetic interference (EMI) and even cause transistor failure if they are not selected correctly. One would assume that by now, this rectifier diode should approximate the behavior of an ideal switch, i.e., zero onstate voltage, no reverse leakage current and instantaneous turn-on. At first glance, the design of this single pn -junction device would appear to be quite straight forward but a review of the device equations reveals that many compromises must be made to optimize its performance. An understanding of these tradeoffs will allow the circuit designer to select the most appropriate rectifier diode.

Consider how the non-ideal behavior of rectifier D2 affects the circuit performance of the buck regulator in Figure 1a. The solid lines in Figure 2a depict the switching behavior of the transistor switch and rectifier in comparison to the waveforms (dashed lines) that represent an ideal rectifier. There are four differences between the two cases:

1. The most significant difference is that the peak collector current of the transistor switch ( $1_{T}$ in Figure 2a) at the end of turn-on (time $\mathrm{t}_{2}$ ) has been increased by the magni-

Figure 1a Buck Regulator to Step-down Input Voltage $\mathrm{V}_{\mathrm{IN}}$


Figure 1b Forward Converter


CROA470
tude of the peak reverse recovery current of the rectifier $\left(I_{R(R E C)}\right)$. Correspondingly, the peak power dissipation within the transistor has increased from $P_{T}$ to $P_{T}^{\prime}$ as shown in Figure 2 c .
2. The maximum transistor voltage $V_{T}$ at turn-off $\left(t_{4}-t_{6}\right.$ in Figure 2a) has been increased by the dynamic voltage drop of the rectifier during turn-on. Since buck regulators generally run at low voltages, this increase has a minimal effect. However, it is more significant in the forward converter circuit of Figure 1b and in bridge circuits operating from high bus voltages where the voltage margins cannot be as generous.

Figure 2 Transistor and Rectifier Voltage and Current Waveforms for the Buck Regulator in Figure 1a
a) Transistor and rectifier voltage waveforms
b) Transistor and rectifier current waveforms
c) Transistor power dissipation
d) Rectifier power dissipation


## Optimizing the Ultra-fast POWERplanar ${ }^{\text {TM }}$ Rectifier Diode for Switching Power Supplies

3. Since the rectifier is not ideal, its power dissipation consists of the following components:
a. Conduction loss $\left(\mathrm{V}_{\mathrm{F}}{ }^{*} \mathrm{I}_{\mathrm{F}}\right)$ during the on-time.
b. Turn-off loss during time $t_{2}-t_{3}$ and turn-on loss during time $\mathrm{t}_{5}-\mathrm{t}_{6}$ (Figure 2d).
c. Reverse blocking loss $\left(V_{R} * I_{R}\right)$ during period $t_{3}-t_{5}$. 4. The rectifier regains its reverse blocking capability at time $t_{2}$. A "snappy" rectifier that quickly turns off $I_{R(R E C)}$ will contribute much more EMI than a "soft", fast recovery rectifier.

A better transistor switch will intensify rather than improve the shortcomings of the fast recovery rectifier, so it is necessary to consider more fully the conduction and switching behavior of the rectifier diode.

## Power Losses in the Ultra-fast Rectifier Diode

Consider the idealized rectifier current and voltage waveforms in Figure 3 for a 50 kHz buck regulator. Power dissipation within the rectifier for a $50 \%$ duty factor is:

$$
\begin{aligned}
& P=P(\text { conduction })+P(\text { blocking })+P(\text { reverse recovery }) \\
& P=\frac{1}{2}\left(V_{F} l_{F}+V_{R} l_{R}+V_{R M} l_{R(R E C)} t_{b} f\right)
\end{aligned}
$$

Typical values for a $200 \mathrm{~V}, 8 \mathrm{~A}$ rectifier are:

$$
\begin{array}{ll}
f=50 \mathrm{kHz} & \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} \\
\mathrm{~V}_{F}=0.9 \mathrm{~V} & \left.\mathrm{t}_{\mathrm{B}}=25 \mathrm{~ns} \text { (assuming } \mathrm{t}_{\mathrm{b}}=\mathrm{t}_{\mathrm{rr}} / 2\right) \\
\mathrm{I}_{\mathrm{F}}=8 \mathrm{~A} & V_{R}=50 \mathrm{~V} \\
\mathrm{I}_{\mathrm{R}(\mathrm{REC})}=4 \mathrm{~A} & \mathrm{~V}_{R M}=200 \mathrm{~V}
\end{array}
$$

$$
P=1 / 2[(8 \mathrm{~A})(0.9 \mathrm{~V})+(50 \mathrm{~V})(1 \mathrm{~mA})+
$$

$$
(200 \mathrm{~V})(4 \mathrm{~A})(25 \mathrm{~ns})(50 \mathrm{kHz})]
$$

$$
\mathrm{P}=3.6 \mathrm{~W}+0.025 \mathrm{~W}+0.5 \mathrm{~W}=4.125 \mathrm{~W}
$$

## Conduction Losses

DC conduction or on-state losses occur whenever the rectifier is conducting forward current and consists simply of the integration of $\mathrm{I}_{\mathrm{F}} * \mathrm{~V}_{\mathrm{F}}$ during the on-time. Literature has dealt extensively with the computation of $\mathrm{V}_{\mathrm{F}}$ for many different rectifier structures (Reference 1). The Fairchild POWERplanar ${ }^{\text {TM }}$ line of fast recovery diodes are planar passivated, $\mathrm{P}+\mathrm{N}-\mathrm{N}+$ epitaxial type, for which a crosssectional view can be found in Figure 4. It can be shown that $V_{F}$ is inversely proportional to minority carrier lifetime and directly proportional to epitaxial thickness (Wi in Figure 4).

Figure 5 plots theoretical curves of normalized $V_{F}$ vs minority carrier lifetimes for rectifiers with 250 V and 500 V avalanche voltage breakdown. Since $t_{r r}$ is approximately equal to minority carrier lifetime, it is apparent that high current pn-junction rectifiers are limited to $20-50$ ns re-

Figure 3 Representative Current and Voltage Waveforms for the Rectifier in the Buck Regulator found in Figure 1a


Figure 4 Cross-sectional View of a PLANARpower ${ }^{\text {TM }}$, P+N-N+, Fast Recovery Rectifier


Figure 5 Normalized $\mathrm{V}_{\mathrm{F}}$ for 250 V and 500 V Rated Rectifiers as a Function of Minority Carrier Lifetime

verse recovery times because $V_{F}$ dramatically increases for minority carrier lifetimes less than these. It is also apparent that the $\mathrm{V}_{\mathrm{F}}$ curves have a broad minima around $10-30 \mathrm{~ns}$ so that another reason to select this value of minority carrier lifetime is that $\mathrm{V}_{\mathrm{F}}$ becomes independent of small changes in minority carrier lifetime due to manufacturing tolerances.

It is immediately obvious that the key to maximizing current through the rectifier is to minimize $\mathrm{V}_{\mathrm{F}}$. However at 200 kHz , reverse recovery losses will quadruple to 4 W , so that increasing attention must be paid to this parameter as operating frequency is raised.

## Reverse Blocking Losses

Planar passivation techniques have reduced surface leakage currents $\left(I_{R}\right)$ to a negligible amount so that the principle reverse leakage current is recombination current in the space charge region. Some of the many methods to control minority carrier lifetimes are electron or neutron irradiation and gold or platinum diffusion, each with its own advantages and disadvantages. For 200 V , ultrafast recovery rectifiers, gold diffusion still represents the best compromise between speed, $V_{F}, I_{R}$ and "soft" recovery.

A drawback to gold diffusion is its relatively high reverse leakage current. It should be pointed out that the reliability of the gold-diffused product is the same as other rectifiers (all other factors being equal), since this leakage current is a bulk and not a surface phenomenon. Figure 6 illustrates the dependency of recombination current on junction temperature and minority carrier lifetime, which is inversely proportional to the amount of gold in the depletion region. Experimental leakage test results have been plotted in Figure 6 for the Fairchild 8 A and 16 A series of rectifiers (FRP820 and FRP1620 respectively) at $100^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$. These points indicate that the low current injection level lifetime ranges form $20-30 \mathrm{~ns}$ and is relatively independent of $T_{J}$. Since reliability design guidelines specify that the rectifiers be operated at one-half their voltage rating and $25-50^{\circ} \mathrm{C}$ below their maximum junction temperature, the expected leakage currents in well designed power supplies will run less than 1 mA .

## Reverse Recovery Losses

All pn-junction rectifiers, operating in the forward direction, store charge in the form of excess minority carriers. The amount of stored charge is proportional to the magnitude of the forward current. The process by which a rectifier diode is brought out of conduction and returned to its block state is called commutation. Figure 7 shows an expanded view of current commutation, also called reverse recovery. Starting at time $t_{0}$, the rectifier is switched from its forward conducting state at a specified current ramp rate ( $-\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$ ). The current ramp rate will be determined by
the external circuit ( $E / L$ ) or the turn-on time of a transistor switch. During the time $t_{1}-t_{2}$, the stored charge within the rectifier is able to supply more current than the circuit requires, so that the rectifier behaves like a short circuit. Stored charge is depleted both by the reverse recovery current and recombination within the rectifier. Eventually the stored charge dwindles to the point that a depletion region around the junction starts to grow, allowing the rectifier to regain its reverse blocking voltage capability ( $\mathrm{t}_{2}$ ). From a circuit-design standpoint, the most important parameters are the peak reverse recovery current and " S ', the softness factor. A "snappy" rectifier will produce a large amplitude voltage transient and contribute significantly to electro-magnetic interference. Figure 8 illustrates the actual reverse recovery of two rectifier diodes. The peak voltage of the snappy rectifier is 175 V compared to

Figure 6 Regeneration Current for Gold-doped, P + N - N+ Rectifier Diodes


Figure 7 Expanded View of Current Commutation in a Rectifier Diode


142 V peak for the FRP820, the higher voltage resulting from both the higher $\mathrm{I}_{\mathrm{R}(\mathrm{REC})}$ and the fact that the reverse recovery current decays to zero in a shorter time.

The relative snappiness of a rectifier may be defined quantitatively by dividing the reverse recovery time $\mathrm{t}_{\mathrm{rr}}$ into two subperiods, $\mathrm{t}_{\mathrm{a}}$ and $\mathrm{t}_{\mathrm{b}}$, as shown in Figure 7. The softness factor " S " is simply the ratio $\mathrm{t}_{\mathrm{b}} / \mathrm{t}_{\mathrm{a}}$. A rectifier with a low value $S$ factor will be more likely to produce dangerous voltage transients, but it will also dissipate less reverse recovery energy than a high $S$ factor rectifier. A reasonable compromise between these two conflicting constraints would be to design a rectifier with $S=1\left(t_{a}=t_{b}\right)$. The S factors of the FRP820 rectifier and the competitive device in Figure 8 are 0.55 and 0.31 respectively.

Only recently has it become possible to model the ramp recovery in p-i-n rectifiers (References 2,3 ) and the following equations have proved useful in predicting reverse recovery parameters.

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{rr}}=\frac{\mathrm{Wi} \sqrt{\tau / \mathrm{Da}}}{8} \\
& \mathrm{~S}=\frac{\mathrm{Wi}}{4 \sqrt{D a \tau}} \\
& \mathrm{I}_{\mathrm{R}(\mathrm{REC})}=\left(\frac{\mathrm{dl}_{\mathrm{F}}}{\mathrm{dt}}\right) \tau\left(1+\frac{\mathrm{Wi}}{8 \sqrt{D a \tau}}\right)^{-1} \\
& \mathrm{Q}_{\mathrm{R}(\mathrm{REC})}=0.5 \tau^{2}\left(\frac{\mathrm{dl}_{\mathrm{F}}}{\mathrm{dt}}\right)
\end{aligned}
$$

where:
$\tau \quad=$ minority carrier lifetime
Wi = epitaxial thickness
$\mathrm{Da}=$ ambipolar diffusion constant
The blocking voltage rating of the rectifier primarily determines Wi; but for a given Wi, note that a short minority lifetime not only decreases $I_{R(R E C)}$ but happily increases $S$. These two key parameters are plotted as a function of minority carrier lifetime in Figure 9 for $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$ and $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$. As has been noted before, the minority carrier lifetime had been targetted for $20-30 \mathrm{~ns}$ to minimize $V_{F}$ and this choice has resulted in a typical value of $\mathrm{S}=0.65$ and $\mathrm{I}_{\mathrm{R}(\mathrm{REC})}=1.5 \mathrm{~A}$.

## Reverse Recovery Characterization

Figures 10-13 plot $Q_{R(R E C)} \mathrm{I}_{\mathrm{R}(\mathrm{REC})}$, $\mathrm{t}_{\mathrm{rr}}$ and S versus $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$ for the FRP1600 series of rectifiers and typical use conditions of $I_{F}=16 \mathrm{~A}$ and $\mathrm{V}_{\mathrm{R}}=200 \mathrm{~V}$ and for two different junction temperatures of $25^{\circ} \mathrm{C}$ and $125^{\circ} \mathrm{C}$. Theory not only predicts, but it has also been experimentally verified, that these parameters are relatively independent of $I_{F}$ so only one value of the latter suffices. Any three of the four Fig-
ures 10-13 completely specifies the reverse recovery behavior of the rectifier. Since $S$ and $T_{r r}$ vary the least over the plotting $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$ range, it is convenient to formulate reverse recovery energy loss $P$ in microwatts in terms of the circuit parameters $\mathrm{V}_{\mathrm{R}}$ and $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$ :

$$
P=\frac{V_{R}\left(\frac{d l_{F}}{d t}\right) f}{2 S}\left(\frac{S_{t_{r r}}}{1+\mathrm{S}}\right)^{2} 10^{-3}(\mu \mathrm{~W})
$$

where:
$\mathrm{V}_{\mathrm{R}} \quad=$ peak reverse voltage
$\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=\operatorname{ramp} \operatorname{rate}(\mathrm{A} / \mu \mathrm{s})$
$\mathrm{f} \quad=$ operating frequency $(\mathrm{kHz})$
Figure 8 Comparison of Reverse Recovery of the FRP820 Series Rectifier to a Snappy Rectifier


$$
-0
$$

$\mathrm{I}=0.5 \mathrm{~A} / \mathrm{DIV}$
$\mathrm{T}=10$
Test Conditions
$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{F}}=85^{\circ} \mathrm{C}$
$\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$ $T=10 \mathrm{~ns} / \mathrm{DIV}$


Test Conditions
$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$
$T_{J}=25^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{I}}=8 \mathrm{~A}$
$\mathrm{di}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$
$\mathrm{V}=50 \mathrm{~V} / \mathrm{DIV}$ $\mathrm{V}=50 \mathrm{~V} / \mathrm{DIV}$
$\mathrm{H}=10 \mathrm{~ns} / \mathrm{DIV}$

Figure 9 Theoretical Plots of $\mathrm{I}_{\mathrm{R}(\mathrm{REC})}$ and S vs Minority Carrier Lifetime


Figure 10 Reverse Recovery Current for the FRM/FRP1620 Series Rectifiers


Figure 11 Reverse Recovery Charge for the FRM/FRP1600 Series Rectifier Diodes


Figure 12 Reverse Recovery Time of the FRM/FRP1600 Series Rectifier Diodes


Figure 13 Softness Factor S for the FRM/FRP1600 Series Rectifier Diodes


Example: Calculate the reverse recovery power loss for the FRP1620 rectifier running at:

$$
\begin{array}{ll}
\mathrm{I}_{\mathrm{F}}=16 \mathrm{~A} & \mathrm{~V}_{\mathrm{R}}=100 \mathrm{~V} \\
\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} & \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \\
\mathrm{f}=75 \mathrm{kHz} &
\end{array}
$$

From Figures 12 and $13, \mathrm{t}_{\mathrm{rr}}=56 \mathrm{~ns}$ and $\mathrm{S}=0.29$. Substituting these values in the above equation:

$$
\begin{aligned}
& P=\frac{(100 \mathrm{~V})(100 \mathrm{~A} / \mu \mathrm{s})(75 \mathrm{kHz})}{(2)(0.29)}\left[\frac{(0.29)(56 \mathrm{~ns})}{1+0.29}\right] 20^{-3} \mu \mathrm{~W} \\
& \mathrm{P}=0.205 \mathrm{~W}
\end{aligned}
$$

There are many ways to shape the reverse recovery voltage spike. The most simple and still most popular is the

RC snubber circuit connected across the primary of the transformer in Figure 1b. This serves the dual purpose of suppressing voltage ringing and EMI due to the switching action of both the transistor and rectifier. William McMurray has shown how to design an RC snubber to minimize voltage transients and/or $\mathrm{dV} / \mathrm{dt}$ ramps just due to the diode reverse recovery current (Reference 4) and also how to design snubbers to minimize transistor power dissipation (Reference 5). But to date, because the RC snubber plays a major role in reducing EMI, its design tends to be empirical rather than theoretical.

## Conclusion

This application note has pointed out the major considerations in designing an ultrafast reverse recovery rectifier and shown that the control of minority carrier lifetime is the key in arriving at an optimum device. Because the diode contributes to EMI, its reverse recovery behavior must be carefully controlled and characterized in order to guarantee similar performance from lot to lot.

## References

1. S.K. Ghandhi, Semiconductor Power Devices, (NYC), John Wiley and Sons, p. 110 ff.
2. F. Berz, 'Ramp Recovery in p-i-n Diodes', Solid-State Electronics, Vol. 23, pp. 783-792.
3. C.M. Hu, Private Communication
4. W.McMurray, "Optimum Snubbers for Power Semiconductors'", IEEE Trans. on Industry Applications, Vol. 1A-8, No. 5, Sept/Oct 1972, pp. 593-600.
5. W. McMurray, "Selection of Snubbers and Clamps to Optimize the Design of Transistor Switching Converters'', PESC 1979 Conference Record, pp. 62-74.

## FAIRCHILD

A Schlumberger Company

## Application Note PD-3, January 1985

## Introduction

The high voltage power MOSFETs that are available today are n-channel, enhancement-mode, double diffused, Metal-Oxide-Silicon, Field Effect Transistors. They perform the same function as NPN, bipolar junction transistors except the former are voltage controlled in contrast to the current controlled bi-polar devices. Today MOSFETs owe their ever-increasing popularity to their high input impedance and to the fact that being a majority carrier device, they do not suffer from minority carrier storage time effects, thermal runaway, or second breakdown.

## MOSFET Operation

An understanding of the operation of MOSFETs can best be gleaned by first considering the lateral MOSFET shown in Figure 1.

Figure 1 Lateral N-Channel MOSFET Cross-section


With no electrical bias applied to the gate G, no current can flow in either direction underneath the gate because there will always be a blocking PN junction. When the gate is forward biased with respect to the source S , as shown in Figure 2, the free hole carriers in the p-epitaxial layer are repelled away from the gate area creating a channel, which allows electrons to flow from the source to the drain. Note that since the holes have been repelled from the gate channel, the electrons are the "majority carriers" by default. This mode of operation is called "enhancement" but it is easier to think of enhancement mode of operation as the device being "normally off', i.e., the switch blocks current until it receives a signal to turn on. The opposite is depletion mode, which is a normally "on" device.

## Introduction to Power MOSFETs and Their Applications

Philip Dunning \& Ralph Locher, Power And Discrete Div.

Figure 2 Lateral MOSFET Transistor Biased for Forward Current Conduction


The advantages of the lateral MOSFET are:

1. Low gate signal power requirement. No gate current can flow into the gate after the small gate oxide capacitance has been charged.
2. Fast switching speeds because electrons can start to flow from drain to source as soon as the channel opens. The channel depth is proportional to the gate voltage and pinches closed as soon as the gate voltage is removed, so there is no storage time effect as occurs in bipolar transistors.

The major disadvantages are:

1. High resistance channels. In normal operation, the source is electrically connected to the substrate. With no gate bias, the depletion region extends out from the N+ drain in a pseudo-hemispherical shape. The channel length L cannot be made shorter than the minimum depletion width required to support the rated voltage of the device.
2. Channel resistance may be decreased by creating wider channels but this is costly since it uses up valuable silicon real estate. It also slows down the switching speed of the device by increasing its gate capacitance.

Enter vertical MOSFETs!
The high voltage MOSFET structure (also known as DMOS) is shown in Figure 3.

Figure 3 Vertical DMOS Cross-sectional View


The current path is created by inverting the p-layer underneath the gate by the identical method in the lateral FETs. Source current flows underneath this gate area and then vertically through the drain, spreading out as it flows down. A typical MOSFET consists of many thousands of $\mathrm{N}+$ sources conducting in parallel. This vertical geometry makes possible lower on-state resistances ( $\mathrm{R}_{\mathrm{DS}(o n)}$ ) for the same blocking voltage and faster switching than the lateral FET.

There are many vertical construction designs possible, e.g., V -groove and U -groove, and many source geometries, e.g., squares, triangles, hexagons, etc. All commercially available power MOSFETs with blocking voltages greater than 300 V are manufactured similarly to Figure 3. The many considerations that determine the source geometry are $\mathrm{R}_{\mathrm{DS}(\text { (on) }}$, input capacitance, switching times and transconductance.

## Parasitic Diode

Early versions of MOSFETs were very susceptible to voltage breakdown due to voltage transients and also had a tendency to turn on under high rates of rise of drain-tosource voltage ( $\mathrm{dV} / \mathrm{dt}$ ), both resulting in catastrophic failures. The $\mathrm{dV} / \mathrm{dt}$ turn-on was due to the inherent parasitic NPN transistor incorporated within the MOSFET, shown schematically in Figure 4a. Current flow needed to charge up junction capacitance $C_{D G}$ acts like base current to turn on the parasitic NPN.

Figure 4
a. MOSFET Transistor Construction Showing Location of the Parasitic NPN Transistor

b. Parasitic Diode

c. Circuit Symbol


The parasitic NPN action is suppressed by shorting the $\mathrm{N}+$ source to the $\mathrm{P}+$ body using the source metallization. This now creates an inherent PN diode in anti-parallel to the MOSFET transistor (see Figure 4b). Because of its extensive junction area, the current ratings and thermal resistance of this diode are the same as the power MOSFET. This parasitic diode does exhibit a very long reverse recovery time and large reverse recovery current due to the long minority carrier lifetimes in the N -drain layer, which precludes the use of this diode except for very low frequency applications, e.g., motor control circuit shown in Figure 5. However in high frequency applications, the parasitic diode must be parallelled externally by an ultra-fast rectifier to ensure that the parasitic diode does not turn on. Allowing it to turn on will substantially increase the device power dissipation due to the reverse recovery losses within the diode and also leads to higher voltage transients due to the larger reverse recovery current.

## Controlling the MOSFET

A major advantage of the power MOSFET is its very fast switching speeds. The drain current is strictly proportional to gate voltage so that the theoretically perfect device could switch in $50-200 \mathrm{ps}$, the time it takes the carriers to flow from source to drain. Since the MOSFET is a majority carrier device, a second reason why it can outperform the bipolar junction transistor is that its turn-off is not delayed by minority carrier storage time in the base. A MOSFET begins to turn off as soon as its gate voltage drops down to its threshold voltage.

## Switching Behavior

Figure 6 illustrates a simplified model for the parasitic capacitances of a power MOSFET and switching voltage waveforms with a resistive load.

There are several different phenomena occurring during turn-on. Referring to the same figure:

$$
\text { Time interval } t_{1}<t<t_{2} \text { : }
$$

The initial turn-on delay time $\mathrm{t}_{\mathrm{d}(\mathrm{on})}$ is due to the length of time it takes $\mathrm{V}_{\mathrm{GS}}$ to rise exponentially to the threshold voltage $\mathrm{V}_{\mathrm{GS}(\mathrm{th}) \text {. }}$. From Figure 6 , the time constant can be seen to be $\mathrm{R}_{S} \times \mathrm{C}_{\mathrm{GS}}$. Typical turn-on delay times for the Fairchild IRF330 are:

$$
\begin{equation*}
t_{d(o n)}=R_{S} \times C_{G S} \times \ln \left(1-V_{G S(t h)} / V_{P K}\right) \tag{1}
\end{equation*}
$$

For an assumed gate signal generator impedance of $R_{S}$ of $50 \Omega$ and $C_{G S}$ of $600 \mathrm{pf}, \mathrm{t}_{d}$ comes to 11 ns . Note that since the signal source impedance appears in the $t_{d}$ equation, it is very important to pay attention to the test conditions used in measuring switching times.

Physically one can only measure input capacitance $\mathrm{C}_{\text {iss }}$, which consists of $\mathrm{C}_{\mathrm{GS}}$ in parallel with $\mathrm{C}_{\mathrm{DG}}$. Even though $C_{G S} \gg C_{D G}$, the latter capacitance undergoes a much larger voltage excursion so its effect on switching time cannot be neglected.

Figure 5 Full-wave Motor Control Circuit


Figure 6
a. MOSFET Capacitance Model for Power MOSFET

b. Switching Waveforms for Resistive Load



Plots of $\mathrm{C}_{\text {iss }}, \mathrm{C}_{\text {rss }}$ and $\mathrm{C}_{\text {oss }}$ for the Fairchild IRF330 are shown in Figure 7 below. The charging and discharging of $C_{D G}$ is analogous to the 'Miller" effect that was first discovered with electron tubes and dominates the next switching interval.

Time interval $\mathrm{t}_{2}<\mathrm{t}<\mathrm{t}_{3}$ :
Since $\mathrm{V}_{\mathrm{GS}}$ has now achieved the threshold value, the MOSFET begins to draw increasing load current and $V_{D S}$ decreases. $\mathrm{C}_{D G}$ must not only discharge but its capacitance value also increases since it is inversely proportional to $V_{D G}$, namely:

$$
\begin{equation*}
C_{D G}=C_{D G}(0) /\left(V_{D G}\right)^{n} \tag{2}
\end{equation*}
$$

Unless the gate driver can quickly supply the current required to discharge $C_{D G}$, voltage fall will be slowed with the attendant increase in turn-on time.

Time interval $\mathrm{t}_{3}<\mathrm{t}<\mathrm{t}_{4}$ :
The MOSFET is now on so the gate voltage can rise to the overdrive level.

Turn-off interval $t_{4}<t<t_{6}$ :
Turn-off occurs in reverse order. $\mathrm{V}_{\text {GS }}$ must drop back close to the threshold value before $\mathrm{R}_{\mathrm{DS}}(o n)$ will start to increase. As $V_{D S}$ starts to rise, the Miller effect due to $C_{D G}$ re-occurs and impedes the rise of $V_{D S}$ as $C_{D G}$ recharges to $\mathrm{V}_{\mathrm{CC}}$.

Specific gate drive circuits for different applications are discussed and illustrated below.

## MOSFET Characterization

The output characteristics ( $\mathrm{I}_{\mathrm{D}}$ vs $\mathrm{V}_{\mathrm{DS}}$ ) of the Fairchild IRF330 are illustrated in Figures 8 and 9.

The two distinct regions of operation in Figure 8 have been labeled "linear" and "saturated". To understand the difference, recall that the actual current path in a MOSFET is horizontal through the channel created under the gate oxide and then vertical through the drain. In the linear region of operation, the voltage across the MOSFET channel is not sufficient for the carriers to reach their maximum drift velocity or their maximum current density. The static $R_{D S(o n)}$, defined simply as $V_{D S} / I_{D S}$, is a constant.

As $V_{D S}$ is increased, the carriers reach their maximum drift velocity and the current amplitude cannot increase. Since the device is behaving like a current generator, it is said to have high output impedance. This is the so-called "sat-
uration" region. One should also note that in comparing MOSFET operation to a bipolar transistor, the linear and saturated regions of the bipolar are just the opposite to the MOSFET. The equal spacing between the output $I_{D}$ curves for constant steps in $\mathrm{V}_{\mathrm{GS}}$ indicates that the transfer characteristic in Figure 9 will be linear in the saturated region.

## Importance of Threshold Voltage

Threshold voltage $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ is the minimum gate voltage that initiates drain current flow. $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ can be easily measured on a Tektronix 576 curve tracer by connecting the gate to the drain and recording the required drain voltage for a specified drain current, typically $250 \mu \mathrm{~A}$ or 1 mA . $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$

Figure 7 Typical Capacitances of the Fairchild IRF330


Figure 8 Output Characteristics


Introduction to Power MOSFETs and Their Applications
in Figure 9 is 3.5 V . While a high value of $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ can apparently lengthen turn-on delay time, a low value for power MOSFET is undesirable for the following reasons:

1. $V_{G S(t h)}$ has a negative temperature coefficient $-7 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.
2. The high gate impedance of a MOSFET makes it susceptible to spurious turn-on due to gate noise.
3. One of the more common modes of failure is gateoxide voltage punch-through. Low $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ requires thinner oxides, which lowers the gate oxide voltage rating.

## Power MOSFET Thermal Model

Like all other power semiconductor devices, MOSFETs operate at elevated junction temperatures. It is important to observe their thermal limitations in order to achieve acceptable performance and reliability. Specification sheets contain information on maximum junction temperature ( $\mathrm{T}_{\mathrm{J}(\max )}$ ), safe areas of operation, current ratings and electrical characteristics as a function of $T_{J}$ where appropriate. However, since it is still not possible to cover all contingencies, it is still important that the designer perform some junction calculations to ensure that the device operate within its specifications.

Figure 10 shows an elementary, steady-state, thermal model for any power semiconductor and the electrical analogue. The heat generated at the junction flows through the silicon pellet to the case or tab and then to the heat sink. The junction temperature rise above the surrounding environment is directly proportional to this heat flow and the junction-to-ambient thermal resistance. The following

Figure 9 Transfer Characteristics

equation defines the steady state thermal resistance $R_{\text {(th)JC }}$ between any two points $x$ and $y$ :

$$
\begin{equation*}
R_{(t h) J C}=\left(T_{y}-T_{x}\right) / P \tag{3}
\end{equation*}
$$

where:
$T_{x}=$ average temperature at point $x\left({ }^{\circ} \mathrm{C}\right)$
$T_{y}=$ average temperature at point $y\left({ }^{\circ} \mathrm{C}\right)$
$P=$ average heat flow in watts.

Note that for thermal resistance to be meaningful, two temperature reference points must be specified. Units for $\mathrm{R}_{\text {(th) } \mathrm{Jc}}$ are ${ }^{\circ} \mathrm{C} / \mathrm{W}$.

The thermal model show symbolically the locations for the reference points of junction temperature, case temperature, sink temperature and ambient temperature. These temperature references define the following thermal references:
$\mathrm{R}_{\text {(th) JC: }}$ Junction-to-case thermal resistance.
$\mathrm{R}_{\text {(th) Cs: }}$ Case-to-sink thermal resistance.
$\mathrm{R}_{\text {(th)SA: }}$ : Sink-to-ambient thermal resistance.
Since the thermal resistances are in series:

$$
\begin{equation*}
R_{(t h) J A}=R_{(t h) J C}+R_{(t h) C S}+R_{(t h) S A} . \tag{4}
\end{equation*}
$$

The design and manufacture of the device determines $R_{(t h) J C}$ so that while $R_{(t h) J C}$ will vary somewhat from device to device, it is the sole responsibility of the manufacturer to guarantee a maximum value for $\mathrm{R}_{(\mathrm{th}) \mathrm{Jc} \text {. Both }}$ the user and manufacturer must cooperate in keeping $\mathrm{R}_{\text {(th) Cs }}$ to an acceptable maximum and finally the user has sole responsibility for the external heat sinking.

Figure 10 MOSFET Steady State Thermal Resistance Model


# Introduction to Power MOSFETs and Their Applications 

By inspection of Figure 10, one can write an expression for $T_{J}$ :

$$
\begin{equation*}
T_{J}=T_{A}+P \times\left[R_{(t h) J C}+R_{(t h) C S}+R_{(t h) S A}\right] \tag{5}
\end{equation*}
$$

While this appears to be a very simple formula, the major problem in using it is due to the fact that the power dissipated by the MOSFET depends upon $\mathrm{T}_{\mathrm{J}}$. Consequently one must use either an iterative or graphical solution to find the maximum $R_{(t h) S A}$ to ensure stability. But an explanation of transient thermal resistance is in order to handle the case of pulsed applications.

Use of steady state thermal resistance is not satisfactory for finding peak junction temperatures for pulsed applications. Plugging in the peak power value results in overestimating the actual junction temperature while using the average power value underestimates the peak junction temperature value at the end of the power pulse. The reason for the discrepancy lies in the thermal capacity of the semiconductor and its housing, i.e., its ability to store heat and to cool down before the next pulse.

The modified thermal model for the MOSFET is shown in Figure 11. The normally distributed thermal capacitances have been lumped into single capacitors labelled $\mathrm{C}_{\mathrm{J}}, \mathrm{C}_{\mathrm{C}}$, and $\mathrm{C}_{\mathrm{S}}$. This simplification assumes current is evenly distributed across the silicon chip and that the only significant power losses occur in the junction. When a step pulse of heating power $P$ is introduced at the junction, Figure 12a shows that $T_{J}$ will rise at an exponential rate to some steady state value dependent upon the response of the thermal network. When the power input is terminated at time $t_{2}, T_{J}$ will decrease along the curve indicated by $\mathrm{T}_{\text {cool }}$ in Figure 12a back to its initial value. Transient thermal resistance at time $t$ is thus defined as:

$$
\begin{equation*}
Z_{(\mathrm{th}) \mathrm{JC}}=\frac{\Delta \mathrm{T}_{\mathrm{JC}}(\mathrm{t})}{\mathrm{P}} \tag{6}
\end{equation*}
$$

The transient thermal resistance curve approaches the steady state value at long times and the slope of the curve for short times is inversely proportional to $\mathrm{C}_{\mathrm{J}}$. In order that this curve can be used with confidence, it must represent the highest values of $Z_{\text {(th) Jc }}$ for each time interval that can be expected from the manufacturing distribution of products.

While predicting $T_{J}$ in response to a series of power pulses becomes very complex, superposition of power pulses offers a rigorous numerical method of using the transient thermal resistance curve to secure a solution. Superposition tests the response of a network to any input function by replacing the input with an equivalent series of superimposed positive and negative step functions. Each step function must start from zero and continue to the time for
which $T_{J}$ is to be computed. For example, Figure 13 illustrates a typical train of heating pulses.

Figure 11 Transient Thermal Resistance Model


Figure 12
a. Junction Temperature Response to a Step Pulse of Heating Power

b. Transient Thermal Resistance Curve for Fairchild IRF330 MOSFET


PCosel 10 F

## Introduction to Power MOSFETs and Their Applications

$T_{J}$ at time $t$ is given by:

$$
\begin{equation*}
T_{J}(t)=T_{J}(0)+\sum_{i=0}^{\eta} P i\left[Z_{(t h) J C}\left(t_{n}-t_{i}\right)-Z_{(t h) J C}\left(t_{n}-t_{i}+1\right)\right] \tag{7}
\end{equation*}
$$

The usual use condition is to compute the peak junction temperature at thermal equilibrium for a train of equal amplitude power pulses as shown in Figure 14.

To further simplify this calculation, the bracketed expression in equation (G) has been plotted for all Fairchild pow-

Figure 13 Use of Superposition to Determine Peak $T_{J}$
a. Heat Input

b. Equivalent Heat Input by Superposition of Power Pulses

c. Junction temperature response to individual power pulses of b

d. Actual $\mathrm{T}_{\mathrm{J}}$

er MOSFETs, as exemplified by the plot of $Z_{(\text {th }) \text { Jc }}$ in Figure 14b. From this curve, one can readily calculate $T_{J}$ if one knows $P_{M}, Z_{\text {(th) JC }}$ and $T_{C}$ using the expression:

$$
\begin{equation*}
T_{J}=T_{C}+P_{M} \times Z_{(t h) J C} \tag{8}
\end{equation*}
$$

Example: Compute the maximum junction temperature for a train of $25 \mathrm{~W}, 200 \mu \mathrm{~s}$ wide heating pulses repeated every 2 ms . Assume a case temperature of $95^{\circ} \mathrm{C}$.

Duty factor $=0.1$
From Figure 14b: $Z_{(\text {th) }) \mathrm{C}}=.55^{\circ} \mathrm{C} / \mathrm{W}$
Substituting into equation $(\mathrm{H})$ :
$T_{J(\text { max })}=95+25 \times .55=108.75^{\circ} \mathrm{C}$
Figure 14
a. Train of Power Pulses

b. Normalized $\mathbf{Z}_{\text {thJc }}$ for Fairchild IRF330 for Power Pulses Typified in 14a


## Safe Area of Operation

The power MOSFET is not subject to forward or reverse bias second breakdown, which can easily occur in bipolar junction transistors. Second breakdown is a potentially catastrophic condition in bi-polar transistors caused by thermal hot spots in the silicon as the transistor turns on or off. However in the MOSFET, the carriers travel through the device much as if it were a bulk semiconductor, which exhibits a positive temperature coefficient of $0.6 \% /{ }^{\circ} \mathrm{C}$. If current attempts to self-constrict to a localized area, the increasing temperature of the spot will raise the spot resistance due to the positive temperature coefficient of the bulk silicon. The ensuing higher voltage drop will tend to redistribute the current away from the hot spot. Figure 15 delineates the safe areas of operation of the Fairchild IRF330 device.

Note that the safe area boundaries are only thermally limited and exhibit no derating for second breakdown. This shows that while the MOSFET transistor is very rugged, it may still be destroyed thermally by forcing it to dissipate too much power.

## On-resistance $\mathrm{R}_{\mathrm{DS}(o n)}$

The on-resistance of a power MOSFET is a very important parameter because it determines how much current the device can carry for low to medium frequency (less than 200 kHz ) applications. After being turned on, the on-state voltage of the MOSFET falls to a low value and its $\mathrm{R}_{\mathrm{DS}(o n)}$ is defined simply as its on-state voltage divided by on-state current. When conducting current as a switch, the conduction losses $\mathrm{P}_{\mathrm{C}}$ are:

$$
\begin{equation*}
P_{C}=I^{2} D(R M S) \times R_{D S(o n)} \tag{9}
\end{equation*}
$$

Figure 15 Safe Area of Operation of the Fairchild IRF330 MOSFET Transistor


To minimize $R_{D S(o n)}$, the applied gate signal should be large enough to maintain operation in the linear or ohmic region as shown in Figure 8. All Fairchild MOSFETs will conduct their rated current for $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$, which is also the value used to generate the curves of $R_{D S(o n)}$ vs $I_{D}$ and $T_{J}$ that are shown in Figure 16 for the Fairchild IRF330. Since $R_{\text {DS(on) }}$ increases with $T_{J}$, Figure 16 plots this parameter as a function of current for room ambient and elevated temperatures.

Note that as the drain current rises, $\mathrm{R}_{\mathrm{DS}(o n)}$ also increases once $I_{D}$ exceeds the rated current value. Because the MOSFET is a majority carrier device, the component of $\mathrm{R}_{\mathrm{DS}(o n)}$ due to the bulk resistance of the N - silicon in the drain region increases with temperature as well. While this must be taken into account to avoid thermal runaway, it does facilitate parallel operation of MOSFETs. Any inbalance between MOSFETs does not result in current hogging because the device with the most current will heat up and the ensuing higher on-voltage will divert some current to the other devices in parallel.

## Transconductance

Since MOSFETs are voltage controlled, it has become necessary to resurrect the term transconductance $g_{\text {fs }}$, commonly used in the past with electron tubes. Referring to Figure 8, $\mathrm{g}_{\mathrm{f}}$ equals the change in drain current divided by the change in gate voltage for a constant drain voltage. Mathematically:

$$
\begin{equation*}
\mathrm{g}_{\mathrm{fs}}(\text { Siemens })=\frac{\mathrm{dl}_{\mathrm{D}}(\mathrm{~A})}{\mathrm{dV}_{\mathrm{GS}}(\mathrm{~V})} \tag{10}
\end{equation*}
$$

Transconductance varies with operating conditions, starting at 0 for $\mathrm{V}_{\mathrm{GS}}<\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ and peaking at a finite value when the device is fully saturated. It is very small in the ohmic region because the device cannot conduct any more cur-

Figure 16 R $_{\mathrm{DS}(o n)}$ of the Fairchild IRF330

rent. Typically $g_{f s}$ is specified at half the rated current and for $V_{D S}=20 \mathrm{~V}$. Transconductance is useful in designing linear amplifiers and does not have any significance in switching power supplies.

## Gate Drive Circuits for Power MOSFETs

The drive circuit for a power MOSFET will affect its switching behavior and its power dissipation. Consequently the type of drive circuitry depends upon the application. If on-state power losses due to $\mathrm{R}_{\mathrm{DS}(o n)}$ will predominate, there is little point in designing a costly drive circuit. This power dissipation is relatively independent of gate drive as long as the gate-source voltage exceeds the threshold voltage by several volts and an elaborate drive circuit to decrease switching times will only create additional EMI and voltage ringing. In contrast, the drive circuit for a device switching at 200 kHz or more will affect the power dissipation since switching losses are a significant part of the total power dissipation.

Compared to a bi-polar junction transistor, the switching losses in a MOSFET can be made much smaller but these losses must still be taken into consideration. Examples of several typical loads along with the idealized switching waveforms and expressions for power dissipation are given in Figures 17 to 19.

Their power losses can be calculated from the general expression:

$$
\begin{equation*}
P_{D}=\left(\frac{1}{\tau} \int_{O}^{\tau} I_{D}(t) \cdot V_{D S}(t) d t\right) \cdot f_{S} \tag{11}
\end{equation*}
$$

where: $f_{s}=$ Switching frequency.
For the idealized waveforms shown in the figures, the integration can be approximated by the calculating areas of triangles:

Resistive load:

$$
P_{D}=\frac{V^{2} D D}{R}\left[\frac{t_{\text {(on) }}+t_{\text {(off) }}}{6}+R_{D S(o n)} \cdot T\right] \cdot f_{S}
$$

inductive load:

$$
P_{D}=\frac{V_{C L} I_{m} t_{(\text {off })} f_{S}}{2}+P_{C}
$$

where:
$\mathrm{P}_{\mathrm{C}}=$ conduction loss during period T .

## Capacitive load:

$$
P_{D}=\left(\frac{C V^{2} D D}{2}+\frac{V^{2} D R_{D S(o n)}}{R^{2}} T\right) f_{s}
$$

Gate losses and blocking losses can usually be neglected. Using these equations, the circuit designer is able to estimate the required heat sink. A final heat run in a controlled temperature environment is necessary to ensure thermal stability.

Figure 17 Resistive Load Switching Waveforms


Figure 18 Clamped Inductive Load Switching Waveforms


Since a MOSFET is essentially voltage controlled, the only gate current required is that necessary to charge the input capacitance $\mathrm{C}_{\text {iss }}$. In contrast to a 10 ampere bipolar transistor, which may require a base current of 2 amperes to ensure saturation, a power MOSFET can be driven directly by CMOS or open-collector TTL logic circuit similar to that in Figure 20.

Turn-on speed depends upon the selection of resistor $R_{1}$, whose minimum value will be determined by the current sinking rating of the IC. It is essential that an open collector TTL buffer be used since the voltage applied to the gate must exceed the MOSFET threshold voltage of 5 V . CMOS devices can be used to drive the power device directly since they are capable of operating off 15 V supplies.

Interface ICs, originally intended for other applications, can also be used to drive power MOSFETs, as shown below in Figure 21.

Most frequently switching power supply applications employ a pulse width modulator IC with an NPN transistor output stage. This output transistor is ON when the MOSFET should be ON, hence the type of drive used with opencollector TTL devices cannot be used. Figures 22 and 23 give examples of typical drive circuits used with PWM ICs.

Figure 19 Capacitive Load Switching Waveforms


Figure 20 Open Collector TTL Drive Circuit


Figure 21 Interface ICs Used to Drive Power MOSFETs


Figure 22 Circuit for PWM IC Driving MOSFET The PNP Transistor Speeds Up Turn-off


## Introduction to Power MOSFETs and Their Applications

Isolation: Off-line switching power supplies use power MOSFETs in a half-bridge configuration because inexpensive, high voltage devices with low $\mathrm{R}_{\mathrm{DS}(o n)}$ are not available.

Since one of the power devices is connected to the positive rail, its drive circuitry is also floating at a high potential. The most versatile method of coupling the drive circuitry is to use a pulse transformer. Pulse transformers are also normally used to isolate the logic circuitry from the MOSFETs operating at high voltage to protect it from a MOSFET failure.

The zener diode shown in Figure 25 is included to reset the pulse transformer quickly. The duty cycle can approach $50 \%$ with a 12 V zener diode. For better performance at turn-off, a PNP transistor can be added as shown in Figure 26.

Figure 27 illustrates an alternate method to reverse bias the MOSFET during turn-off by inserting a capacitor in series with the pulse transformer. The capacitor also ensures that the pulse transformer will not saturate due to DC bias.

Figure 23 Emitter Follower with Speed-up Capacitor


Figure 24 Half-bridge configuration


Figure 25 Simple Pulse Transformer Drive Circuit The Transistor May Be a Part of a PWM IC If Applicable


Figure 26 Improved Performance at Turn-off With a Transistor

Figure 27 Emitter Follower Driver with Speed-up Capacitor


Opto-isolators may also be used to drive power MOSFETs but their long switching times make them suitable only for low frequency applications.

## Selecting a Drive Circuit

Any of the circuits shown are capable of turning a power MOSFET on and off. The type of circuit depends upon the application. The current sinking and sourcing capabilities of the drive circuit will determine the switching time and switching losses of the power device. As a rule, the higher the gate current at turn-on and turn-off, the lower the switching losses will be. However, fast drive circuits may produce ringing in the gate and drain circuits. At turnon, ringing in the gate circuit may produce a voltage transient in excess of the maximum $\mathrm{V}_{\mathrm{GS}}$ rating, which will puncture the gate oxide and destroy it. To prevent this occurrence, a zener diode of the appropriate value may be added to the circuit as shown in Figure 28. Note that the zener should be mounted as close as possible to the device.

At turn-off, the gate voltage may ring back up to the threshold voltage and turn on the device for a short period. There is also the possibility that the drain-source voltage will exceed its maximum rated voltage due to ringing in the drain circuit. A protective RC snubber circuit or zener diode may be added to limit drain voltage to a safe level.

Figures 29-34 give typical turn-on and turn-off times of various drive circuits for the following test circuit:

Device: Fairchild IRF450, $V_{D D}=200 \mathrm{~V}$,
Load $=33 \Omega$ resistor.
Figure 28 Zener Diode to Prevent Excessive Gate-Source Voltages


Drive Circuit Turn-on/Turn-off Times
Figure 29 Emitter Follower PWM


Note
Voltage Fall Time $=17 \mathrm{~ns}$, Voltage Rise Time $=20 \mathrm{~ns}$
Figure 30 Simple Pulse Transformer


Note
Voltage Fall Time $=50 \mathrm{~ns}$, Voltage Rise Time $=112 \mathrm{~ns}$
Figure 31 Pulse Width Modulator


Note
Voltage Fall Time $=50 \mathrm{~ns}$, Voltage Rise Time $=16 \mathrm{~ns}$

Figure 32 Pulse Transformer with Speed-up Capacitor


Note
Voltage Fall Time $=63 \mathrm{~ns}$, Voltage Rise Time $=74 \mathrm{~ns}$

## Figure 33 Interface Drive



Note
Voltage Fall Time $=200 \mathrm{~ns}$, Voltage Rise Time $=84 \mathrm{~ns}$
Figure 34 Interface Drive


Note
Voltage Fall Time $=70 \mathrm{~ns}$, Voltage Rise Time $=30 \mathrm{~ns}$

# FAIRCHILD 

A Schlumberger Company

## Protecting Power MOSFETs from Static Electricity

Product Bulletin PD-1

One of the potential problems in the handling of power MOSFETs is damage due to the discharge of static electricity. Since Electro-Static Discharge (ESD) can cause degradation or complete component failure, it is necessary that these components be handled in static safe work stations and that all personnel be trained to handle these components safely.

## ESD Basics

Static electricity is generated by the simple separation of any two non-conductive surfaces. Note that rubbing is not necessary, but only separation. As the materials are separated, one surface becomes positively charged and the other negatively charged according to their position in the Triboelectric Series Table shown below. Power MOSFETs can be affected by either a discharge or an electric field caused by the presence of this charge, so the presence of either polarity is cause for concern.

Table 1-Triboelectric Series

| Substance | Charge Range |
| :---: | :---: |
| Air | Greatest Positive Charge |
| Human Skin |  |
| Glass |  |
| Mica |  |
| Human hair |  |
| Nylon |  |
| Wool |  |
| Silk |  |
| Paper |  |
| Cotton |  |
| Wood |  |
| Hard rubber |  |
| Acetate rayon |  |
| Polyester |  |
| Polyurethane |  |
| PVC |  |
| Teflon | Greatest Negative Charge |

From this table, it can be seen that cotton is relatively neutral. Materials that do not hold moisture are the most significant contributors to ESD because moisture lowers their resistivity and, therefore, the relative humidity in the work environment plays a major role in the magnitude of ESD voltage.

Power And Discrete Division

ESD damage is caused by the build-up of static chaıge on the gate of the power MOSFET. The typical breakdowr voltage of the gate oxide is in the range of $60-100 \mathrm{~V}$. Table 2 shows how easily these voltages can be generated.

Table 2: Typical Electrostatic Voltages

| Means of Static Electricity | Voltage Range (V) |
| :--- | ---: |
| Walking on dry carpet | $1,000-35,000$ |
| Walking over vinyl floor | $200-12,000$ |
| Rubbing common poly bag | $1,200-10,000$ |
| Separating adhesive tape | $1,000-5,000$ |

People and plastics are the biggest culprits in the generation of static electricity. Since most items found in a manufacturing area are synthetic, just about everything can and will generate a charge, making them all suspect unless they are rendered Anti-Static, Static Dissipative or Conductive. This is accomplished by either the addition of anti-static or conductive compounds to the basic resins or by coating the surface of the material with the same compounds.

## ESD Protection

The basic method for protecting electronic components from ESD damage combines the prevention of static charge accumulation along with the removal of existing charges. Power and Discrete Division ships all power MOSFETs in ESD protection bags or containers but it is recommended that special handling guidelines be adhered to to insure that no damage occurs during subsequent inspection and manufacturing operations.

1. In order to remove unwanted stray charge from operators, a grounded wrist strap should be worn by all production personnel handling the device.
2. In order to ground both machinery and transient personnel that enter a production area, conductive floor and table mats should be used.
3. When removing the devices from their shipping containers, they should be placed on a grounded surface.
4. The devices should be stored in a conductive material and should be placed inside anti-static bags when they are being transported.
5. Ground the tips of soldering irons.
6. Ground metal parts and fixtures on printed circuit cards.
7. Insert and remove the part only when power is off. 8. An ionized air blower may be used to neutralize static charges on non-conductive materials. This blower should provide a constant stream of both positive and negative ions.

| Index, Selector Guides, <br> Industry Cross Reference | 1 |
| :--- | :--- |
| Power MOSFETs and Ultra-Fast <br> Recovery Rectifier Data Sheets 2 <br> MOSFET and Rectifier Dice 3 <br> Advanced Products 4 <br> Application Notes/ESD 5 <br> Quality Assurance <br> and Reliability 6 <br> Ordering Information <br> and Package Outlines 7 <br>  Field Sales Offices 8 |  |



## FAIRCHILD

A Schlumberger Company

## Fairchild Committment to Quality

## Wafer Fabrication

Fairchild's class 100 wafer fabrication areas which are dedicated to high technology products, such as power MOSFETs and ultra-fast rectifiers, are built incorporating the finest automated equipment available. Together with optimized designs and finely-tuned processes, these wafer fabs are capable of producing devices of the highest quality demanded by today's market. Minimizing wafer defect densities is the essential key to manufacturing large dice with high performance at low cost.

The wafer fab process flow, shown in Figure 1, includes many Q.A. gates and monitors, all part of the continuous

## Quality Assurance and

 ReliabilityTable 1 TO-3 Assembly and Test, In-Line QA Monitors or SPC

| Q.A. Monitor | Sample Size | Frequency | Test Performed | Criteria |
| :---: | :---: | :---: | :---: | :---: |
| Probe | 5 Wafers 20 Die | Batch | Curve Tracer, IGss ${ }^{\text {DSSS, }} \mathrm{V}_{(\mathrm{BR}) \text { DSS, }} \mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ plus visual | $\mathrm{A}=0, \mathrm{R}=1$ |
| Saw | AQL 1.5\% | Wafer Batch | Visual: Scratches, Chips, Scribe Lines, Voids | AQL 1.5\% |
| Die Attach | 5 Units | 1500 Units | Die Lift Test (Destructive), Solder Homogeneity and Thickness | AQL 1.5\% |
| Wire Bond Mechanical | 4 Wires | 1500 Units | Pull Test (Destructive) | $A=0, R=1$ |
| Wirebond Visual | 5 Units | 1500 Units | Bond Size, Wire Placement, Loop Height | $A=0, R=1$ |
| Seal Visual | 20 Units | 1500 Units | Visual Inspection of weld, Glass, Cracks | $A=0, R=1$ |
| Seal Gross Leak | 20 Units | 1500 Units | Bubble Test | $A=0, R=1$ |
| Solder Dip | 5 Units | 1500 Units | Visual, Homogeneity, Solderability | $A=0, R=1$ |
| Test | 20 Units | 1500 Units | DC Electricals, Misbinning | $A=0, R=1$ |
| Mark | 5 Units | 1500 Units | Legibility, Mark Permanency | $A=0, R=1$ |

Figure 1 Power MOSFET Wafer Fabrication Flow


Figure 2 Power MOSFET's TO-3 Assembly and Test Flow


Figure 3 TO-220 Assembly and Test Flow, MOSFETs and Rectifiers


The main features are:

- Frequent in-line monitors to insure that the process is kept under control.
- Repeated $100 \%$ electrical testing (see table 2) aimed at achieving AOQL (Average Outgoing Quality Levels) lower than 100 ppm .
- A combination of test guard-bands that prevent anomalous products from passing the tests, even if they meet the specified electrical requirements (see figure 4, TOP Test Optimization Principle). This is made possible by improved designs, processes and equipment at wafer
fabrication level, the result of which is a tight and predictable distribution of electrical parameters.
- An outgoing Q.A. check to the full specification, including high temperature, dc electrical, switching times, capacitances, hermeticity, fine and gross leaks (TO-3), mechanical and visual inspection, etc.
- A systematic reliability program which runs environmental and accelerated life tests on a regular basis (see Figure 5).
- A record of data on a batch by batch basis (an assembly batch being any homonogous wafer lot).

Table 2 Electrical Tests Performed On Power MOSFET's TO-3 Automated Assembly Line

| Operation | Parameters 100\% Tested ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted) | Read \& Record (sample) |
| :---: | :---: | :---: |
| Wafer Probe |  | All |
| Test After Bond | $I_{\text {GSS }}$ I IDSS, $\mathrm{R}_{\text {日JC }}$ | $\mathrm{R}_{\text {өJc }}$ |
| Test After Seal | $I_{G S S}, I_{D S S}, V_{(B R) D S S}, V_{G S(T H)}, R_{D S(\text { on })}, V_{D S(\text { on })}, g_{f s}, V_{S D}$, loss at $125^{\circ} \mathrm{C}$ | All |
| Test After Mark | $I_{\text {GSS }}, \mathrm{I}_{\text {DSS }}, \mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}(\mathrm{TH)}}, \mathrm{R}_{\mathrm{DS} \text { (on) }}$, $\mathrm{g}_{\mathrm{fs}}, \mathrm{V}_{\text {SD }}$ | - |
| Outgoing QA | Sample Test: <br> $I_{G S S}, I_{\text {DSS }}, V_{\text {(BR)DSS }}, V_{G S(T H)}, R_{D S(o n)}, g_{f s}, V_{S D}$, IDSs at $125^{\circ} \mathrm{C}, \mathrm{C}_{\text {iss }}, \mathrm{C}_{\text {oss }}, \mathrm{C}_{\text {rss }}, \mathrm{t}_{\mathrm{d}(\text { on) }}, \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{d} \text { (off) }}, \mathrm{t}_{\mathrm{f}}$ | $\begin{aligned} & C_{\text {iss }}, C_{\text {oss }}, C_{\text {rss }}, t_{d(o n)}, t_{r}, \\ & t_{d(o f f)}, t_{f} \end{aligned}$ |
| Characterization | Sample Test: All | All |

The sequence of test is the same for the TO-220 and TO-3 Plastic
Assembly lines, with the exception that test after bond is eliminated (lead
frame shorts all device leads at this point).
Figure 4 Test Optimization Principle (TOP)
All Devices Showing Anomalous Behavior Are Rejected
Through The TOP Method


Figure 5 Control of TO-3 Assembly Quality


1s00040F

| Component | Electric Tests | QA Monitors | Reliability Tests |
| :---: | :---: | :---: | :---: |
| Solder | $\mathrm{R}_{\text {OJC }}$ | - Die LIFT <br> - Visual inspection | - Temp Cycles $-55,+150^{\circ} \mathrm{C}$ <br> - Power Cycles $\Delta \mathrm{T}_{\mathrm{C}}=70^{\circ} \mathrm{C}$ |
| Die | DC Electricals, Switching Times, Capacitances | - Visual Inspection | - HTRB: $80 \% \mathrm{~V}_{(\mathrm{BR}) \mathrm{DSS}}$, $\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$ <br> - HTS: $150^{\circ} \mathrm{C}$ <br> -HTGB: $20 \mathrm{~V}, 150^{\circ} \mathrm{C}$ <br> - OP LIFE: $T_{J}=150^{\circ} \mathrm{C}$ |
| Al. Wire | $\mathrm{R}_{\mathrm{DS} \text { (on) }}, \mathrm{V}_{\mathrm{DS} \text { (on) }}$, $V_{F}$ | - Visual Inspection <br> - Pull Test | - Temp Cycles -55 to $+150^{\circ} \mathrm{C}$ <br> - Power Cycles $\Delta \mathrm{T}_{\mathrm{C}}=70^{\circ} \mathrm{C}$ <br> - OP LIFE: $T_{J}=150^{\circ} \mathrm{C}$ |

## Summery

HTRB = High Temperature Reverse Bias
HTS = High Temperature Storage
HTGB = High Temperature Gate Bias
OPLIFE $=$ Operating Life, Device Heat Sunk, Rated Power Applied
valldalleri the osncyueaA willsu0


| Index, Selector Guides, <br> Industry Cross Reference | 1 |
| :--- | :--- |
| Power MOSFETs and Ultra-Fast <br> Recovery Rectifier Data Sheets 2 <br> MOSFET and Rectifier Dice 3 <br> Advanced Products 4 <br> Application Notes/ESD <br> Quality Assurance <br> and Reliability 5 <br> Ordering Information <br> and Package Outlines 6 <br> Field Sales Offices 7 | 8 |



## Ordering Information <br> Fairchild POWERplanar Rectifier Numbering System

- All devices should be ordered using the Fairchild part number as shown in this data book.



## Package Outlines



TO-204AA
Notes:
Leads are solder dipped over nickel-plated alloy 52.
Base and Cap are nickel-plated steel.
Leads 1 and 2 are electrically isolated from the case which is the third electrical connection.
Package weight approximately 12 grams.
Connection Diagram (MOSFET)


Notes:
TO-204AA and TO-204AE are shipped in 50 piece cavity antistatic trays.
TO-220AB and TO-220AC are shipped in 50 piece antistatic tubes.
All dimensions in inches (bold) and millimeters (parentheses).

## Package Outlines


pooos 10 F


Notes:
Notes:
TO-204AA and TO-204AE are shipped in 50 piece cavity antistatic trays.
TO-220AB and TO-220AC are shipped in 50 piece antistatic tubes.
All dimensions in inches (bold) and millimeters (parentheses)

## TO-204AE

Notes:
Leads are solder dipped over nickel-plated alloy 52. Base and Cap are nickel-plated steel.
Leads 1 and 2 are electrically isolated from the case which is the third electrical connection.
Package weight approximately 12 grams.
Connection Diagram


## TO-220AB (MOSFET Package)

Notes:
Leads are solder dipped over nickel-plated copper alloy. Package material is plastic.
Mounting tab is nickel-plated copper alloy.
Lead 2 is the electrical contact with the mounting tab. Package weight approximately 2 grams

## Connection Diagram



## Ordering Information and Package Outlines

## Package Outlines



## TO-220AB (Rectifier Package)

## Notes:

Leads are solder-dipped over nickel-plated copper alloy. Package material is plastic.
Mounting tab is nickel-plated copper alloy.
Lead 2 is the electrical contact with the mounting tab Package weight approximately 2 grams.

## Connection Diagram



## TO-220AC

## Notes:

Leads are solder-dipped over nickel-plated copper alloy. Package material is plastic.
Mounting tab is nickel-plated copper alloy.
Lead 1 is the electrical contact with the mounting tab. Package weight approximately 2 grams.

## Connection Diagram



## Notes:

TO-204AA and TO-204AE are shipped in 50 piece cavity antistatic trays. TO-220AB and TO-220AC are shipped in 50 piece antistatic tubes. All dimensions in inches (bold) and millimeters (parentheses).

## Gne riolsemvoth pritobro seniluo opevios9

(sgespol isilitoen) GAOSs-OT






matisid noivennas

suiand

esnituo ogaross

seleh



[^0]:    Notes
    For information concerning connection diagram and package outline, refer to Section 7.

